
Referee’s comments are in red, our reply on black, quotes in the revised manuscript in 

blue. 

 

Referee#1 

 

I have limited my review to focus on areas which the authors have changed in response 

to my prior comments. Line numbers refer to the marked-up manuscript. 

 

I was very impressed by the thoroughness of the authors’ response. In particular I was 

happy to see the transition to an observational dataset in place of model reanalysis, and 

the extension to investigate PM2.5 elevates the paper substantially and brings it much 

closer to publication. However this also means that the manuscript must now pass the 

same level of scrutiny as any other investigation of future PM2.5, which is a high bar. 

This is the focus of my remaining concerns. The analysis is novel and I recognize the 

need for an efficient approach rather than (say) an additional set of CCM simulations, 

but the MLR approach used by the authors does cause me some concern. I have 

enumerated those concerns below and hope that the authors can address them. 

 

The most significant issue is that a regression on a limited set of variables from 

historical data is used to predict future conditions. This is not inherently/fundamentally 

flawed, but there is a large body of literature which has investigated the nuanced 

relationship between future changes in climate and air quality, and how they are 

moderated by meteorological change (e.g. Jacob and Winner 2009, Fiore et al 2015). 

This has been looked at specifically in the context of health in China for ozone by e.g. 

Westervelt et al (2019). The challenge for modelers (including, now, the authors of this 

study) is whether past conditions accurately reflect the changes which will occur in the 

future. For example, it is possible that a geoengineering scenario could modify large 

scale dynamics in a way which is not reflected in past conditions, and which is different 

again from how those dynamics will be affected by climate change (Cheng et al 2022). 

It is also possible that the precursors dominating PM2.5 will change, modifying the 

relationship between emissions and concentrations. Such changes would affect the 

patterns of pollution movement and evolution in a way which a local regression would 

not be able to capture. With that in mind, I would recommend three significant further 

revisions (two focused on the above and one on framing). 

 

Reply: We would like to thank the referee for taking the time to review our manuscript 

again. Thank you very much for your affirmation of our first round of modification and 

constructive suggestions for the rationality of MLR in projecting PM2.5. We have 

responded to the following comments one by one.  

 

First, I recommend that the authors take an existing dataset of air quality outcomes for 

current and future conditions and show that the MLR method is capable of providing 

reasonable results when past conditions are used to build a regressor which predicts 

future PM2.5 with evolving emissions and climate. One possibility in this regard would 



be the AerChemMIP model outputs. It is fair to say that there is a lack of data to 

accomplish this for geoengineering output (although GeoMIP and/or GLENS output 

may be sufficient). If the authors can at least show that a regressor provides a reasonably 

accurate prediction under a significant change in climate and emissions that would 

significantly strengthen their findings in this paper. 

 

Reply: We thank the referee’s comments and suggestions. We found one paper which 

looked at the future PM2.5 concentration in the similar region and asked for their data to 

assess our results. Li et al (2023) used the CMAQ model coupled WRF driven by 

GFDL-ESM2G and SMOKE model to explore the influence of emissions on air quality 

in the Beijing-Tianjin-Hebei region of China in 2050. The authors used the dynamical 

downscaled meteorological factors by WRF driven by GFDL-ESM2G and two air 

pollution emission scenarios, one is “base” based on the Beijing City Master Plan 

(2016-2035) and another is “EIT1” based on the emission reduction for WHO Interim 

Target-1 to compare the impact of different emission scenarios on PM2.5 concentration 

in 2050 under RCP4.5. To assess the performance of our regression model we also 

downloaded the meteorological variables from GFDL-ESM2G under RCP4.5 and the 

“EIT1” emission data.  

