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 10 

Abstract. Apparent temperatures (AP) and ground level aerosol pollution (PM2.5) are 11 

important factors in human health, particularly in rapidly growing urban centres in the 12 

developing world. We compare quantify how changes in apparent temperatures – that 13 

is a combination of 2 m air temperature, relative humidity and surface wind speed, and 14 

PM2.5 concentrations – that depend on the same meteorological factors along with 15 

future industrial emission policy, may impact people in the greater Beijing region. in 16 

fFour Earth System Models (ESM) under simulations of the modest greenhouse 17 

emissions RCP4.5, the “business-as-usual" RCP8.5 and the stratospheric aerosol 18 

injection G4 geoengineering scenarios. Apparent temperatures come from both are 19 

downscaled using both a 10  km resolution dynamic ally downscaled model (WRF), 20 

and a statistically bias correctedapproach (ISIMIP). We use multiple linear regression 21 

models to simulate changes in PM2.5 and the contributions meteorological factors make 22 

in controlling seasonal AP and PM2.5. and downscaled simulation for the greater Beijing 23 

region. ISIMIP downscaling method tends to simulate apparent temperatures well at 24 

present in all seasons, and WRF produces warmer winters than does ISIMIP. WRF 25 

produces warmer winters and cooler summers than does ISIMIP both now and in the 26 

future. These differences mean that estimates of numbers of days with extreme apparent 27 

temperatures vary systematically with downscaling method, as well as between climate 28 

models and scenarios. Air temperature changes dominate differences in apparent 29 

temperatures between future scenarios even more than they do at present because the 30 

reductions in humidity expected under solar geoengineering are overwhelmed by rising 31 

vapor pressure due to rising temperatures and the lower windspeeds expected in the 32 

region in all future scenarios. Temperature and humidity differences between scenarios 33 

change the relative risk of disease from PM2.5 such that G4 results in 1-3% higher health 34 

risks than RCP4.5. Urban centres see larger rises in extreme apparent temperatures than 35 

rural surroundings due to differences in land surface type, and since these are also the 36 

most densely populated, health impacts will be dominated by the larger rises in apparent 37 

temperatures in these urban areas. 38 

 39 

500 character non-technical text 40 
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Apparent temperatures and PM2.5 pollution depends onthat include humidity and wind 41 

speed in addition to surface temperature measure and impacts human heat stresshealth 42 

and comfort. We show that aApparent temperatures will reach dangerous levels more 43 

commonly in future and rise faster than air temperatures because of water vapor 44 

pressure rises and lower expected wind speeds. , but these will also drive change in 45 

PM2.5. Solar geoengineering can reduce the frequency of extreme events significantly 46 

relative to modest, and especially “business as usual” greenhouse scenarios. 47 

 48 

 49 

1. Introduction 50 

Global mean surface temperature has increased by 0.92℃ (0.68-1.17℃) during 1880-51 

2012 (IPCC, 2021), which naturally also impacts the human living environment 52 

(Kraaijenbrink et al., 2017; Garcia et al., 2018). However, neither land surface 53 

temperature nor near-surface air temperature can adequately represent the temperature 54 

we experience. Apparent temperature (AP), that is how the temperature feels, is 55 

formulated to reflect human thermal comfort and is probably a more important 56 

indication of health than daily maximum or minimum temperatures (Fischer et al., 2013; 57 

Matthews et al., 2017; Wang et al., 2021). There are various approaches to estimating 58 

how the weather conditions affect comfort, but apparent temperature is governed by air 59 

temperature, humidity and wind speed (Steadman 1984; Steadman 1994). These are 60 

known empirically to affect human thermal comfort (Jacobs et al., 2013), and thresholds 61 

have been designed to indicate danger and health risks under extreme heat events (Ho 62 

et al., 2016). Analysis of historical apparent temperatures in China (Wu et al., 2017; Chi 63 

et al., 2018; Wang et al., 2019), Australia (Jacobs et al., 2013), and the USA (Grundstein 64 

et al., 2011) all find that apparent temperature is increasing faster than air temperature. 65 

This is due to both decreasing wind speeds and, especially to increasing vapor pressure 66 

(Song et al., 2022).  67 

 68 

As the world warms, apparent temperature is expected to rise faster than air 69 

temperatures in the future (Li et al., 2018; Song et al., 2022). Hence, humans, and other 70 

species, will face more heat-related stress but less cold-related environmental stress in 71 

the warmer future (Wang et al., 2018; Zhu et al., 2019). Since most of the population is 72 

now urban, the conditions in cities will determine how tolerable are future climates for 73 

much of humanity, while the differences in thermal comfort between urbanized and 74 

rural regions will be a factor in driving urbanization. Reliable estimates of future urban 75 

temperatures and their rural surroundings require methods to improve on standard 76 

climate model resolution to adequately represent the different land surface types; 77 

especially the rapid and accelerating changes in land cover in the huge urban areas 78 

characteristic of sprawling developments in the developing world. This is usually done 79 

with either statistical or dynamic downscaling approaches, and in this article we 80 

examine both methods. 81 
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 82 

In early 2013, Beijing encountered a serious pollution incident. The concentration of 83 

PM2.5 (particles with diameters less than or equal to 2.5 μm in the atmosphere) exceeded 84 

500 μg/m3 (Wang et al., 2014). Following this event and its expected impacts on human 85 

health (Guan et al., 2016; Fan et al., 2021) and the economy (Maji et al., 2018; Wang 86 

et al., 2020), the Beijing municipal government launched the Clean Air Action Plan in 87 

2013. The annual mean concentration of PM2.5 in Beijing-Tianjin-Hebei region 88 

decreased from 90.6 μg/m3 in 2013 to 56.3 μg/m3 in 2017, a decrease of about 38% 89 

(Zhang et al., 2019), although this is still more than double the EU air quality standard 90 

(25 μg/m3) and above the Chinese FGNS (First Grand National Standard) of 35 μg/m3. 91 

The concentration of PM2.5 is related to anthropogenic emissions, but also dependent 92 

on meteorological conditions (Chen et al., 2020). Simulations suggested that 80% of 93 

the 2013-2017 lowering of PM2.5 concentration came from emission reductions in 94 

Beijing (Chen et al. 2019). Humidity and temperature are the main meteorological 95 

factors affecting PM2.5 concentration in Beijing in summer, while humidity and wind 96 

speed are the main factors in winter (Chen et al., 2018). Simulations driven by different 97 

RCP emission scenarios with fixed meteorology for the year 2010 suggest that PM2.5 98 

concentration will meet FGNS under RCP2.6, RCP4.5 and RCP8.5 in Beijing-Tianjin-99 

Hebei after 2040 (Li et al., 2016).  100 

 101 

The focus here is in the differences in apparent temperature and PM2.5 that may arise 102 

from solar geoengineering (that is reduction in incoming short-wave radiation to offset 103 

longwave absorption by greenhouse gases) via stratospheric aerosol injection (SAI), 104 

and pure greenhouse gas climates. We use all four climate models that have provided 105 

sufficient data from the G4 scenario described by the Geoengineering Model 106 

Intercomparison Project (GeoMIP). G4 specifies sulfates as the aerosol, and greenhouse 107 

gas emissions from the RCP4.5 scenario (Kravitz et al., 2011). The impacts of G4 on 108 

surface temperature and precipitation have been discussed at regional scales (Yu et al., 109 

2015) and both are lowered relative to RCP4.5. Some studies have focused on regional 110 

impact of SAI on apparent or wet bulb temperatures: in Europe, (Jones et al., 2018); 111 

East Asia (Kim et al., 2020); and the Maritime Continent (Kuswanto et al., 2021). But 112 

none of these studies have considered apparent temperature at scales appropriate for 113 

rapidly urbanizing regions such as on the North China Plain. The only study to date on 114 

SAI impacts on PM2.5 pollution was a coarse resolution (4°×5°) global scale model with 115 

sophisticated chemistry (Eastham et al., 2018). They simulated aerosol rainout from the 116 

stratosphere to ground level, leading to an eventual increase in ground level PM2.5. 117 

Eastham et al. (2018) concluded that SAI changes in tropospheric and stratospheric 118 

ozone dominated PM2.5 impacts on global mortality. However, this study did not 119 

consider meteorological effects nor the situation in a highly polluted urban environment 120 

such as included in our domain, and which is typical of much of the developing world. 121 

 122 

The greater Beijing megalopolis lies in complex terrain, surrounded by hills and 123 

mountains on three sides, and a flat plain to the southeast coast (Fig. 1). Over the period 124 

19781971-20082014, Beijing experienced an increasing trend of 12.7% or 2.07 days 125 
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per decade in extreme warm nights (Wang et al., 2013), and urbanization produced an 126 

average increase in temperature of approximately 0.60℃.apparent temperature rose at 127 

a rate of 0.42℃/10 years over Beijing-Tianjin-Hebei region, with urbanization having 128 

an effect of 0.12℃/10 years (Luo and Lau, 2021). By the end of 2019, the permanent 129 

resident population in Beijing exceeded 21 million. Tianjin, 100 km from Beijing, is 130 

the fourth largest city in China with a population of about 15 million, and Langfang 131 

