
Referee’s comments are in red, our reply in black, quotes in the revised manuscript in 

blue. 

Referee 1’s comments 

General Comments 

The authors seek to address the question of how much apparent temperature in Beijing 

will vary under different future scenarios of climate change (including geoengineering). 

This includes an analysis of whether different downscaling methods – either statistical 

or dynamical – yield different results. They find that, although both methods (when 

applied to results from 4 global ESMs) yield roughly similar results for the present day, 

the same is not true when inspecting the effects that climate change and geoengineering 

will have. The study highlights the important issue of changes in human-relevant 

variables such as apparent temperature (and the number of times a threshold is crossed) 

rather than relatively abstract variables such as global mean surface temperature. 

I struggled with this review because I could not clearly identify the core contribution. 

The base idea of whether statistical downscaling or dynamical scaling results in 

different outcome estimates is certainly important, but this question has been 

thoroughly discussed in a companion paper by the authors which looks at the same data 

for the same domain from the same models, and was submitted recently to this journal 

(https://esd.copernicus.org/preprints/esd-2022-35). The remaining question is whether 

apparent temperature is differently affected than more conventional meteorological 

variables, which is a relatively boutique concern. The methods used to address this 

questions are nonetheless appropriate, and the data produced generally support the 

conclusions. However, the existence of the companion paper (which I recognize the 

authors do cite) makes the contribution of this manuscript incremental. 

The use of multiple downscaling techniques with multiple models is interesting and 

well executed, and it is particularly encouraging to see applications to health-relevant 

outcomes. The biggest issue is a lack of significant impact, although I also have some 

methodological concerns. I have laid these out in detail below, starting with major 

comments. If the paper can be focused more heavily on outcomes – in particular, the 

effect that downscaling has on health-relevant impacts – then I believe it could 

significantly improve its relevance and impact. This would also help to address the issue 

that the paper is not particularly interdisciplinary, which is a stated requirement of ESD. 

As such, in its current state I cannot recommend it for publication. 

Reply: We thank your constructive comments, which help us clarify and improve the 

study vastly. There are two main problems, one is the lack of innovation, the other is 

the method of processing data. These two issues are also detailed in the major comments. 

We have responded to the major comments below one by one. 

  



Major comments 

The greatest issue is the lack of a clear and impactful outcome. The methods applied 

are interesting in large part because they look at interesting scenarios (RCPs versus 

geoengineering versus recent past) and include a significant problem (the performance 

of statistical versus dynamical downscaling). However, these issues are the focus of a 

paper which is already under review, and as such cannot be the major novelty of a 

second manuscript. I therefore assume that the major conclusions regard the question 

of change in apparent temperature, with the authors finding that changes in apparent 

temperature will be greater under RCP 8.5 than under a geoengineering scenario, and 

that this is mostly because of increases in temperature. The issues I perceive here are 

twofold. Firstly, apparent temperature – while an important metric – is just one metric 

of impact, and a relatively straightforward one which is (evidently) mostly just 

reflecting changes in temperature. The manuscript would be greatly improved if 

multiple outcomes were assessed rather than just one, to see if the different downscaling 

methods have different impacts on such outcomes. This could include, for example, 

regional air pollution (if reported in any of the ESMs). Alternatively, a deeper analysis 

of the likely consequences – for example by attempting to quantify the differences in 

health outcomes or costs, and the degree to which different demographics or sub-

populations are affected – would help to improve the interdisciplinarity of the 

manuscript. Secondly, the current analysis is somewhat limited, being mostly 

observational (report differences) rather than explanatory. The manuscript would be 

greatly improved if the authors could provide mechanistic explanations for their 

findings; why, for example, does WRF-based downscaling seem to result in such a 

different seasonality in AP – T compared to statistical downscaling? 

Reply: Thanks for these thoughts. We wanted to address a problem related to impacts 

of changes in the fundamental weather fields. The suggestion of looking at regional 

pollution is most relevant we felt. However, essentially the output from ESM on PM2.5 

simulations is not good (e.g. Ran et al., 2022). So we explored other ways of projecting 

air pollution. Based on our existing downscaling data, we further explored the impact 

of geoengineering on PM2.5 in the Beijing-Tianjin region using the multiple linear 

regression model. We also explore the changes in PM2.5 related relative risks of 5 main 

diseases. 
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The details are as follows: 

Introduction 
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In early 2013, Beijing encountered a serious pollution incident. The concentration of 

PM2.5 (particles with diameters less than or equal to 2.5 μm in the atmosphere) exceeded 

500 μg/m3 (Wang et al., 2014). Following this event and its expected impacts on human 

health (Guan et al., 2016; Fan et al., 2021) and the economy (Maji et al., 2018; Wang 

et al., 2020), the Beijing municipal government launched the Clean Air Action Plan in 

2013. The annual mean concentration of PM2.5 in Beijing-Tianjin-Hebei region 

decreased from 90.6 μg/m3 in 2013 to 56.3 μg/m3 in 2017, a decrease of about 38% 

(Zhang et al., 2019), although this is still more than double the EU air quality standard 

(25 μg/m3) and above the Chinese FGNS (First Grand National Standard) of 35 μg/m3. 

The concentration of PM2.5 is related to anthropogenic emissions, but also dependent 

on meteorological conditions (Chen et al., 2020). Simulations suggested that 80% of 

the 2013-2017 lowering of PM2.5 concentration came from emission reductions in 

Beijing (Chen et al. 2019). Humidity and temperature are the main meteorological 

factors affecting PM2.5 concentration in Beijing in summer, while humidity and wind 

speed are the main factors in winter (Chen et al., 2018). Simulations driven by different 

RCP emission scenarios with fixed meteorology for the year 2010 suggest that PM2.5 

concentration will meet FGNS under RCP2.6, RCP4.5 and RCP8.5 in Beijing-Tianjin-

Hebei after 2040 (Li et al., 2016).  

 

There are large uncertainties in projecting PM2.5 concentration in the future due to both 

climate and industrial policies. Statistical methods are much faster than atmospheric 

chemistry models (Mishra et al., 2015), and different scenarios are easy to implement. 

We use a Multiple Linear Regression (MLR) model to establish the links between PM2.5 

concentration, meteorology and emissions (Upadhyay et al., 2018; Tong et al., 2018). 

We project and compare the differences of PM2.5 concentration under G4 and RCP4.5 

scenarios, and between different PM2.5 emission scenarios. Accurate meteorological 

data are crucial in simulating future apparent temperatures and PM2.5 because all ESM 

suffer from bias, and this problem is especially egregious at small scales. A companion 

paper (Wang et al., 2022) looked at differences between downscaling methods with the 

same 4 Earth System Models (ESM), domain and scenarios as we use here. 

 

1. PM2.5 concentration and emission data 

In China there were few PM2.5 monitoring stations before 2013 (Xue et al., 2021). 

However, aerosol optical depths produced by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) have been used to build a daily PM2.5 concentration 

dataset (ChinaHighPM2.5) at 1 km resolution from 2000 to 2018 (Wei et al., 2020). We 

use monthly PM2.5 concentration data during 2008-2015 from ChinaHighPM2.5 to train 

the MLR model, and the data during 2016-2017 to validate it. Figure S1 shows annual 

PM2.5 concentration over Beijing areas during 2008 (a) and 2017 (b). 

 

Recent gridded monthly PM2.5 emission data were derived from the Hemispheric 

Transport of Air Pollution (HTAP_V3) with a resolution of 0.1°×0.1° during 2008-2017, 

which is a widely used anthropogenic emission dataset (Janssens-Maenhout et al., 

2015). PM2.5 emissions over Beijing areas during 2008 (c) and 2017 (d) are shown in 



Fig. S1.  

