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Abstract. Planning for the impacts of climate change requires accurate projections by Earth System Models (ESMs). ESMs,

as developed by many research centres, estimate changes to weather and climate as atmospheric Greenhouse Gases (GHGs)

rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the

understanding of key climate system attributes. However, there remain substantial inter–ESM differences in their estimates of

future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult.5

Until recently, the primary approach to reducing projection uncertainty has been to place an emphasis on simulations that

best describe the contemporary climate. Yet a model that performs well for present–day atmospheric GHG levels may not

necessarily be accurate for higher GHG levels and vice-versa.

A relatively new approach of Emergent Constraints (ECs) are gaining much attention as a technique to remove uncertainty

between climate models. This method involves searching for an inter–ESM link between a quantity that we can also measure10

now and a second quantity of major importance for describing future climate. Combining the contemporary measurement with

this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical cycles of the

climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a requirement to

understand them better. We hypothesise that as many Earth System components vary in both space and time, their behaviours

often satisfy large–scale Differential Equations (DEs). Such DEs are valid at coarser scales than the equations coded in ESMs15

which capture finer high resolution gridbox–scale effects. We suggest that many ECs link to such effective hidden DEs implicit

in ESMs and that aggregate small-scale features. An EC may exist because its two quantities depend similarly on an ESM–

specific internal bulk parameter in such a DE, with measurements constraining and revealing its (implicit) value. Alternatively,

well–established process understanding coded at the ESM gridbox–scale, when aggregated, may generate a bulk parameter

with a common “emergent” value across all ESMs. This single emerging parameter may link uncertainties in a contemporary20

climate driver to those of a climate–related property of interest. In these circumstances, the EC combined with a measurement

of the driver that is uncertain, constrains the estimate of the climate–related quantity. We offer simple illustrative examples of

these concepts with generic DEs but with their solutions placed in a conceptual EC framework.
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1 Introduction

Earth System Models (ESMs) are a key pillar of climate research and provide predictions of global environmental change due

to burning fossil fuels. Projections by ESMs strongly inform the reports of the Intergovernmental Panel on Climate Change (e.g.

IPCC, 2013, 2021) and influence climate policy. These models consist of solving, on numerical meshes, discretised differential

equations that describe the evolution of the atmosphere, oceans, land and cryosphere and their interactions. In addition to5

physical processes, these models have evolved to emulate key global geochemical cycles. ESMs are typically forced with

prescribed values of historical atmospheric greenhouse gas (GHG) concentrations, followed by a range of scenarios for their

future levels (e.g., Meinshausen et al., 2011). This process estimates how the planetary climate system responds to altered

atmospheric gas composition. Alternatively, an ESM can be forced with CO2 emissions scenarios (e.g. Cox et al., 2000),

if the ESM has a complete description of the global carbon cycle. A major achievement of the scientific community is the10

pooling of climate model projections from different research centres into common Coupled Model Intercomparison Project

(CMIP) databases such as CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016). CMIP databases also hold simulations

with forcings held at pre-industrial levels to test ESM stability and characterise their representation of natural variability.

Furthermore, there exist illustrative idealised ESM experiments, to determine the response to a continuous cumulative 1% per

annum increase in atmospheric CO2, or to an abrupt jump by a factor of four in CO2 from pre-industrial levels.15

Almost all parts of the climate system vary in both space and time. Hence Partial Differential Equations (PDEs) are solved for

evolving temporal variations on the spatial numerical mesh particular to any ESM. Many of these PDEs central to understanding

the climate system are well–established, as described in standard textbooks on atmospheric and oceanic behaviours (e.g. Vallis,

2006). However, for the same future GHG scenario, analyses of the CMIP databases reveal significant inter–ESM differences

between projections of even fundamental quantities such as the level of global warming (Lee et al., 2021). As standard equations20

are frequently solved in ESMs, a valid question is: “why are ESM projections often so different?”. The simplest answer is

that some processes are still not fully understood and are therefore parameterised differently between ESMs. Components

frequently noted in this category are the modelling of cloud–climate interactions (e.g. Bony et al., 2015), and how aerosols

act in modulating global temperature rise (e.g. Bellouin et al., 2020). A secondary source of uncertainty is the dependence of

process parameterisation on gridbox resolution. Larger individual gridboxes (i.e. a coarser numerical grid) often need effective25

parameterisation of sub–grid processes and variation in this may cause inter–ESM differences. Numerical tests with extremely

high resolution models allow the explicit representation of convection (‘convection permitting’; e.g. Clark et al., 2016) and

verify its importance in describing local rainfall characteristics. However, while very high resolutions are achievable in weather

forecast models, computational speed precludes their routine operation for ESMs designed to simulate century timescales.

