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Abstract. Planning for the impacts of climate change requires accurate projections by Earth System Models (ESMs). ESMs,
as developed by many research centres, estimate changes to weather and climate as atmospheric Greenhouse Gases (GHGs)
rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the
understanding of key climate system attributes. However, there remain substantial inter—ESM differences in their estimates of
future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult.
Until recently, the primary approach to reducing projection uncertainty has been to place an emphasis on simulations that
best describe the contemporary climate. Yet a model that performs well for present—day atmospheric GHG levels may not
necessarily be accurate for higher GHG levels and vice-versa.

A relatively new approach of Emergent Constraints (ECs) is-are gaining much attention as a technique to remove uncertainty
between climate models. This method involves searching for an inter—ESM link between a quantity that we can also measure
now and another-a second quantity of major importance for in-describing future climate. Combining the contemporary mea-
surement with this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical
cycles of the climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a
requirement to understand them better. We hypothesise that as many Earth System components vary in both space and time,
their behaviours often satisfy large—scale Partial-Differential Equations (PBEsDEs). Such PBEs-DEs are valid at coarser scales
than the equations coded in ESMs which capture finer high resolution gridbox—scale effects. We suggest that many ECs link

seffective hidden DEs implicit in ESMs and that aggregate
small-scale features. An EC may exist because its two quantities depend similarly on an ESM—specific internal bulk parameter

to such ¢

in such a PBE-and-DE, with measurements constraining and revealing its (implicit) value. Alternatively, well-established
process understanding coded at the ESM gridbox—scale, when aggregated, may generate a bulk parameter with a common
“emergent” value across all ESMs. This single emerging parameter may link uncertainties in a contemporary climate driver to
those of a climate—related property of interest, In these circumstances, the EC constraining-the-latter-by-measurements-of-the

fermercombined with a measurement of the driver that is uncertain, constrains the estimate of the climate—related quantity. We
offer simple illustrative examples of these concepts with generic differential-equations-and-their-solutions—-DEs but with their
solutions placed in a conceptual EC framework.
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1 Introduction

Earth System Models (ESMs) form-the-basis-are a key pillar of climate research and provide predictions of global environ-
mental change due to burning fossil fuels. Projections by ESMs strongly inform the reports of the Intergovernmental Panel on
Climate Change (e.g. IPCC, 2013, 2021) and influence climate policy. These models consist of solving, on numerical meshes,
discretised differential equations that describe the evolution of the atmosphere, oceans, land and eyrospherecryosphere and
their interactions. In addition to physical processes, these models have evolved to emulate key global geochemical cycles.
ESMs are typically forced with prescribed values of historical atmospheric greenhouse gas (GHG) concentrations, followed by
a range of scenarios for their future levels (e.g., Meinshausen et al., 2011). This process estimates how the planetary climate
system responds to altered atmospheric gas composition. Alternatively, an ESM can be forced with CO2 emissions scenarios
{e-g-Coxetal;2000)(e.g. Cox et al., 2000) , if the ESM has a full-complete description of the global carbon cycle. A major
achievement of the scientific community is the pooling of climate model projections from different research centres into com-

mon Coupled Model Intercomparison Project (CMIP) databases such as CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al.,

2016). CMIP databases also hold simulations with forcings held at pre-industrial levels to test ESM stability and characterise
their representation of natural variability. Furthermore, there exist illustrative idealised ESM experiments, to determine the
response to a continuous cumulative 1% per annum increase in atmospheric CO», or to an abrupt jump by a factor of four in
€Oy from pre-industrial levels.

Almost all parts of the climate system vary in both space and time. Hence Partial Differential Equations (PDESs) are solved for
evolving temporal variations on the spatial numerical mesh particular to any ESM. Many of these PDEs central to understanding
the climate system are well—established, as described in standard textbooks on atmospheric and oceanic behaviours (e.g. Vallis,
2006). However, for the same future GHG scenario, analyses of the CMIP databases reveal significant inter—-ESM differences
between projections of even fundamental quantities such as the level of global warming (Lee et al., 2021). As standard equations
are frequently solved in ESMs, a valid question is: “why are ESM projections often so different”?-The-main-possibly-?". The
simplest answer is that some processes are still not fully understood and are therefore parameterised differently between
ESMs. Components frequently noted in this category are the modelling of cloud—climate interactions (e.g. Bony et al., 2015),
and how aerosols act in modulating global temperature rise (e.g. Bellouin et al., 2020). A secondary source of uncertainty is
the dependence of process parameterisation on gridbox resolution. Larger individual gridboxes (i.e. a coarser numerical grid)
often need effective parameterisation of sub—grid processes ;-and variation in this may cause inter—ESM differences. Numerical
tests with extremely high resolution models allow the explicit representation of convection (‘convection permitting’; e.g. Clark
etal.,2016) and verify its importance in describing local rainfall characteristics. While However, while very high resolutions are
achievable in weather forecast models, computational speed precludes their routine operation for ESMs designed to simulate
century timescales.

