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Abstract. Planning for the impacts of climate change requires accurate projections by Earth System Models (ESMs). ESMs,

as developed by many research centres, estimate changes to weather and climate as atmospheric Greenhouse Gases (GHGs)

rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the

understanding of key climate system attributes. However, there remain substantial inter–ESM differences in their estimates of

future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult.5

Until recently, the primary approach to reducing projection uncertainty has been to place
::
an

:
emphasis on simulations that

best describe the contemporary climate. Yet a model that performs well for present–day atmospheric GHG levels may not

necessarily be accurate for higher GHG levels and vice-versa.

A relatively new approach of Emergent Constraints (ECs) is
::
are

:
gaining much attention as a technique to remove uncertainty

between climate models. This method involves searching for an inter–ESM link between a quantity that we can
::::
also measure10

now and another
:
a
::::::
second

:::::::
quantity

:
of major importance for in describing future climate. Combining the contemporary mea-

surement with this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical

cycles of the climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a

requirement to understand them better. We hypothesise that as many Earth System components vary in both space and time,

their behaviours often satisfy large–scale Partial Differential Equations (PDEs
::::
DEs). Such PDEs

:::
DEs

:
are valid at coarser scales15

than the equations coded in ESMs which capture finer high resolution gridbox–scale effects. We suggest that many ECs link

to such an effective hidden PDE that is implicit in most or all ESMs
:::::::
effective

::::::
hidden

:::
DEs

:::::::
implicit

::
in

::::::
ESMs

:::
and

:::
that

:::::::::
aggregate

:::::::::
small-scale

:::::::
features. An EC may exist because its two quantities depend similarly on an ESM–specific internal bulk parameter

in such a PDE, and
:::
DE,

:
with measurements constraining and revealing its (implicit) value. Alternatively, well–established

process understanding coded at the ESM gridbox–scale, when aggregated, may generate a bulk parameter with a common20

“emergent” value across all ESMs. This single
:::::::
emerging

:
parameter may link uncertainties in a contemporary climate driver to

those of a climate–related property of interest.
:::
In

::::
these

::::::::::::
circumstances, the EC constraining the latter by measurements of the

former
::::::::
combined

::::
with

::
a
:::::::::::
measurement

::
of

:::
the

:::::
driver

:::
that

::
is
:::::::::
uncertain,

::::::::
constrains

:::
the

:::::::
estimate

::
of

:::
the

:::::::::::::
climate–related

:::::::
quantity. We

offer
::::::
simple illustrative examples of these concepts with generic differential equations and their solutions ,

:::
DEs

:::
but

:::::
with

::::
their

:::::::
solutions

:
placed in a conceptual EC framework.25
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1 Introduction

Earth System Models (ESMs) form the basis
:::
are

:
a
::::
key

:::::
pillar of climate research and provide predictions of global environ-

mental change due to burning fossil fuels. Projections by ESMs strongly inform the reports of the Intergovernmental Panel on

Climate Change (e.g. IPCC, 2013, 2021) and influence climate policy. These models consist of solving, on numerical meshes,

discretised differential equations that describe the evolution of the atmosphere, oceans, land and cyrosphere
:::::::::
cryosphere

:
and5

their interactions. In addition to physical processes, these models have evolved to emulate key global geochemical cycles.

ESMs are typically forced with prescribed values of historical atmospheric greenhouse gas (GHG) concentrations, followed by

a range of scenarios for their future levels (e.g., Meinshausen et al., 2011). This process estimates how the planetary climate

system responds to altered atmospheric gas composition. Alternatively, an ESM can be forced with CO2 emissions scenarios

(e.g., Cox et al., 2000)
::::::::::::::::::
(e.g. Cox et al., 2000) , if the ESM has a full

:::::::
complete

:
description of the global carbon cycle. A major10

achievement of the scientific community is the pooling of climate model projections from different research centres into com-

mon Coupled Model Intercomparison Project (CMIP) databases such as CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al.,

2016).
:::::
CMIP

::::::::
databases

::::
also

::::
hold

:::::::::
simulations

:::::
with

:::::::
forcings

::::
held

::
at

:::::::::::
pre-industrial

:::::
levels

::
to

::::
test

::::
ESM

:::::::
stability

::::
and

::::::::::
characterise

::::
their

::::::::::::
representation

::
of

::::::
natural

::::::::::
variability.

:::::::::::
Furthermore,

::::
there

:::::
exist

:::::::::
illustrative

::::::::
idealised

:::::
ESM

:::::::::::
experiments,

::
to

:::::::::
determine

:::
the

:::::::
response

::
to

::
a

:::::::::
continuous

:::::::::
cumulative

::::
1%

:::
per

::::::
annum

:::::::
increase

::
in

::::::::::
atmospheric

:::::
CO2,

::
or

::
to
:::
an

::::::
abrupt

::::
jump

:::
by

:
a
:::::
factor

:::
of

::::
four

::
in15

::::
CO2 ::::

from
:::::::::::
pre-industrial

::::::
levels.

Almost all parts of the climate system vary in both space and time. Hence Partial Differential Equations (PDEs) are solved for

evolving temporal variations on the spatial numerical mesh particular to any ESM. Many of these PDEs central to understanding

the climate system are well–established, as described in standard textbooks on atmospheric and oceanic behaviours (e.g. Vallis,

2006). However, for the same future GHG scenario, analyses of the CMIP databases reveal significant inter–ESM differences20

between projections of even fundamental quantities such as the level of global warming (Lee et al., 2021). As standard equations

are frequently solved in ESMs, a valid question is: “why are ESM projections often so different”?. The main possibly
::
?”.

::::
The

simplest answer is that some processes are still not fully understood and are therefore parameterised differently between

ESMs. Components frequently noted in this category are the modelling of cloud–climate interactions (e.g. Bony et al., 2015),

and how aerosols act in modulating global temperature rise (e.g. Bellouin et al., 2020). A secondary source of uncertainty is25

the dependence of process parameterisation on gridbox resolution. Larger individual gridboxes (i.e. a coarser numerical grid)

often need effective parameterisation of sub–grid processes , and variation in this may cause inter–ESM differences. Numerical

tests with extremely high resolution models allow the explicit representation of convection (‘convection permitting’; e.g. Clark

et al., 2016) and verify its importance in describing local rainfall characteristics. While
::::::::
However,

:::::
while very high resolutions are

achievable in weather forecast models, computational speed precludes their routine operation for ESMs designed to simulate30

century timescales.