Unfortunately, the considerable variation in model estimates of future climate change makes societal adaptation planning30

difficult. Such discrepancies can be used by some to discredit the overall notion of a human influence on climate. One possibility

to lower inter–ESM spread is to rank models by their ability to describe the contemporary climate and known recent changes

(e.g. Knutti et al., 2017). ESMs regarded as the most reliable at describing expected future change are those that perform best

at simulating the recent past. However, this can be a subjective activity, depending on selected datasets for comparison and
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geographical location analysed. Furthermore, there is a risk of downrating a model that performs poorly for the present day yet

accurately projects a future change of concern to society.

Recently a technique called “Emergent Constraints” (ECs) has gained prominence as a new method to reduce the spread

between the projections by different ESMs. The EC method capitalises on discovered relationships between two quantities

calculated by climate models when considering estimates of each from across many ESMs. One variable is an attribute of the5

climate system for the present-day or historical period, for which observationally-based data also exists. The second variable,

for which data is unavailable, is often a feature of the evolving climate system and is informative for climate policy. For exam-

ple, this second variable may be an internal sensitivity of the climate system that determines changes to mean meteorological

conditions as GHGs rise. Alternatively, it can be the direct estimate of some feature of climate change (e.g. an aspect of near–

surface meteorology) corresponding to specific future higher GHG levels. Measurement of the first quantity, in combination10

with the discovered inter-ESM link between the two variables (i.e. the EC), provides the constraint on the magnitude of the

second unknown variable.

The first applications of the EC technique were to constrain estimates of Transient Climate Response (TCR) and mean

precipitation changes for different warming levels (Allen and Ingram, 2002), and to refine estimates of large-scale snow albedo

feedbacks in a warming world (Hall and Qu, 2006). Since then, the EC method has lowered uncertainty in a substantial number15

of components of the Earth system (Hall et al., 2019), and including for fundamental climate quantities such as Equilibrium

Climate Sensitivity (ECS) (e.g. Cox et al., 2018). Other researchers have provided EC–based estimates of both ECS and TCR

(Jimenez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020). Applications of ECs to physical parts

of the Earth system have included cloud feedbacks (e.g. Klein and Hall, 2015), as well as components of global geochemical

cycles. ECs on aspects of geochemical cycles include constraining the expected level of ocean acidification (Terhaar et al.,20

2020), marine primary productivity (Kwiatkowski et al., 2017) and soil carbon turnover (Varney et al., 2020). Notable is that

for many discovered ECs, the modelled quantity that is also measured during the contemporary period is often a high-frequency

statistic or attribute of the climate system. The EC relates this quantity that fluctuates at shorter timescales to a longer–term

attribute of the Earth system relevant to projecting how climate will respond to rising GHG concentrations. The ability of ECs

to use knowledge of contemporary high-frequency variations to constrain understanding of expected future climate change25

highlights how ignoring fluctuations at short timescales may constitute disregarding valuable information. The EC approach,

therefore, offers an interesting comparison to the method of weighting ESMs by simply comparing their projections of present-

day trends against measurements, especially as the latter method often neglects short-timescale variations about such trends.

With ECs becoming ubiquitous in climate research and with their potential to enable better decisions on GHG emissions

trajectories that avoid dangerous change, it is appropriate that the method is placed on a stronger scientific basis. Some recent30

papers review the EC method, highlighting its capability and listing a set of potential pitfalls. For instance, Williamson et al.