Unfortunately, the considerable variation in model estimates of future climate change makes societal adaptation planning
difficult. Such discrepancies can be used by some to discredit the overall notion of a human influence on climate. One possibility

to lower inter—ESM spread is to rank models by their ability to describe the contemporary climate and known recent changes
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(e.g. Knutti et al., 2017) . ESMs regarded as the most reliable at describing expected future change are those that perform best
at simulating the recent past. However, this can be a subjective activity, depending on selected datasets for comparison and
thetr-geographical-toeation-geographical location analysed. Furthermore, there is a risk of downrating a model that deesnet
perform-well-performs poorly for the present day yet accurately projects a future change of concern to society.

Recently a technique called “Emergent Constraints” (ECs) has gained prominence as a new method to reduce the spread
between the projections by different ESMs. The EC method capitalises on discovered relationships between two quantities
calculated by climate models when considering estimates of each from across many ESMs. One variable is an attribute of the
climate system for the present-day or historical period, for which observationally-based data also exists. The second variable,
for which data is unavailable, is often a feature of the evolving climate system and is informative for climate policy. For exam-
ple, this second variable may be an internal sensitivity of the climate system that determines changes to mean meteorological
conditions as GHGs rise. Alternatively, it can be the direct estimate of some feature of climate change (e.g. an aspect of near—
surface meteorology) corresponding to specific future higher GHG levels. Measurement of the first quantity, in combination
with the discovered inter-ESM link between the two variables (i.e. the EC), provides the constraint on the magnitude of the

second unknown variable.

The first apphieation-applications of the EC technique wwas—te-were to constrain estimates of Transient Climate Response

TCR) and mean precipitation changes for different warming levels (Allen and Ingram, 2002) , and to refine estimates of large-
scale snow albedo feedbacks in a warming world (Hal;2004)-(Hall and Qu, 2000) . Since then, the EC method has lowered

uncertainty in a substantial number of components of the Earth system (Hall et al., 2019), and including for fundamental
climate quantities such as Equilibrium Climate Sensitivity (ECS) (e.g. Cox et al., 2018). Other researchers have provided EC—
based estimates of both ECS and Fransient-Climate-Response(TCR-)-TCR (Jimenez-de-la Cuesta and Mauritsen, 2019; Nijsse
et al., 2020; Tokarska et al., 2020). Applications of ECs to physical parts of the Earth system have included cloud feedbacks
(e.g. Klein and Hall, 2015), as well as components of global geochemical cycles. ECs on aspects of geochemical cycles
include constraining the expected level of ocean acidification (Terhaar et al., 2020), marine primary productivity (Kwiatkowski

et al., 2017) and soil carbon turnover (Varney et al., 2020). Notable is that for many discovered ECs, the variable-for-whieh

-modelled quantity that is also measured during the contemporary.
timescales than-to a longer—term elimate—related-variation-the- EC-estimates—This-use-of-high-frequeney-variations-attribute of
the Earth system relevant to projecting how climate will respond to rising GHG concentrations. The ability of ECs to use

knowledge of contemporary high-frequency variations to constrain understanding of expected future climate change highlights
how ignoring systemfluetaations—fluctuations at short timescales may constitute disregarding valuable informationabetit-the

elimatesystem. The EC approach, therefore, offers an interesting comparison to the method of weighting ESMs by simply

comparing their projections of present-day-present-day trends against measurements, especially as the latter negleets-variation
method often neglects short-timescale variations about such trends.