Unfortunately, the considerable variation in model estimates of future climate change makes societal adaptation planning

difficult. Such discrepancies can be used by some to discredit the overall notion of a human influence on climate. One possibility

to lower inter–ESM spread is to rank models by their ability to describe the contemporary climate and known recent changes
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::::::::::::::::::::
(e.g. Knutti et al., 2017) . ESMs regarded as the most reliable at describing expected future change are those that perform best

at simulating the recent past. However, this can be a subjective activity, depending on selected datasets for comparison and

their geographical location
:::::::::::
geographical

:::::::
location

:::::::
analysed. Furthermore, there is a risk of downrating a model that does not

perform well
:::::::
performs

::::::
poorly for the present day yet accurately projects a future change of concern to society.

Recently a technique called “Emergent Constraints” (ECs) has gained prominence as a new method to reduce the spread5

between the projections by different ESMs. The EC method capitalises on discovered relationships between two quantities

calculated by climate models when considering estimates of each from across many ESMs. One variable is an attribute of the

climate system for the present-day or historical period, for which
:::::::::::::::::
observationally-based

:
data also exists. The second variable,

for which data is unavailable, is often a feature of the evolving climate system and is informative for climate policy. For exam-

ple, this second variable may be an internal sensitivity of the climate system that determines changes to mean meteorological10

conditions as GHGs rise. Alternatively, it can be the direct estimate of some feature of climate change (e.g. an aspect of near–

surface meteorology) corresponding to specific future higher GHG levels. Measurement of the first quantity, in combination

with the discovered inter-ESM link between the two variables (i.e. the EC), provides the constraint on the magnitude of the

second unknown variable.

The first application
::::::::::
applications of the EC technique was to

::::
were

::
to

::::::::
constrain

::::::::
estimates

::
of

::::::::
Transient

:::::::
Climate

:::::::::
Response15

:::::
(TCR)

::::
and

::::
mean

:::::::::::
precipitation

:::::::
changes

:::
for

:::::::
different

:::::::
warming

:::::
levels

::::::::::::::::::::::
(Allen and Ingram, 2002) ,

::::
and

::
to refine estimates of large-

scale snow albedo feedbacks in a warming world (Hall, 2004)
::::::::::::::::
(Hall and Qu, 2006) . Since then, the EC method has lowered

uncertainty in a substantial number of components of the Earth system (Hall et al., 2019), and including for fundamental

climate quantities such as Equilibrium Climate Sensitivity (ECS) (e.g. Cox et al., 2018). Other researchers have provided EC–

based estimates of both ECS and Transient Climate Response (TCR )
::::
TCR (Jimenez-de-la Cuesta and Mauritsen, 2019; Nijsse20

et al., 2020; Tokarska et al., 2020). Applications of ECs to physical parts of the Earth system have included cloud feedbacks

(e.g. Klein and Hall, 2015), as well as components of global geochemical cycles. ECs on aspects of geochemical cycles

include constraining the expected level of ocean acidification (Terhaar et al., 2020), marine primary productivity (Kwiatkowski

et al., 2017) and soil carbon turnover (Varney et al., 2020). Notable is that for many discovered ECs, the variable for which

measurements exist is often a statistic of a quantity fluctuating
::::::::
modelled

:::::::
quantity

:::
that

::
is

::::
also

::::::::
measured

:::::
during

:::
the

::::::::::::
contemporary25

:::::
period

::
is

::::
often

::
a
::::::::::::
high-frequency

:::::::
statistic

::
or

:::::::
attribute

::
of

:::
the

::::::
climate

:::::::
system.

:::
The

:::
EC

::::::
relates

:::
this

:::::::
quantity

::::
that

::::::::
fluctuates at shorter

timescales than
:
to
::
a longer–term climate–related variation the EC estimates. This use of high frequency variations

:::::::
attribute

::
of

::
the

:::::
Earth

:::::::
system

:::::::
relevant

::
to

:::::::::
projecting

::::
how

:::::::
climate

:::
will

::::::::
respond

::
to

:::::
rising

:::::
GHG

:::::::::::::
concentrations.

::::
The

::::::
ability

::
of

::::
ECs

::
to

::::
use

:::::::::
knowledge

::
of

:::::::::::
contemporary

:::::::::::::
high-frequency

::::::::
variations

::
to

::::::::
constrain

::::::::::::
understanding

::
of

::::::::
expected

:::::
future

::::::
climate

::::::
change

:
highlights

how ignoring system fluctuations
:::::::::
fluctuations

::
at

:::::
short

:::::::::
timescales may constitute disregarding valuable informationabout the30

climate system. The EC approach, therefore, offers an interesting comparison to the method of weighting ESMs by simply

comparing their projections of present day
:::::::::
present-day trends against measurements,

::::::::
especially

:
as the latter neglects variation

::::::
method

::::::
often

:::::::
neglects

::::::::::::
short-timescale

:::::::::
variations about such trends.