 

Future gridded monthly PM2.5 emissions to 2050 are available in the ECLIPSE V6b 

database (Stohl et al., 2015), generated by the GAINS (Greenhouse gas Air pollution 

Interactions and Synergies) model (Klimont et al., 2017). The ECLIPSE V6b baseline 

emission scenario assumes that future anthropogenic emissions are consistent with 

those under current environmental policies, hence it is the “worst” scenario without 

considering any mitigation measures (Li et al., 2018; Nguyen et al., 2020). Projected 

emissions are shown in Fig S2, with emissions plateauing at ~40 kt/year after 2030, so 

we assume 2060s levels are similar. These ECLIPSE projections are significantly larger 

than present day estimates from HTAP_V3. We therefore estimate 2060s emissions as 

the recent gridded monthly PM2.5 emissions from HTAP_V3 scaled by the ratios of 

2050 ECLIPSE emission to average annual emissions between 2010 and 2015. Before 

processing data, PM2.5 concentration is bilinearly interpolated to the WRF and ISIMIP 

grids, while PM2.5 emissions are conservatively interpolated to the target grids. 

 

2. MLR model calibration 

Previous studies have shown that wind and humidity are the dominant meteorological 

variables for PM2.5 concentration in region we study (Chen et al., 2020). Hence, we 

generate an MLR model between PM2.5 and temperature (T), relative humidity (H), 

zonal wind (U), meridional wind (V) and PM2.5 emissions (E) at every grid cell as 

follows 

PM2.5= ∑ ai Xi+b                           (1) 

Where 𝑋𝑖(𝑖=1,2,3,4,5)  are the five factors, ai  are the regression coefficients of the Xi 

with PM2.5, and b  is the intercept, which is a constant. We assume that all factors 

should be included in the regression. All the meteorological variables are from the 

statistical and dynamical downscaling and bias corrected results during 2008-2017, 

with the first 8 years used for training model and the second 2 years used for validating 

model. We train the MLR for the 4 ESMs under statistical and dynamical downscaling 

in each grid cell separately, thus accounting spatial differences in the weighting of the 

Xi across the domain. Meteorological variables under G4, RCP4.5 and RCP8.5 during 

2060-2069 are used for projection.  

 

The contributions of meteorology and PM2.5 emissions on future concentrations are 

examined by using recent PM2.5 emissions (baseline) and future PM2.5 emissions 

(mitigation), and the downscaled climate scenarios. Modeled PM2.5 concentration using 

recent meteorology and PM2.5 emissions during 2008-2017 (2010s) is considered as 

our reference. 

 

3. MLR model validation 



 
Figure 1. Scatter grams of PM2.5 concentration derived by MODIS and estimated by MLR during 

validation period (2016-2017). Top figures (a-d) are the ISIMIP statistical downscaling results, and 

bottom figures (e-h) are the WRF dynamical downscaling results. R2 means the variance explained by 

the MLR, and color bar denotes the density of datapoints at integer intervals.  

 

Figure 1 shows the scattergram of PM2.5 concentration between ChinaHighPM2.5 

dataset and MLR model during validation period based on ISIMIP and WRF results. 

Observations and MLR models have Pearson’s correlations coefficients around 0.86 for 

ISIMIP results during the validating period, and the coefficient of determination of 

MLRs are 0.74-0.75 (Fig. 1a-d). WRF Pearson’s correlations are slightly lower, 0.82-

0.85, and explained variance ranges from 0.68-0.72 (Fig. 1e-h). These results are 

similar as found by Jin et al. (2022). We also compare the spatial patterns of observed 

and modeled PM2.5 in Fig. S3. Both ISIMIP and WRF results can simulate the 

distribution characteristics of high concentration of PM2.5 in the southeast and low 

concentration in the northwest.  

 

4. Relative risks of mortality related PM2.5 

We estimate the effects of PM2.5 on mortality by considering changes in the relative risk 

(RR) of mortality related to PM2.5. We lack data on mortality rates in the study domain 

without which we cannot estimate numbers of fatalities, just the average population-

weighted RR. Burnett el al. (2014) established the integrated exposure-response 

functions we use. The RR is non-linear in concentration, that is an initially low PM2.5 

region will suffer higher mortality and RR than an initially high PM2.5 region if PM2.5 

is increased by the same amount. Ran et al. (2023) provide RR values for PM2.5 

concentrations up to 200 μg/m3 that includes the 5 main major disease endpoints 

(Global Burden of Disease Collaborative Network, 2013) of PM2.5 related mortality: 

chronic obstructive pulmonary disease, ischemic heart disease, lung cancer, lung 



respiratory infection and stroke. We calculate the average population-weighted relative 

risks based on the gridded population dataset (Section 2.3) and PM2.5 concentration in 

the Beijing-Tianjin province defined in the Fig. 1c-1d, following Ran et al. (2023): 

RRpop,k=
∑ POPg×RRk(Cg)G

g=1

∑ POPg
G
g=1

  (2) 

RRpop,k is the average population-weighted relative risk of disease k (k=1-5), POPg is 

the population of gird g, and RRk(Cg)  is the relative risk of disease k when PM2.5 

concentration is Cg in the grid of g.  

 

4. Projection 

 

Figure 2. Spatial patterns of ensemble mean PM2.5 concentration difference (μg/m3) between “mitigation” 

under G4 in the 2060s and reference (a, e), between “mitigation” and “baseline” under G4 in the 2060s 

(b, f), between G4 and RCP4.5 under “mitigation” scenario in the 2060s (c, g), and between G4 and 

RCP8.5 under “mitigation” scenario in the 2060s (d, h) based on ISIMIP (a-d) and WRF (e-h) results. 

Stippling indicates grid points where differences or changes are insignificant at the 5% significant level 

according to the Wilcoxon signed rank test. 

 

We firstly project the change of PM2.5 under G4 and the aerosol mitigation scenario in 

2060s relative to 2010s (Fig. 2a, e). Both ISIMIP and WRF project PM2.5 decreases in 

most areas, especially in Tianjin and Langfang, but PM2.5 decreases more under ISIMIP 

than WRF. PM2.5 concentration decreases by 6.5 μg/m3 over Beijing-Tianjin province 

in ISIMIP, and decrease by 4.3 μg/m3 in WRF (Table S1). PM2.5 concentration is 0.5-8 

μg/m3 higher in northern Beijing under G4 (“mitigation”) than that during the 2010s in 

WRF. To show the impact of emission reductions, we compare the PM2.5 concentration 

between aerosol “baseline” and “mitigation” scenarios under G4 in the 2060s (Fig. 2b, 

2f), and compare the “mitigation” PM2.5 concentration under G4 and the RCP scenarios 

in the 2060s to clarify the effect of geoengineering compared with climate warming. 

Compared with “baseline” scenario, PM2.5 concentration is less under “mitigation” 

scenario as expected in both ISIMIP and WRF under G4 (Fig. 2b, 2f), and has a similar 

spatial pattern with that in Fig. 2a and 2e. Compared with RCP4.5 and RCP8.5, PM2.5 

concentrations under G4 are higher in ISIMIP results (Fig. 2c-2d), but with large 



differences between the 4 ESMs. G4 PM2.5 is simulated greater than in RCP scenarios 

under HadGEM2-ES and BNU-ESM (Fig. S4k, l, o, p), but there are insignificant 

differences in most areas under the two MIROC models (Fig. S4c, d, g, h). PM2.5 

concentrations are larger between G4 and RCP8.5. WRF simulations shows similar 

changes in PM2.5 between G4 and RCPs as ISIMIP (Fig. 2g-h).   

 

 

Figure 3. Contribution of climate factors (temperature/T, humidity/H, zonal wind/U, meridional wind/V) 

and emission (E) to changes in monthly PM2.5 concentration (ΔPM2.5) in 2060s under G4 (“mitigation”) 

relative to 2010s. Top figures (a-e) are ISIMIP results, and bottom figures (f-j) are WRF results. Stippling 

indicates the changes are insignificant at the 5% significant level in the Wilcoxon test. 

 

Next, we quantify the contribution of different meteorological factors and PM2.5 

emissions to ΔPM2.5
 between G4 (“mitigation”) in the 2060s and the 2010s (Fig. 3). 

Both ISIMIP and WRF results show that the increase of temperature and decrease of 

PM2.5 emission play positive roles in reducing PM2.5 concentration. ISIMIP results (Fig. 