The statistical downscaled meteorological factors during 2008-2017 and 2050 under 

RCP4.5 were used as independent variables in the regression model to project PM2.5 

concentration in 2050 under RCP4.5 with the “EIT1” scenario. The spatial pattern is 

shown in the following figure S7. Although PM2.5 concentration is nearly twice as high 

as from Li et al., PM2.5 concentration from our regression model is also higher than the 

referenced data during 2008-2017, and our projections are similar to the spatial pattern 

of the seasonal PM2.5 concentration from the chemical transport model, with correlation 

coefficient of 0.68-0.73. We also compare the spatial pattern of differences in PM2.5 

concentration between “base” and “EIT1” under RCP4.5 (Figure S8). Because of the 

small slope coefficient of PM2.5 emission in our MLR we do not capture the large 

reduction of PM2.5 concentration in the Beijing city center seen by Li et al (2023), (Fig. 

S8). 

We added the following figures in the supplementary information. 

 

Figure S7. Comparison of our MLR model projection and Li et al. (2023) RCP4.5 simulations. Li 

et al (2023) use the CMAQ model coupled WRF driven by GFDL-ESM2G and SMOKE model to 



explore the influence of emissions on air quality in the Beijing-Tianjin-Hebei region of China in 

2050. The authors used the dynamical downscaled meteorological factors by WRF driven by GFDL-

ESM2G and two air pollution emission scenarios, one is “base” based on the Beijing City Master 

Plan (2016-2035) and another is “EIT1” based on the emission reduction for WHO Interim Target-

1 to compare the impact of different emission scenarios on PM2.5 concentration in 2050 under 

RCP4.5. To assess the performance of our regression model we also downloaded the meteorological 

variables from GFDL-ESM2G under RCP4.5 and the “EIT1” emission data. The statistical 

downscaled meteorological factors during 2008-2017 and 2050 under RCP4.5 were used as 

independent variables in the regression model to project PM2.5 concentration in 2050 under RCP4.5 

with the “EIT1” scenario. The top row are calculated by our regression model, and the bottom row 

are from Li et al. R is the correlation coefficient of PM2.5 concentration spatial pattern between our 

results and Li et al. 

 

 

Figure S8. Spatial pattern of differences in PM2.5 concentration under RCP4.5 between “base” and 

“EIT1” emission scenarios in Li et al (2023). The top row are calculated by our regression model, 

and the bottom row are from Li et al.  

 

 

We added the following sentences in line 299. 

 

We also tested the accuracy of our MLR model projection against simulations (Li et al., 

2023) with the Community Multiscale Air Quality (CMAQ) model developed by the 

United States Environmental Protection Agency and which can simulate particulate 

matter on local scales (Foley et al., 2010; Yang et al., 2019) when coupled to WRF. We 

used the same meteorological forcing as Li with the “EIT1” PM2.5 emissions scenario 

in 2050 under RCP4.5 (Fig. S7).  

 

The spatial patterns are well correlated in all seasons (0.68-0.73), but PM2.5 

concentrations are about twice as high in our MLR model as from Li et al., (2023). 

PM2.5 concentrations from our regression model are also higher than the referenced data 

during 2008-2017. While the difference in absolute PM2.5 concentrations are 

significant, we mainly consider differences of PM2.5 concentration between G4 and 

RCP4.5/RCP8.5 in our study which we cannot compare these anomalies with the single 



RCP4.5 scenario simulated by Li et al. (2023). We do compare the spatial pattern of 

differences in PM2.5 concentration between “base” and “EIT1” under RCP4.5. Because 

of the small slope coefficient of PM2.5 emission in our MLR, we do not capture the large 

reduction of PM2.5 concentration in the Beijing city center seen by Li et al (2023), (Fig. 

S8). 
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One of the most significant concerns I have in this respect is actually the nature of the 

regression. If I understand Sections 2.2 and 2.5 correctly, the authors are relating local 

PM2.5 concentrations to local PM2.5 emissions and local meteorology. However, PM2.5 

is will known to be influence by both upwind (i.e. regional) emissions of PM2.5 and by 

emissions of PM2.5 precursors such as SO2, NOx, and ammonia. The importance of 

taking these factors is elevated when looking at higher resolution data. Based on my 

interpretation of lines 285-293, these factors are not included in the MLR which would 

be concerning. If my interpretation is incorrect then I recommend that the authors 

clarify this in the relevant sections and specify clearly a) what precursors are considered, 

b) how spatial relationships between emissions (or other factors) and concentrations are 

captured, and c) how their model will be able to capture a shift in the chemical regime. 