(population 4 million) is about 50 km from Beijing. Thus, the region contains a 132 

comparable urbanized population as the northeast US megalopolis. Since its climate is 133 

characterized by hot and moist summer monsoon conditions, the population is at an 134 

enhanced risk as urban heat island effects lead to city temperatures warming faster than 135 

their rural counterparts.  136 

 137 

There are large uncertainties in projecting PM2.5 concentration in the future due to both 138 

climate and industrial policies. Statistical methods are much faster than atmospheric 139 

chemistry models (Mishra et al., 2015), and different scenarios are easy to implement. 140 

We use a Multiple Linear Regression (MLR) model to establish the links between PM2.5 141 

concentration, meteorology and emissions (Upadhyay et al., 2018; Tong et al., 2018). 142 

We project and compare the differences of PM2.5 concentration under G4 and RCP4.5 143 

scenarios, and between different PM2.5 emission scenarios.  144 

 145 

Accurate meteorological data are crucial in simulating future apparent temperatures and 146 

PM2.5 because all ESM suffer from bias, and this problem is especially egregious at 147 

small scales. A companion paper (Wang et al., 2022 in review) looked at differences 148 

between downscaling methods with the same 4 Earth System Models (ESM), domain 149 

and scenarios as we use here.  150 

 151 

In this paper, we use the downscaled data to explore the effect of SAI on apparent 152 

temperature and PM2.5 over the greater Beijing megalopolis. The paper is organized as 153 

follows. The data,  and methods of calculating AP and, AP thresholds, the PM2.5 MLR 154 

model and its validation are briefly described in Section 2. The results from present day 155 

simulation and future projections on apparent temperature and PM2.5 are given in 156 

Section 3, along with their associated impact analysisanalyses. In Finally, Section 4 we 157 

discusses and interpret the findings, and finally we concludes the study with a summary 158 

of the main implications of the geoengineering impacts on these two important human 159 

health indices in Section 5.  160 



5 

 

 161 

Figure 1. a, The 10 km WRF domain (red box) nested inside a 30 km resolution WRF domain (large 162 

black sector). b, The inner domain topography and major conurbations (red dots), with the urban areas 163 

of Beijing and Tianjin enclosed in red curves. Panels c and d show the population density (persons per 164 

km2) of Beijing and Tianjin provinces (defined by black borders) in 2010 and the grid cells within the 165 

Beijing-Tianjin province (blue boxes) when downscaled by ISIMIP (c) and WRF (d). 166 

2. Data and Methods 167 

2.1 Scenarios, ESM, downscaling methods and bias correction  168 

The scenarios, ESM, downscaling methods and bias correction methods we use here 169 

are as described in detail by Wang et al., (in review, 2022), and we just summarize the 170 

method briefly here. We use three different scenarios: RCP4.5 and RCP8.5 (Riahi et al., 171 

2011) and the GeoMIP G4 scenario which span a useful range of climate scenarios: 172 

RCP4.5 is similar (Vandyck et al., 2016) to the expected trajectory of emissions under 173 

the 2015 Paris Climate Accord agreed Nationally Determined Contributions (NDCs); 174 

RCP8.5 represents a formerly business-as-usual, no climate mitigation policies, large 175 

signal to noise ratio scenario; G4 represents a similar radiative forcing as produced by 176 

the 1991 Mount Pinatubo volcanic eruption repeating every 4 years.  177 

  178 

Climate simulations are performed byforcing comes from 4 ESM: BNU-ESM (Ji et al., 179 

2014), HadGEM2-ES (Collins et al., 2011), MIROC-ESM (Watanabe et al., 2011) and 180 

MIROC-ESM-CHEM (Watanabe et al., 2011). We compare dynamical and statistical 181 

downscaling methods to convert the ESM data to scales more suited to capturing 182 

differences between contrasting rural and urban environments. To validate the 183 

downscaled AP from model results, we use the daily temperature, humidity and wind 184 

speed during 2008-2017 from the gridded observational dataset CN05.1 with the 185 
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resolution of 0.25°× 0.25° based on the observational data from more than 2400 surface 186 

meteorological stations in China, which are interpolated using the “anomaly approach” 187 

(Wu and Gao, 2013). This dataset is widely used, and has good performance relative to 188 

other reanalysis datasets over China (Zhou et al., 2016; Yang et al., 2019; Yang et al., 189 

2023; Yang and Tang, 2023)The observational data set we use to assess the 190 

performance of two downscaling methods is the daily ERA5 (Hersbach et al., 2018) 191 

reanalysis data with a resolution of 0.25°×0.25° over the domain in Fig. 1b during 2008-192 

2017. Dynamical downscaling for the 4 ESM datasets was done with WRFv.3.9.1 with 193 

a parameter set used for urban China studies (Wang et al., 2012) in two nested domains 194 

at 30 and 10 km resolution over 2 time slices (2008-2017 and 2060-2069). We corrected 195 

the biases in WRF output using the quantile delta mapping method (QDM; Wilcke et 196 

al., 2013) with ERA5 (Hersbach et al., 2018) to preserve the mean probability density 197 

function of the output over the domain without degrading the WRF spatial pattern. All 198 

WRF results presented are after QDM bias correction. Statistical downscaling was done 199 

with the trend-preserving statistical bias-correction Inter-Sectoral Impact Model 200 

Intercomparison Project (ISIMIP) method (Hempel et al., 2013) for the raw ESM output, 201 

producing output matching the mean ERA5 observational data in the reference 202 

historical period with the same spatial resolution, while allowing the individual ESM 203 

trends in each variable to be preserved.  204 

 205 

2.2 PM2.5 concentration and emission data 206 

In China there were few PM2.5 monitoring stations before 2013 (Xue et al., 2021). 207 

However, aerosol optical depths produced by the Moderate Resolution Imaging 208 

Spectroradiometer (MODIS) have been used to build a daily PM2.5 concentration 209 

dataset (ChinaHighPM2.5) at 1 km resolution from 2000 to 2018 (Wei et al., 2020). We 210 

use monthly PM2.5 concentration data during 2008-2015 from ChinaHighPM2.5 to train 211 

the MLR model, and the data during 2016-2017 to validate it. Figure S1 shows annual 212 

PM2.5 concentration over Beijing areas during 2008 (a) and 2017 (b). 213 

 214 

Recent gridded monthly PM2.5 emission data were derived from the Hemispheric 215 

Transport of Air Pollution (HTAP_V3) with a resolution of 0.1°×0.1° during 2008-2017, 216 

which is a widely used anthropogenic emission dataset (Janssens-Maenhout et al., 217 

2015). PM2.5 emissions over Beijing areas during 2008 (c) and 2017 (d) are shown in 218 

Fig. S1.  219 

 220 

Future gridded monthly PM2.5 emissions to 2050 are available in the ECLIPSE V6b 221 

database (Stohl et al., 2015), generated by the GAINS (Greenhouse gas Air pollution 222 

Interactions and Synergies) model (Klimont et al., 2017). The ECLIPSE V6b baseline 223 

emission scenario assumes that future anthropogenic emissions are consistent with 224 

those under current environmental policies, hence it is the “worst” scenario without 225 

considering any mitigation measures (Li et al., 2018; Nguyen et al., 2020). Projected 226 

emissions are shown in Fig S2, with emissions plateauing at ~40 kt/year after 2030, so 227 

we assume 2060s levels are similar. These ECLIPSE projections are significantly larger 228 
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than present day estimates from HTAP_V3. We therefore estimate 2060s emissions as 229 

the recent gridded monthly PM2.5 emissions from HTAP_V3 scaled by the ratios of 230 

2050 ECLIPSE emission to average annual emissions between 2010 and 2015. Before 231 

processing data, PM2.5 concentration is bilinearly interpolated to the WRF and ISIMIP 232 

grids, while PM2.5 emissions are conservatively interpolated to the target grids. 233 

 234 

2.2 3 Apparent temperature 235 

We use the formula proposed in Steadman (1984) to estimate apparent temperature 236 

under shade, which has been widely used to study heat waves, heat stress and 237 

temperature-related mortality (Perkins and Alexander, 2013; Lyon and Barnston, 2017; 238 

Lee and Sheridan, 2018; Zhu et al., 2021): 239 

              𝐴𝑃 = −2.7 + 1.04 × 𝑇 + 2 × 𝑃 − 0.65 × 𝑊                              (1) 240 

where AP is the apparent temperature (°C) under shade meaning that radiation is not 241 

considered; T is the 2 m temperature (°C), W is the wind speed at 10 m above the ground 242 

(m/s), and P is the vapor pressure (kPa) calculated by  243 

                             𝑃 = 𝑃𝑠 × 𝑅𝐻                                                       (2)                          244 

where 𝑃𝑠 is the saturation vapor pressure (kPa), and RH is the relative humidity (%). 245 

𝑃𝑠  is calculated using the Clausius–Clapeyron relationTetens empirical formula 246 

(Murray, 1966): 247 

                  𝑃𝑠 = {0.61078 × 𝑒
(

17.2693882×𝑇

𝑇+237.3
),                 𝑇≥0

0.61078 × 𝑒
(

21.8745584×(𝑇−3)

𝑇+265.5
),       𝑇<0

                                (3)               248 

To assess the potential risks of heat-related exposure from apparent temperature, we 249 

also count the number of days with AP > 32℃ (NdAP_32) in the Beijing-Tianjin 250 

province (Table S1). This threshold does not lead to extreme risk and death, instead it 251 

is classified as requiring “extreme caution” by the US National Weather Service 252 