(2021) identify a particularly broad range of discussion points related to ECs, all framed in their application to refining esti-

mates of ECS. Further critiques of the EC method exist in the context of the terrestrial carbon cycle (Winkler et al., 2019),

Arctic warming (Bracegirdle and Stephenson, 2012) and ECS (Caldwell et al., 2018) - all note potential issues that could result

in incorrect bounds on future estimates of change. Schlund et al. (2020) test the robustness of proposed emergent constraints35
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by out-of-sample testing on a different model ensemble. These researchers found that emergent constraints on ECS, developed

using the CMIP5 ensemble, do not provide useful constraints on ECS in the CMIP6 models. These ECs, therefore, fail to be

“confirmed” (Hall et al., 2019). Fasullo et al. (2015) also discuss whether it is expected that ECs hold across different gener-

ations of ESMs. Those authors argue that additional processes identified as important but uncertain, and introduced to newer

ensembles, could generate ECs that make different predictions. Fasullo et al. (2015) provide the example of newer ESMs that5

characterise better convection and its impact on simulated cloud features, which ultimately may alter EC estimates of ECS.

Recognising the danger of arriving at spurious emergent constraints based on the results of relatively small model ensembles

(Caldwell et al., 2018),Williamson et al. (2021) have set the challenge of deriving more robust theory-based emergent con-

straints. To inform attempts to meet that challenge, here we address the fundamental, almost philosophical question: “What is

an emergent constraint?”.10

Despite much scrutiny of ECs, there are likely many perspectives on what forms their basis (see for example Nijsse and

Dijkstra, 2018; Williamson et al., 2021). Here we suggest that one way to interpret many ECs is that they derive bulk pa-

rameters associated with differential equations that are valid at large spatial scales. Such equations are implicit in ESMs (i.e.

are not coded explicitly) and instead “emerge” by aggregating the numerical finite difference schemes solved in ESMs at the

finer gridbox spatial resolution. Here we hope to initiate a discussion of whether this is an appropriate way to describe the15

underpinning properties of many ECs. We consider simple illustrative examples using standard solutions to basic differential

equations but with the novelty of being placed in the context of the framework of the EC method.

2 Methods and Conceptual Examples

2.1 The Emergent Constraint Method

The core of any EC is the discovery of a robust link, across different ESMs, between a driving variable, say X , and another20

model–calculated quantity, Y . Variable X is a quantity for which contemporary measurements are available. Quantity Y is a

climate–related statistic, metric or parameter often of importance for developing future adaptation or mitigation strategy, but

for which data does not exist. The EC relationship between X and Y , in tandem with the measurement of X , constrains our

understanding of Y . In general, it is considered preferable that ECs are found by process intuition that reveals related system

quantities, rather than direct inter–ESM “data mining”. For instance, in the context of finding ECs to constrain understand-25

ing of the size of cloud feedbacks, Klein and Hall (2015) propose that each should be “accompanied by credible physical

explanations”. The EC relationship between X and Y may take many forms, such as a nonlinear response, or is potentially

multidimensional with more than one X component.

For illustration purposes, we imagine an EC that is a simple linear regression between two variables, and when indexing

each ESM with i, is of the form:30

Yi = a0 + a1Xi + εi + ηi. (1)
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Here parameters a0 and a1 quantify the emergent constraint, and εi and ηi are ESM–specific “noise” terms. We consider that

εi captures how far an individual ESM is from the fitted relationship of Eq. (1), and so any large absolute value corresponds to

a model outlier. Quantity ηi is a random variable, that describes natural climate variability for each model. Measurement X∗

utilises this relationship to predict the value of Y , named Y ∗. Cox et al. (2018) provide the methodology to derive uncertainty

bounds on the constrained value Y ∗, which include being a function of ε and η, as well as the size of uncertainty bounds on5

data X∗. Here, and elsewhere, the ’*’ symbol represents a measurement (or a value constrained by an EC and a measurement).