Concerns a and c are only significant if secondary PM2.5 is considered, so if instead 

only primary PM2.5 is considered then I strongly recommend this be made very clear in 

the paper and the conclusions and abstract caveated appropriately. However, in either 

case the question regarding concern b remains. 

 

Reply: Thank you very much for this comment. a) The reviewer is right, we only 

considered the primary PM2.5 emissions and did not consider the precursor gases for 

secondary PM2.5. Although secondary PM2.5 emission is not included, PM2.5 

concentration includes both primary and secondary PM2.5 in our model. b) The referee 

https://doi.org/10.1016/j.jclepro.2023.135927


is correct that PM2.5 concentration is not only related to local meteorological conditions 

and emissions. Limited by our model being a statistical model rather than a chemical 

transport model, we expect that by having meridional and latitudinal winds as variables 

in our model that these PM2.5 advections can be accounted for. c) We note that the future 

precursor mix will change in ways that are rather speculative as they depend on 

technological innovation and policies that are inherently unpredictable. 

 

We have added the following sentences in line 275. 

 

Here, we use PM2.5 concentration including both primary and secondary PM2.5 as the 

dependent variable and primary PM2.5 emission and meteorological factors as 

independent variables in the MLR. Future PM2.5 emissions will change in ways that are 

rather speculative as they depend on technological innovation and policies that are 

inherently unpredictable. The MLR assumes that the past emissions mix and secondary 

aerosols remain unchanged in the future, but meteorological factors will also indirectly 

impact secondary PM2.5 to some extent. 

 

We have added the following sentences in line 810. 

 

Our study did not consider the impacts of socio-economic pathways on PM2.5 future 

emissions, instead we explore the meteorological differences between the SAI G4 

scenario and the greenhouse gas RCP4.5/RCP8.5 on PM2.5 concentrations. PM2.5 

emissions were defined by the uncontrolled (“baseline”) and a scenario where 

technological intervention (“mitigation”) reduces emissions. There are some limitations 

in our study. Firstly, the HTAP_V3 dataset only includes anthropogenic PM2.5 emission, 

not natural PM2.5 emission. Natural PM2.5 will also change in the future under changing 

climate. The sources of natural PM2.5 include the sandstorms that sometimes occur in 

spring as extreme winds mobilize dry unvegetated soils. These relatively extreme 

conditions are difficult to simulate in ESM and subject to land use policy e.g., the 

numerous ecosystem service measures undertaken by China over the last five decades 

(Miao et al.,2015). Secondly, although PM2.5 concentration includes both primary and 

secondary PM2.5 during model training, we do not consider the precursor gases for 

secondary PM2.5 directly. The sensitivity of MLR may diminish at the high PM2.5 values 

when secondary PM2.5 dominates the variability of total PM2.5 (Upadhyay et al., 2018). 

Thirdly, we only consider the effect of dominant near-surface meteorological variables 

on the PM2.5. However, the vertical transport of pollutants related to vertical 

atmospheric stability should not be ignored (Lo et al., 2006; Wu et al., 2005), and this 

may contribute to the differences in RCP4.5 scenario from our MLR model and more 

sophisticated simulations (Fig. S7). Finally, although it is insignificant for the Beijing 

and Tianjin provinces, the MLR model suffers collinearity problems in some areas. 

These factors play smaller roles as we are mainly considering changes in PM2.5 

concentration between different climate scenarios. Nevertheless, projection for changes 

in PM2.5 between SAI scenarios and per greenhouse gas scenarios would be valuable 

for global air quality impacts from geoengineering. 
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Second, I recommend that the authors compare their findings against existing 

projections of the change in surface PM2.5 in the target region over the next 40 years. 

There are several studies looking at how surface air quality in China might evolve under 

different scenarios (see e.g. Hong et al 2019). Showing that the regression-based 

approach can recover the majority of the climate change-induced signal would be 

valuable not only from the perspective of this paper, but from the perspective of the 

field more broadly. 