(National Weather Service Weather Forecast Office, 253 

https://www.weather.gov/ama/heatindex), but carries risks of heatstroke, cramps and 254 

exhaustion. A threshold of 39°C is classed as “dangerous” and risks heatstroke. While 255 

hotter AP thresholds would give a more direct estimate of health risks, the statistics of 256 

these presently rare events mean that detecting differences between scenarios is less 257 

reliable than using the cooler NdAP_32 threshold simply because the likelihood of rare 258 

events are more difficult to accurately quantify than more common events that are 259 

sampled more frequently. There is evidence that in some distributions, the likelihood 260 

of extremes will increase more rapidly than central parts of a probability distribution, 261 

for example large Atlantic hurricanes increasing faster than smaller ones (Grinsted et 262 

al., 2013). But the conservative assumption is that similar differences between scenarios 263 

would apply for higher thresholds as lower ones.. While hotter AP thresholds would 264 

give a more direct estimate of health risks, the statistics of these presently rare events 265 

mean that detecting differences between scenarios is less reliable than using the cooler 266 

NdAP_32 threshold. We presume that similar differences between scenarios would 267 

apply for higher thresholds. 268 

2.3 4 Population Data Set 269 

https://www.weather.gov/ama/heatindex
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Since health impacts are more important where there are more people, we calculate the 270 

NdAP_32 weighted by population (Fig. 1c and 1d). We employ gridded population data 271 

(Fu et al., 2014; https://doi.org/10.3974/geodb.2014.01.06.V1) with a spatial resolution 272 

of 1×1 km collected in 2010. The population density distribution in Beijing and Tianjin 273 

provinces with the ISIMIP and WRF grid cells contained are shown in the Fig. 1c and 274 

1d. 275 

 276 

2.5 MLR model calibration 277 

Previous studies have shown that wind and humidity are the dominant meteorological 278 

variables for PM2.5 concentration in region we study (Chen et al., 2020). Hence, we 279 

generate an MLR model between PM2.5 and temperature (T), relative humidity (H), 280 

zonal wind (U), meridional wind (V) and PM2.5 emissions (E) at every grid cell as 281 

follows: 282 

 283 

PM2.5= ∑ ai Xi+b                            (4) 284 

Where 𝑋𝑖(𝑖=1,2,3,4,5)  are the five factors, ai  are the regression coefficients of the Xi 285 

with PM2.5, and b  is the intercept, which is a constant. We assume that all factors 286 

should be included in the regression. All the meteorological variables are from the 287 

statistical and dynamical downscaling and bias corrected results during 2008-2017, 288 

with the first 8 years used for training model and the second 2 years used for validating 289 

model. We train the MLR for the 4 ESMs under statistical and dynamical downscaling 290 

in each grid cell separately, thus accounting spatial differences in the weighting of the 291 

Xi across the domain. Meteorological variables under G4, RCP4.5 and RCP8.5 during 292 

2060-2069 are used for projection.  293 

 294 

The contributions of meteorology and PM2.5 emissions on future concentrations are 295 

examined by using recent PM2.5 emissions (baseline) and future PM2.5 emissions 296 

(mitigation), and the downscaled climate scenarios. Modeled PM2.5 concentration using 297 

recent meteorology and PM2.5 emissions during 2008-2017 (2010s) is considered as our 298 

reference. 299 

2.6 MLR model validation 300 
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 301 

Figure 2. Scatter grams of PM2.5 concentration derived by MODIS and estimated by MLR during 302 

validation period (2016-2017). Top figures (a-d) are the ISIMIP statistical downscaling results, and 303 

bottom figures (e-h) are the WRF dynamical downscaling results. R2 means the variance explained 304 

by the MLR, and color bar denotes the density of datapoints at integer intervals.  305 

 306 

Figure 2 shows the scattergram of PM2.5 concentration between ChinaHighPM2.5 307 

dataset and MLR model during validation period based on ISIMIP and WRF results. 308 

Observations and MLR models have Pearson’s correlations coefficients around 0.86 for 309 

ISIMIP results during the validation period, and the coefficient of determination of 310 

MLRs are 0.74-0.75 (Fig. 2a-d). WRF Pearson’s correlations are slightly lower, 0.82-311 

0.85, and explained variance ranges from 0.68-0.72 (Fig. 2e-h). These results are 312 

similar as found by Jin et al. (2022). We also compare the spatial patterns of observed 313 

and modeled PM2.5 in Fig. S3. Both ISIMIP and WRF results can simulate the 314 

distribution characteristics of high concentration of PM2.5 in the southeast and low 315 

concentration in the northwest.  316 

 317 

2.7 Relative risks of mortality related to PM2.5 318 

We estimate the effects of PM2.5 on mortality by considering changes in the relative risk 319 

(RR) of mortality related to PM2.5. We lack data on mortality rates in the study domain 320 

without which we cannot estimate numbers of fatalities, just the average population-321 

weighted RR. Burnett et al. (2014) established the integrated exposure-response 322 

functions we use. The RR is non-linear in concentration, that is an initially low PM2.5 323 

region will suffer higher mortality and RR than an initially high PM2.5 region if PM2.5 324 

is increased by the same amount. Ran et al. (2023) provide RR values for PM2.5 325 

concentrations up to 200 μg/m3 that includes the 5 main major disease endpoints 326 
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(Global Burden of Disease Collaborative Network, 2013) of PM2.5 related mortality: 327 

chronic obstructive pulmonary disease, ischemic heart disease, lung cancer, lung 328 

respiratory infection and stroke. We calculate the average population-weighted relative 329 

risks based on the gridded population dataset (Section 2.4) and PM2.5 concentration in 330 

the Beijing-Tianjin province defined in the Fig. 1c-1d, following Ran et al. (2023): 331 

RRpop,k=
∑ POPg×RRk(Cg)G

g=1

∑ POPg
G
g=1

  (5) 332 

RRpop,k is the average population-weighted relative risk of disease k (k=1-5), POPg is 333 

the population of gird g, and RRk(Cg)  is the relative risk of disease k when PM2.5 334 

concentration is Cg in the grid of g. 335 

 336 

2.4 8 Determination of each factor’s contributions to change in AP 337 

and PM2.5 338 

Equation (1) describes how AP is calculated, and this can be broken down into how 339 

much equivalent temperature is produced by each term (Fig. 23), with 2008-2017 as 340 

the baseline interval for season-by-season contributors to AP. Across scenario seasonal 341 

differences in contributors are then calculated as follows. We use an MLR approach, 342 

since this minimizes the square differences from the mean across the dataset, with the 343 

attendant assumption of independence between the data. Alternatives may also be 344 

considered that e.g. minimize the impact of outliers by considering the magnitude of 345 

the differences, but we prefer to keep the attractive properties of a least squares 346 

approach. We use multiple linear regression to reconstruct the relationship between 347 

changeThe dependent variable in the MLR is the change in AP (∆AP) and the 348 

independent variables are changes in each factor for each future scenario,  349 

∆AP= ∑ ααi Xi+βb                            (64) 350 

where 𝑋𝑖(𝑖=1,2,3) are the daily changes of the three meteorological factors between two 351 

scenarios: 2 m temperature (∆T), 2 m relative humidity (∆RH) and 10 m wind speed 352 

(∆W), ααi are the regression coefficients of the Xi with ∆AP, and 𝛽b is the intercept, 353 

which is a constant. We assume that all three meteorological factors should be included 354 

in the regression and we estimate the contributions of each factor to changes of AP as: 355 

CKi=
ααiXi̅

∑ ααi Xi̅

                     (75) 356 

where CKi(i=1,2,3) is the contributions (in units of temperature) from each factor to the 357 

changes of the AP, and Xi̅ are the mean differences in temperature equivalent due to 358 

each factor between two scenarios.  359 

 360 

The contribution of changes in each factor in changes of PM2.5 is simpler since we 361 

assume that the relationship between each factor and PM2.5 is linear, and so its 362 

contribution is the ratio of product of the regression coefficient and the change of each 363 

factor to the change of PM2.5. 364 
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 365 

3. Results 366 

3.1 Recent apparent temperatures 367 

368 

 369 

Figure 23. Seasonal averaged AP and equivalent temperature of each term in equation 1 for Beijing-370 
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Tianjin province (a-c) and Beijing-Tianjin urban areas (d-f) during 2008-2017 from ERA5CN05.1 (a, d), 371 

4-model ensemble mean after ISIMIP (b, e) and ensemble mean after WRF (c, f). Term 1 is 1.04T, term 372 

2 is 2P and term 3 is -0.65W. 373 

 374 

Figure 23 shows the seasonal averaged AP and equivalent temperatures caused by 375 

temperature, relative humidity and wind speed in Beijing-Tianjin province and Beijing-376 

Tianjin urban areas during 2008-2017. According to the ERA5CN05.1 results (Fig. 377 

2a3a, 2d3d), AP and the separate 3 terms show similar seasonal patterns over the whole 378 

province and just the urban areas. Vapor pressure is higher in summer and wind speed 379 

is higher in spring. AP is lower than 2 m temperature in all seasons except summer, and 380 

especially lower in winter. AP, temperature, vapor pressure and wind speed are all 381 

higher in urban areas than in the surrounding rural region in any season. The ISIMIP 382 

results (Fig. 2b3b, 2e3e), by design, perfectly reproduce the ERA5 CN05.1 seasonal 383 

characteristics of AP, temperature, vapor pressure and wind speed. WRF shows a 384 

similar pattern with that from ERA5CN05.1, but for the Beijing-Tianjin province, WRF 385 

overestimates both 2 m temperature and AP in winter by 2.1°C and by 2.41.7°C 386 

respectively relative to ERA5 CN05.1 (Fig. 2c3c). In the Beijing-Tianjin urban areas, 387 