With ECs becoming ubiquitous in climate research and with their potential to enable better decisions on GHG emissions

:::::::::
trajectories that avoid dangerous change, it is appropriate that the method be moved to

:
is
::::::
placed

::
on

:
a stronger scientific basis.35
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Some recent papers review the EC method, highlighting its capability and listing a set of potential pitfalls. For instance,

Williamson et al. (2021) identify a particularly broad range of discussion points related to ECs, all framed in their application

to refining estimates of ECS. Further critiques of the EC method exist in the context of the terrestrial carbon cycle (Winkler

et al., 2019), Arctic warming (Bracegirdle and Stephenson, 2012) and ECS (Caldwell et al., 2018) - all note potential issues that

could result in incorrect bounds on future estimates of change. Schlund et al. (2020) test the transferability of bounds derived5

for estimates of ECS (using different ECs) first created with models in the CMIP5
:::::::::
robustness

::
of

::::::::
proposed

::::::::
emergent

:::::::::
constraints

::
by

::::::::::::
out-of-sample

::::::
testing

::
on

::
a
:::::::
different

::::::
model ensemble. These researchers find that the EC–based uncertainty bounds, when

derived using the CMIP6 ensemble, are generally larger than when using the CMIP5 models. Suggested causes of this widening

of uncertainty include the possibility that the spread of model projections informing an EC may be less
:::::
found

::::
that

::::::::
emergent

:::::::::
constraints

::
on

:::::
ECS,

:::::::::
developed

::::
using

:::
the

:::::::
CMIP5

::::::::
ensemble,

:::
do

:::
not

::::::
provide

::::::
useful

:::::::::
constraints

:::
on

::::
ECS in the CMIP6 ensemble,10

lowering the ability to find a tight constraint. A second possibility is that the CMIP5 modelswere overly simplistic, and the

CMIP6 models include better process representation, but this also introduces substantial new uncertainty that weakens the

ability of ECs to constrain ECS. Fasullo et al. (2015) provide an important discussion on
::::::
models.

::::::
These

::::
ECs,

::::::::
therefore,

::::
fail

::
to

::
be

:::::::::::
“confirmed”

:::::::::::::::
(Hall et al., 2019) .

:::::::::::::::::::::
Fasullo et al. (2015) also

::::::
discuss

:
whether it is expected that ECs hold across different

generations of ESMs.15

Yet despite recent scrutiny, there remains a basic,
:::::
Those

:::::::
authors

:::::
argue

:::
that

:::::::::
additional

::::::::
processes

::::::::
identified

::
as

:::::::::
important

:::
but

::::::::
uncertain,

:::
and

:::::::::
introduced

::
to

:::::
newer

::::::::::
ensembles,

:::::
could

:::::::
generate

:::
ECs

::::
that

:::::
make

:::::::
different

::::::::::
predictions.

:::::::::::::::::::::::
Fasullo et al. (2015) provide

::
the

::::::::
example

::
of

:::::
newer

::::::
ESMs

::::
that

::::::::::
characterise

:::::
better

:::::::::
convection

::::
and

::
its

::::::
impact

:::
on

::::::::
simulated

:::::
cloud

::::::::
features,

:::::
which

:::::::::
ultimately

:::
may

:::::
alter

:::
EC

::::::::
estimates

:::
of

:::::
ECS.

::::::::::
Recognising

::::
the

::::::
danger

::
of

:::::::
arriving

::
at
::::::::

spurious
::::::::
emergent

:::::::::
constraints

::::::
based

:::
on

:::
the

::::::
results

::
of

::::::::
relatively

:::::
small

:::::
model

:::::::::
ensembles

:::::::::::::::::::::::::::::::::::::::::::
(Caldwell et al., 2018) ,Williamson et al. (2021) have

:::
set

:::
the

:::::::::
challenge

::
of

:::::::
deriving

:::::
more20

:::::
robust

:::::::::::
theory-based

::::::::
emergent

:::::::::
constraints.

:::
To

::::::
inform

:::::::
attempts

::
to

:::::
meet

:::
that

:::::::::
challenge,

::::
here

::
we

:::::::
address

:::
the

:::::::::::
fundamental, almost

philosophical question: “What is an Emergent Constraint”?. While
:::::::
emergent

:::::::::::
constraint?”.

::::::
Despite

:::::
much

:::::::
scrutiny

::
of

::::
ECs, there are likely many perspectives on the answer to this question (see Nijsse and Dijkstra, 2018; Williamson et al., 2021, for example) ,

here
::::
what

:::::
forms

:::::
their

:::::
basis

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see for example Nijsse and Dijkstra, 2018; Williamson et al., 2021) .

:::::
Here we suggest that one

way to interpret many ECs is that they derive bulk parameters associated with differential equations that are valid at large25

spatial scales. Such equations are implicit in ESMs (i.e.
::
are

:
not coded explicitly) and instead “emerge” by aggregating the

numerical finite difference schemes that are solved in ESMs at the finer gridbox spatial resolution. Here we hope to initiate

a discussion of whether this is an appropriate way to describe the underpinning properties of many ECs. We consider simple

illustrative examples using standard solutions to basic differential equations but in
::::
with

:
the novelty of being placed in the

context of the framework of the EC method.30
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2 Methods and Conceptual Examples

2.1 The Emergent Constraint Method

The core of any EC is the discovery of a robust link, across different ESMs, between a driving variable, say X , and another

model calculated
::::::::::::::
model–calculated

:
quantity, Y . Variable X is a quantity for which contemporary measurements are available.

Quantity Y is a climate–related statistic, metric or parameter often of importance for developing future adaptation or mitigation5

strategy, but for which data does not exist. It is the
:::
The EC relationship between X and Y , in tandem with the measurement

of X , that constrains our understanding of Y . In general, it is considered preferable that ECs are found by process intuition

that reveals related
:::::
system

:
quantities, rather than direct inter–ESM “data mining”. For instance, in the context of finding ECs

to constrain understanding of the size of cloud feedbacks, Klein and Hall (2015) propose that each should be “accompanied by

credible physical explanations”. The EC relationship between X and Y may take many forms, such as a nonlinear response,10

or
::
is
:

potentially multidimensional with more than one X component.

For illustration purposes, we imagine an EC that is a simple linear regression between two variables, and when indexing

each ESM with i, is of the form:

Yi = a0 + a1Xi + εi + ηi. (1)

Here parameters a0 and a1 quantify the emergent constraint, and εi and ηi are ESM–specific “noise” terms. We imagine15

:::::::
consider that εi captures how far an individual ESM is from the fitted relationship of Eq. (1), and so any large absolute value

corresponds to a model outlier. Quantity ηi is a random variable, that describes natural climate variability for each model.