With ECs becoming ubiquitous in climate research and with their potential to enable better decisions on GHG emissions

trajectories that avoid dangerous change, it is appropriate that the method be-moved-to-is placed on a stronger scientific basis.
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Some recent papers review the EC method, highlighting its capability and listing a set of potential pitfalls. For instance,
Williamson et al. (2021) identify a particularly broad range of discussion points related to ECs, all framed in their application
to refining estimates of ECS. Further critiques of the EC method exist in the context of the terrestrial carbon cycle (Winkler
et al., 2019), Arctic warming (Bracegirdle and Stephenson, 2012) and ECS (Caldwell et al., 2018) - all note potential issues that
could result in incorrect bounds on future estimates of change. Schlund et al. (2020) test the transferability-of-bounds-derived

for-estimates-of ECSH(using-different ECs)Hirst-ereated-with-medelsinthe- EMIPSrobustness of proposed emergent constraints

by out-of-sample testing on a different model ensemble. These researchers find-that-the- EC—based-uneertainty-bounds;-when

derived nothe NMAPR6-encemble o gano 7 oo han-when nothe NP

ss-found that emergent
constraints on ECS, developed using the CMIP5 ensemble, do not provide useful constraints on ECS in the CMIP6 ensemble;

h . h ho CNAP

to be “confirmed” (Hall et al., 2019) . Fasullo et al. (2015) also discuss whether it is expected that ECs hold across different

generations of ESMs.

Yet-despiterecent serutiny;there-remains-a-basie"Those authors argue that additional processes identified as important but
uncertain, and introduced to newer ensembles, could generate ECs that make different predictions. Fasullo et al. (2015) provide
the example of newer ESMs that characterise better convection and its impact on simulated cloud features, which ultimately.
may alter EC estimates of ECS. Recognising the danger of arriving at spurious emergent constraints based on the results
of relatively small model ensembles (Caldwell et al., 2018) . Williamson et al. (2021) have set the challenge of deriving more
robust theory-based emergent constraints. To inform attempts to meet that challenge, here we address the fundamental, almost
philosophical question: “What is an Emergent-Constraint”?—While-emergent constraint?”.

Despite much scrutiny of ECs, there are likely many perspectives on the-answerto-this-question{see Nijsse-and-Dijkstra; 2048 Williamse

here-what forms their basis (see for example Nijsse and Dijkstra, 2018; Williamson et al., 2021) . Here we suggest that one

way to interpret many ECs is that they derive bulk parameters associated with differential equations that are valid at large
spatial scales. Such equations are implicit in ESMs (i.e. are not coded explicitly) and instead “emerge” by aggregating the
numerical finite difference schemes that-are-solved in ESMs at the finer gridbox spatial resolution. Here we hope to initiate
a discussion of whether this is an appropriate way to describe the underpinning properties of many ECs. We consider simple
illustrative examples using standard solutions to basic differential equations but in-with the novelty of being placed in the

context of the framework of the EC method.
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2 Methods and Conceptual Examples
2.1 The Emergent Constraint Method

The core of any EC is the discovery of a robust link, across different ESMs, between a driving variable, say X, and another
model-ealeulated-model—calculated quantity, Y. Variable X is a quantity for which contemporary measurements are available.
Quantity Y is a climate—related statistic, metric or parameter often of importance for developing future adaptation or mitigation
strategy, but for which data does not exist. fis-the-The EC relationship between X and Y, in tandem with the measurement
of X, that-constrains our understanding of Y. In general, it is considered preferable that ECs are found by process intuition
that reveals related system quantities, rather than direct inter-ESM “data mining”. For instance, in the context of finding ECs
to constrain understanding of the size of cloud feedbacks, Klein and Hall (2015) propose that each should be “accompanied by
credible physical explanations”. The EC relationship between X and Y may take many forms, such as a nonlinear response,
or is potentially multidimensional with more than one X component.

For illustration purposes, we imagine an EC that is a simple linear regression between two variables, and when indexing

each ESM with i, is of the form:
Yi=ao+ a1 X; +e+n;. (D

Here parameters ag and a; quantify the emergent constraint, and €; and 7; are ESM—specific “noise” terms. We imagine
consider that ¢; captures how far an individual ESM is from the fitted relationship of Eq. (1), and so any large absolute value
corresponds to a model outlier. Quantity 7; is a random variable, that describes natural climate variability for each model.
Measurement X * utilises this relationship to predict the value of Y, named Y *. Cox et al. (2018) provide the methodology to
derive uncertainty bounds on the constrained value Y, which include being a function of both-¢ and 7, as well as the size of

uncertainty bounds on data X *. Here, and elsewhere, the **’ symbol represents a measurement (or a value constrained by an
EC and a measurement).