 

Reply: Thank you, we added some sentences in the discussion in line 765.  

 

Xu et al. (2021) projected 2030 PM2.5 concentrations will decrease by 8.8% and 5.5% 

under RCP4.5 and RCP8.5 respectively relative to 2015. Wang et al. (2021) also 

projected decreasing trends in China under RCP4.5 and RCP8.5 during 2030-2050. 

There were seasonal changes in PM2.5 concentration differences between RCP4.5/8.5 

scenarios and the historical scenario near the Bohai Sea (Dou et al., 2021). However, 

there are also some simulations where PM2.5 concentrations increase in warmer climates. 

Hong et al. (2019) suggest that annual mean PM2.5 concentrations will increase 1-8 

μg/m3 in an area including Beijing and Tianjin under RCP4.5 during 2046-2050, 

compared with 2006-2010. These inconsistent responses are mainly caused by the 

differences in the selection of ESMs, chemical transport models and climate/emission 

scenarios. Different RCP scenarios not only correspond to different future climate states, 

but also have different anthropogenic emissions of air pollutants. In our study, we do 

not consider the PM2.5 emission differences between RCP4.5 and RCP8.5, and instead 

applied the ECLIPSE PM2.5 emission scenarios in our MLR projection. 
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Finally, I am surprised that the abstract and conclusions still do not provide any 

quantitative data regarding how the different downscaling methods affect the outcomes 

inspected here. By including the extension to PM2.5 I think the authors have done a good 

job of addressing my prior major concern (of this manuscript having no novelty when 

considered next to their existing work), but it would be helpful to include some high 

level conclusions regarding the degree to which model- (WRF) or statistics-based 

(ISIMIP) downscaling results in different or similar outcomes for health risks under 

different scenarios. 

 

Reply: Thanks for your suggestions. we add some sentences in line 781 in the 

discussion. 

 

There are some differences in projecting PM2.5 concentration between WRF and ISIMIP 

methods. Compared to the 2010s reference, PM2.5 concentration in ISIMIP are 

projected to decrease more than using WRF in G4 under the “mitigation” scenario 

during the 2060s over the Tianjin province (Fig. 11a, e). However, the spatial patterns 

of changes in PM2.5 concentration between G4 and RCP4.5/8.5 under the “mitigation” 

scenario during 2060s are similar (Fig. 11c-d, g-h). This means that the effects of 

different downscaled methods on projecting PM2.5 are small if we only consider the 

climate change alone without considering emissions changes. Due to the larger 

regression coefficient of emissions in the MLR under the ISIMIP method (Fig. S25, 

S26), the negative changes in PM2.5 concentration are larger between “mitigation” and 

baseline under G4 during 2060s than that under the WRF method. Correspondingly, the 

ISIMIP method has a greater reduction in PM2.5 related RR than WRF under three future 

climate scenarios during the 2060s. 
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We add the following sentences in line 29 in the abstract.  

 

Compared with the 2010s, PM2.5 concentration is projected to decrease 5.4 μg/m3 in the 

Beijing-Tianjin province under the G4 scenario during the 2060s from the WRF 

downscaling, but decrease by 7.6 μg/m3 using ISIMIP. The relative risk of 5 diseases 

decreases by 1.1%-6.7% in G4/RCP4.5/RCP8.5 using ISIMIP, but have smaller 

decrease (0.7%-5.2%) using WRF. 

 

 

 

Minor comments 

 

While I understand the authors’ statement that health impacts only matter when people 

are affected, I still believe that line 270 (“Since health impacts are more important 

where there are more people”) is likely to cause misunderstanding. I would recommend 

wording instead along the lines of “Since health impacts scale with the number of 

people affected”. As written, it sounds like a single person’s exposure is more important 

if they live in an urban rather than rural environment, when the intended meaning is 

instead (presumably) that an increase in concentration causes more health impact when 

a large number of people are exposed. 

 

Reply: Done. We have changed the original sentence with that you suggested. 