Measurement X∗ utilises this relationship to predict the value of Y , named Y ∗. Cox et al. (2018) provide the methodology to

derive uncertainty bounds on the constrained value Y ∗, which include being a function of both ε and
:
η,
:::
as

::::
well

::
as the size of

uncertainty bounds on data X∗.
:::::
Here,

:::
and

:::::::::
elsewhere,

:::
the

:::
’*’

::::::
symbol

:::::::::
represents

:
a
::::::::::::

measurement
:::
(or

:
a
:::::
value

::::::::::
constrained

::
by

:::
an20

:::
EC

:::
and

:
a
:::::::::::::
measurement).

2.2 Simple thermal “box” model with different heat capacities

Our working assumption is that ECs exist due to common inter–ESM deterministic processes, which we attempt to mirror with

abstract but illustrative , simple models. As such, the noise quantities εi and ηi are only reconsidered towards the end of our

analysis , and then only visually. We start with an especially simple conceptual representation of an EC. We consider a set of25

single thermal box models indexed by i. This indexing may mirror the differentiation between ESMs in a collection of models,

such as the CMIP6 ensemble (Eyring et al., 2016). Each model has a different heat capacity cpi (J K−1), in to which we assume

there is a common and known forcing heat fluxH(t) (W). Long-term
:::
We

::::::
regard

::::::::
long-term changes in this forcing are regarded

as analogous to Representative Concentration Pathways (RCP
:::::
RCPs) of future GHGs

::::
GHG

:
levels, often applied as an equal

forcing across ESMs. As a single box, there is no spatial variation, so the model is regarded
:::::
treated

:
as having infinite diffusion.30

The equation for the box temperature T (t) (K), where t (year) is time, c
′

pi = cpi/ny,s (J K−1 yr s−1) and ny,s (s yr−1) is
:::
the

5



number of seconds in a year, is:

c
′

pi

dT
dt

=H. (2)

We first consider
::::
study

:::
for

:
a known fluctuating heat flux, H = bcos(ωt), for the contemporary period to force each model

indexed by i. This
:::::
forcing

:
could be interpreted as a form of known annual seasonal cycle (and therefore ω = 2π), and this

forcing
:::::::::
unaffected

:::
by

:::
any

::::::::::
background

::::::
trends.

:::::
This

:::::
driver

:
results in a model–specific temperature, Ti(t). In addition to the5

known common H driver, observed are seasonal temperature features named T ∗ (K). The simple solution to Eq. (2) with this

periodic forcing is:

Ti(t) = C0 +
b

c′piω
sin(ωt). (3)

Removal of background multi–year temperature allows the setting of arbitrary constant C0 as C0 = 0. Required is a simple

statistic applicable to both modelled temperature projections and measurements, which could be
:::
ECs

::::::
require

::
a
:::::::
quantity

::::
that10

:
is
::::
both

::::::::
modelled

:::
for

:::
the

::::::::::::
contemporary

::::::
period

:::
and

::
is

::::::::
available

::
as

:
a
::::::::::::
measurement,

::::
such

:::
as the seasonal range , ∆TS ::::

∆TS (K).

Hence ∆TSi = max(Ti)−min(Ti)::::
Here

:::::::::::::::::::::::
∆TSi

= max(Ti)−min(Ti), and so for each model and from Eq. (3),

∆TSiSi
:

=
2b

c′piω
. (4)

Considered additionally is a longer–term forcing of our model, representing ongoing climate change. We describe this extra

forcing as simply a fixed value ofH0 (W) for t > 0. Hence this gives a combined forcing ofH(t) =H0+bcos(ωt), and solving15

Eq. (2) for both drivers simultaneously gives:

Ti(t) =
H0t

c′pi
+

b

c′piω
sin(ωt) t > 0. (5)

A second temperature–based statistic we can make is the running mean from the solution of Eq
:::
set

::
of

::::::::::::::::
temperature-based

:::::::
statistics

:::
we

:::
can

:::::::
consider

:::
are

:::::
based

::
on

:::::::
changes

::
in

::::::
annual

::::::
means.

::::
The

::::
time

::::::::
derivative

::
of

::::::
annual

:::::::
averages

:::
for

::
T

::
is

:
a
:::::
proxy

:::
for

:::
the

:::
rate

::
of

::::::
global

::::::::
warming.

::::::
Annual

:::::::::
averaging

::
of

:::
Eq. (5) by averaging within individual years to remove seasonality. This running20

mean is the background change in T and is analogous to long–term climate variation, such as global warming. Such averaging,

:::
and denoted by an overline , is simply:

Ti(t) =
H0t

c′pi
. (6)

A possible EC is now revealed . The
:::::
where

:::
the

:
issue of future concern might be the rate of change of mean temperature Ti.

Plotting for the simple model an “x” axis of ∆TSi :::::
∆TSi

(from Eq. (4)) and a “y” axis of dTi(t)/dt=H0/c
′

pi (from Eq. (6))25

would yield a diagram where both quantities increase, linearly, in 1/c
′

pi . The EC is, therefore, a relation between seasonal

temperature variation and long–term warming that holds across all c
′

pi values. Knowledge of the actual x axis variable, which

here would be the known observed seasonal amplitude, ∆T ∗
S ::::

∆T ∗
S , constrains the bounds of the uncertainty of the y axis

quantity. We present these ideas schematically in Fig. 1, and show the uncertainty, εi+ηi, as just random distances by individual

models (black dots) away from the EC regression line.30

6



Figure 1. Schematic representation of a simple emergent constraint. Panel (a) (top row) shows the combined equation for long–term

and seasonal forcing (so with ω = 2π yr−1) driving the thermal box model given by Eq. (2) (middle row), and the related response to both

forcings, which combine additively to give Eq. (5) (bottom row). Panel (b) illustrates a related emergent constraint, based on the response

Eq. (5), as also shown in panel (a). This response contains a seasonal (x axis) and long–term (y axis, with seasonality ignored)
::::::
variation, and

the EC links the two. The EC allows the observation of seasonal fluctuations
:::::
(∆T ∗

S ,
:
x
::::
axis)

:
to constrain the long–term rate of change of state

variable, T
:

(y
::::
axis). Each model (black dots, indexed by i) has a different implicit value for c

′
p i.e. c

′
pi . The EC is assumed to not be exact,

with noise causing variation around the regression line (the εi and ηi terms of Eq. (1)). The vertical yellow band represents uncertainty in

the measurement, ∆T ∗
S::::

∆T ∗
S . The constrained projection of the long–term warming rate (based on the EC, the value of ∆T ∗

S :::
∆T ∗

S:
and its

uncertainty) is given by the green horizontal band.