3a-e), suggest that the projected increase of temperature could explain 0-20% of the 

decrease of PM2.5 concentration, and decrease of PM2.5 emission could explain more 

than 90% of changes in PM2.5 concentration differences in most of areas. Changes in 

humidity and westerly winds (positive U-wind) do not cause significant changes in 

ΔPM2.5, but projected increases southerly wind (positive V-wind) is detrimental to the 

decrease in PM2.5 concentration, and has a 0-10% negative effect on ΔPM2.5 in 

Zhangjiakou. WRF results show similar spatial pattern in effect of temperature and 

emission on ΔPM2.5 with ISIMIP results. Although temperature is projected to increase 

over the whole domain (Fig. S7), there are negative contributions on ΔPM2.5 to the north 

of Beijing due to increase of PM2.5 caused by the negative correlation between PM2.5 

and its emissions (Fig. S11). The ~1-2% wetter humidity has ~10% negative effect on 

decrease of PM2.5 south of Beijing (Fig. 3g), and 0.2-0.3 m/s deceases of U-wind have 

0-10% negative contribution on decrease of PM2.5 in Zhangjiakou (Fig. 3h). The 

changes in each factor in ISIMIP and WRF results are shown in Fig. S6 and Fig. S7, 

respectively. 

 



 

Figure 4. Contribution of climate factors (as in Fig. 3) to changes in monthly PM2.5 concentration in 

2060s under G4 with aerosol “mitigation” relative to 2060s under RCP4.5 with aerosol “mitigation”. Top 

figures (a-e) are ISIMIP results, and bottom figures (f-j) are WRF results. Stippling indicates the changes 

are insignificant at the 5% significant level in the Wilcoxon test. 

 

Now we explore the contribution of each meteorological factor to ΔPM2.5 between G4 

(“mitigation”) and RCP4.5 (“mitigation”) in the 2060s (Fig. 4). The higher PM2.5 under 

G4 is mainly caused by the lower temperature. In ISIMIP, lower temperature explains 

more than 90% (100% in some places) of the raised PM2.5 relative to RCP4.5, although 

the increase of humidity is also helpful to lower PM2.5 in the western domain (Fig. 4a-

b). Humidity can increase suspended particle mass and coagulation, promoting 

deposition (Li et al., 2015). The contribution of differences in U-wind and V-wind on 

ΔPM2.5 is insignificant (Fig. 4c-d). In WRF, the projected lower temperatures explain 

more than 70% of the higher PM2.5 under G4 relative to RCP4.5 (Fig. 4e). Although the 

increase of southerly (V) wind contributes 10-20% to the higher PM2.5 in the northern 

domain under HadGEM2-ES and BNU-ESM (Fig. S9), it is insignificant in the 

ensemble (Fig. 4h). Decreased westerlies (U wind) explains about between +20% and 

-20% of PM2.5 differences (Fig. 4g), since U-wind impacts vary spatially (Fig. S11).  

 

Changes in RR of PM2.5 for the 5 diseases under the geoengineering and global 

warming climate scenarios and different emission scenarios during 2060s relative to 

2010s for the Beijing-Tianjin province are shown in Fig. 5. Present-day PM2.5 related 

RRs are 1.32 (1.30), 1.37 (1.35), 1.46 (1.43), 1.83 (1.80) and 2.02 (1.99) for chronic 

obstructive pulmonary disease (COPD), ischemic heart disease (IHD), lung cancer (LC), 

lung respiratory infection (LRI) and stroke according to the ISIMIP (WRF) simulations 

(Fig. 5a). RR of LRI is the highest and COPD is the lowest in the five diseases, and 

WRF estimates of RR are 0.2-0.3 lower than those of ISIMIP. In both the “baseline” 

and “mitigation” emission scenarios, RRs will be lower under G4, RCP4.5 and RCP8.5 

compared with the 2010s. Smaller RR reductions occur under G4 than under RCP4.5 

and RCP8.5, and ISIMIP simulates larger reductions than WRF. This is because the 

PM2.5 concentrations from ISIMIP are reduced more than with WRF (Table S1). Under 

the “baseline” emission scenario (Fig. 5b-d), the biggest reduction of RR for LRI is 

0.047 under RCP8.5 in ISIMIP, and RRs for other diseases are projected to reduce by 



no more than 0.02. Under the “mitigation” emission scenario (Fig. 5e-g), reductions in 

RRs are 3-6 times greater. 

 

Figure 5. Average population-weighted relative risks of PM2.5 related 5 diseases in 2010s (a) and its 

changes between G4 and 2010s (b, e), between RCP4.5 and 2010s (c, f) and between RCP8.5 and 2010s 

(d, g) in Beijing-Tianjin province based on the ISIMIP and WRF results, respectively. PM2.5 

concentration is based on the “baseline” emissions under G4, RCP4,5 and RCP8.5 in the middle 3 figures 

(b-d), and it is based on the “mitigation” emissions under G4, RCP4,5 and RCP8.5 in the bottom 3 figures 

(e-g).   

 

5. Discussion and conclusion 

 

We established a set spatially gridded MLR models based on the 4 ESMs downscaled 

variables under ISIMIP and WRF. The meteorological factors impact PM2.5 in complex 

ways, but the simple spatially gridded MLR models display enough skill to make some 

illustrative projections of future PM2.5 explaining about 70% of the variance during the 

historical period. PM2.5 concentration is correlated with emissions and anti-correlated 



with temperature in most parts of the domain (Fig, S10-S11). Increased turbulence 

increases diffusion of PM2.5 (Yang et al., 2016), and higher temperatures increase 

evaporation losses (Liu et al., 2015) of ammonium nitrate (Chuang et al., 2017), and 

other components (Wang et al., 2006). Humidity may have both positive and negative 

effects on PM2.5 (Chen et al., 2020). It causes more water vapor to adhere to the surface 

of PM2.5, thereby increasing its mass concentration and facilitating aerosol growth 

(Cheng et al., 2017; Liao et al., 2017). However, when the humidity exceeds a certain 

threshold, coagulation and particle mass increases rapidly, promoting deposition (Li et 

al., 2015). So, the slope coefficients between PM2.5 and humidity are positive in low 

humidity areas, including southern plain and the Beijing-Tianjin province, but negative 

in some north mountain areas (Fig. S10, S11).  

 

There are large spatial differences in wind speed and direction impacts on PM2.5. Yang 

et al. (2016) found that weaker northerly and westerly winds tend to increase the PM2.5 

concentration in northern and eastern China, respectively. The effects of wind direction 

depend on the distribution of emitted PM2.5 and the condition of the underlying surface 

(Chen et al., 2020). Most sources of PM2.5 lie to the south of our domain, relatively 

clean conditions prevail to the north, so northly winds tend to advect clean air, while 

southerlies bring high concentrations of aerosols. Weak winds tend to increase PM2.5 

and smog formation due to sinking air and weak diffusion (Su et al., 2017; Yang et al., 

2017).   

 

Emissions reductions are expected to play the dominant role in the decrease of PM2.5 

concentrations under G4 aerosol “mitigation” in 2060s (Fig. 3). Meteorological changes 

under the different future scenarios make much smaller changes as evidenced by the 

scenarios using “baseline” – that is present day PM2.5 emissions, with decreases in mean 

annual concentration of 1.0 (1.3), 1.8 (2.0), 3.3 (3.2) μg/m3 over Beijing-Tianjin 

province under G4, RCP4.5 and RCP8.5 with WRF (ISIMIP), (Table S1), which are 

mainly caused by the temperature increases (Fig. 4). The negative relationships between 

emission and PM2.5 concentration result in the increase of PM2.5 under G4 (“mitigation”) 

relative to 2010s in the north of Beijing with WRF. This may be due to changes in PM2.5 

out of the domain being opposite to those in domain during the MLR fitting period, 

since relocation of polluting sources from the urban areas mainly to the west, was 

occurring over the calibration period. The accuracy of PM2.5 emission data is also 

crucial for training MLR models, and PM2.5 data was sparse before 2013, relying on 

reconstructions based on satellite optical depth estimates. Although both increase of 

temperature and decrease of emission explain more than 90% of the decrease in PM2.5 

in most areas, there are large spatial differences due to wind and humidity. On the one 

hand, there is uncertainty in the differences in changes of wind speed and humidity 

between different ESMs and downscaling methods; on the other hand, the complex 

physical relationship between them and PM2.5 also increases uncertainties. Reductions 

in PM2.5 in the future are projected to decrease PM2.5 related health issues, although 

its effect on different diseases are different. Changes in PM2.5 related risk between G4 

and RCPs are from 1-3%, with PM2.5 emissions policy dominating differences over 



climate scenario.   