2.2 Simple thermal “box’’ model with different heat capacities

Our working assumption is that ECs exist due to common inter—-ESM deterministic processes, which we attempt to mirror with
abstract but illustrative --simple models. As such, the noise quantities €; and 7; are only reconsidered towards the end of our
analysis ;-and then only visually. We start with an especially simple conceptual representation of an EC. We consider a set of
single thermal box models indexed by :. This indexing may mirror the differentiation between ESMs in a collection of models,
such as the CMIP6 ensemble (Eyring et al., 2016). Each model has a different heat capacity c,, (J K™1), in to which we assume
there is a common and known forcing heat flux H (¢) (W). Eong-term-We regard long-term changes in this forcing areregarded
as analogous to Representative Concentration Pathways (REPRCPs) of future GHGs-GHG levels, often applied as an equal
forcing across ESMs. As a single box, there is no spatial variation, so the model is regarded-treated as having infinite diffusion.

The equation for the box temperature 7'(t) (K), where ¢ (year) is time, c;, =cp,[ny,s J K= yrs™!) and Ny.s (5 yr—1) is the
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number of seconds in a year, is:

» dT
g = o)
We first eonsider-study for a known fluctuating heat flux, H = bcos(wt), for the contemporary period to force each model
indexed by <. This forcing could be interpreted as a form of known annual seasonal cycle (and therefore w = 27), and-this
foreing-unaffected by any background trends. This driver results in a model-specific temperature, T;(¢). In addition to the

known common H driver, observed are seasonal temperature features named 7™ (K). The simple solution to Eq. (2) with this

periodic forcing is:

Ti(t) = Co +

— sin(wt). 3)
Cp,W
Removal of background multi—year temperature allows the setting of arbitrary constant Cy as Cy = 0. Required-is-a-simple

is both modelled for the contemporary period and is available as a measurement, such as the seasonal range A%s-ATg (K).

Henee Al s—max{F—min{FyHere ATs, = max(7;) — min(7;), and so for each model and from Eq. (3),
2b
AT_SL Sy = 7 - (4)
- Piw

Considered additionally is a longer—term forcing of our model, representing ongoing climate change. We describe this extra
forcing as simply a fixed value of Hy (W) for ¢ > 0. Hence this gives a combined forcing of H (t) = Ho+bcos(wt), and solving
Eq. (2) for both drivers simultaneously gives:

Hot b
Ty(t) = =X + —sin(wt) ¢ >0. (5)
Cpi Cpiw

A second temperatu

statistics we can consider are based on changes in annual means. The time derivative of annual averages for 1" is a proxy for the
rate of global warming. Annual averaging of Eq. (5) by i thin-ndivi i i i

and denoted by an overline +is simply:

ORE ©

Pi

A possible EC is now revealed —Fhe-where the issue of future concern might be the rate of change of mean temperature 1.

Plotting for the simple model an “z” axis of ATs-ATg, (from Eq. (4)) and a “y” axis of dT;(¢t)/dt = Hy/ c;)i (from Eq. (6))

would yield a diagram where both quantities increase, linearly, in 1/ c;)i. The EC is, therefore, a relation between seasonal
temperature variation and long—term warming that holds across all c/pi values. Knowledge of the actual z axis variable, which
here would be the known observed seasonal amplitude, AT¢AT, constrains the bounds of the uncertainty of the y axis
quantity. We present these ideas schematically in Fig. 1, and show the uncertainty, €;+1);, as just random distances by individual

models (black dots) away from the EC regression line.
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Figure 1. Schematic representation of a simple emergent constraint. Panel (a) (top row) shows the combined equation for long—term
and seasonal forcing (so with w = 27 yr~') driving the thermal box model given by Eq. (2) (middle row), and the related response to both
forcings, which combine additively to give Eq. (5) (bottom row). Panel (b) illustrates a related emergent constraint, based on the response
Eg. (5), as also shown in panel (a). This response contains a seasonal (x axis) and long—term (y axis, with seasonality ignored) variation, and
the EC links the two. The EC allows the observation of seasonal fluctuations (ATg, x axis) to constrain the long—term rate of change of state
variable, T' (y axis). Each model (black dots, indexed by %) has a different implicit value for c;, ie. C;n' The EC is assumed to not be exact,
with noise causing variation around the regression line (the ¢; and 7; terms of Eq. (1)). The vertical yellow band represents uncertainty in
the measurement, AZ7$ATY. The constrained projection of the long—term warming rate (based on the EC, the value of A75-ATY and its

uncertainty) is given by the green horizontal band.