2.2 Simple thermal “box” model with different heat capacities

Our working assumption is that ECs exist due to common inter–ESM deterministic processes, which we attempt to mirror

with abstract but illustrative simple models. As such, the noise quantities εi and ηi are only reconsidered towards the end of

our analysis and then only visually. We start with an especially simple conceptual representation of an EC. We consider a10

set of single thermal box models indexed by i. This indexing may mirror the differentiation between ESMs in a collection

of models, such as the CMIP6 ensemble (Eyring et al., 2016). Each model has a different heat capacity cpi (J K−1), in to

which we assume there is a common and known forcing heat flux H(t) (W). We regard long-term changes in this forcing as

analogous to Representative Concentration Pathways (RCPs) of future GHG levels, often applied as an equal forcing across

ESMs. As a single box, there is no spatial variation, so the model is treated as having infinite diffusion. The equation for the15

box temperature T (t) (K), where t (year) is time, c
′

pi = cpi/ny,s (J K−1 yr s−1) and ny,s (s yr−1) is the number of seconds in

a year, is:

c
′

pi

dT
dt

=H. (2)

We first study for a known fluctuating heat flux, H = bcos(ωt), for the contemporary period to force each model indexed

by i. This forcing could be interpreted as a form of known annual seasonal cycle (and therefore ω = 2π), unaffected by any20

background trends. This driver results in a model–specific temperature, Ti(t). In addition to the known common H driver,

observed are seasonal temperature features named T ∗ (K). The simple solution to Eq. (2) with this periodic forcing is:

Ti(t) = C0 +
b

c′piω
sin(ωt). (3)

Removal of background multi–year temperature allows the setting of arbitrary constant C0 as C0 = 0. ECs require a quantity

that is both modelled for the contemporary period and is available as a measurement, such as the seasonal range ∆TS (K). Here25

∆TSi
= max(Ti)−min(Ti), and so for each model and from Eq. (3),

∆TSi
=

2b

c′piω
. (4)

Considered additionally is a longer–term forcing of our model, representing ongoing climate change. We describe this extra

forcing as simply a fixed value ofH0 (W) for t > 0. Hence this gives a combined forcing ofH(t) =H0+bcos(ωt), and solving

Eq. (2) for both drivers simultaneously gives:30

Ti(t) =
H0t

c′pi
+

b

c′piω
sin(ωt) t > 0. (5)

5



A second set of temperature-based statistics we can consider are based on changes in annual means. The time derivative of

annual averages for T is a proxy for the rate of global warming. Annual averaging of Eq. (5) and denoted by an overline is

simply:

Ti(t) =
H0t

c′pi
. (6)

A possible EC is now revealed where the issue of future concern might be the rate of change of mean temperature Ti. Plotting5

for the simple model an “x” axis of ∆TSi (from Eq. (4)) and a “y” axis of dTi(t)/dt=H0/c
′

pi (from Eq. (6)) would yield

a diagram where both quantities increase, linearly, in 1/c
′

pi . The EC is, therefore, a relation between seasonal temperature

variation and long–term warming that holds across all c
′

pi values. Knowledge of the actual x axis variable, which here would

be the known observed seasonal amplitude, ∆T ∗
S , constrains the bounds of the uncertainty of the y axis quantity. We present

these ideas schematically in Fig. 1, and show the uncertainty, εi + ηi, as just random distances by individual models (black10

dots) away from the EC regression line.

In the analysis presented above, the parameters related to forcings, i.e. b andH0, are assumed to be invariant between models.

The measurement in tandem with the EC is in effect lowering uncertainty on the model–specific value of bulk parameter c
′

pi .

However, an alternative possibility is an EC where there is instead uncertainty in the magnitude of the forcing of an Earth

system component (rather than inter-ESM spread in how the component itself is modelled). For instance, there remains a range15

of representations between ESMs of translating atmospheric aerosol levels to their cooling effect. Instead, we can regard the

forcing parameters as uncertain, indexed as bi and H0i , although we imagine for each ESM the uncertainty is similar, and so

get the ratio bi/H0i as invariant between models. This setup yields an EC of identical form to that of Fig. 1, but instead, c
′

p has

a single numerical value common to all models. Measurements then provide the constraint to remove uncertainty in the forcing

element bi. With the forcing uncertainties common for both short– and long–term drivers (i.e. the assumption that bi/H0i is20

constant between ESMs), the measurement ∆T ∗
S implicitly constrains bi, henceH0i , and thus the background warming dTi/dt.