 

Eastham et al. (2018) deduced from experiments using 1 Tg/yr SAI in a coupled 

chemistry-transport model directly simulating atmospheric chemistry, transport, 

radiative transfer of UV, emissions, and loss processes, that per unit mass emitted, 

surface-level emissions of sulfate result in 25 times greater population exposure to 

PM2.5 than emitting the same aerosol into the stratosphere. The G4 experiment specifies 

5 Tg/yr injection rate, which over our domain would equate to 1450 t/yr if it was 

deposited uniformly globally (which it certainly would not be). Reducing this by the 

1/25 factor amounts to 58 t/yr which can be compared with present PM2.5 emissions of 

around 3.3×105 t/year in our domain. If we consider the aerosol deposition under G4 

scenarios, PM2.5 concentration will be 0-1 μg/m3 higher than that without due to 

deposition of the SAI aerosols (Fig. S12), and RR is projected to increase by 0.01% for 

Beijing-Tianjin province (Table S2). This comparison suggests that tropospheric 

emissions will be much more important for human health in our domain than from the 

SAI specified by G4.  

 

The most important change in PM2.5 will come from emissions reductions, with the 

different weather conditions under both G4 and RCP scenarios making relatively little 

practical differences in concentrations. PM2.5 concentration is expected to decrease 

significantly (ISIMIP: -6.5μg/m3, WRF: -4.3 μg/m3) in the Beijing-Tianjin province, 

but they will still not meet either Chinese or international standards. The temperature 

under G4 is lower than that under RCP4.5 and RCP8.5 scenarios, which makes the 

PM2.5 concentration under G4 higher. But the difference in PM2.5 between the two is 

small and even within uncertainty due to projected differences in humidity and wind. 

Potentially improved estimates from more complex models such as WRF-Chem, 

CMAQ and GEOS-Chem over the simple MLR methods used here will be of limited 

value unless the differences between the ESM driving these models is reduced. It can 

be confirmed that emission policies based on the 13th Five Year Plan are not enough, 

and higher emission standards need to be developed for a healthy living environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplement 

 

 
Figure S1. Annual mean PM2.5 concentration (a, b) and PM2.5 emissions (c, d) map for Beijing and 

surrounding areas during 2008 (a, c) and 2017 (b, d). 

 

 
Figure S2. Annual PM2.5 emissions from different sources in Beijing under the ECLIPSE V6b baseline 

scenario (Source: GAINS East Asia online (iiasa.ac.at)).  

 

 

 

 

 

 

 

 

 

https://gains.iiasa.ac.at/gains/emissions.EAN/index.menu?page=1340&pollutant=SO2


 

Figure S3. Distribution of observed PM2.5 concentration (ug/m3) from ChinaHighPM2.5 (a) and estimated 

ensemble-mean PM2.5 concentration from MLR under ISIMIP (b) and WRF (c) results for Beijing and 

surrounding areas during 2008-2017. 

 

Table S1. Difference of PM2.5 concentration between different scenarios for the Beijing-Tianjin province 

as defined in Fig. 1b during 2060-2069. The PM2.5 emission scenarios used in each climate scenarios are 

in parentheses. Bold indicates the differences or changes are significant at the 5% significant level 

according to the Wilcoxon signed rank test. (Units: μg/m3) 

Model 

G4 (mitigation) 

-2010s (reference) 

G4 (mitigation) 

-G4 (baseline) 

G4 (mitigation) 

-RCP4.5(mitigation) 

G4 (mitigation) 

-RCP8.5(mitigation) 

WRF ISIMIP WRF ISIMIP WRF ISIMIP WRF ISIMIP 

MIROC-ESM -4.5 -6.3 -3.1 -3.8 0.5 0.7 2.3 2.3 

MIROC-ESM-

CHEM 
-6.0 -7.4 -4.9 -5.3 0.5 -0.2 1.9 0.6 

HadGEM2-ES -4.8 -6.8 -3.8 -6.8 1.4 1.3 2.6 2.6 

BNU-ESM -2.5 -5.5 -1.4 -5.0 0.8 1.1 2.4 2.2 

Ensemble -4.3 -6.5 -3.3 -5.2 0.8 0.7 2.3 1.9 

 

 



 

Figure S4. Spatial patterns of PM2.5 concentration difference (μg/m3) between “mitigation” in the 2060s 

under G4 and 2010s (a, e, i, m), between “mitigation” and “baseline” under G4 (b, f, j, n), between G4 

and RCP4.5 under “mitigation” scenario (c, g, k, o), and between G4 and RCP8.5 under “mitigation” 

scenario (d, h, l ,p) based on ISIMIP results. From top to bottom are MIROC-ESM (a-d), MIROC-ESM-

CHEM (e-h), HadGEM2-ES (i-l) and BNU-ESM (m-p) respectively. Stippling indicates grid points 

where differences or changes are not significant at the 5% significant level according to the Wilcoxon 

signed rank test. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5. Same as Fig. S4, but by WRF. 

 

 



Figure S6. Spatial pattern of changes in temperature (T/℃), humidity (H/%), zonal wind (U/m s-1), 

meridional wind (V/m s-1) and PM2.5 emissions (E/kg m-2 s-1) under G4 (“mitigation”) in the 2060s 

relative to 2010s in ISIMIP. Stippling indicates grid points where differences or changes are not 

significant at the 5% significant level according to the Wilcoxon signed rank test. 

 

 

Figure S7. Same as Fig. S6, but by WRF. 

 

 

Figure S8. Spatial pattern of changes in temperature (T/℃), humidity (H/%), zonal wind (U/m s-1) and 



meridional wind (V/m s-1) under G4 (“mitigation”) relative to RCP4.5 (“mitigation”) in the 2060s in 

ISIMIP. Stippling indicates grid points where differences or changes are not significant at the 5% 

significant level according to the Wilcoxon signed rank test. 

 

 

Figure S9. Same as Fig. S8, but for WRF results. 

 

 



Figure S10. Slope coefficients of MLR of temperature, humidity, u-wind, v-wind and emission for 

ISIMIP results during training period. 

 

 

Figure S11. Similar as Fig. S10, but for WRF results. 

 

 

Figure S12. Spatial pattern of changes in PM2.5 (μg/m3) between G4 with and without considering 

aerosol deposition due to SAI specified by G4. 

 

 

 

 



Table S2. RRs of the 5 mortality endpoints under G4 with and without considering aerosol deposition 

from the G4 SAI specification in both PM2.5 aerosol “baseline” and “mitigation” scenarios. 

G4 
population-weighted RR 

COPD IHD LC LRI Stroke 

“baseline” 

No deposition 
ISIMIP 1.3166  1.3710  1.4505  1.8063  2.0161  

WRF 1.2968  1.3490  1.4299  1.7844  1.9857  

deposition 
ISIMIP 1.3167  1.3711  1.4506  1.8064  2.0162  

WRF 1.2968  1.3490  1.4299  1.7845  1.9857  

“mitigation” 

No deposition 
ISIMIP 1.2961  1.3590  1.4179  1.7323  1.9695  

WRF 1.2823  1.3408  1.4069  1.7331  1.9562  

deposition 
ISIMIP 1.2961  1.3590  1.4180  1.7326  1.9696  

WRF 1.2823  1.3408  1.4070  1.7332  1.9563  
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compared their simulations of the recent past with monitor data. Even if this monitor 

data is used in ERA5, showing that the simulations are capable of reproducing truly 

observational data rather than a reanalysis would provide more convincing evidence of 

model performance. 