In the analysis presented above, the parameters related to forcings, i.e. b and Hy, are assumed to be invariant between models.

Henee-the-The measurement in tandem with the EC is designed-to-tower-in effect lowering uncertainty on the model-specific
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value of bulk parameter c;i . However, an alternative possibility is an emergenteconstraint EC where there is instead uncertainty
in the magnitude of the foreings-between-models(for-instaneesforcing of an Earth system component (rather than inter-ESM
spread in how the component itself is modelled). For instance, there remains a range of representations ;-betweenESMs-of
the-transtation-of-between ESMs of translating atmospheric aerosol levels to their cooling effecty-—Now-, Instead, we can regard
the forcing parameters are-as uncertain, indexed as b; and Hj,—Subjeetto-, although we imagine for each ESM the uncertainty

is similar, and so get the ratio b;/Ho, being-as invariant between models:-. This setup yields an EC of identical form to that
of Fig. leeﬂéeﬂ&%mmwm%c; has a single numerical value ;--common to all models. In-this-ease;—the

the-data-peint-constrains-Measurements then provide the constraint to remove uncertainty in the forcing element b;. With the
forcing uncertainties common for both short— and long—term drivers ;-the-data-therefore-also-constrains—(i.e. the assumption

_is constant between ESMs

warming d7; /dt.

the measurement AT

implicitly constrains b;, hence Hy,, and thus the background

2.3 Thermal model with spatial variation

We extend the basic box model of Section 2.1 with a further illustrative example that introduces spatial variability via direc-
tional coordinate x (m)and-retain-temperature-, Temperature is retained as our notional state variable. Now we consider the
system to evolve on a semi—infinite domain 0 < 2 < oo, and with the heat forcing boundary condition, /1, specified at x = 0.
This framework may depict, for instance, heat absorption by the oceans and where information on future trends in surface
temperature is required. Specifically, we solve for T;(x,t) as satisfying a diffusion equation:
2

C;i%:/ﬂ% 0<z <00 @)
Here c;,i (J K~! m~2 yr s—1) remains a form of heat capacity, while x; (W m~! K1) is a conductivity or mixing parameter,

and both parameters may be model specific, as indexed by . We again start by prescribing a seasenal-boundary-condition—

boundary condition (Fourier’s law of heat conduction) that is seasonal, here at x = 0, given by:

oT;
ox

= —H = —bcos(wt). (®)
=0

K

The solution to governing Eq. (7) with the boundary condition of Eq. (8), assuming no non—seasonal transient terms and that
T; is bounded as x — o0, is:

’
ol w
_<37 2»@ > ,
be c, w

cos —wt—i—ﬁ—&-x Pi 1 4 (. 9
4 2I€i

Ti(x,t)

Cp, Kil

Hence the value of T; at x = 0, with additive constant set to Cy = 0, is given by:

T(0.4) = beos(—wt + w/4) beos(wt — 7/4) (10)

/ /
\/ Cp, Kiw \/ Cp, iw
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From Eq. (10), the temperature seasonal cycle at x = 0 therefore corresponds to a range of +
. 2b
ATg,s, = max(T;(0,t)) —min(7;(0,1)) = ———

Cp, KW

7

(1)

and for which we consider there is-similarly-a-correspending-to be a corresponding measurable i.e. observable value, AFEATY.
In further analogy to our example with the box model example, we consider an additional long—term heat flux, Hy at x = 0,

starting at time ¢ = 0. That is, a boundary condition of:

or |,_,

and-this-Satisfying Eq. (7) with this boundary condition has a solution of:

2H, €T z |c, Kt ,ﬁ
O —Zerfe | =y 2 AP t>0,z>0. (13)

T: =
i(z.1) Kq 2 2\ kst Ty,

Fhe-solutionto-Eq. (13) calculated at = 0 corresponds to:

t
\/ Cp, RiT

As our governing Eq. (7) is linear, the seasonal and long—term solutions (Eqgs. (9) and (13) respectively) may be simply added.
Hence a combined heat flux in to the system of bcos(wt) + Hy at = 0 generates a surface temperature 7;(0,t), for ¢ > 0,
given by the addition of Egs. (10) and (14). The inclusion of spatial variation, via x, causes a long-term transient effect where
although the long—term average heat flux is constant, the surface temperature given by Eq. (14) has a v/Z response. This solution
compares to a linear long—term temperature response for our single box model example in Egs. (5) and (6).