2.3 Thermal model with spatial variation

We extend the basic box model of Section 2.1 with a further illustrative example that introduces spatial variability via direc-

tional coordinate x (m). Temperature is retained as our notional state variable. Now we consider the system to evolve on a

semi–infinite domain 0≤ x≤∞, and with the heat forcing boundary condition, H , specified at x= 0. This framework may25

depict, for instance, heat absorption by the oceans and where information on future trends in surface temperature is required.

Specifically, we solve for Ti(x,t) as satisfying a diffusion equation:

c
′

pi

∂Ti
∂t

= κi
∂2Ti
∂x2

0≤ x≤∞. (7)

Here c
′

pi (J K−1 m−3 yr s−1) remains a form of heat capacity, while κi (W m−1 K−1) is a conductivity or mixing parameter,

and both parameters may be model specific, as indexed by i. We again start by prescribing a boundary condition (Fourier’s law30

of heat conduction) that is seasonal, here at x= 0, given by:

κi
∂Ti
∂x

∣∣∣∣
x=0

=−H =−bcos(ωt). (8)
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Figure 1. Schematic representation of a simple emergent constraint. Panel (a) (top row) shows the combined equation for long–term

and seasonal forcing (so with ω = 2π yr−1) driving the thermal box model given by Eq. (2) (middle row), and the related response to both

forcings, which combine additively to give Eq. (5) (bottom row). Panel (b) illustrates a related emergent constraint, based on the response

Eq. (5), as also shown in panel (a). This response contains a seasonal (x axis) and long–term (y axis, with seasonality ignored) variation, and

the EC links the two. The EC allows the observation of seasonal fluctuations (∆T ∗
S , x axis) to constrain the long–term rate of change of state

variable, T (y axis). Each model (black dots, indexed by i) has a different implicit value for c
′
p i.e. c

′
pi . The EC is assumed to not be exact,

with noise causing variation around the regression line (the εi and ηi terms of Eq. (1)). The vertical yellow band represents uncertainty in

the measurement, ∆T ∗
S . The constrained projection of the long–term warming rate (based on the EC, the value of ∆T ∗

S and its uncertainty)

is given by the green horizontal band.

The solution to governing Eq. (7) with the boundary condition of Eq. (8), assuming no non–seasonal transient terms and that

Ti is bounded as x→∞, is:

Ti(x,t) =
be

−
(
x

√
c
′
pi
ω

2κi

)
√
c′piκiω

cos

−ωt+
π

4
+x

√
c′piω

2κi

+C0. (9)7



Hence the value of Ti at x= 0, with additive constant set to C0 = 0, is given by:

Ti(0, t) =
bcos(ωt−π/4)√

c′piκiω
. (10)

From Eq. (10), the temperature seasonal cycle at x= 0 therefore corresponds to a range of

∆TSi = max(Ti(0, t))−min(Ti(0, t)) =
2b√
c′piκiω

(11)

and for which we consider there to be a corresponding measurable i.e. observable value, ∆T ∗
S .5

In further analogy to our example with the box model example, we consider an additional long–term heat flux, H0 at x= 0,

starting at time t= 0. That is, a boundary condition of:

κi
∂Ti
∂x

∣∣∣∣
x=0

=−H0 t > 0.. (12)

Satisfying Eq. (7) with this boundary condition has a solution of:

Ti(x,t) =
2H0

κi

−x
2

erfc

x
2

√
c′pi
κit

+

√
κit

πc′pi
e
−
c
′
pi
x2

4κit

 t > 0, x > 0. (13)10

Eq. (13) calculated at x= 0 corresponds to:

Ti(0, t) = 2H0

√
t

c′piκiπ
t > 0. (14)

As our governing Eq. (7) is linear, the seasonal and long–term solutions (Eqs. (9) and (13) respectively) may be simply added.