In the analysis presented above, the parameters related to forcings, i.e. b andH0, are assumed to be invariant between models.

Hence the
:::
The measurement in tandem with the EC is designed to lower

:
in
:::::
effect

::::::::
lowering

:
uncertainty on the model–specific

7



value of bulk parameter c
′

pi . However, an alternative possibility is an emergent constraint
:::
EC where there is instead uncertainty

in the magnitude of the forcings between models (for instance,
::::::
forcing

::
of

::
an

:::::
Earth

::::::
system

::::::::::
component

::::::
(rather

::::
than

:::::::::
inter-ESM

:::::
spread

::
in
::::
how

:::
the

::::::::::
component

::::
itself

::
is
::::::::::
modelled).

:::
For

::::::::
instance,

::::
there

:::::::
remains

:
a range of representations , between ESMs , of

the translation of
:::::::
between

:::::
ESMs

::
of

:::::::::
translating atmospheric aerosol levels to their cooling effect). Now .

:::::::
Instead,

:::
we

:::
can

::::::
regard

the forcing parameters are
::
as

::::::::
uncertain,

:
indexed as bi and H0i . Subject to ,

::::::::
although

:::
we

:::::::
imagine

:::
for

::::
each

::::
ESM

:::
the

::::::::::
uncertainty5

:
is
:::::::
similar,

:::
and

:::
so

:::
get

:::
the

::::
ratio

:
bi/H0i being

::
as invariant between models,

:
.
::::
This

:::::
setup

:::::
yields

:
an EC of identical form to that

of Fig. 1could exist where instead
:
,
:::
but

:::::::
instead,

:
c
′

p has a single numerical value , common to all models. In this case, the

emergent constraint represents the discovery that there is a single model–independent internal bulk parameter (i.e. c
′

p), while

the data point constrains
::::::::::::
Measurements

::::
then

:::::::
provide

:::
the

::::::::
constraint

::
to

:::::::
remove uncertainty in the forcing element bi. With the

forcing uncertainties common for both short– and long–term drivers , the data therefore also constrains
:::
(i.e.

:::
the

::::::::::
assumption10

:::
that

::::::
bi/H0i::

is
:::::::
constant

::::::::
between

::::::
ESMs),

:::
the

::::::::::::
measurement

::::
∆T ∗

S:::::::::
implicitly

::::::::
constrains

:::
bi,:::::

hence
:
H0i ,:and thus the background

warming dTi/dt.

2.3 Thermal model with spatial variation

We extend the basic box model of Section 2.1 with a further illustrative example that introduces spatial variability via direc-

tional coordinate x (m)and retain temperature .
:::::::::::
Temperature

::
is

:::::::
retained

:
as our notional state variable. Now we consider the15

system to evolve on a semi–infinite domain 0≤ x≤∞, and with the heat forcing boundary condition
:
,
::
H ,

::::::::
specified

:
at x= 0.

This framework may depict, for instance, heat absorption by the oceans and where information on future trends in surface

temperature is required. Specifically, we solve for Ti(x,t) as satisfying a diffusion equation:

c
′

pi

∂Ti
∂t

= κi
∂2Ti
∂x2

0≤ x≤∞. (7)

Here c
′

pi (J K−1 m−3 yr s−1) remains a form of heat capacity, while κi (W m−1 K−1) is a conductivity or mixing parameter,20

and both parameters may be model specific, as indexed by i. We again start by prescribing a seasonal boundary condition ,

::::::::
boundary

::::::::
condition

::::::::
(Fourier’s

:::
law

::
of
::::
heat

::::::::::
conduction)

::::
that

::
is

:::::::
seasonal,

::::
here

:
at x= 0, given by:

κi
∂Ti
∂x

∣∣∣∣
x=0

=−H =−bcos(ωt). (8)

The solution to governing Eq. (7) with the boundary condition of Eq. (8), assuming no non–seasonal transient terms and that

Ti is bounded as x→∞, is:25

Ti(x,t) =
be

−
(
x

√
c
′
pi
ω

2κi

)
√
c′piκiω

cos

−ωt+
π

4
+x

√
c′piω

2κi

+C0. (9)

Hence the value of Ti at x= 0, with additive constant set to C0 = 0, is given by:

Ti(0, t) =
bcos(−ωt+π/4)√

c′piκiω

bcos(ωt−π/4)√
c′piκiω

:::::::::::::

. (10)
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From Eq. (10), the temperature seasonal cycle at x= 0
::::::::
therefore corresponds to a range of :

∆TSiSi
:

= max(Ti(0, t))−min(Ti(0, t)) =
2b√
c′piκiω

. (11)

and for which we consider there is similarly a corresponding
::
to

::
be

:
a
::::::::::::
corresponding

::::::::::
measurable

:::
i.e. observable value, ∆T ∗

S::::
∆T ∗

S .

In further analogy to our example with the box model example, we consider an additional long–term heat flux, H0 at x= 0,

starting at time t= 0. That is, a boundary condition of:5

κi
∂Ti
∂x

∣∣∣∣
x=0

=−H0 t > 0.. (12)

and this
::::::::
Satisfying

:::
Eq.

:::
(7)

::::
with

:::
this

::::::::
boundary

::::::::
condition

:
has a solution of:

Ti(x,t) =
2H0

κi

−x
2

erfc

x
2

√
c′pi
κit

+

√
κit

πc′pi
e
−
c
′
pi
x2

4κit

 t > 0, x > 0. (13)

The solution to Eq. (13)
::::::::
calculated at x= 0 corresponds to:

Ti(0, t) = 2H0

√
t

c′piκiπ
t > 0. (14)10

As our governing Eq. (7) is linear, the seasonal and long–term solutions (Eqs. (9) and (13) respectively) may be simply added.