 

Since health impacts scale with the number of people affected, 

 

Upon review, it appears that the Eastham et al. (2018) study does include limited 

meteorological effects (line 120). It would perhaps be more accurate to state that the 

study included only a first-order estimate of temperature and precipitation change. 

 

Reply: Done. We rewrote the sentence in line 114. 

 

However, this study included only a first-order estimate of temperature and 

precipitation change on PM2.5 concentration under geoengineering, and also did not 

consider the situation in a highly polluted urban environment such as included in our 

domain, and which is typical of much of the developing world. 

 

 

There remain some minor grammar and spelling errors (e.g. “statistically approach” on 

line 21, “gird” on line 334, “includes” should be “include” on line 326). Similarly, there 

is some confusing wording (e.g. “the ~1-2% wetter humidity has ~10% negative effect 

on decrease of PM2.5” – the multiple negatives here make it difficult to understand 

whether increasing humidity is causing an increase or decrease in PM2.5, “2.5” in PM2.5 

is not subscripted in line 944). These are rare but I would suggest the authors take 



another pass through the manuscript to clean up these few issues. 

 

Reply: Done. We apologize for our errors, and we have rewritten the sentence in line 

623 and make it clear. We also corrected all the subscripts of PM2.5 in the manuscript. 

 

The ~1-2% increase of humidity leads to ~10% increase of PM2.5 concentration in the 

south of Beijing (Fig. 12g), and 0.2-0.3 m/s deceases of U-wind leads to 0-10% increase 

of PM2.5 concentration in Zhangjiakou (Fig. 12h).  
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Referee#2 

 

This manuscript seeks to comprehend the changes in regional apparent temperature and 

PM2.5 concentrations under the conditions of global warming and sulfate aerosol 

injection. This understanding is achieved through the utilization of data from multiple 

Earth System Model simulations, two downscaling methods, and two statistic linear 

regression functions. The topic is both significant and innovative. Nevertheless, several 

substantial concerns persist: 

 

Reply: We would like to thank the referee for taking the time to review our manuscript 

again. Thanks for your positive response and constructive comments for our new 

manuscript. We have responded to your comments one by one.   

 

The methodology employed to calculate PM2.5 concentration only considers factors 

such as temperature, humidity, wind speed, and anthropogenic emissions. However, 

two critical elements have been overlooked: precipitation, and natural aerosol emission. 

Precipitation has a crucial role in 'cleansing' air pollutants, including PM2.5, and future 

alterations in precipitation patterns could considerably influence regional PM2.5 

concentrations. Furthermore, natural aerosol emissions, such as dust and sea salt, 

constitute more than half of the average global PM2.5. In regions like Beijing, "dust 

storms" are a significant air pollution phenomenon in the spring, contributing 

substantially to PM2.5 levels. The absence of these two factors from the calculation or 

discussion makes the projected future changes in PM2.5 unreliable. 

 

Reply: We agree with the referee’s concern of variables in our regression model. 

Actually, multiple meteorological factors are contributed to PM2.5 concentration, such 

as temperature (You et al., 2017), humidity (Cheng et al., 2017), wind (Yin et al., 2017), 

precipitation (Guo et al., 2016), atmospheric pressure (Zhang et al., 2015), radiation 

(Chen et al., 2017) and planetary boundary layer height (Zheng et al., 2017) etc. Crudely, 

the dominant meteorological factors vary with areas. In our analysis, we did not apply 

all possible variables in our regression model, and we only considered the main 

meteorological factors in our domain. Chen et al (2020) pointed out that humidity and 

wind speed are the two dominant meteorological factors in the Jing-Jin-Ji region (which 

contains Beijing and Tianjin). Based on their study, we included temperature, humidity, 

as well as meridional and latitudinal winds into our regression model. Natural emission, 

such as “dust storms”, also contributed to PM2.5 concentration, but the composition of 

dust is complex, generally in Beijing bringing in coarser PM10 and not so much PM2.5. 