WRF overestimates the temperature and AP relative to ERA5 CN05.1 in all seasons, 388 

especially in winter (Fig. 2f3f).  389 

 390 
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391 

 392 

Figure 34. Top row: the spatial distribution of mean apparent temperature from ERA5 CN05.1 (a), raw 393 

ESMs ensemble mean after bilinear interpolation (b), 4-model ensemble mean after ISIMIP (bc) and 394 

ensemble mean after WRF (cd) during 2008-2017. Bottom row: the spatial distribution of annual mean 395 

number of days with AP > 32℃ from ERA5 CN05.1 (ed), ESMs (f), ISIMIP (e) and WRF (f) during 396 

2008-2017. Fig. S1 S4 and Fig. S2 S5 show the pattern of AP and NdAP_32 for the individual ESM. 397 

We compare the simulations of mean apparent temperature and NdAP_32 from both 398 

WRF dynamical downscaling with QDM and from ISIMIP statistical downscaling 399 

during 2008-2017 in Fig. 34. Both WRF with QDM and ISIMIP methods produce a 400 

pattern of apparent temperature which is close to that from ERA5CN05.1. While the 401 

raw AP from ESMs is overestimated in Zhangjiakou high mountains and 402 

underestimated in the southern plain, and shares a similar pattern with temperature from 403 

ESMs (Wang et al., 2022). The raw ESM outputs were improved after dynamical and 404 

statistical downscaling. The average annual AP from ISIMIP (9.6-9.7°C) is almost the 405 

same as0.5°C higher than that from ERA5 CN05.1 (9.1°C) over the Beijing-Tianjin 406 

province for all ESMs (Table 1). While WRF produces warmer apparent temperatures 407 
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in the city centers of Beijing and Tianjin and lower ones in the high Zhangjiakou 408 

mountains than recorded in the lower resolution ERA5 CN05.1 observations. There are 409 

also differences between different models after WRF downscaling. For example, 410 

apparent temperatures from the two MIROC models from downscaled by WRF are the 411 

warmest. In contrast AP from all 4 ESMs after ISIMIP shows very similar patterns (Fig. 412 

S1S4).  413 

 414 

ESMs tend to overestimate the number of days with AP>32℃ in southeastern Beijing 415 

and the whole Tianjin province. Both ISIMIP and WRF appear to overestimate the 416 

NdAP_32 in Beijing urban areas and the southerly lowland areas although NdAP_32 is 417 

close to zero for all methods in the colder rural areas at relatively high altitude for both 418 

downscaling methods. While sSome of these differences may be due to the WRF 419 

simulations being at finer resolution than the 0.25°× 0.25° CN05.1, leading to higher 420 

probabilities of high AP in urban areas (Fig. 5d). ISIMIP results also show slight 421 

overestimations, especially in the tails of the distribution (AP>30℃) for urban areas 422 

(Fig. 5c).0.25°×0.25° resolution ERA5, which is coarser than the 10 km WRF 423 

simulation, it probably does not account for the broad overestimate across most the 424 

North China Plain that is within the WRF and ISIMIP domains. ERA5 CN05.1 gives 425 

about 10 5 NdAP_32 per year in southern Beijing and Tianjin, but there are nearly 15 426 

NdAP_32 from ISIMIP, and over 20 NaAPNdAP_32 per year from WRF downscaling 427 

in the Beijing-Tianjin urban areas during 2008-2017. NdAP_32 from WRF and ISIMIP 428 

downscaling of all ESM is overestimated relative to ERA5CN05.1. But there are 429 

curious differences in ESM under the two downscalings: with ISIMIP, HadGEM2-ES 430 

and BNU-ESM have more NdAP_32 than the two MIROC models, while the reverse 431 

occurs with WRF (Fig. S2S5).   432 

 433 

 434 

 435 

 436 

Table 1. The annual mean apparent temperature and population weighted NdAP_32 in Beijing-Tianjin 437 

province and Beijing-Tianjin urban areas (Fig. 1b) from ERA5CN05.1, ISIMIP and WRF during 2008-438 

2017.  439 

Data Sources AP (℃) NdAP_32 (day yr-1) 

Provinces Urban Population weighted for province (Fig. 1c, 1d) 

WRF ISIMIP WRF ISIMIP WRF ISIMIP 

MIROC-ESM 10.5 9.6 13.6 11.4 22.2 10.1 

MIROC-ESM-CHEM 10.5 9.6 13.6 11.4 21.9 11.0 

HadGEM2-ES 9.5 9.6 12.0 11.4 12.3 11.1 

BNU-ESM 9.4 9.7 11.8 11.5 10.2 12.7 

ERA5CN05.1 9.61 11.41 7.72.4 

The Taylor diagram of the daily mean apparent temperature in Beijing-Tianjin province 440 

and Beijing-Tianjin urban areas from 2008-2017 for the 4 ESMs shows that all models 441 

under both downscaling methods have correlation coefficients between ESMs and 442 
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CN05.1 are greater than 0.85 under both downscaling methods. with ERA5 > 0.85. 443 

Although there are differences between ESMs, the performance of WRF, with higher 444 

correlation coefficient and smaller SD (standard deviation) and RMSD (root mean 445 

standard deviation), is usually superior to ISIMIPAlthough AP over the both whole 446 

Beijing-Tianjin province and the urban areas are overestimated by WRF, it performs 447 

slightly better than ISIMIP on the Taylor plot relative to ERA5 (Fig. S3S6). Taking the 448 

Beijing-Tianjin urban areas as an example (Fig. S6b), Under under the ISIMIP method, 449 

MIROC-ESM, MIROC-ESM-CHEM and HadGEM2-ES have the same correlation 450 

coefficient (0.92) and RMSD (5.4℃) with the CN05.1, show little differences in 451 

correlation or errors while the performance of BNU-ESM has lower correlation 452 

coefficient (0.88) and higher RMSD (7.0℃).is slightly worse. Under WRF simulations, 453 

MIROC-ESM and MIROC-ESM-CHEM have larger correlation coefficients and 454 

smaller errors RMSD with CN05.1 than HadGEM2-ES and BNU-ESM.  455 

Figure 4 5 shows the probability density functions (pdf) of daily AP from the four ESMs 456 

under ISIMIP and WRF in Beijing-Tianjin province and Beijing-Tianjin urban areas 457 

during 2008-2017. ISIMIP overestimates the probability of extreme cold AP relative to 458 

ERA5 CN05.1 (especially BNU-ESM), although all ESM reproduce the ERA5 CN05.1 459 

pdf well at high AP. WRF can reproduce the ERA5 CN05.1 distribution of AP better 460 

than ISIMIP, but high AP is overestimated relative to ERA5 CN05.1 and the urban areas 461 

perform less well than the whole Beijing-Tianjin province. In urban areas all ESMs 462 

driving WRF tend to underestimate the probability of lower AP and to overestimate the 463 

probability of higher AP, especially the two MIROC models (Fig. 4d5d). Fig. S4 S7 464 

displays the annual cycle of monthly AP, with ISIMIP proving excellent by design, at 465 

reproducing the monthly AP. While under WRF downscaling AP shows more across 466 

model differences, especially during summer and with greater spread for the urban areas. 467 
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468 

 469 

Figure 45. The probability density function (pdf) for daily apparent temperature under ISIMIP (a, c) and 470 

WRF (b, d) results in Beijing-Tianjin province (a, b) and Beijing-Tianjin urban areas (c, d) during 2008-471 

2017. 472 
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3.2 2060s apparent temperatures 473 

3.2.1 Changes of apparent temperature 474 

475 

 476 

Figure 65. Spatial pattern of ensemble mean apparent temperature difference (℃) under different 477 

scenarios over 2060-2069: G4-2010s (left column), G4-RCP4.5 (middle column) and G4-RCP8.5 (right 478 

column) based on ISIMIP and WRF methods. 2010s refers to the 2008-2017 period. Stippling indicates 479 

grid points where differences or changes are not significant at the 95% level according to the Wilcoxon 480 

signed rank test. 481 

 482 

Figure 5 6 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 483 

under G4 during 2060-2069 relative to the past and the two future RCP scenarios. 484 

ISIMIP-downscaled AP (Fig. 5a6a-5c6c) shows significant anomalies (p<0.05), with 485 

whole domain rises of 2.0 ℃ in G4-2010s, and falls of 1.0 ℃ and 2.8 ℃ in G4-RCP4.5 486 
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and G4-RCP8.5 respectively across the whole domain, even for the relatively small 487 

differences in G4-RCP4.5. In WRF results, AP under G4 is about 1-2 ℃ warmer than 488 

that under 2010s, 0.8 ℃ and 2.5 ℃ colder than that under RCP4.5 and RCP8.5 over 489 

the whole domain.There are no models with obvious regional differences in AP 490 

anomalies (Fig. S6). G4 is about 2℃ warmer than the 2008-2017 period and about 1℃ 491 

colder than RCP4.5 and 3℃ colder than RCP8.5. WRF downscaling (Fig. 5d-5f) 492 

anomalies are similar but the warming under G4 relative to the 2010s is smaller and the 493 

coolings relative to both RCP scenarios are a little smaller than those under ISIMIP. 494 