Hence a combined heat flux in to the system of bcos(ωt) +H0 at x= 0 generates a surface temperature Ti(0, t), for t > 0,

given by the addition of Eqs. (10) and (14). The inclusion of spatial variation, via x, causes a long-term transient effect where

although the long–term average heat flux is constant, the surface temperature given by Eq. (14) has a
√
t response. This solution

compares to a linear long–term temperature response for our single box model example in Eqs. (5) and (6).15

For our example with spatial variation, a possible emergent constraint could constitute an x axis of ∆TSi ::::
∆TSi:

(Eq. 11) and a

y axis of dTi(0, t)/dt×
√
t=H0/

√
c′piκiπ (

::::
from differentiation of Eq. (14) with respect to time, in tandem with averaging out

the seasonal variations of Eq. (10)). Using these variables, both the x and y axes are linear in 1/
√
c′piκi for the different indices

i. We present this EC schematically in Fig. 2. In conjunction with this EC, knowledge of seasonal temperature variation reveals

and so constrains
::
(x

::::
axis,

::::
Fig.

::
2)

::::::
reveals

:
the long–term warming rate

::
(y

::::
axis,

:::
Fig

:::
2.). In this example the data point constrains,20

implicitly, the value of c
′

piκi. If c
′

pi is well known and fairly invariant between ESMs, then the data point is constraining the

implicit value of κi, or vice versa where the constraint is on c
′

pi .:::
As

::
an

::::::
aside,

::
in

:::
the

:
y
::::
axis

::
of

::::
Fig.

::
2,

:::
we

:::::
retain

:::
the

:::

√
t

:::::
factor

::
to

::::
make

:::
the

:::::::
vertical

:::::::
position

::
of

:::
the

:::
EC

::
in

:::
the

:::::::
diagram

::::::::::
independent

::
of

::::
time

:::
or

::::
GHG

:::::
level.

:

In a strong similarity to the
::
As

:::
for

::
the

:
discussion of uncertainty in the forcing boundary conditions of the box model,

:
and their

potential constraint, the same possibility exists for our example with spatial variability. In the event that both
:::::
Should

:
effective25

parameters cp and κ show little or no variation between ESMs, but
::
yet there is uncertainty in b of Eq. (8) andH0 of Eq. (12) (and

with identical uncertainties
:::
both

::::::::::
parameters

::::
have

::::::
similar

::::::::
unknowns, so again , b/H0 is invariant inter–ESMs

::::::::::
inter-ESMs), then

the EC combined with data for ∆TS :::
∆TS:acts to remove that

:::::
forcing

:
uncertainty. Such removal of

::::::::::::
forcing-related

:
uncertainty

between ESMsassociated with forcing, via the EC and measurement of ∆TS::::
∆TS, again constrains longer–term warming levels

in this illustrative example
:::::::::
framework.30

9



Figure 2. Schematic representation of an emergent constraint with a spatial component. The spatial dimension is defined by
::::::
variable x.

Panel (a) (top row) shows the combined equation for long–term and season
::::::
seasonal

:
forcing at x= 0, driving the diffusive model given by

Eq. (7) (middle row), and the related response at x= 0 and t > 0 given by Eqs. (10) and (14) (bottom row). The seasonal forcing (so with

ω = 2π yr−1) is given by Eq. (8) and the long–term forcing to the thermal model given by Eq. (12). These two forcings generate a response in

T at x= 0 given by Eqs. (10) and (14) respectively, that combine additively and as shown. Panel (b) illustrates the related emergent constraint

, based on the response Ti(0, t) shown in panel (a). This response contains a seasonal (x -axis
:::
axis

:::
i.e.

:::
the

:::::::
horizonal

::::
axis,

::
not

:::::::
variable

:
x) and

long–term (y axis, with seasonality ignored) part, and the EC links the two. The EC allows the observation of seasonal fluctuations,
::::::

(∆T ∗
S ,

:
x
::::
axis),

:
to constrain the long–term rate of change

::
(y

::::
axis). Each model (black dots, indexed by i) has a different implicit value for c

′
pi ×κi.

As for the example of Fig. 1, the EC is again assumed to not be exact, with noise causing variation around the regression line. The vertical

yellow band represents uncertainty in the measurement
:::::::
measured

::::
value

:
of ∆TS :::

∆TS. The constrained projection of the long–term warming

rate (multiplied by
√
t, and

::
as based on the EC ,

:::
and the value of ∆TS ::::

∆TS and its uncertainty), is given by the green horizontal band.
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3 Discussion and Conclusions

How climate will change due to the ongoing burning of fossil fuels remains one of the most high–profile
::::::::::::
highest–profile ques-

tions asked of the scientific community. ESMs are central to such research activity, and their primary objective is to accurately

predict climate change for different potential future GHG levels
::
as

:::::::::
accurately

::
as

:::::::
possible. However, substantial differences

can exist between ESM projections, even for the same future scenario of atmospheric GHG changes, so dependable methods5

are required to reduce the spread in simulations. Emergent constraints are discovered linkages, inter–ESM, between a quantity

that is
::::
also presently measured and a second important climate attribute associated with future changes, and where data on the

former constrains our assessment of the value of the latter. With constant pressure
:
a
:::::::
constant

:::::::::::
requirement to provide policy-

makers with refined estimates of future climate change , and against the backdrop of considerable variation between ESMs,

ECs have attracted substantial application to a plethora of components of the Earth system. The rapid rise in EC discoveries10

and their near–ubiquitous
::::
near

:::::::::
ubiquitous

:
use to constrain uncertainty enables a way to extract additional information from

available ESMs that have required huge expenditure to build and operate. However, with such a high prominence of ECs as

a method to lower uncertainty, it is timely to investigate the assumptions that underline them and any potential pitfalls (e.g.

Williamson et al., 2021). Here we try to start an additional but related route of investigation. We suggest a potential explana-

tion of many ECs is that their basis relates to solving large–scale equations that are both implicit in ESMs and have common15

features between models.