Furthermore, the sources of natural PM2.5 include the sandstorms that sometimes occur 

usually in spring as extreme winds mobilize dry unvegetated soils. These extreme 

conditions are difficult to simulate in ESM and subject to land use policy e.g. the 

numerous ecosystem service measures undertaken by China over the last five decades 

(Miao et al.,2015). On the other hand, both HTAP_V3 and ECLIPSE V6b dataset do 

not offer the natural aerosol emission. So, there are some limitations in our study. In 

regard to precipitation, the ESM estimates of anomalies relative to historical are 24.0, 



45.3, and 63.2 mm/year under G4, RCP4.5 and RCP8.5, respectively (Table S2). 

Among the four ESMs, no ESM shows significant changes, although differences are 

significant for the ensemble mean between RCP8.5 and 2010s.   

 

 

We add some sentences in our manuscript. 

 

We add the following sentences in line 260. 

 

Many meteorological factors, such as temperature (You et al., 2017), precipitation (Guo 

et al., 2016), wind speed (Yin et al., 2017), radiation (Chen et al., 2017), planetary 

boundary layer height (Zheng et al., 2017) etc., can affect the PM2.5 concentration. Their 

relative importance differs regionally. But here we consider only differences that are 

produced by the three scenarios, so for example we do not include precipitation in our 

analysis because none of the ESM simulate significant changes in our domain (Table 

S2).  

 

We add the following sentences in line 810. 

 

Our study did not consider the impacts of socio-economic pathways on PM2.5 future 

emissions, instead we explore the meteorological differences between the SAI G4 

scenario and the greenhouse gas RCP4.5/RCP8.5 on PM2.5 concentrations. PM2.5 

emissions were defined by the uncontrolled (“baseline”) and a scenario where 

technological intervention (“mitigation”) reduces emissions. There are some limitations 

in our study. Firstly, the HTAP_V3 dataset only includes anthropogenic PM2.5 emission, 

not natural PM2.5 emission. Natural PM2.5 will also change in the future under changing 

climate. The sources of natural PM2.5 include the sandstorms that sometimes occur in 

spring as extreme winds mobilize dry unvegetated soils. These relatively extreme 

conditions are difficult to simulate in ESM and subject to land use policy e.g., the 

numerous ecosystem service measures undertaken by China over the last five decades 

(Miao et al.,2015). Secondly, although PM2.5 concentration includes both primary and 

secondary PM2.5 during model training, we do not consider the precursor gases for 

secondary PM2.5 directly. The sensitivity of MLR may diminish at the high PM2.5 values 

when secondary PM2.5 dominates the variability of total PM2.5 (Upadhyay et al., 2018). 

Thirdly, we only consider the effect of dominant near-surface meteorological variables 

on the PM2.5. However, the vertical transport of pollutants related to vertical 

atmospheric stability should not be ignored (Lo et al., 2006; Wu et al., 2005), and this 

may contribute to the differences in RCP4.5 scenario from our MLR model and more 

sophisticated simulations (Fig. S7). Finally, although it is insignificant for the Beijing 

and Tianjin provinces, the MLR model suffers collinearity problems in some areas. 

These factors play smaller roles as we are mainly considering changes in PM2.5 

concentration between different climate scenarios. Nevertheless, projection for changes 

in PM2.5 between SAI scenarios and per greenhouse gas scenarios would be valuable 

for global air quality impacts from geoengineering. 



 

We add the following table in the supplementary information. 

 

Table S2. The changes in annual mean precipitation (mm/year) between G4/RCP4.5/RCP8.5 during 

2060s and references during 2010s over the domain. Bold indicates that differences are significant.   

 G4-2010s RCP4.5-2010s RCP8.5-2010s 

MIROC-ESM 73.1 50.5 51.8 

MIROC-ESM-CHEM -4.9 43.2 47.1 

HadGEM2-ES 69.1 114.1 147.6 

BNU-ESM -41.6 -26.6 6.4 

Ensemble 24.0 45.3 63.2 
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However, there exists a high correlation between the climate variables used, such as 

temperature and water vapor pressure/humidity. The uncertainties arising from this 

calculation method need to be addressed. 