Individual ESM driven results downscaled by ISIMIP results and WRF are in Fig. S6 495 

S9 and WRF results in Fig. S7S10. For both ISIMIP and WRF downscaling results, the 496 

two MIROC models show stronger warming than the other two models between G4 497 

and the 2010s. WRF-downscaled AP driven by HadGEM2-ES exhibits the strongest 498 

cooling, with decreases of 1.7 ℃ between G4 and RCP4.5 and falls of 3.0 ℃ between 499 

G4 and RCP8.5. Although different ESMs show different changes in AP between G4 500 

and other scenarios, changes in AP are almost the same everywhere for a given ESM in 501 

the ISIMIP results (Fig. S9). WRF-downscaled AP anomalies driven by two MIROC 502 

models are larger in the Zhangjiakou mountains and smaller in the Beijing urban areas 503 

and Tianjin city between G4 and 2010s (Fig. S10). (> 1.5℃ for G4-RCP4.5 and 3℃ 504 

for G4-RCP4.5). Changes in AP from ISIMIP results, whether across whole province 505 

or just the urban areas, are statistically identical given scenariosAP changes, whether 506 

across all province or just urban areas, are essentially the same (Table 2), which is 507 

consistent with patterns in figure 56. AP under G4 is 0.8 ℃ (1.0 ℃) and 2.6 ℃ (2.8 ℃) 508 

colder than that under RCP4.5 and RCP8.5 in Beijing-Tianjin urban areas from ISIMIP 509 

(WRF) results. The warming between G4 and 2010s in urban areas is 1.0 ℃ in WRF 510 

results, while that is 2.0 ℃ in ISIMIP results (Table 2).The ensemble mean differences 511 

in AP between G4 and RCP scenarios calculated both using ISIMIP and WRF 512 

downscaling are small, however ensemble mean AP differences between G4 and the 513 

2010s over urban areas are 1.0℃ under WRF and 2.0℃, under ISIMIP.  514 

 515 

Table 2. Difference of apparent temperature between the G4 and other scenarios for the Beijing-Tianjin 516 

province and Beijing-Tianjin urban areas as defined in Fig. 1b during 2060-2069. Bold indicates the 517 

differences or changes are significant at the 5% level according to the Wilcoxon signed rank test. 518 

(Units: ℃) 519 

Model G4-2010s G4-RCP4.5 G4-RCP8.5 

WRF ISIMIP WRF ISIMIP WRF ISIMIP 

Urban Province Urban Province Urban Province Urban Province Urban Province Urban Province 

MIROC-ESM 0.9 1.5 2.2 2.2 -0.5 -0.4 -0.9 -0.9 -2.3 -2.1 -2.8 -2.7 

MIROC-ESM-CHEM 0.9 1.5 2.9 2.8 -0.4 -0.4 -0.1 -0.1 -2.0 -2.0 -2.1 -2.1 

HadGEM2-ES 1.1 1.0 1.8 1.7 -1.6 -1.6 -1.6 -1.6 -3.1 -3.1 -3.3 -3.3 

BNU-ESM 1.2 1.1 1.2 1.3 -0.8 -0.8 -1.3 -1.3 -2.8 -2.7 -2.9 -2.9 

Ensemble 1.0 1.3 2.0 2.0 -0.8 -0.8 -1.0 -1.0 -2.6 -2.5 -2.8 -2.8 

 520 

3.2.2 Contributing factors to changes in AP 521 
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522 

 523 

Figure 67. The seasonal changes of AP (∆AP) and the seasonal contribution of climatic factors to ∆AP 524 

for Beijing and Tianjin urban areas under ISIMIP and WRF between G4 and 2010s (a), G4 and 2010s 525 

(b), G4 and RCP4.5 (c) and G4 and RCP8.5 (d) in the 2060s based on ensemble mean results. Colors 526 

and numbers in each cell correspond to color bar, Bold tabulated numbers and “*” above the columns 527 

and in the cells indicate differences are significant at the 95% significant level under the Wilcoxon test.  528 

 529 

Figure 7 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 530 
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anomalies G4 during 2060-2069 relative to the past and the two future RCP scenarios. 531 

ISIMIP-downscaled AP (Fig. 7a-7c) shows significant anomalies (p<0.05) across the 532 

whole domain, even for the relatively small differences in G4-RCP4.5. ∆AP by WRF 533 

is lower than that by ISIMIP. Between G4 and 2010s, AP are projected to have increases 534 

of 1.8 (1.6), 2.1 (1.8), 2.4 (-0.2), 1.8 (0.8) ℃ from winter to autumn in ISIMIP (WRF) 535 

results. In ISIMIP results, the contribution of temperature ranges from 91%-104%, and 536 

the contribution of wind speed ranges from 3%-10% in all seasons, while the 537 

contribution of humidity is negative or insignificant (Fig. 7a). However, the 538 

contribution of humidity is positive in WRF results (Fig. 7a). Between RCP4.5 and 539 

2010s, annual mean AP is projected to increase by 3.0 ℃ and 1.8 ℃ in ISIMIP and 540 

WRF results respectively, which is higher than that between G4 and 2010s. The increase 541 

of temperature and decrease of wind speed have a significant impact on the annual 542 

average ∆AP contributed 97% (94%) and 4% (3%) in ISIMIP (WRF) results. The 543 

contributions of changes in humidity are significantly positive under G4 and RCP4.5 in 544 

WRF results, while it is the opposite in the ISIMIP results (Fig. 7a-7b). 545 

 546 

Relative to RCP4.5 in the 2060s, AP is projected to decrease by 1.0 (0.4), 0.7 (0.8), 0.8 547 

(0.7), and 1.3 (1.4) ℃ from winter to autumn under G4 in ISIMIP (WRF) results (Fig. 548 

7c). In summer, the contribution from changes in temperature and humidity are 94% 549 

(105%) and 8% (-9%) in ISIMIP (WRF) results, respectively. There are insignificant 550 

contributions from wind speed under ISIMIP results, but a significant slight positive 551 

contribution (0.7%-4%) under WRF results (Fig. 7c). The annual mean AP under G4 is 552 

2.8 (2.6) ℃ lower than that under RCP8.5 in ISIMIP (WRF) result. In this case, the 553 

contribution of changes in wind on ∆AP ranges from 3%-5% by ISIMIP, while it is 554 

close to 0 by WRF. As expected, ∆AP is mainly determined by the changes in 555 

temperature, with contributions usually above 90% between different scenarios. 556 

We show the seasonal contribution of temperature, humidity and wind to differences in 557 

AP between G4, the 2010s, RCP4.5 and RCP8.5 from ISIMIP and WRF downscaling 558 

over Beijing-Tianjin urban areas in Fig. 6. Undoubtedly, temperature makes the biggest 559 

contribution to ∆AP between different scenarios, and ∆AP is smaller under WRF than 560 

under ISIMIP. The projected differences in scenario temperatures explain more than 90% 561 

of the ∆AP differences. There are striking differences between WRF and ISIMIP in the 562 

seasonal contribution of humidity to ∆AP for both G4 and RCP4.5 relative to the 2010s 563 

(Fig. 6a, 6b). Under WRF, summer differences in humidity makes a negative 564 

contribution to ∆AP for G4 while under RCP4.5 humidity makes only a slightly 565 

negative but non-significant contribution, but the summer ∆AP is much lower than in 566 

other seasons. Wind increases ∆AP under both G4 and RCP4.5 relative to the 2010s. 567 

Fig. 6c and 6d show that ∆AP under G4 compared with RCP4.5 and RCP8.5 is 568 

significantly affected by humidity in summer. The negative contributions from 569 

humidity under WRF amount to 6-9%, but under ISIMIP the contributions are much 570 

smaller, and even acts to reduce differences in ∆AP between G4 and RCP4.5. Changes 571 

in wind are insignificant for ∆AP between G4 and RCP4.5 under ISIMIP, but with WRF 572 

changes in wind are generally significant and amount to over 3% in summer. In contrast, 573 

the seasonal contribution of wind is about 2.5-4.7% under ISIMIP to differences 574 
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between G4 and RCP8.5 but close to 0 under WRF.  575 

576 
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 577 

Figure 78. The change of apparent temperature based on air temperature under three scenarios (G4, 578 

RCP4.5 and RCP8.5) in four ESMs under ISIMIP (left column) and WRF (right column) for urban areas 579 

relative to the 2010s. 580 

 581 

A useful measure of heat impacts that may be missed if considering only at air 582 

temperatures is the seasonality of the differences between AP and air temperature 583 

(∆(AP-T); Fig. 78). The four model ensemble annual mean ∆(AP-T) under ISIMIP is 584 
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projected to rise by 0.4℃, 0.5℃ and 0.9℃ under G4, RCP4.5 and RCP8.5, relative to 585 

the 2010s. Under WRF, ∆(AP-T) is much smaller than under ISIMIP but still rising 586 

faster than air temperatures: by 0.2℃, 0.3℃ and 0.5℃ under G4, RCP4.5 and RCP8.5 587 

relative to the 2010s, respectively. In general, the largest anomalies in ∆(AP-T) are in 588 

summer under both WRF and ISMIP downscaling, but the two MIROC models under 589 

WRF have small or even negative ∆(AP-T) in summer with WRF. 590 

3.2.2 3 Changes of the number of days with AP>32℃ 591 

592 

 593 

Figure 98. Ensemble mean differences in annual number of days with AP > 32℃ (NdAP_32) between 594 

scenarios for 2060-2069: G4-2010s (left column), G4-RCP4.5 (second column) and G4-RCP8.5 (right 595 

column) based on ISIMIP method and WRF. 2010s means the results simulated during 2008-2017. 596 