For our example with spatial variation, a possible emergent constraint could constitute an z axis of A%s-ATg, (Eq. 11)and a

y axis of dT;(0,t) /dt x /t = Hy/ Cp, ®im (from differentiation of Eq. (14) with respect to time, in tandem with averaging out
the seasonal variations of Eq. (10)). Using these variables, both the x and y axes are linear in 1/ c;,i k; for the different indices
1. We present this EC schematically in Fig. 2. In conjunction with this EC, knowledge of seasonal temperature variation reveals
and-so-constrains(x axis, Fig. 2) reveals the long—term warming rate (y axis, Fig 2.). In this example the data point constrains,
implicitly, the value of c;)i ki If c;)i is well known and fairly invariant between ESMs, then the data point is constraining the

implicit value of x;, or vice versa where the constraint is on c;,i. As an aside, in the y axis of Fig. 2, we retain the v/t factor to

make the vertical position of the EC in the diagram independent of time or GHG level.
T-a-strong-similarity-to-the-As for the discussion of uncertainty in the forcing boundary conditions of the box model, and their

potential constraint, the same possibility exists for our example with spatial variability. hn-the-event-thatboth-Should effective
parameters ¢, and « show little or no variation between ESMs, but-yet there is uncertainty in b of Eq. (8) and H of Eq. (12) (and
with-identieal-uneertaintiesboth parameters have similar unknowns, so again +-b/H is invariant inter—ESMsinter-ESMs), then
the EC combined with data for A%s-ATjg acts to remove that forcing uncertainty. Such removal of forcing-related uncertainty
between ESMsassociated-with-foreing, via the EC and measurement of A75ATyg, again constrains longer—term warming levels
in this illustrative exampleframework.
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Figure 2. Schematic representation of an emergent constraint with a spatial component. The spatial dimension is defined by variable .
Panel (a) (top row) shows the combined equation for long—term and seasen-seasonal forcing at = 0, driving the diffusive model given by
Eq. (7) (middle row), and the related response at z = 0 and ¢ > 0 given by Eqgs. (10) and (14) (bottom row). The seasonal forcing (so with
w = 27w yr~ 1) is given by Eq. (8) and the long—term forcing to the thermal model given by Eq. (12). These two forcings generate a response in
T at x = 0 given by Egs. (10) and (14) respectively, that combine additively and as shown. Panel (b) illustrates the related emergent constraint

+based on the response T;(0,¢) shown in panel (a). This response contains a seasonal (x -axisaxis i.e. the horizonal axis, not variable x) and

long—term (y axis, with seasonality ignored) part, and the EC links the two. The EC allows the observation of seasonal fluctuations, (ATS,
x axis), to constrain the long—term rate of change (y axis). Each model (black dots, indexed by %) has a different implicit value for c;)i X Ki.
As for the example of Fig. 1, the EC is again assumed to not be exact, with noise causing variation around the regression line. The vertical
yellow band represents uncertainty in the measurement-measured value of AFsATs. The constrained projection of the long—term warming

rate (multiplied by v/%, and-as based on the EC -and the value of A%7s-AT5 and its uncertainty), is given by the green horizontal band.
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3 Discussion and Conclusions

How climate will change due to the ongoing burning of fossil fuels remains one of the meosthigh—profile-highest—profile ques-
tions asked of the scientific community. ESMs are central to such research activity, and their primary objective is to aceurately
predict climate change for different potential future GHG levels as accurately as possible. However, substantial differences
can exist between ESM projections, even for the same future scenario of atmospheric GHG changes, so dependable methods
are required to reduce the spread in simulations. Emergent constraints are discovered linkages, inter—ESM, between a quantity
that is also presently measured and a second important climate attribute associated with future changes, and where data on the
former constrains our assessment of the value of the latter. With eenstant-pressure-a constant requirement to provide policy-
makers with refined estimates of future climate change --and against the backdrop of considerable variation between ESMs,
ECs have attracted substantial application to a plethora of components of the Earth system. The rapid rise in EC discoveries
and their near—ubiquitous-near ubiquitous use to constrain uncertainty enables a way to extract additional information from
available ESMs that have required huge expenditure to build and operate. However, with such a high prominence of ECs as
a method to lower uncertainty, it is timely to investigate the assumptions that underline them and any potential pitfalls (e.g.
Williamson et al., 2021). Here we-try—to-start an additional but related route of investigation. We suggest a potential explana-
tion of many ECs is that their basis relates to solving large—scale equations that are beth-implicit in ESMs and have common
features between models.