Hence a combined heat flux in to the system of bcos(ωt) +H0 at x= 0 generates a surface temperature Ti(0, t), for t > 0,

given by the addition of Eqs. (10) and (14). The inclusion of spatial variation, via x, causes a long-term transient effect where15

although the long–term average heat flux is constant, the surface temperature given by Eq. (14) has a
√
t response. This solution

compares to a linear long–term temperature response for our single box model example in Eqs. (5) and (6).

For our example with spatial variation, a possible emergent constraint could constitute an x axis of ∆TSi
(Eq. 11) and a y

axis of dTi(0, t)/dt×
√
t=H0/

√
c′piκiπ (from differentiation of Eq. (14) with respect to time, in tandem with averaging out

the seasonal variations of Eq. (10)). Using these variables, both the x and y axes are linear in 1/
√
c′piκi for the different indices20

i. We present this EC schematically in Fig. 2. In conjunction with this EC, knowledge of seasonal temperature variation (x

axis, Fig. 2) reveals the long–term warming rate (y axis, Fig 2.). In this example the data point constrains, implicitly, the value

of c
′

piκi. If c
′

pi is well known and fairly invariant between ESMs, then the data point is constraining the implicit value of κi,

or vice versa where the constraint is on c
′

pi . As an aside, in the y axis of Fig. 2, we retain the
√
t factor to make the vertical

position of the EC in the diagram independent of time or GHG level.25

As for the discussion of uncertainty in the forcing boundary conditions of the box model, and their potential constraint, the

same possibility exists for our example with spatial variability. Should effective parameters cp and κ show little or no variation
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between ESMs, yet there is uncertainty in b of Eq. (8) and H0 of Eq. (12) (and both parameters have similar unknowns, so

again b/H0 is invariant inter-ESMs), then the EC combined with data for ∆TS acts to remove that forcing uncertainty. Such

removal of forcing-related uncertainty between ESMs, via the EC and measurement of ∆TS, again constrains longer–term

warming levels in this illustrative framework.

3 Discussion and Conclusions5

How climate will change due to the ongoing burning of fossil fuels remains one of the highest–profile questions asked of

the scientific community. ESMs are central to such research activity, and their primary objective is to predict climate change

for different potential future GHG levels as accurately as possible. However, substantial differences can exist between ESM

projections, even for the same future scenario of atmospheric GHG changes, so dependable methods are required to reduce

the spread in simulations. Emergent constraints are discovered linkages, inter–ESM, between a quantity that is also presently10

measured and a second important climate attribute associated with future changes, and where data on the former constrains

our assessment of the value of the latter. With a constant requirement to provide policymakers with refined estimates of future

climate change and against the backdrop of considerable variation between ESMs, ECs have attracted substantial application

to a plethora of components of the Earth system. The rapid rise in EC discoveries and their near ubiquitous use to constrain

uncertainty enables a way to extract additional information from available ESMs that have required huge expenditure to build15

and operate. However, with such a high prominence of ECs as a method to lower uncertainty, it is timely to investigate the

assumptions that underline them and any potential pitfalls (e.g. Williamson et al., 2021). Here start an additional but related

route of investigation. We suggest a potential explanation of many ECs is that their basis relates to solving large–scale equations

that are implicit in ESMs and have common features between models.

We develop the hypothesis that many identified ECs relate to undiscovered differential equations that describe the Earth20

System at large geographical scales. Such equations are not coded explicitly in ESMs, but instead “emerge” as the aggregation

of the finer resolution behaviour of the climate system. Such finer resolution features are calculated in ESMs as the solution

of differential equations solved on the numerical mesh of each model and capture environmental processes that are often un-

derstood well. Such understanding introduces similarities between models, which remain present in any spatial aggregation.

The role of ECs is to enable the discovery of the implicit value of parameters associated with such large–scale equations where25

uncertainty remains. Such bulk parameters affect both a quantity of interest linked to predicting future climate and a contem-

porary attribute of the Earth system. The contemporary quantity is measurable and, in tandem with the EC, constrains the

parameterisation and thus, understanding of the quantity associated with the future. In many instances of discovered emergent

constraints, the present–day component is of a higher frequency fluctuation (e.g. seasonal), with the EC then uses to project a

climate attribute of relevance to decadal or century timescales.30

We have presented two illustrative examples of solving standard differential equations but placed them in a structure as if

they underpin an emergent constraint. We imagine the equations to be underlying large–scale bulk equations, solved implicitly

in multiple ESMs, as outlined above. Many examples of equations represent the aggregated behaviour of fine–scale systems.
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Figure 2. Schematic representation of an emergent constraint with a spatial component. The spatial dimension is defined by variable x.