We develop the hypothesis that many identified ECs relate to undiscovered differential equations that describe the Earth

System at large geographical scales. Such equations are not coded explicitly in ESMs, but instead “emerge” as the aggregation

of the finer resolution behaviour of the climate system. Such finer resolution features are calculated in ESMs as the solution

of differential equations solved on the numerical mesh of each model and capture environmental processes that are often un-20

derstood well. Such understanding introduces similarities between models, which remain present in any spatial aggregation.

The role of ECs is to enable the discovery of the implicit value of parameters associated with such large–scale equations ,

where uncertainty remains. Such bulk parameters affect both a quantity of interest linked to predicting future climate and a

contemporary attribute of the Earth system. The contemporary quantity is measurable and, in tandem with the EC, constrains

the parameterisation and thus
:
, understanding of the quantity associated with the future. In many instances of discovered emer-25

gent constraints, the present–day component is of a higher frequency fluctuation (e.g. seasonal), with the EC then projecting

:::
uses

::
to
:::::::

project a climate attribute of relevance to decadal or century timescales.

We have presented two illustrative examples of solving standard differential equations but placed them in a structure as if they

reveal
:::::::
underpin

:
an emergent constraint. We imagine the equations to be underlying large–scale bulk equations, solved implicitly

in multiple ESMs, as outlined above. There are many
:::::
Many

:
examples of equations that represent the aggregated behaviour of30

fine–scale systems. For example, the bulk properties of an ideal gas, temperature and pressure, are related through the ideal gas

law. However, these bulk properties can also be understood as the aggregated behaviour of the molecules (their mean velocity,

mass and number density) that make up the gas. Formally these relations can be made through kinetic theory (Pitaevskii and

Lifshitz, 1981). There are also examples of linear bulk dynamics emerging from nonlinear fine scale dynamicsas well as the

11



converse -
::::::::
fine–scale

::::::::
dynamics,

::::
and

:::
the

:::::::
converse

::
of

:
effective nonlinear bulk behaviour from linear microscopic dynamics e.g.

the phase transition in the two dimensional Ising model (McCoy, 1973).

Our first case is a simple box model for which we wish to derive a thermal capacity term, c
′

p, and the second has a single

spatial variation and represents a search for a multiplicative combination of capacity and diffusion, c
′

pκ. A discovered EC

between models, combined with measurements, would reveal
:
is

::
in

:::::
effect

::::::::
revealing

:
the actual real world value of c

′

p or c
′

pκ.5

Large values of
::::
noise

::::
term

:
εi are for models that are outliers to the EC. In the context of our abstract examples, outliers have

different values of effective parameters c
′

p or c
′

pκ dependent on whether considering shorter seasonal timescales or longer

periods , and implies these models to have substantially different process representation compared to most other ESMs. We

also suggest an additional EC possibility where effective parameters emerge as invariant between ESMs,
:
and instead there

is uncertainty in forcings (here, b and H0, although the uncertainty is identical
::::::
similar

:
between the two parameters). Our10

conceptual model determines internal system properties, i.e. parameters, which for the spatial example are constrained based

on behaviours at the edges of the domain. We note the basic theorems of vector calculus (e.g. Stokes’ theorem) that relate

integrated internal system features to conditions along domain edges.

A broad set of possibilities may link to our suggestion that the underlying principle of many ECs is the existence of

equations valid at the large scale
::::
large

::::::
scales. For instance, additional

::
in

:::::::
addition

:
to our example of diffusion, PDEs with15

spatial dimensions can also simulate advection, and in terms of climate modelling this may correspond to teleconnections
::::
ECs

:::
may

::::::
reveal

:::::::
implicit

:::::
PDEs

::::
with

::
an

:::::::::
advective

:::::::::
component

::::::::::::
corresponding

::
to

:::::::::::
atmospheric

::::::::
transport.

::
In

:::::
many

:::::
cases,

:::::::::::
atmospheric

:::::::
transport

:::::::
provides

:::
the

::::::::
coupling

:::::::
between

::::
two

:::::::::::::
spatially-distant

::::::::::
components

::
of

:::
the

:::::
Earth

:::::::
system,

:::::::::
generating

::::
what

::
is

::::
often

::::::
called

:
a
::::::::::::::
“teleconnection”. To constrain the strength of future teleconnections,

:::
an

:::
EC is likely to need a present day

:::::::::
present–day

:
mea-

surement of wind fluxes , or measurements of a quantity of interest in two locations. Modelling
:
In

::::::::
addition,

:::::::::
modelling many20

components of the Earth system requires coupled differential equations to link different physical quantities, capture changes

of state, or where geochemical cycles link tightly to climate variation. An example of an EC capturing features of a coupled

system is that of Cox et al. (2013). In that analysis, data on present–day simultaneous fluctuations in atmospheric CO2 and

annual temperature anomalies reveals the fate of future South American carbon stores under global warming and the related

risk of the iconic possibility of Amazon forest “die–back”. In some cases, the EC x axis, for which measurements exist, is a25

combination of high-frequency drivers and response, and for the same variable. As an example of such a more refined and com-

plex contemporary statistic, Cox et al. (2018) estimate equilibrium climate sensitivity with a statistic Ψ that is a combination of

the standard deviation and autocorrelation of current global temperature fluctuations. Arguably, the Ψ statistic merges a system

driver (standard deviation) and a response (autocorrelation).
:::::
Here,

:::
we

::::::
assume

:::::::::
underlying

:::::
PDEs

::::
that

:::
are

::::::
simple

:::
by

::::::
design

::
to

::
aid

:::::::::::
transparency.

:::::::
Making

:::::
these

:::::::::
underlying

::::::
models

:::::
more

:::::::
relevant

::
to

:::
the

::::::
Earth’s

::::::
climate

::
is

::
an

::::::::::
outstanding

:::::::::
challenge.

:::::::::
Additional30

::
to

::::::::
horizontal

::::
heat

::::::::
transport,

::::
our

:::::
planet

:::::
emits

::::::::
longwave

::::::::
radiation

::
to

:::
the

:::::
wider

::::::::
universe.