Reply：We replaced ERA5 data with CN05.1 data as our observational data for 

validation. We replaced the sentences in line 131-134 using the following sentences 

and updated the figures and table. 

To validate the downscaled AP from model results, we use the daily temperature, 

humidity and wind speed during 2008-2017 from the gridded observational dataset 

CN05.1 with the resolution of 0.25°× 0.25° based on the observational data from more 

than 2400 surface meteorological stations in China, which are interpolated using the 

“anomaly approach” (Wu and Gao, 2013). This dataset is widely used, and has good 

performance relative to other reanalysis datasets over China (Zhou et al., 2016; Yang 

et al., 2019; Yang et al., 2023; Yang and Tang, 2023). 
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Figure 2. Seasonal averaged AP and equivalent temperature of each term in equation 1 for Beijing-

Tianjin province (a-c) and Beijing-Tianjin urban areas (d-f) during 2008-2017 from CN05.1 (a, d), 4-

model ensemble mean after ISIMIP (b, e) and ensemble mean after WRF (c, f). Term 1 is 1.04T, term 2 

is 2P and term 3 is -0.65W. 

Figure 2 shows the seasonally averaged AP and equivalent temperatures caused by 

temperature, relative humidity and wind speed in Beijing-Tianjin province and Beijing-

Tianjin urban areas during 2008-2017. According to the CN05.1 results (Fig. 2a, 2d), 

AP and the separate 3 terms show similar seasonal patterns over the whole province 

and just the urban areas. Vapor pressure is higher in summer and wind speed is higher 

in spring. AP is lower than 2 m temperature in all seasons except summer, and especially 

lower in winter. AP, temperature, vapor pressure and wind speed are all higher in urban 

areas than in the surrounding rural region in any season. The ISIMIP results (Fig. 2b, 

2e), by design, perfectly reproduce the CN05.1 seasonal characteristics of AP, 

temperature, vapor pressure and wind speed. WRF shows a similar pattern with that 

from CN05.1, but for the Beijing-Tianjin province, WRF overestimates both 2 m 

temperature and AP in winter by 2.1°C and by 1.7°C respectively relative to CN05.1 

(Fig. 2c). In the Beijing-Tianjin urban areas, WRF overestimates the temperature and 

AP relative to CN05.1 in all seasons, especially in winter (Fig. 2f).  

 



 

Figure 3. Top row: the spatial distribution of mean apparent temperature from CN05.1 (a), raw ESMs 

ensemble mean after bilinear interpolation (b), 4-model ensemble mean after ISIMIP (c) and ensemble 

mean after WRF (d) during 2008-2017. Bottom row: the spatial distribution of annual mean number of 

days with AP > 32℃ from CN05.1 (e), ESMs (f), ISIMIP (g) and WRF (h) during 2008-2017. Fig. S1 

and Fig. S2 show the pattern of AP and NdAP_32 for the individual ESM. 

We compare the simulations of mean apparent temperature and NdAP_32 from both 

WRF dynamical downscaling with QDM and from ISIMIP statistical downscaling 

during 2008-2017 in Fig. 4. Both WRF with QDM and ISIMIP methods produce a 

pattern of apparent temperature which is close to that from CN05.1. While the raw AP 

from ESMs is overestimated in Zhangjiakou high mountains and underestimated in the 

southern plain, and shares a similar pattern with temperature from ESMs (Wang et al., 

2022). The raw ESM outputs were improved after dynamical and statistical 

downscaling. The average annual AP from ISIMIP (9.6-9.7℃) is 0.5℃ higher than that 

from CN05.1 (9.1℃) over the Beijing-Tianjin province for all ESMs (Table 1). While 

WRF produces warmer apparent temperatures in the city centers of Beijing and Tianjin 

and lower ones in the high Zhangjiakou mountains than recorded in the lower resolution 

CN05.1 observations. There are also differences between different models after WRF 

downscaling. For example, apparent temperatures from the two MIROC models 

downscaled by WRF are the warmest. In contrast AP from all 4 ESMs after ISIMIP 

shows very similar patterns (Fig. S1).  

 

ESMs tend to overestimate the number of days with AP>32℃ in southeastern Beijing 

and the whole Tianjin province. Both ISIMIP and WRF appear to overestimate the 

NdAP_32 in Beijing urban areas and the southerly lowland areas although NdAP_32 is 

close to zero in the colder rural areas at relatively high altitude for both downscaling 

methods. Some of these differences may be due to the WRF simulations being at finer 

resolution than the 0.25°× 0.25° CN05.1, leading to higher probabilities of high AP in 



urban areas (Fig. 4d). ISIMIP results also show slight overestimations, especially in the 

tails of the distribution (AP>30℃) for urban areas (Fig. 4c). CN05.1 gives about 5 

NdAP_32 per year in southern Beijing and Tianjin, but there are nearly 15 NdAP_32 

from ISIMIP, and over 20 NdAP_32 per year from WRF downscaling in the Beijing-

Tianjin urban areas during 2008-2017. NdAP_32 from WRF and ISIMIP downscaling 

of all ESM is overestimated relative to CN05.1. But there are differences in ESM under 

the two downscalings: with ISIMIP, HadGEM2-ES and BNU-ESM have more 

NdAP_32 than the two MIROC models, while the reverse occurs with WRF (Fig. S2). 

 

Table 1. The annual mean apparent temperature and population weighted NdAP_32 in Beijing-Tianjin 

province and Beijing-Tianjin urban areas (Fig. 1b) from CN05.1, ISIMIP and WRF during 2008-2017.  

Data Sources AP (℃) NdAP_32 (day yr-1) 

Provinces Urban Population weighted for province (Fig. 1c, 1d) 

WRF ISIMIP WRF ISIMIP WRF ISIMIP 

MIROC-ESM 10.5 9.6 13.6 11.4 22.2 10.1 

MIROC-ESM-CHEM 10.5 9.6 13.6 11.4 21.9 11.0 

HadGEM2-ES 9.5 9.6 12.0 11.4 12.3 11.1 

BNU-ESM 9.4 9.7 11.8 11.5 10.2 12.7 

CN05.1 9.1 11.1 2.4 

 

Figure 4. The probability density function (pdf) for daily apparent temperature under ISIMIP (a, c) and 



WRF (b, d) results in Beijing-Tianjin province (a, b) and Beijing-Tianjin urban areas (c, d) during 2008-

2017. 

Figure 4 shows the probability density functions (pdf) of daily AP from the four ESMs 

under ISIMIP and WRF in Beijing-Tianjin province and Beijing-Tianjin urban areas 

during 2008-2017. ISIMIP overestimates the probability of extreme cold AP relative to 

CN05.1 (especially BNU-ESM), although all ESM reproduce the CN05.1 pdf well at 

high AP. WRF can reproduce the CN05.1 distribution of AP better than ISIMIP, but 

high AP is overestimated relative to CN05.1 and the urban areas perform less well than 

the whole Beijing-Tianjin province. In urban areas all ESMs driving WRF tend to 

underestimate the probability of lower AP and to overestimate the probability of higher 

AP, especially the two MIROC models (Fig. 4d). Fig. S7 displays the annual cycle of 

monthly AP, with ISIMIP proving excellent by design, at reproducing the monthly AP. 

While under WRF downscaling AP shows more across model differences, especially 

during summer and with greater spread for the urban areas. 

I also have a methodological concern regarding the method used to try and separate out 

the roles of different meteorological variables in changes in AP. It is not clear to me 

why a linear regression is used. The expression for AP is a simple (albeit non-linear) 

combination of variables, which can be easily and explicitly broken down to find how 

each one contributes to changes in AP. I suggest the authors at least evaluate how their 

contributions change if they calculate them based on the degree to which excluding a 

factor changes AP (i.e. contribution of T to AP is estimated by calculating change in 

AP with no change in T, but including other factors). The authors could also consider 

defining the derivatives of AP with respect to each factor, given that these should be 

well defined (and include the Clausius-Clapeyron relationship directly). 