We develop the hypothesis that many identified ECs relate to undiscovered differential equations that describe the Earth
System at large geographical scales. Such equations are not coded explicitly in ESMs, but instead “emerge” as the aggregation
of the finer resolution behaviour of the climate system. Such finer resolution features are calculated in ESMs as the solution
of differential equations solved on the numerical mesh of each model and capture environmental processes that are often un-
derstood well. Such understanding introduces similarities between models, which remain present in any spatial aggregation.
The role of ECs is to enable the discovery of the implicit value of parameters associated with such large—scale equations 5
where uncertainty remains. Such bulk parameters affect both a quantity of interest linked to predicting future climate and a
contemporary attribute of the Earth system. The contemporary quantity is measurable and, in tandem with the EC, constrains
the parameterisation and thus, understanding of the quantity associated with the future. In many instances of discovered emer-
gent constraints, the present—day component is of a higher frequency fluctuation (e.g. seasonal), with the EC then projecting
uses to project a climate attribute of relevance to decadal or century timescales.

We have presented two illustrative examples of solving standard differential equations but placed them in a structure as if they
reveatunderpin an emergent constraint. We imagine the equations to be underlying large—scale bulk equations, solved implicitly
in multiple ESMs, as outlined above. There-are-many-Many examples of equations thatrepresent the aggregated behaviour of
fine—scale systems. For example, the bulk properties of an ideal gas, temperature and pressure, are related through the ideal gas
law. However, these bulk properties can also be understood as the aggregated behaviour of the molecules (their mean velocity,
mass and number density) that make up the gas. Formally these relations can be made through kinetic theory (Pitaevskii and

Lifshitz, 1981). There are also examples of linear bulk dynamics emerging from nonlinear fi
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eonverse—fine—scale dynamics, and the converse of effective nonlinear bulk behaviour from linear microscopic dynamics e.g.
the phase transition in the two dimensional Ising model (McCoy, 1973).

Our first case is a simple box model for which we wish to derive a thermal capacity term, c., and the second has a single
spatial variation and represents a search for a multiplicative combination of capacity and diffusion, c;/i. A discovered EC
between models, combined with measurements, would-reveal-is in effect revealing the actual real world value of c;, or c;,n.
Large values of noise term ¢; are for models that are outliers to the EC. In the context of our abstract examples, outliers have
different values of effective parameters c;J or c;)n dependent on whether considering shorter seasonal timescales or longer
periods ;-and implies these models te-have substantially different process representation compared to most other ESMs. We
also suggest an additional EC possibility where effective parameters emerge as invariant between ESMs, and instead there
is uncertainty in forcings (here, b and Hj, although the uncertainty is identieal-similar between the two parameters). Our
conceptual model determines internal system properties, i.e. parameters, which for the spatial example are constrained based
on behaviours at the edges of the domain. We note the basic theorems of vector calculus (e.g. Stokes’ theorem) that relate
integrated internal system features to conditions along domain edges.

A broad set of possibilities may link to our suggestion that the underlying principle of many ECs is the existence of
equations valid at thetarge-sealelarge scales. For instance, additional-in addition to our example of diffusion, PBEs—with

patial-dimensions-can-also-simulate-advection;-and-in-terms-of climate-modeling-this-may-correspond-to-teleconneetionsECs
may reveal implicit PDEs with an advective component corresponding to atmospheric transport. In many cases, atmospheric

transport provides the coupling between two spatially-distant components of the Earth system, generating what is often called
a “teleconnection”. To constrain the strength of future teleconnections, an EC is likely to need a present-day-present—day mea-