Panel (a) (top row) shows the combined equation for long–term and seasonal forcing at x= 0, driving the diffusive model given by Eq. (7)

(middle row), and the related response at x= 0 and t > 0 given by Eqs. (10) and (14) (bottom row). The seasonal forcing (so with ω = 2π

yr−1) is given by Eq. (8) and the long–term forcing to the thermal model given by Eq. (12). These two forcings generate a response in T at

x= 0 given by Eqs. (10) and (14) respectively, that combine additively and as shown. Panel (b) illustrates the related emergent constraint

based on the response Ti(0, t) shown in panel (a). This response contains a seasonal (x axis i.e. the horizonal axis, not variable x) and

long–term (y axis, with seasonality ignored) part, and the EC links the two. The EC allows the observation of seasonal fluctuations, (∆T ∗
S ,

x axis), to constrain the long–term rate of change (y axis). Each model (black dots, indexed by i) has a different implicit value for c
′
pi ×κi.

As for the example of Fig. 1, the EC is again assumed to not be exact, with noise causing variation around the regression line. The vertical

yellow band represents uncertainty in the measured value of ∆TS. The constrained projection of the long–term warming rate (multiplied by
√
t, as based on the EC and the value of ∆TS and its uncertainty), is given by the green horizontal band.
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For example, the bulk properties of an ideal gas, temperature and pressure, are related through the ideal gas law. However,

these bulk properties can also be understood as the aggregated behaviour of the molecules (their mean velocity, mass and

number density) that make up the gas. Formally these relations can be made through kinetic theory (Pitaevskii and Lifshitz,

1981). There are also examples of linear bulk dynamics emerging from nonlinear fine–scale dynamics, and the converse of

effective nonlinear bulk behaviour from linear microscopic dynamics e.g. the phase transition in the two dimensional Ising5

model (McCoy, 1973).

Our first case is a simple box model for which we wish to derive a thermal capacity term, c
′

p, and the second has a single

spatial variation and represents a search for a multiplicative combination of capacity and diffusion, c
′

pκ. A discovered EC

between models, combined with measurements, is in effect revealing the actual real world value of c
′

p or c
′

pκ. Large values of

noise term εi are for models that are outliers to the EC. In the context of our abstract examples, outliers have different values10

of effective parameters c
′

p or c
′

pκ dependent on whether considering shorter seasonal timescales or longer periods and implies

these models have substantially different process representation compared to most other ESMs. We also suggest an additional

EC possibility where effective parameters emerge as invariant between ESMs, and instead there is uncertainty in forcings (here,

b and H0, although the uncertainty is similar between the two parameters). Our conceptual model determines internal system

properties, i.e. parameters, which for the spatial example are constrained based on behaviours at the edges of the domain. We15

note the basic theorems of vector calculus (e.g. Stokes’ theorem) that relate integrated internal system features to conditions

along domain edges.

A broad set of possibilities may link to our suggestion that the underlying principle of many ECs is the existence of equations

valid at large scales. For instance, in addition to our example of diffusion, ECs may reveal implicit PDEs with an advective

component corresponding to atmospheric transport. In many cases, atmospheric transport provides the coupling between two20

spatially-distant components of the Earth system, generating what is often called a “teleconnection”. To constrain the strength

of future teleconnections, an EC is likely to need a present–day measurement of wind fluxes or measurements of a quantity of

interest in two locations. In addition, modelling many components of the Earth system requires coupled differential equations

to link different physical quantities, capture changes of state, or where geochemical cycles link tightly to climate variation. An

example of an EC capturing features of a coupled system is that of Cox et al. (2013). In that analysis, data on present–day25

simultaneous fluctuations in atmospheric CO2 and annual temperature anomalies reveals the fate of future South American