Reply: The reason we used the regression approach is that this produces a least squares 

estimate of contributions. This is useful in many statistical applications and has 

desirable mathematical properties compared with, for example, absolute differences. 

However, it may not be the best choice here as the assumptions of Normality and 

homoscedasticity in the analysis are probably not true. The referee’s suggestions are 

more localized estimators based around the mean values, which could be regarded as 

more statistically more robust, as they give less weight to outliers compared with 

minimizing squared anomalies. But these are reasonable alternatives and the gradient 

or Jacobian approach plays a role in statistical analyses. We compared the results using 

the regression method and the first method the referee suggests using. The detailed steps 

and results are as follows. 

To determine the contribution of change in AP (∆AP) for each meteorological factor 

under different scenarios, we first calculate the ∆AP caused by individual changes in 

three factors as follows: 

∆𝐴𝑃(𝑋𝑖) = {

𝑓(𝑇𝑏 , 𝐻𝑎, 𝑊𝑎) − 𝑓(𝑇𝑎, 𝐻𝑎, 𝑊𝑎), 𝑖 = 1
𝑓(𝑇𝑎, 𝐻𝑏 , 𝑊𝑎) − 𝑓(𝑇𝑎, 𝐻𝑎, 𝑊𝑎), 𝑖 = 2
𝑓(𝑇𝑎, 𝐻𝑎, 𝑊𝑏) − 𝑓(𝑇𝑎, 𝐻𝑎, 𝑊𝑎), 𝑖 = 3

     (1) 



Where daily ∆𝐴𝑃(𝑋𝑖) are the ∆AP caused by individual changes in three factors: 

temperature (X1), humidity (X2) and wind speed (X3). f( ) is the function of calculating 

AP. T, H, W are the daily temperature, humidity and wind speed respectively, and the 

subscripts a and b represent two different climate scenarios, respectively. 

Then the contribution of each factor can be expressed as the ratio of the ∆AP caused by 

one factor alone to the total ∆AP caused by three factors.  

𝐶(𝑋𝑖) =
∆𝐴𝑃̅̅ ̅̅ ̅̅ (𝑋𝑖)

∑ ∆𝐴𝑃̅̅ ̅̅ ̅̅ (𝑋𝑖)3
𝑖=1

     (2) 

Where C(Xi(i=1,2,3)) is the contributions from changes in each factor to the ∆AP, and 

∆𝐴𝑃̅̅ ̅̅ ̅̅ (𝑋𝑖)  are the mean ∆𝐴𝑃(𝑋𝑖) . One thing to note is that due to the nonlinear 

relationship between factors, the total ∆AP caused by three factors is not strictly equal 

to the ∆AP itself.  

 

We next replotted the figure 6 so we compare it with our previous plot. 

 

 

Alternative Figure 6. The alternative method of calculating the contributions to seasonal changes of AP 

(∆AP) and the seasonal contribution of climatic factors to ∆AP for Beijing and Tianjin urban areas under 

ISIMIP and WRF between G4 and 2010s (a), G4 and 2010s (b), G4 and RCP4.5 (c) and G4 and RCP8.5 

(d) based on ensemble mean results. Bold italic numbers and “*” above the columns indicate differences 

are significant at the 95% under the Wilcoxon test.  

 

 



Preferred original Figure 6. The seasonal changes of AP (∆AP) and the seasonal contribution of 

climatic factors to ∆AP for Beijing and Tianjin urban areas under ISIMIP and WRF between G4 and 

2010s (a), G4 and 2010s (b), G4 and RCP4.5 (c) and G4 and RCP8.5 (d) based on ensemble mean results. 

Colors and numbers in each cell correspond to color bar, and “*” above the columns and in the cells 

indicate differences are significant at the 95% under the Wilcoxon test. 

We calculated the differences of contribution (%) of each meteorology on changes in 

apparent temperature between alternative suggested method (Alternative Figure 6) 

and preferred original method (Preferred original Figure 6), as shown in the figure 

below.  

 

Figure. The differences of contribution (%) of each meteorology on changes in apparent temperature 

between alternative suggested method and preferred original method. 

 

The contributions of temperature and humidity are different using different methods, 

but the contribution of wind speed shows little change due to the linear relationship 

between wind speed and AP under either method. Changes in contribution from 

humidity is significant. In the referee’s suggested method, the contribution of humidity 



is influenced by the hybrid effect of temperature, with big changes under higher 

temperature in JJA. As we all know, AP will change a lot under high temperature, 

although humidity changes little. In panel a and b, the contribution of humidity under 

referee’s method is higher than that under previous method, but the opposite in the 

panel c and d. This is because different reference scenarios have different effects when 

calculating the contribution of humidity. For example, when we calculate the 

contribution of humidity on AP between G4 and RCP4.5, we can get the value of 

contribution A (we maintain the temperature in the G4 scenario and the humidity 

changes with the scenario) and B (we maintain the temperature in the RCP4.5 scenario 

and the humidity changes with the scenario), but A is not equal to B.  

 

In summary, if we use the suggested method, the sum of changes in AP caused by three 

factors is not strictly equal to the absolute change in AP and the contribution of 

humidity and temperature is different when we select different reference between two 

scenarios. Actually, there is no best way to calculate contributions. Of course there are 

uncertainties between different methods. We prefer our original method, so we retain it 

unchanged in our paper. 

 

We changed the sentence in line 178 using the followed sentences 

 

We use an MLR approach, since this minimizes the square differences from the mean 

across the dataset, with the attendant assumption of independence between the data. 

Alternatives may also be considered that e.g. minimize the impact of outliers by 

considering the magnitude of the differences, but we prefer to keep the attractive 

properties of a least squares approach. 

 

Finally, much of the analysis is rather subjective (e.g. lines 253-257 – “little difference”, 

“slightly worse”, “slightly better”). I would recommend that the authors revise the text 

to make use of quantitative statements, in particular from line 219 onwards. 

Furthermore, statements such as “There are no models with obvious regional 

differences” (line 287), “AP changes … are essentially the same” (line 296), “all ESM 

reproduce the ERA5 pdf well” (line 261), “striking differences” (line 318) and 

“ERA5… probably does not account for the broad overestimate” (line 234) lack rigor 

and are difficult to interpret or verify without some context (what counts as a broad 

overestimate, or an obvious difference? How big would a difference in the change in 

AP have to be to not count as essentially the same? Why?). A particularly significant 

example is on line 255, where it is stated that BNU-ESM’s performance is “slightly 

worse” than the other three models when using the ISIMIP method to inspect the recent 

past. This seems like a significant understatement; BNU-ESM’s performance appears 

to be significantly worse than the other three models (r ~0.85 compared to ~0.92 for the 

other three), predicting both too many extreme low temperatures and not enough 

moderately low temperatures (see Figure 4). This is central to the manuscript, since 

WRF appears to be able to “save” BNU-ESM, bringing its performance to at least be 

similar to that of HadGEM (albeit still worse than MIROC-ESM[-CHEM]). 



Reply: Thanks for your suggestions. we edited them. 

Lines 219-241 are edited as follows. It is the same with descriptions in our reply to 

your second major comments. 

We compare the simulations of mean apparent temperature and NdAP_32 from both 

WRF dynamical downscaling with QDM and from ISIMIP statistical downscaling 

during 2008-2017 in Fig. 3. Both WRF with QDM and ISIMIP methods produce a 

pattern of apparent temperature which is close to that from CN05.1. While the raw AP 

from ESMs is overestimated in Zhangjiakou high mountains and underestimated in the 

southern plain, and shares a similar pattern with temperature from ESMs (Wang et al., 

2022). The raw ESM outputs were improved after dynamical and statistical 

downscaling. The average annual AP from ISIMIP (9.6-9.7℃) is 0.5℃ higher than that 

from CN05.1 (9.1℃) over the Beijing-Tianjin province for all ESMs (Table 1). While 

WRF produces warmer apparent temperatures in the city centers of Beijing and Tianjin 

and lower ones in the high Zhangjiakou mountains than recorded in the lower resolution 

CN05.1 observations. There are also differences between different models after WRF 

downscaling. For example, apparent temperatures from the two MIROC models 

downscaled by WRF are the warmest. In contrast AP from all 4 ESMs after ISIMIP 

shows very similar patterns (Fig. S1).  