Stippling indicates grid points where differences or changes are not significant at the 5% level according 597 

to the Wilcoxon signed rank test. Corresponding ISIMIP results for each ESM are in Fig. S8S11, and 598 

WRF results in Fig. S9S12. 599 

 600 

The NdAP_32 anomalies in Figure 8 9 show that ISIMIP projects an increase of about 601 
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20 days per year with AP>32 ℃ for the southeast of Beijing province and 10 days in 602 

the western areas of Beijing under G4 relative to the 2010s. NdAP_32 is about 10 days 603 

fewer under G4 than RCP4.5 with no clear spatial differences. G4 has about 35 fewer 604 

NdAP_32 days in the southern part of the domain and 20 fewer days in the western 605 

domain than the RCP8.5 scenario. In contrast WRF suggests that most areas do not 606 

show any significant difference between G4 and the 2010s, while the anomalies relative 607 

to RCP4.5 are similar as ISIMIP, although the differences are less insignificant over 608 

more area than ISIMIP. . G4-RCP8.5 anomalies with WRF are less significant and 609 

smaller than with ISIMIP, and differences are not significant in the Zhangjiakou high 610 

mountains. The urban areas show larger decreases in NdAP_32 than the more rural 611 

areas, even in the low altitude plain. Individual ESM show almost no statistically 612 

significant differences between G4 and RCP4.5 (Fig. S8 S11 and S9S12), but the 613 

differences seen in Fig. 8 9 are significant because of the larger sample size in the 614 

significance test. All ESMs with ISIMIP show more NdAP_32 in the urban areas under 615 

G4 than the 2010s, while two MIROC models driving WRF show fewer NdAP_32 in 616 

Beijing-Tianjin urban areas (Fig. S8S11, S9S12).  617 

 618 
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 620 

Figure 910. Probability density distributions of daily apparent temperature (AP) in summer (JJA) over 621 

Beijing-Tianjin urban areas under recent period (2008-2017), and the 2060s under G4, RCP4.5 and 622 

RCP8.5 scenarios from ISIMIP and WRF results. The purple dotted lines are at AP of 32℃ and 39℃. 623 

 624 

The pdf of daily apparent temperature in summer over Beijing-Tianjin urban areas (Fig. 625 

910) shifts rightwards for G4, RCP4.5 and RCP8.5 during the 2060s relative to the 626 

2010s. Figure 9 10 shows that by the 2060s, the dangerous threshold of AP>39 is 627 

crossed frequently under RCP8.5 with both WRF and ISIMIP downscaling, but for the 628 

RCP4.5 and G4 scenarios these events are much rarer. ISIMIP results tend to show 629 

higher probability tails (extreme events) than under WRF simulations. 630 

 631 

Population weighted NdAP_32 in the 2060s for Beijing-Tianjin province is shown in 632 

Table 3. ISIMIP downscaling suggests ensemble mean rises in NdAP_32 of 22.4 days 633 

per year under G4 relative to the 2010s, but that G4 has 8.6 and 33.5 days per year 634 

fewer than RCP4.5 and RCP8.5, respectively. NdAP_32 from WRF under G4 is 635 
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reduced by 19.6 days per year relative to RCP8.5, and by 6.3 days relative to RCP4.5 636 

(Table 3). 637 

 638 

Table 3. Difference of population weighted NdAP_32 between the G4 and other scenarios for Beijing-639 

Tianjin province (Fig. 1c, 1d) during 2060-2069. Bold indicates the changes are significant at the 5% 640 

level according to the Wilcoxon signed rank test. (Units: day y-1). 641 

 642 

Beijing-Tianjin province G4-2010s G4-RCP4.5 G4-RCP8.5 

 ISIMIP WRF ISIMIP WRF ISIMIP WRF 

MIROC-ESM 18.6 -8.1 -17.0 0.8 -35.4 -13.1 

MIROC-ESM-CHEM 28.7 -10.2 3.9 -2.2 -33.7 -15.5 

HadGEM2-ES 25.7 9.4 -12.5 -13.5 -24.3 -25.3 

BNU-ESM 16.4 13.6 -8.6 -10.4 -40.5 -24.4 

Ensemble 22.4±2.9 1.2±6.0 -8.6±4.5 -6.3±3.4 -33.5±3.4 -19.6±3.1 

 643 

3.3 PM2.5 in the 2060s 644 

3.3.1 PM2.5 scenarios in the 2060s 645 

 646 

Figure 11. Spatial patterns of ensemble mean PM2.5 concentration difference (μg/m3) between 647 

“mitigation” under G4 in the 2060s and reference (a, e), between “mitigation” and “baseline” under 648 

G4 in the 2060s (b, f), between G4 and RCP4.5 under “mitigation” scenario in the 2060s (c, g), and 649 

between G4 and RCP8.5 under “mitigation” scenario in the 2060s (d, h) based on ISIMIP (a-d) and 650 

WRF (e-h) results. Stippling indicates grid points where differences or changes are not significant 651 

at the 5% significant level according to the Wilcoxon signed rank test. 652 

 653 

We firstly project the change of PM2.5 under G4 and the aerosol mitigation scenario in 654 

2060s relative to 2010s (Fig. 11a, e). Both ISIMIP and WRF project PM2.5 decreases in 655 

most areas, especially in Tianjin and Langfang, but PM2.5 decreases more under ISIMIP 656 

than WRF. PM2.5 concentration decreases by 6.5 μg/m3 over Beijing-Tianjin province 657 
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in ISIMIP, and decrease by 4.3 μg/m3 in WRF (Table S2). PM2.5 concentration is 0.5-8 658 

μg/m3 higher in northern Beijing under G4 (“mitigation”) than that during the 2010s in 659 

WRF. To show the impact of emission reductions, we compare the PM2.5 concentration 660 

between aerosol “baseline” and “mitigation” scenarios under G4 in the 2060s (Fig. 11b, 661 

11f), and compare the “mitigation” PM2.5 concentration under G4 and the RCP 662 

scenarios in the 2060s to clarify the effect of geoengineering compared with climate 663 

warming. Compared with “baseline” scenario, PM2.5 concentration is less under 664 

“mitigation” scenario as expected in both ISIMIP and WRF under G4 (Fig. 11b, 11f), 665 

and has a similar spatial pattern with that in Fig. 11a and 11e. Compared with RCP4.5 666 

and RCP8.5, PM2.5 concentration under G4 are higher in ISIMIP results (Fig. 11c-11d), 667 

but with large differences between the 4 ESMs. G4 PM2.5 is simulated greater than in 668 

RCP scenarios under HadGEM2-ES and BNU-ESM (Fig. S13k, l, o, p), but there are 669 

insignificant differences in most areas under the two MIROC models (Fig. S13c, d, g, 670 

h). PM2.5 concentrations are larger between G4 and RCP8.5. WRF simulations shows 671 

similar changes in PM2.5 between G4 and RCPs as ISIMIP (Fig. 11g-h). 672 

 673 

3.3.2 PM2.5 meteorological and emissions controls in the 2060s 674 

 675 

Figure 12. Contribution of climate factors (temperature/T, humidity/H, zonal wind/U, meridional 676 

wind/V) and emission (E) to changes in monthly PM2.5 concentration (ΔPM2.5) in 2060s under G4 677 

(“mitigation”) relative to 2010s. Top figures (a-e) are ISIMIP results, and bottom figures (f-j) are 678 

WRF results. Stippling indicates the changes are insignificant at the 5% significant level in the 679 

Wilcoxon test. 680 

 681 

Next, we quantify the contribution of different meteorological factors and PM2.5 682 

emissions to ΔPM2.5
 between G4 (“mitigation”) in the 2060s and the 2010s (Fig. 12). 683 

Both ISIMIP and WRF results show that the increase of temperature and decrease of 684 

PM2.5 emission play positive roles in reducing PM2.5 concentration. ISIMIP results (Fig. 685 

12a-e), suggest that the projected increase of temperature could explain 0-20% of the 686 

decrease of PM2.5 concentration, and decrease of PM2.5 emission could explain more 687 

than 90% of changes in PM2.5 concentration differences in most of areas. Changes in 688 

humidity and westerly winds (positive U-wind) do not cause significant changes in 689 

ΔPM2.5, but projected increases southerly wind (positive V-wind) is detrimental to the 690 
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decrease in PM2.5 concentration, and has a 0-10% negative effect on ΔPM2.5 in 691 

Zhangjiakou. WRF results show similar spatial pattern in effect of temperature and 692 

emission on ΔPM2.5 with ISIMIP results. Although temperature is projected to increase 693 

over the whole domain (Fig. S16), there are negative contributions on ΔPM2.5 to the 694 

north of Beijing due to increase of PM2.5 caused by the negative correlation between 695 

PM2.5 and its emissions (Fig. S20). The ~1-2% wetter humidity has ~10% negative 696 

effect on decrease of PM2.5 south of Beijing (Fig. 12g), and 0.2-0.3 m/s deceases of U-697 

wind have 0-10% negative contribution on decrease of PM2.5 in Zhangjiakou (Fig. 12h). 698 

The changes in each factor in ISIMIP and WRF results are shown in Fig. S15 and Fig. 699 