surement of wind fluxes ;-or measurements of a quantity of interest in two locations. MedeHting-In addition, modelling many
components of the Earth system requires coupled differential equations to link different physical quantities, capture changes
of state, or where geochemical cycles link tightly to climate variation. An example of an EC capturing features of a coupled
system is that of Cox et al. (2013). In that analysis, data on present—day simultaneous fluctuations in atmospheric CO, and
annual temperature anomalies reveals the fate of future South American carbon stores under global warming and the related
risk of the-ieonie-possibiity-ef-Amazon forest “die—back”. In some cases, the EC x axis, for which measurements exist, is a
combination of high-frequency drivers and response, and for the same variable. As an example of such a more refined and com-
plex contemporary statistic, Cox et al. (2018) estimate equilibrium climate sensitivity with a statistic ¥ that is a combination of
the standard deviation and autocorrelation of current global temperature fluctuations. Arguably, the ¥ statistic merges a system
driver (standard deviation) and a response (autocorrelation). Here, we assume underlying PDEs that are simple by design to
aid transparency. Making these underlying models more relevant to the Earth’s climate is an outstanding challenge. Additional
to horizontal heat transport, our planet emits longwave radiation to the wider universe. Such radiation provides the restoring
force, A, that ultimately stabilises the near-surface temperature. Including such a restoring force in our simple PDE models is
one possible extension of our analysis, although, in tandem with an unknown heat capacity, ¢, this would potentially generate
a two-dimensional EC. In practice, fitting a two-dimensional EC may be challenging given the relatively small number of data
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oints (i.e. available ESMs

historical climatic forcing.
In summary, the analysis of ensembles of ESMs, as built by different research centres, has revealed multiple emergent con-

. Analytical solutions may exist that allow for a time-varying value of H that approximates known

straints for all parts of the Earth system (Hall et al., 2019). Discovered ECs have reduced uncertainty bounds for features of the
climate system that directly affect society and aretherefore-, therefore, of particular interest to policymakers. With the place-
ment of much emphasis on the EC method to lower uncertainty, there is a growing requirement to understand its underlying
assumptions better. Timely research is emerging that critically assesses the method (e.g. Williamson et al., 2021). We wish-to
add to the discussion by suggesting that many ECs represent the discovery of parameters associated with large—scale implicit
equations that describe features of the Earth system. Such equations emerge from the aggregation of more local effects simu-
lated on the grldpomts of the numerical meshes of individual ESMs. We-de-netpropese-this-as-a-universal-theery-of ECs;as
With the prevailing view that physical intuition prevides

abetterroute-to EC-diseovery-than;say,should guide EC discoveries rather than, e.g. data mining, our suggestion is-therefore
analegeus-to-supports that standpoint. Hence we consider most ECs to correspond to underlying processes and related math-

ematical representation. Such bulk process discovery helps counter a view that ESMs are so complex that they can never be
amenable to interpretation via standard applied mathematics techniques (a concern raised by Huntingford, 2017). Such meth-
ods include equationsealing-scaling of the equations directly coded in ESMs (“nondimensionalisation”) to find the dominant
underlying forms, although we speculate that EC discovery may instead identify key large—scale processes. Further hinting at
the need to confirm underlying processes is the analysis of Qu et al. (2018);-whe-. Those authors consider the statistical linkages
between four different ECs proposed for ECS and suggest that the discovered commonalities are because each is constraining,
implicitly, shortwave radiation cloud feedbacks. We present two simple illustrative examples of differential equations, their
solutions, and their potential interpretation as ECs. Despite differential equations representing a range of processes, mathe-
matics can often characterise them in discrete ways (for instance, every second-order PDE being either diffusive, elliptic or

hyperbolic). W

also-inecentiviserevisiting-The perspective offered here may open ways to classify ECs based on the type of any discovered
underpinning equations they link to. Confirming such links allows the study of some aspects of climate change seiencefrom-an
from a more analytical applied mathematics standpoint. The equation forms may be PDEs, they may be coupled, or they could

be simply ordinary differential equations or in algebraic form. Although our examples are synthetic, we hope the concepts we
present may-support the placement of ECs on a stronger theoretical footing by, where applicable, revealing underlying bulk

equations that fit with process intuition. We-noete-Brient (2020) argue that when multiple ECs exist to predict the same quantity,
each should be weighted by the level of physical understanding they offer to elucidate the relationship. It remains important

to understand ECs as they offer an elegant and-nearly-unique-potential capability to lower the continuing uncertainty between

ESM projections. In conclusion, we suggest an interpretation of ECs is that they reveal parameters of large-scale implicit
differential equations that aggregate the numerical finite differencing upon which ESMs are built.

13



10
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