 

ESMs tend to overestimate the number of days with AP>32℃ in southeastern Beijing 

and the whole Tianjin province. Both ISIMIP and WRF appear to overestimate the 

NdAP_32 in Beijing urban areas and the southerly lowland areas although NdAP_32 is 

close to zero in the colder rural areas at relatively high altitude for both downscaling 

methods. Some of these differences may be due to the WRF simulations being at finer 

resolution than the 0.25°× 0.25° CN05.1, leading to higher probabilities of high AP in 

urban areas (Fig. 4d). ISIMIP results also show slight overestimations, especially in the 

tails of the distribution (AP>30℃) for urban areas (Fig. 4c). CN05.1 gives about 10 

NdAP_32 per year in southern Beijing and Tianjin, but there are nearly 15 NdAP_32 

from ISIMIP, and over 20 NaAP_32 per year from WRF downscaling in the Beijing-

Tianjin urban areas during 2008-2017. NdAP_32 from WRF and ISIMIP downscaling 

of all ESM is overestimated relative to ERA5. But there are differences in ESM under 

the two downscalings: with ISIMIP, HadGEM2-ES and BNU-ESM have more 

NdAP_32 than the two MIROC models, while the reverse occurs with WRF (Fig. S2). 

 

Lines 248-257 are edited as follows. 

The Taylor diagram of the daily mean apparent temperature in Beijing-Tianjin province 

and Beijing-Tianjin urban areas from 2008-2017 for the 4 ESMs shows that correlation 

coefficients between ESMs and CN05.1 are greater than 0.85 under both downscaling 

methods. Although there are differences between ESMs, the performance of WRF, with 

higher correlation coefficient and smaller SD (standard deviation) and RMSD (root 

mean standard deviation), is usually superior to ISIMIP (Fig. S3). Taking the Beijing-



Tianjin urban areas as an example (Fig. S3b), under the ISIMIP method, MIROC-ESM, 

MIROC-ESM-CHEM and HadGEM2-ES have the same correlation coefficient (0.92) 

and RMSD (5.4℃) with the CN05.1, while BNU-ESM has lower correlation coefficient 

(0.88) and higher RMSD (7.0℃). Under WRF simulations, MIROC-ESM and MIROC-

ESM-CHEM have larger correlation coefficients and smaller RMSD with CN05.1 than 

HadGEM2-ES and BNU-ESM.  

  

Lines 283-300 are edited as follows. 

Figure 5 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 

under G4 during 2060-2069 relative to the past and the two future RCP scenarios. 

ISIMIP-downscaled AP (Fig. 5a-5c) shows significant anomalies (p<0.05), with whole 

domain rises of 2.0 ℃ in G4-2010s, and falls of 1.0 ℃ and 2.8 ℃ in G4-RCP4.5 and 

G4-RCP8.5 respectively. In WRF results, AP under G4 is about 1-2 ℃ warmer than 

that under 2010s, 0.8 ℃ and 2.5 ℃ colder than that under RCP4.5 and RCP8.5 over 

the whole domain. Individual ESM results downscaled by ISIMIP and WRF are in Fig. 

S6 and Fig. S7. For both ISIMIP and WRF downscaling results, the two MIROC models 

show stronger warming than the other two models between G4 and the 2010s. WRF-

downscaled AP driven by HadGEM2-ES exhibits the strongest cooling, with decreases 

of 1.7 ℃ between G4 and RCP4.5 and falls of 3.0 ℃ between G4 and RCP8.5. 

Although different ESMs show different changes in AP between G4 and other scenarios, 

changes in AP are almost the same everywhere for a given ESM in the ISIMIP results 

(Fig. S6). WRF-downscaled AP anomalies driven by two MIROC models are larger in 

the Zhangjiakou mountains and smaller in the Beijing urban areas and Tianjin city 

between G4 and 2010s (Fig. S7). Changes in AP from ISIMIP results, whether across 

whole province or just the urban areas, are statistically identical given scenarios (Table 

2), which is consistent with patterns in figure 6. AP under G4 is 0.8 ℃ (1.0 ℃) and 

2.6 ℃ (2.8 ℃) colder than that under RCP4.5 and RCP8.5 in Beijing-Tianjin urban 

areas from ISIMIP (WRF) results. The warming between G4 and 2010s in urban areas 

is 1.0 ℃ in WRF results, while that is 2.0 ℃ in ISIMIP results (Table 2). 

 

Lines 312-330 are edited as follows. 

Figure 6 shows the ISIMIP and WRF ensemble mean changes in the annual mean AP 

anomalies G4 during 2060-2069 relative to the past and the two future RCP scenarios. 

ISIMIP-downscaled AP (Fig. 6a-6c) shows significant anomalies (p<0.05) across the 

whole domain, even for the relatively small differences in G4-RCP4.5. ∆AP by WRF 

is lower than that by ISIMIP. Between G4 and 2010s, AP are projected to have increases 

of 1.8 (1.6), 2.1 (1.8), 2.4 (-0.2), 1.8 (0.8) ℃ from winter to autumn in ISIMIP (WRF) 

results. In ISIMIP results, the contribution of temperature ranges from 91%-104%, and 

the contribution of wind speed ranges from 3%-10% in all seasons, while the 

contribution of humidity is negative or insignificant (Fig. 6a). However, the 

contribution of humidity is positive in WRF results (Fig. 6a). Between RCP4.5 and 



2010s, annual mean AP is projected to increase by 3.0 ℃ and 1.8 ℃ in ISIMIP and 

WRF results respectively, which is higher than that between G4 and 2010s. The increase 

of temperature and decrease of wind speed have a significant impact on the annual 

average ∆AP contributed 97% (94%) and 4% (3%) in ISIMIP (WRF) results. The 

contributions of changes in humidity are significantly positive under G4 and RCP4.5 in 

WRF results, while it is the opposite in the ISIMIP results (Fig. 6a-6b). 

 

Relative to RCP4.5 in the 2060s, AP is projected to decrease by 1.0 (0.4), 0.7 (0.8), 0.8 

(0.7), and 1.3 (1.4) ℃ from winter to autumn under G4 in ISIMIP (WRF) results (Fig. 

7c). In summer, the contribution from changes in temperature and humidity are 94% 

(105%) and 8% (-9%) in ISIMIP (WRF) results, respectively. There are insignificant 

contributions from wind speed under ISIMIP results, but a significant slight positive 

contribution (0.7%-4%) under WRF results (Fig. 6c). The annual mean AP under G4 is 

2.8 (2.6) ℃ lower than that under RCP8.5 in ISIMIP (WRF) result. In this case, the 

contribution of changes in wind on ∆AP ranges from 3%-5% by ISIMIP, while it is 

close to 0 by WRF. As expected, ∆AP is mainly determined by the changes in 

temperature, with contributions usually above 90% between different scenarios. 

 

Lines 362-366 are edited as follows. 

In contrast WRF suggests that most areas do not show any significant difference 

between G4 and the 2010s, while the anomalies relative to RCP4.5 are similar as 

ISIMIP, the differences are insignificant over more area than ISIMIP. G4-RCP8.5 

anomalies with WRF are smaller than that with ISIMIP, and differences are not 

significant in the Zhangjiakou high mountains. 

Minor comments 

L45-47: Need citations to support idea that apparent temperature is actually an 

important variable 

Reply: Done. I added the references. 

Apparent temperature (AP), that is how the temperature feels, is formulated to reflect 

human thermal comfort and is probably a more important indication of health than daily 

maximum or minimum temperatures (Fischer et al., 2013; Matthews et al., 2017; Wang 

et al., 2021). 