carbon stores under global warming and the related risk of Amazon forest “die–back”. In some cases, the EC x axis, for which

measurements exist, is a combination of high-frequency drivers and response, and for the same variable. As an example of such

a more refined and complex contemporary statistic, Cox et al. (2018) estimate equilibrium climate sensitivity with a statistic Ψ

that is a combination of the standard deviation and autocorrelation of current global temperature fluctuations. Arguably, the Ψ30

statistic merges a system driver (standard deviation) and a response (autocorrelation). Here, we assume underlying PDEs that

are simple by design to aid transparency. Making these underlying models more relevant to the Earth’s climate is an outstanding

challenge. Additional to horizontal heat transport, our planet emits longwave radiation to the wider universe. Such radiation

provides the restoring force, λ, that ultimately stabilises the near-surface temperature. Including such a restoring force in our

simple PDE models is one possible extension of our analysis, although, in tandem with an unknown heat capacity, cp, this35
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would potentially generate a two-dimensional EC. In practice, fitting a two-dimensional EC may be challenging given the

relatively small number of data points (i.e. available ESMs). Analytical solutions may exist that allow for a time-varying value

of H0 that approximates known historical climatic forcing.

In summary, the analysis of ensembles of ESMs, as built by different research centres, has revealed multiple emergent con-

straints for all parts of the Earth system (Hall et al., 2019). Discovered ECs have reduced uncertainty bounds for features of5

the climate system that directly affect society and are, therefore, of particular interest to policymakers. With the placement

of much emphasis on the EC method to lower uncertainty, there is a growing requirement to understand its underlying as-

sumptions better. Timely research is emerging that critically assesses the method (e.g. Williamson et al., 2021). We add to the

discussion by suggesting that many ECs represent the discovery of parameters associated with large–scale implicit equations

that describe features of the Earth system. Such equations emerge from the aggregation of more local effects simulated on10

the gridpoints of the numerical meshes of individual ESMs. With the prevailing view that physical intuition should guide EC

discoveries rather than, e.g. data mining, our suggestion supports that standpoint. Hence we consider most ECs to correspond

to underlying processes and related mathematical representation. Such bulk process discovery helps counter a view that ESMs

are so complex that they can never be amenable to interpretation via standard applied mathematics techniques (a concern raised

by Huntingford, 2017). Such methods include scaling of the equations directly coded in ESMs (“nondimensionalisation”) to15

find the dominant underlying forms, although we speculate that EC discovery may instead identify key large–scale processes.

Further hinting at the need to confirm underlying processes is the analysis of Qu et al. (2018). Those authors consider the

statistical linkages between four different ECs proposed for ECS and suggest that the discovered commonalities are because

each is constraining, implicitly, shortwave radiation cloud feedbacks. We present two simple illustrative examples of differen-

tial equations, their solutions, and their potential interpretation as ECs. Despite differential equations representing a range of20

processes, mathematics can often characterise them in discrete ways (for instance, every second-order PDE being either diffu-

sive, elliptic or hyperbolic). The perspective offered here may open ways to classify ECs based on the type of any discovered

underpinning equations they link to. Confirming such links allows the study of some aspects of climate change from a more

analytical applied mathematics standpoint. The equation forms may be PDEs, they may be coupled, or they could be simply

ordinary differential equations or in algebraic form. Although our examples are synthetic, we hope the concepts we present25

support the placement of ECs on a stronger theoretical footing by, where applicable, revealing underlying bulk equations that fit

with process intuition. Brient (2020) argue that when multiple ECs exist to predict the same quantity, each should be weighted

by the level of physical understanding they offer to elucidate the relationship. It remains important to understand ECs as they

offer an elegant potential capability to lower the continuing uncertainty between ESM projections. In conclusion, we suggest

an interpretation of ECs is that they reveal parameters of large-scale implicit differential equations that aggregate the numerical30

finite differencing upon which ESMs are built.
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4 Code availability

The computer scripts leading to checking of the analysis solutions (with the sympy python module), and the two diagrams

(with the matplotlib python module) are available at https://doi.org/10.5281/zenodo.7633839
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