 

Reply: Yes, collinearity of variables is inevitable in our domain. The domination of the 

seasonal winter and summer monsoonal weather patterns mean that temperatures, 

precipitation and wind direction are all highly seasonal and correlated. In winter, 

precipitation is minimal and northerly winds predominate, in summer the opposite is 

true. However, the three fields are important in their own right since emission sources 

are essentially absent from the north, while temperature and humidity dominate aerosol 

microphysics. Furthermore, we used a widely used empirical formula to calculate the 

apparent temperature (Steadman 1984), that combines various meteorological fields.  

 

We use the variance inflation factor (VIF) to test if there is excessive collinearity in our 

MLR model. Generally, if VIF value is greater than 10, there is collinearity problem 

between variables. As shown in figure S3 below, there are indeed collinearity problems 

in some areas. The problem doesn’t occur in Beijing-Tianjin province, so there is no 

impact on the results for Beijing-Tianjin urban areas. To further explore the impact of 

collinearity on the results in high VIF grid cells, we compared the differences of PM2.5 

concentration in the future between removing factors with VIF greater than 10 and the 

full variables model (figure S4 and figure S5). Using ISIMIP downscaling, we only 

removed the temperature, while we removed the temperature and U-wind in the WRF 

method. In figure S4, we can see that PM2.5 concentration show an increase of ~1 ug/m2 

in all ESMs under G4 with the “baseline” scenario (except HadGEM2-ES under ISIMIP 

method) after dealing the collinearity problem. In figure S5, PM2.5 concentration has 

nearly 5-15 ug/m2 decrease in all ESMs under G4 with “mitigation” scenario after 

dealing the collinearity problem. This means that PM2.5 concentration has more 

sensitivity to the PM2.5 emission after dealing the collinearity problem. The difference 

in PM2.5 concentration between different scenarios with the removal of collinearity 

variables is shown in the following Figure 11, and that without removal of collinearity 

is shown in the Figure S18. The reductions in PM2.5 between G4 and 2010s are a little 

higher in the area where there are collinearity problems after dealing the collinearity 

problem. 

 

Although the absolute PM2.5 concentration is different whether we consider collinearity 

or not, there are little differences in the changes of PM2.5 concentration between G4 and 

2010s/RCP4.5/RCP8.5. We also acknowledge that there are large uncertainties in PM2.5 

concentration in the future with considering collinearity or not. But in our study, we 

pay attention to the differences of PM2.5 concentration between G4 and RCP4.5/8.5. So 

considering collinearity is not so important, and as shown there is no collinearity 

problem in Beijing-Tian province.   

We rewrote the sentences in line 223. 

 

We used a widely used empirical formula to calculate the apparent temperature 



(Steadman 1984), that combines various meteorological fields, which also has been 

widely used to study heat waves, heat stress and temperature-related mortality. 

 

We add the following sentences in line 281. 

 

Collinearity of variables is inevitable in our domain. The domination of the seasonal 

winter and summer monsoonal weather patterns mean that temperatures, precipitation 

and wind direction are all highly seasonal and correlated. In winter, precipitation is 

minimal and northerly winds predominate, in summer the opposite is true. These three 

meteorological fields are important also important for emissions, since sources are 

essentially absent from the north, while temperature and humidity dominate aerosol 

microphysics. 

 

We use the variance inflation factor (VIF) to test if there is excessive collinearity in our 

MLR models. Generally, if VIF value is greater than 10, there is collinearity problem 

between variables. Figure S3 shows that there are indeed collinearity problems in some 

areas, but not in Beijing-Tianjin province, so there is no impact on the results for the 

urban areas. We explored the impact of collinearity on the results in high VIF grid cells 

by removing factors with VIF greater than 10 and the full variables model (Fig. S4 and 

Fig. S5). Using ISIMIP downscaling, we only removed the temperature, while we 

removed the temperature and U-wind in the WRF method. PM2.5 concentrations 

increased by ~1 μg/m2 in all ESMs under G4 with the “baseline” scenario (Fig. S4), in 

contrast, PM2.5 concentrations decreased by 5-15 μg/m2 with the “mitigation” scenario 

(Fig. S5) after dealing the collinearity problem. This means that PM2.5 concentration 

has more sensitivity to the PM2.5 emission after accounting for collinearity. Although 

the absolute PM2.5 concentrations are different accounting for collinearity, there are no 

significant differences in the changes of PM2.5 concentration between G4 and the 

2010s/RCP4.5/RCP8.5 (Fig.11, Fig. S18).  