References 

Matthews, T., Wilby, R., and Murphy, C.: Communicating the deadly consequences of 

global warming for human heat stress, PNAS, 114, 3861-3866, 

https://doi.org/10.1073/pnas.1617526114, 2017. 

Fischer, E., and Knutti, R.: Robust projections of combined humidity and temperature 

extremes, Nat. Clim. Change, 3, 126-130, https://doi.org/10.1038/nclimate1682, 2013.  

https://doi.org/10.1073/pnas.1617526114
https://doi.org/10.1038/nclimate1682


Wang, P., Luo, M., Liao, W., Xu, Y., Wu, S., Tong, X., Tian, H., Xu, F., and Han, Y.: 

Urbanization contribution to human perceived temperature changes in major urban 

agglomerations of China, Urban Clim., 38, 100910, 

https://doi.org/10.1016/j.uclim.2021.100910, 2021. 

Equation 3 is not exactly the Clausius-Clapeyron equation. It is an approximate form 

which fits some empirical data. Please provide the relevant citations for this relationship 

(most likely Tetens (1930), Murray (1967), and Monteith and Unsworth (2008)). 

Reply: Thanks. I have added the citations. 

𝑃𝑠 is calculated using the Tetens empirical formula (Murray, 1966): 

                  𝑃𝑠 = {0.61078 × 𝑒(
17.2693882×𝑇

𝑇+237.3
),                 𝑇≥0

0.61078 × 𝑒(
21.8745584×(𝑇−3)

𝑇+265.5
),       𝑇<0

                                (3) 

References 

Murray, F.: On the computation of saturation vapor pressure, Rand Corp Santa Monica 

Calif, 1966. 

L162: Citation needed for US NWS 

Reply: Done. 

This threshold does not lead to extreme risk and death, instead it is classified as 

requiring “extreme caution” by the US National Weather Service (National Weather 

Service Weather Forecast Office, https://www.weather.gov/ama/heatindex). 

L164-166: The rationale for using NdAP_32 does not make sense to me. Since you are 

looking to identify an increase in the frequency of a rare event, why does the fact that 

it is rare mean that you should not use it? Similarly, why presume that the same outcome 

will apply for higher thresholds? I suggest revising the rationale. 

Reply: We cannot simply use any threshold because the less frequent the threshold the 

more statistically uncertain is the estimate of its probability. For example the well-

known estimate for the uncertainty in an estimate of uncertainty, s, is s/(2n-2). So if 

we have only a very small number of instances of s, (that is n) then its uncertainty is 

very high. So, we must compromise in having a measure of extreme that represents the 

tail of the distribution, while at the same time being common enough for a reasonable 

sampling of its likelihood in the 50 years or so of simulations available. This is why we 

choose NdAP_32 rather than say NdAP_27 or NdAP_36.  

In regard of the second point - we do not necessarily think that rarer events will be 

changed by the same amount as NdAP_32, in fact, often extremes change more than 

central parts of the distribution. This is a consequence the “fat tails” seen in most real-

https://doi.org/10.1016/j.uclim.2021.100910


world climate distributions. The reason for the fat-tailed nature of real-world climate 

simulations probably relates to the long term spatial and temporal persistence (that is 

not simply autocorrelation) of processes rather than them being independent, and also 

to the presence of hysteresis behaviour (tipping points) in the system as it pushed further 

from the long term mean – for example in the fundamentally different physics at play 

on either side of the ice/water phase change. The fat tails implications for risk were 

examined in regard of economics by Weitzman’s (2009) Dismal theorem which showed 

that since the likelihood of extreme fat tail probability distributions decay polynomially, 

the damage associated with them rises exponentially, thus leading to no bound when 

integrated to infinity. However, we do not think this is useful discussion in the 

manuscript. The issue is that we do not have the statistical power to discuss rarer 

extremes than NdAP_32 with the data available. This is what we tried to explain in the 

text in a simple way. 

References 

Weitzman, M.: On Modeling and Interpreting the Economics of Catastrophic Climate 

Change, Review of Economics and Statistics, 91, 1–19, 

https://doi.org/10.1162/rest.91.1.1, 2009. 

 

We revised the text: 

This threshold does not lead to extreme risk and death, instead it is classified as 

requiring “extreme caution” by the US National Weather Service (National Weather 

Service Weather Forecast Office, https://www.weather.gov/ama/heatindex), but carries  

risks of heatstroke, cramps and exhaustion. A threshold of 39°C is classed as 

“dangerous” and risks heatstroke. While hotter AP thresholds would give a more direct 

estimate of health risks, the statistics of these presently rare events mean that detecting 

differences between scenarios is less reliable than using the cooler NdAP_32 threshold 

simply because the likelihood of rare events are more difficult to accurately quantify 

than more common events that are sampled more frequently. While there is evidence 

to suppose that in some distributions, the likelihood of extremes increases more rapidly 

than more central parts of a probability distribution – such as larger Atlantic hurricanes 

increasing faster than smaller ones (Grinsted et al., 2013), a conservative assumption is 

that similar differences between scenarios would apply for higher thresholds. 

References 

Grinsted, A., Moore, J., and Jevrejeva, S.: Projected Atlantic tropical cyclone threat 

from rising temperatures, PNAS, 110, 5369-5373, 

https://doi/10.1073/pnas.1209980110, 2013. 

L168: “Since health impacts are more important where there are more people”: this 

seems like a value judgement, and not (I think) the intended meaning. I recommended 

simply stating that you calculated population-weighted changes. 

https://doi.org/10.1162/rest.91.1.1
https://www.weather.gov/ama/heatindex


Reply: No it is not. There are no value judgements here at all. The value of human life 

is exactly the same in the sentence, i.e. each life is the same. There are simply more 

lives in urban areas than rural ones. Hence the phrase “more important”. This is the 

same logic and values that suggest we should not be worried at all about human health 

impacts of climate change on Mars because there are no people there to be impacted. 

 

The dark colors in Figure 6 make it nearly impossible to read the data. 

Reply: We have changed the color bar in Figure 6. 

Figure 6. The seasonal changes of AP (∆AP) and the seasonal contribution of climatic factors to ∆AP 

for Beijing and Tianjin urban areas under ISIMIP and WRF between G4 and 2010s (a), G4 and 2010s 

(b), G4 and RCP4.5 (c) and G4 and RCP8.5 (d) based on ensemble mean results. Colors and numbers 

in each cell correspond to color bar, and “*” above the columns and in the cells indicate differences are 

significant at the 5% significant level under the Wilcoxon test.  

Figure 7: please label the months. 

Reply: Done. 



Figure 10. Seasonal cycles of apparent temperature from MIROC-ESM, MIROC-ESM-CHEM, 

HadGEM2-ES and BNU-ESM under G4, RCP4.5 and RCP8.5 in Beijing-Tianjin urban areas during 

2060s based on ISIMIP (red) and WRF (black) methods. 

Throughout: it would be helpful to see the baseline (undownscaled) results alongside 

the downscaled results, so that the readers might know how significant the differences 

between ISIMIP and WRF are compared to the differences between the original and 

downscaled outputs. 

Reply: We plot the ESMs original AP in Fig. 3. We added two sentences after line 

222 and 229. 



Figure 3. Top row: the spatial distribution of mean apparent temperature from CN05.1 (a), raw ESMs 

ensemble mean after bilinear interpolation (b), 4-model ensemble mean after ISIMIP (c) and ensemble 

mean after WRF (d) during 2008-2017. Bottom row: the spatial distribution of annual mean number of 

days with AP > 32℃ from CN05.1 (e), ESMs (f), ISIMIP (g) and WRF (h) during 2008-2017. Fig. S1 

and Fig. S2 show the pattern of AP and NdAP_32 for the individual ESM. 

 

While the raw AP from ESMs is overestimated in the Zhangjiakou high mountains and 

underestimated in the southern plain, and shares a similar pattern with temperature from 

ESMs (Wang et al., 2022). The raw ESM outputs were improved after dynamical and 

statistical downscaling. 

ESMs tend to overestimate the number of days with AP>32℃ in southeastern Beijing 

and for the whole Tianjin province.  

 