S16, respectively. 700 

 701 

Figure 13. Contribution of climate factors (as in Fig. 12) to changes in monthly PM2.5 concentration 702 

in 2060s under G4 with aerosol “mitigation” relative to 2060s under RCP4.5 with aerosol 703 

“mitigation”. Top figures (a-e) are ISIMIP results, and bottom figures (f-j) are WRF results. 704 

Stippling indicates the changes are insignificant at the 5% significant level in the Wilcoxon test. 705 

 706 

Now we explore the contribution of each meteorological factor to ΔPM2.5 between G4 707 

(“mitigation”) and RCP4.5 (“mitigation”) in the 2060s (Fig. 13). The higher PM2.5 708 

under G4 is mainly caused by the lower temperature. In ISIMIP, lower temperature 709 

explains more than 90% (100% in some places) of the raised PM2.5 relative to RCP4.5, 710 

although the increase of humidity is also helpful to lower PM2.5 in the western domain 711 

(Fig. 13a-b). Humidity can increase suspended particle mass and coagulation, 712 

promoting deposition (Li et al., 2015). The contribution of differences in U-wind and 713 

V-wind on ΔPM2.5 is insignificant (Fig. 13c-d). In WRF, the projected lower 714 

temperatures explain more than 70% of the higher PM2.5 under G4 relative to RCP4.5 715 

(Fig. 13e). Although the increase of southerly (V) wind contributes 10-20% to the 716 

higher PM2.5 in the northern domain under HadGEM2-ES and BNU-ESM (Fig. S18), 717 

it is insignificant in the ensemble (Fig. 13h). Decreased westerlies (U wind) explains 718 

about between +20% and -20% of PM2.5 differences (Fig. 13g), since U-wind impacts 719 

vary spatially (Fig. S20).  720 

 721 

3.3.3 PM2.5 impact on health risks now and in the 2060s 722 
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Changes in RR of PM2.5 for the 5 diseases under the geoengineering and global 723 

warming climate scenarios and different emission scenarios during 2060s relative to 724 

2010s for the Beijing-Tianjin province are shown in Fig. 14. Present-day PM2.5 related 725 

RRs are 1.32 (1.30), 1.37 (1.35), 1.46 (1.43), 1.83 (1.80) and 2.02 (1.99) for chronic 726 

obstructive pulmonary disease (COPD), ischemic heart disease (IHD), lung cancer (LC), 727 

lung respiratory infection (LRI) and stroke according to the ISIMIP (WRF) simulations 728 

(Fig. 14a). RR of LRI is the highest and COPD is the lowest in the five diseases, and 729 

WRF estimates of RR are 0.2-0.3 lower than those of ISIMIP. In both the “baseline” 730 

and “mitigation” emission scenarios, RRs will be lower under G4, RCP4.5 and RCP8.5 731 

compared with the 2010s. Smaller RR reductions occur under G4 than under RCP4.5 732 

and RCP8.5, and ISIMIP simulates larger reductions than WRF. This is because the 733 

PM2.5 concentrations from ISIMIP are reduced more than with WRF (Table S2). Under 734 

the “baseline” emission scenario (Fig. 14b-d), the biggest reduction of RR for LRI is 735 

0.047 under RCP8.5 in ISIMIP, and RRs for other diseases are projected to reduce by 736 

no more than 0.02. Under the “mitigation” emission scenario (Fig. 14e-g), reductions 737 

in RRs are 3-6 times greater. 738 

 739 
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Figure 14. Average population-weighted relative risks of PM2.5 related 5 diseases in 2010s (a) and 740 

its changes between G4 and 2010s (b, e), between RCP4.5 and 2010s (c, f) and between RCP8.5 741 

and 2010s (d, g) in Beijing-Tianjin province based on the ISIMIP and WRF results, respectively. 742 

PM2.5 concentration is based on the “baseline” emissions under G4, RCP4,5 and RCP8.5 in the 743 

middle 3 figures (b-d), and it is based on the “mitigation” emissions under G4, RCP4,5 and RCP8.5 744 

in the bottom 3 figures (e-g).   745 

 746 

4. Discussion 747 

4.  and Conclusion4.1 Apparent temperature 748 

Our study on thermal comfort under geoengineering scenarios for the Beijing 749 

megalopolis may be useful across the developing world which is expected to suffer 750 

disproportionate climate impact damages relative the global mean, while also 751 

undergoing rapid urbanization. Assessing health impacts and mortality due to heat 752 

stress under greenhouse gas scenarios should consider urbanization and the change to 753 

concrete surfaces from vegetation that leads to differences in heat capacities, rates of 754 

evapotranspiration, and hence humidity and apparent temperature. These require 755 

downscaled analyses, accurate meteorological and high-resolution land surface datasets.  756 

 757 

In our analysis we assumed the urban area did not change over time, and also that 758 

population remains distributed as in the recent past. This may be reasonable in the 759 

highly developed and relatively mature greater Beijing-Tianjin region but should be 760 

considered in rapidly urbanizing regions elsewhere. But there certainly will be changes 761 

over time in the radiative cooling from surface pollution sources. PM2.5 is a health 762 

issue in many developing regions (Ran et al., 2022), but as wealth increases efforts to 763 

curb air pollution generally clean the air. This has clear health benefits, but also removes 764 

aerosols from the troposphere that cool the surface. The urban areas that have higher 765 

apparent temperatures at present are also the areas with greatest aerosol load and hence 766 

greatest cooling. Once that is removed direct radiation, air temperatures and apparent 767 

temperatures will all rise – by several degrees (Wang et al., 2016). So a future more 768 

comprehensive health impact study would include both the negative health impacts of 769 

aerosol pollution and the potential cooling effects those aerosols produce. 770 

 771 

Both ISIMIP and WRF can reproduce the observed (ERA5CN05.1) spatial patterns and 772 

seasonal variabilities of apparent temperature in the region around Beijing. WRF shows 773 

warm biases in AP during all months relative to ERA5 CN05.1 due to warmer 774 

temperatures in urban areas, with the exception of driving from the BNU-ESM and 775 

HadGEM2-ES in driven summers (Fig. S5S8). Both ISIMIP and WRF tend to 776 

overestimate population weighted NdAP_32 by 46370% and 116590%, respectively. 777 

These large discrepancies are due to relatively small overestimates of the likelihood of 778 

the tails of the probability distributions which leads to a dramatic increase in the 779 

frequency of extreme climate events (Dimri et al., 2018; Huang et al., 2021). AP is 780 
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about 1.5℃ warmer that than 2 m temperature over the Beijing and Tianjin urban areas 781 

in summer due to higher vapor pressures amplifying warmer urban temperatures, and 782 

this is despite humidity being lower over the cities. Under high humidity conditions, a 783 

slight increase in temperature will cause a large increase in heat stress (Li et al., 2018; 784 

Luo and Lau, 2019). AP is nearly 4℃ colder than 2 m temperature in winter due to 785 

wind speed (Fig. 2d). Differences between AP and 2 m temperature (AP-T) during 786 

summer are greater in urban areas than neighboring rural areas.  787 

 788 

The apparent temperatures in Beijing Tianjin urban areas under G4 in the 2060s are 789 

simulated to be 1℃ and 2.5℃ lower than RCP4.5 and RCP8.5, although AP would be 790 

higher than in the recent past. The cooling effect of G4 relative to RCP4.5 and RCP8.5 791 

is greatest under HadGEM2-ES (Fig. S6S9, S7S10), due to the ESM having largest 792 

temperature differences between scenarios (Wang et al., 2022 in review). WRF 793 

downscaling produces reduced seasonality in AP compared with ISIMIP, and WRF 794 

produces relatively cooler summers and warmer winters than ISIMIP, and so much less 795 

differences in apparent temperature ranges (Fig. 1015). Differences in AP between G4 796 

and the RCP scenarios are mainly driven by temperature. In all scenarios and 797 

downscalings AP rises faster than the temperature due to decreased wind speeds in the 798 

future (Li et al., 2018; Zhu et al., 2021) but mainly because of rises in vapor pressure 799 

driven by rising temperatures. This effect occurs despite the general drying expected 800 

under solar geoengineering (Bala et al., 2008; Yu et al., 2015). 801 

 802 

The NdAP_32 under G4 is projected to decrease by 8.6 days per year by ISIMIP and 803 

6.3 days per year by WRF relative to RCP4.5 for Beijing-Tianjin Province. Much larger 804 

reductions in NdAP_32 of 33.5 days per year (ISIMIP) and 19.6 days per year (WRF) 805 

are projected relative to RCP8.5. Differences between scenarios in frequency of 806 

dangerously hot days are far larger using ISIMIP statistical downscaling than using 807 

WRF. This is another impact of the reduced seasonality of WRF compared with ISIMIP 808 

(Fig. 1015). 809 

 810 

The higher resolution WRF simulation produces a much larger range of apparent 811 

temperatures across the domain than ERA5 CN05.1 and ISIMIP downscaling. This 812 

increased variability makes reaching a statistical significance threshold more 813 

challenging for WRF than ISIMIP results. Despite this, the ESM-driven differences in 814 

WRF output are less than from ISIMIP, reflecting the physically based processes in the 815 

dynamic WRF simulation. This reduces the impact of differences in ESM forcing at the 816 

domain boundaries with WRF compared with the statistical bias correction and 817 

downscaling methods. Although there are some uncertainties between models and 818 

downscaling methods, G4 SAI can not only reduce the mean apparent temperature but 819 

also decrease the probability of PDF tails (extreme events) in summer.  820 

 821 
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822 
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 823 