 

We reploted the following figures in the manuscript. 

 

Figure 11. Spatial patterns of ensemble mean PM2.5 concentration difference (μg/m3) between 



“mitigation” under G4 in the 2060s and reference (a, e), between “mitigation” and “baseline” under 

G4 in the 2060s (b, f), between G4 and RCP4.5 under “mitigation” scenario in the 2060s (c, g), and 

between G4 and RCP8.5 under “mitigation” scenario in the 2060s (d, h) based on ISIMIP (a-d) and 

WRF (e-h) results. Excessive collinearity variables have been removed (Fig. S18 shows the results 

without this procedure). Stippling indicates grid points where differences or changes are not 

significant at the 5% significant level according to the Wilcoxon signed rank test. 

 

We added the following figures in the supplementary information. 

 

 
Figure S3. Variance inflation factor (VIF) test of excessive collinearity in our MLR model. VIF >10 

means there is collinearity problem between variables (dotted regions). 

 

 

Figure S4. Difference in PM2.5 concentration under G4 with “baseline” scenario in 2060s between 

removing factors with VIF greater than 10 and the full variables model. 

 



 

Figure S5. Difference in PM2.5 concentration under G4 with “mitigation” scenario in 2060s between 

removing factors with VIF greater than 10 and the full variables model. 

 

 

Figure S18. Same as figure 11, but the results of all variables in MLR. 

 

We updated Fig.2, Fig.11-14, Table S2, Table S3, Fig.S3, Fig.S13-S14 and Fig. S19-

S21 after removing the collinearity variables in the areas with VIF>10 in the original 

unrevised manuscript. We have also revised the sentences in the manuscript and the 

numbering of figures accordingly, and overall, the changes are not very significant. 

 

 

In the discussion section, the authors declare, "If we consider the aerosol deposition 

under G4 scenarios, PM2.5 concentration will be 0-1 μg/m3 higher than that without due 

to deposition of the SAI aerosols (Fig. S21)." This is incorrect. The injected sulfate 

aerosol would primarily deposit in the coarse mode and would not augment SO4 in 

PM2.5 compared to the reference case during the same period. 

 

Reply: The referee gives no support for the assertion that the numbers we calculate are 

incorrect. This concerns the deposition from the SAI as PM2.5. Eastham et al. (2018) 

considered this with a much more sophisticated treatment than available to us. They 



concluded that 1/25 of the SAI was deposited as PM2.5. This is the ratio we use, and 

since it is the only study to simulate the effects, we will continue to use this number. 

 

Lastly, the abstract lacks clarity in terms of the study's conclusions. How does PM2.5 

change under future climate conditions and sulfate aerosol injection? What is the 

influence of the two downscaling methods on studying the health impact of SAI? 

It is better to use climate intervention instead of geoengineering. 

 

Reply: Thanks for your comments. We changed the stratospheric aerosol injection to 

stratospheric aerosol intervention. We are limited in the number of words in the abstract. 

We add some sentences in the abstract.  

 

Compared with the 2010s, PM2.5 concentration is projected to decrease 5.4 μg/m3 in the 

Beijing-Tianjin province under the G4 scenario during the 2060s from the WRF 

downscaling, but decrease by 7.6 μg/m3 using ISIMIP. The relative risk of 5 diseases 

decreases by 1.1%-6.7% in G4/RCP4.5/RCP8.5 using ISIMIP, but have smaller 

decrease (0.7%-5.2%) using WRF. 

 

 

 