:::::
Such

::::::::
radiation

:::::::
provides

:::
the

::::::::
restoring

:::::
force,

::
λ,

:::
that

:::::::::
ultimately

::::::::
stabilises

:::
the

::::::::::
near-surface

:::::::::::
temperature.

::::::::
Including

::::
such

::
a
:::::::
restoring

:::::
force

::
in

:::
our

::::::
simple

:::::
PDE

::::::
models

::
is

:::
one

:::::::
possible

::::::::
extension

::
of

:::
our

::::::::
analysis,

::::::::
although,

::
in

::::::
tandem

::::
with

:::
an

:::::::
unknown

::::
heat

::::::::
capacity,

:::
cp,

:::
this

:::::
would

:::::::::
potentially

::::::::
generate

:
a
::::::::::::::
two-dimensional

:::
EC.

:::
In

:::::::
practice,

:::::
fitting

:
a
::::::::::::::
two-dimensional

:::
EC

::::
may

:::
be

::::::::::
challenging

::::
given

:::
the

::::::::
relatively

:::::
small

:::::::
number

::
of

::::
data
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:::::
points

:::
(i.e.

::::::::
available

:::::::
ESMs).

::::::::
Analytical

::::::::
solutions

::::
may

::::
exist

::::
that

::::
allow

:::
for

::
a

::::::::::
time-varying

:::::
value

::
of

:::
H0::::

that
:::::::::::
approximates

::::::
known

:::::::
historical

:::::::
climatic

:::::::
forcing.

:

In summary, the analysis of ensembles of ESMs, as built by different research centres, has revealed multiple emergent con-

straints for all parts of the Earth system (Hall et al., 2019). Discovered ECs have reduced uncertainty bounds for features of the

climate system that directly affect society and aretherefore ,
:::::::::

therefore, of particular interest to policymakers. With the place-5

ment of much emphasis on the EC method to lower uncertainty, there is a growing requirement to understand its underlying

assumptions better. Timely research is emerging that critically assesses the method (e.g. Williamson et al., 2021). We wish to

add to the discussion by suggesting that many ECs represent the discovery of parameters associated with large–scale implicit

equations that describe features of the Earth system. Such equations emerge from the aggregation of more local effects simu-

lated on the gridpoints of the numerical meshes of individual ESMs. We do not propose this as a universal theory of ECs, as10

some may function well for other reasons. However, with the general
::::
With

:::
the

::::::::
prevailing

:
view that physical intuition provides

a better route to EC discovery than, say,
::::::
should

:::::
guide

:::
EC

:::::::::
discoveries

:::::
rather

:::::
than,

:::
e.g.

:
data mining, our suggestion is therefore

analogous to
:::::::
supports that standpoint. Hence we consider most ECs to correspond to underlying processes and related math-

ematical representation. Such bulk process discovery helps counter a view that ESMs are so complex that they can never be

amenable to interpretation via standard applied mathematics techniques (a concern raised by Huntingford, 2017). Such meth-15

ods include equation scaling
::::::
scaling

::
of

:::
the

:::::::::
equations

::::::
directly

::::::
coded

::
in

:::::
ESMs

:
(“nondimensionalisation”) to find the dominant

underlying forms, although we speculate that EC discovery may instead identify key large–scale processes. Further hinting at

the need to confirm underlying processes is the analysis of Qu et al. (2018), who .
:::::
Those

:::::::
authors consider the statistical linkages

between four different ECs proposed for ECS and suggest that the discovered commonalities are because each is constraining,

implicitly, shortwave radiation cloud feedbacks. We present two simple illustrative examples of differential equations, their20

solutions, and their potential interpretation as ECs. Despite differential equations representing a range of processes, mathe-

matics can often characterise them in discrete ways (for instance, every
::::::::::
second-order

:
PDE being either diffusive, elliptic or

hyperbolic). We conjecture that there are one–to–one mappings between ECs and equation forms and their identification could

also incentivise revisiting
:::
The

::::::::::
perspective

::::::
offered

::::
here

:::::
may

::::
open

:::::
ways

::
to

:::::::
classify

::::
ECs

:::::
based

:::
on

:::
the

::::
type

::
of

:::
any

::::::::::
discovered

:::::::::::
underpinning

::::::::
equations

::::
they

:::
link

:::
to.

:::::::::
Confirming

::::
such

:::::
links

:::::
allows

:::
the

:::::
study

::
of

:::::
some aspects of climate change science from an25

::::
from

:
a
:::::
more

::::::::
analytical

:
applied mathematics standpoint.

:::
The

:::::::
equation

:::::
forms

::::
may

:::
be

:::::
PDEs,

::::
they

::::
may

::
be

::::::::
coupled,

::
or

::::
they

:::::
could

::
be

::::::
simply

:::::::
ordinary

:::::::::
differential

:::::::::
equations

::
or

::
in

::::::::
algebraic

:::::
form. Although our examples are synthetic, we hope the concepts we

present may support the placement of ECs on a stronger theoretical footing by, where applicable, revealing underlying bulk

equations that fit with process intuition. We note Brient (2020) argue that when multiple ECs exist to predict the same quantity,

each should be weighted by the level of physical understanding they offer to elucidate the relationship. It remains important30

to understand ECs as they offer an elegant and nearly unique potential capability to lower the continuing uncertainty between

ESM projections.
::
In

::::::::::
conclusion,

:::
we

::::::
suggest

:::
an

:::::::::::
interpretation

:::
of

::::
ECs

::
is

::::
that

::::
they

:::::
reveal

::::::::::
parameters

::
of

::::::::::
large-scale

:::::::
implicit

:::::::::
differential

::::::::
equations

::::
that

::::::::
aggregate

:::
the

::::::::
numerical

:::::
finite

::::::::::
differencing

:::::
upon

:::::
which

:::::
ESMs

:::
are

:::::
built.
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4 Code availability

The computer scripts leading to checking of the analysis solutions (with the sympy python module), and any of the
:::
the

:::
two

:
dia-

grams (with the matplotlib python module) are available on request to Chris Huntingford (chg@ceh.ac.uk)
:
at
:::::::::::::::::::::::::::::::::
https://doi.org/10.5281/zenodo.7633839
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