Figure 150. Seasonal cycles of apparent temperature from MIROC-ESM, MIROC-ESM-CHEM, 824 

HadGEM2-ES and BNU-ESM under G4, RCP4.5 and RCP8.5 in Beijing-Tianjin urban areas during 825 

2060s based on ISIMIP (red) and WRF (black) methods.  826 

 827 

4.2 PM2.5 828 

We established a set spatially gridded MLR models based on the 4 ESMs downscaled 829 

variables under ISIMIP and WRF. The meteorological factors impact PM2.5 in complex 830 

ways, but the simple spatially gridded MLR models display enough skill to make some 831 

illustrative projections of future PM2.5 explaining about 70% of the variance during the 832 

historical period. PM2.5 concentration is correlated with emissions and anti-correlated 833 
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with temperature in most parts of the domain (Fig, S19-S20). Increased turbulence 834 

increases diffusion of PM2.5 (Yang et al., 2016), and higher temperatures increase 835 

evaporation losses (Liu et al., 2015) of ammonium nitrate (Chuang et al., 2017), and 836 

other components (Wang et al., 2006). Humidity may have both positive and negative 837 

effects on PM2.5 (Chen et al., 2020). It causes more water vapor to adhere to the surface 838 

of PM2.5, thereby increasing its mass concentration and facilitating aerosol growth 839 

(Cheng et al., 2017; Liao et al., 2017). However, when the humidity exceeds a certain 840 

threshold, coagulation and particle mass increases rapidly, promoting deposition (Li et 841 

al., 2015). So, the slope coefficients between PM2.5 and humidity are positive in low 842 

humidity areas, including southern plain and the Beijing-Tianjin province, but negative 843 

in some northern mountain areas (Fig. S19, S20). 844 

 845 

There are large spatial differences in wind speed and direction impacts on PM2.5. Yang 846 

et al. (2016) found that weaker northerly and westerly winds tend to increase the PM2.5 847 

concentration in northern and eastern China, respectively. The effects of wind direction 848 

depend on the distribution of emitted PM2.5 and the condition of the underlying surface 849 

(Chen et al., 2020). Most sources of PM2.5 lie to the south of our domain, relatively 850 

clean conditions prevail to the north, so northly winds tend to advect clean air, while 851 

southerlies bring high concentrations of aerosols. Weak winds tend to increase PM2.5 852 

and smog formation due to sinking air and weak diffusion (Su et al., 2017; Yang et al., 853 

2017).   854 

 855 

Emissions reductions are expected to play the dominant role in the decrease of PM2.5 856 

concentrations under G4 aerosol “mitigation” in 2060s (Fig. 12). Meteorological 857 

changes under the different future scenarios make much smaller changes as evidenced 858 

by the scenarios using “baseline” – that is present day PM2.5 emissions, with decreases 859 

in mean annual concentration of 1.0 (1.3), 1.8 (2.0), 3.3 (3.2) μg/m3 over Beijing-860 

Tianjin province under G4, RCP4.5 and RCP8.5 with WRF (ISIMIP), (Table S2), which 861 

are mainly caused by the temperature increases (Fig. 13). The negative relationships 862 

between emission and PM2.5 concentration result in the increase of PM2.5 under G4 863 

(“mitigation”) relative to 2010s in the north of Beijing with WRF. This may be due to 864 

changes in PM2.5 out of the domain being opposite to those in domain during the MLR 865 

fitting period, since relocation of polluting sources from the urban areas mainly to the 866 

west, was occurring over the calibration period. The accuracy of PM2.5 emission data is 867 

also crucial for training MLR models, and PM2.5 data was sparse before 2013, relying 868 

on reconstructions based on satellite optical depth estimates. Although both increase of 869 

temperature and decrease of emission explain more than 90% of the decrease in PM2.5 870 

in most areas, there are large spatial differences due to wind and humidity. On the one 871 

hand, there is uncertainty in the differences in changes of wind speed and humidity 872 

between different ESMs and downscaling methods; on the other hand, the complex 873 

physical relationship between them and PM2.5 also increases uncertainties. Reductions 874 

in PM2.5 in the future are projected to decrease PM2.5 related health issues, although its 875 
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effect on different diseases are different. Changes in PM2.5 related risk between G4 and 876 

RCPs are from 1-3%, with PM2.5 emissions policy dominating differences over climate 877 

scenario. 878 

 879 

Eastham et al. (2018) deduced from experiments using 1 Tg/yr SAI in a coupled 880 

chemistry-transport model directly simulating atmospheric chemistry, transport, 881 

radiative transfer of UV, emissions, and loss processes, that per unit mass emitted, 882 

surface-level emissions of sulfate result in 25 times greater population exposure to 883 

PM2.5 than emitting the same aerosol into the stratosphere. The G4 experiment specifies 884 

5 Tg/yr injection rate, which over our domain would equate to 1450 t/yr if it was 885 

deposited uniformly globally (which it certainly would not be). Reducing this by the 886 

1/25 factor amounts to 58 t/yr which can be compared with present PM2.5 emissions of 887 

around 3.3×105 t/year in our domain. If we consider the aerosol deposition under G4 888 

scenarios, PM2.5 concentration will be 0-1 μg/m3 higher than that without due to 889 

deposition of the SAI aerosols (Fig. S21), and RR is projected to increase by 0.01% for 890 

Beijing-Tianjin province (Table S3). This comparison suggests that tropospheric 891 

emissions will be much more important for human health in our domain than from the 892 

SAI specified by G4. 893 

 894 

The most important change in PM2.5 will come from emissions reductions, with the 895 

different weather conditions under both G4 and RCP scenarios making relatively little 896 

practical differences in concentrations. PM2.5 concentration is expected to decrease 897 

significantly (ISIMIP: -6.5μg/m3, WRF: -4.3 μg/m3) in the Beijing-Tianjin province, 898 

but they will still not meet either Chinese or international standards. The temperature 899 

under G4 is lower than that under RCP4.5 and RCP8.5 scenarios, which makes the 900 

PM2.5 concentration under G4 higher. But the difference in PM2.5 between the two is 901 

small and even within uncertainty due to projected differences in humidity and wind. 902 

Potentially improved estimates from more complex models such as WRF-Chem, 903 

CMAQ and GEOS-Chem over the simple MLR methods used here will be of limited 904 

value unless the differences between the ESM driving these models is reduced. It can 905 

be confirmed that emission policies based on the 13th Five Year Plan are not enough, 906 

and higher emission standards need to be developed for a healthy living environment. 907 

 908 

5. Conclusion 909 

Our study on thermal comfort and aerosol pollution under geoengineering scenarios for 910 

the Beijing megalopolis may be useful across the developing world, which is expected 911 

to suffer disproportionate climate impact damages relative the global mean, while also 912 

undergoing rapid urbanization. Assessing health impacts and mortality due to heat 913 

stress and PM2.5 under greenhouse gas scenarios should consider urbanization and the 914 

change to concrete surfaces from vegetation that leads to differences in heat capacities, 915 
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rates of evapotranspiration, and hence humidity and apparent temperature. These 916 

require downscaled analyses, accurate meteorological and high-resolution land surface 917 

datasets, and industrial development scenarios. 918 

 919 

In our analysis we assumed the urban area did not change over time, and also that 920 

population remains distributed as in the recent past. This may be reasonable in the 921 

highly developed and relatively mature greater Beijing-Tianjin region but should be 922 

considered in rapidly urbanizing regions elsewhere. There certainly will be changes 923 

over time in the radiative cooling from surface pollution sources. PM2.5 is a health issue 924 

in many developing regions (Ran et al., 2023), but as wealth increases efforts to curb 925 

air pollution generally clean the air. This has clear health benefits, but also removes 926 

aerosols from the troposphere that cool the surface. The urban areas that have higher 927 

apparent temperatures at present are also the areas with greatest aerosol load and hence 928 

greatest cooling. Once that is removed direct radiation, air temperatures and apparent 929 

temperatures will all rise – by several degrees (Wang et al., 2016). So, a future more 930 

comprehensive health impact study would include both the negative health impacts of 931 

aerosol pollution and the potential cooling effects those aerosols produce. Additionally, 932 

the formulation of apparent temperature used does not consider the effect of radiation 933 

on human comfort (Kong and Huber, 2022). When PM2.5 levels are high there is no 934 

shade because the sky is milky-white, similarly SAI will brighten the sky (Kravitz et 935 

al., 2012). Comfort is increased in clear sky conditions when shade is readily found. 936 

 937 

The changes simulated to relative risk from increased PM2.5 under the G4 SAI scenario 938 

are about 1-3% worse than under RCP4.5, mainly because of lower temperatures under 939 

G4. The difference this would make to the overall health burden under SAI depends on 940 

the range of other impacts that include changes in apparent temperature we discuss. G4 941 

reduces the number of days with AP>32 (when extreme caution is advised) by 6-8 per 942 

year relative to RCP4.5 and by 20-34 relative to RCP8.5. But G4 itself will still increase 943 

these extreme caution days by 1-20 relative to conditions in the 2010s. Lowering PM2.5 944 

emissions will increase ground temperatures and the associated risk of dangerous 945 

apparent temperatures will also increase rapidly as the distribution of temperatures is 946 

shifted making presently rare hot events into much more frequent heat waves. 947 

 948 
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