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Abstract. The global carbon budget (GCB) — including fluxes of CO2 between the atmosphere, land, and ocean, and its
atmospheric growth rate — show large interannual to decadal variations. Reconstructing and predicting the variable GCB is
essential for tracing the fate of carbon and understanding the global carbon cycle in a changing climate. We use a novel approach
to reconstruct and predict the variations of GCB in the next few years based on our decadal prediction system enhanced with an
interactive carbon cycle. By assimilating physical atmospheric and oceanic data products into the Max Planck Institute Earth
System Model (MPI-ESM), we are able to reproduce the annual mean historical GCB variations from 1970-2018, with high
correlations of 0.75, 0.75 and 0.97 for atmospheric COy growth, air-land CO, fluxes, and air-sea COq fluxes, respectively,
relative to the assessments from the Global Carbon Project. Such a fully coupled decadal prediction system, with an interactive
carbon cycle, enables the representation of the GCB within a closed Earth system and therefore provides an additional line of
evidence for the ongoing assessments of the anthropogenic GCB. Retrospective predictions initialized from the simulation in
which physical atmospheric and oceanic data products are assimilated show high confidence in predicting the following year’s
GCB. The predictive skill is up to 5 years for the air-sea CO5 fluxes, and 2 years for the air-land CO» fluxes and atmospheric
carbon growth rate. This is the first study investigating the GCB variations and predictions with an emission-driven prediction
system. Such a system also enables the reconstruction of the past and prediction of the evolution of near-future atmospheric
CO; concentration changes. The Earth system predictions in this study provide valuable inputs for understanding the global

carbon cycle and informing climate relevant policy.

1 Introduction

The CO; fluxes between the atmosphere and the underlying surface, and therefore the atmospheric carbon growth rate, vary
substantially on interannual to decadal time scales (Peters et al., 2017; Friedlingstein et al., 2019; Landschiitzer et al., 2019;
Friedlingstein et al., 2020). These variations reflect the combined effects of the internal variability of the global carbon cycle
(Li and Ilyina, 2018; Séférian et al., 2018; Spring et al., 2020; Fransner et al., 2020) and its responses to external forcings
(McKinley et al., 2020).

To constrain the past global carbon budget (GCB) and facilitate its prediction and projection into the future, the Global

Carbon Project (Canadell et al., 2007) assesses the anthropogenic GCB — i.e., CO5 emissions and their redistribution among
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the atmosphere, ocean, and land — every year since 2007. The annual updates of the GCB inform both the policy and the
society at large on the ongoing variations in the carbon cycle. This information will be critical in the decarbonization processes.
This assessment is based on anthropogenic CO5 emissions, observations of the atmospheric CO4 concentration, and individual
stand-alone model simulations of CO5 fluxes for the ocean and land. The air-land CO5 fluxes from Earth system models are
the sum of natural fluxes and the land-use change induced emissions, therefore, the GCBs is based on a separate bookkeeping
approach (e.g. Hansis et al. (2015)) that calculates only the land-use emissions term. The stand-alone simulations of the land
and ocean, that produce air-land and air-sea CO; fluxes, are forced by different observation/reanalysis data and their sum does
not provide an estimate of the CO5 fluxes that are consistent with changes in atmospheric CO,. Moreover, the accumulated
CO, fluxes from these stand-alone model simulations do not exactly match the observations. Therefore, the global carbon
budget is not closed but ends up with a budget imbalance term of up to 2 PgC/year for some years though the climatological
mean value is nearly zero of 0.17 PgCl/year (Friedlingstein et al., 2020), which hinders the full attribution of the global carbon
cycle variations. A large part of the budget imbalance could also be attributed to the mismatch of net biome production between
the dynamic global vegetation models (DGVMs) used in the GCBs and inversions that match the atmospheric CO5 growth rate
(Bastos et al., 2020).

Reconstruction of the variable GCB within a closed Earth system model (ESM) is of essential value in tracing the fate of
carbon. In addition to assessing the GCB variations in the past, the Global Carbon Project also makes a prediction of the GCB
for the next year, however, this prediction is based on statistical approaches and it is not possible to trace the changes in carbon
budget back to the processes. The decadal prediction systems based on ESMs (Marotzke et al., 2016) show a potential to re-
construct and predict the near-term global carbon cycle (Li et al., 2016; Spring and Ilyina, 2020). By assimilating observational
products of physical variables, the decadal prediction systems are able to reproduce the variations of CO- fluxes as found in
observation-based products. Decadal prediction systems can then use states from an assimilation simulation as initial condi-
tions for further multi-year predictions of the global carbon cycle (Li et al., 2016, 2019; Lovenduski et al., 2019b, a; Ilyina
et al., 2021). However, as of now, the state-of-the-art decadal prediction systems are typically forced with a prescribed atmo-
spheric CO5 concentration without an interactive carbon cycle, i.e., the effect of the changes in CO- fluxes are not reflected in
the atmospheric COs variations. With this conventional model setup, one can only assess the air-land and air-sea CO4 fluxes,
but not the resulting variations in atmospheric CO5 concentration and growth.

Prediction systems have proven their skill in predicting air-sea and air-land CO fluxes (Ilyina et al., 2021). For the first
time, we extend our previously concentration-driven prediction system to an emission-driven system. The emission-driven
system takes into account the interactive carbon cycle and therefore determines atmospheric CO5 prognostically and predicts
atmospheric CO; variations. In this study, we assess the global carbon budget in a simulation with assimilated observational
products into the Max Planck Institute Earth System Model (MPI-ESM), and further estimate the predictive skill relative to the
GCB from 2019 (GCB2019, Friedlingstein et al. (2019)) for CO» fluxes and changes in atmospheric CO, (Dlugokencky and
Tans, 2020).

The assimilation simulation is designed to reconstruct the evolution of the Earth system of the real world, by incorporating

essential fields from observational products into the MPI-ESM. The reconstruction from the fully coupled model simulation
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(henceforth known as simply the assimilation simulation) enables the representation of the global carbon budget within a closed
Earth system. Therefore, by construction, this approach avoids the budget imbalance term arising from the need to balance car-
bon fluxes from stand-alone models and observations. Our reconstructions of the carbon budget provide an additional and novel
estimate. The assimilation simulation’s states, which are close to the real world through constraints from observations and data
products, are used to start the initialized simulations that predict the changes in the global carbon budget. These initialized
predictions are expected to capture the evolution of climate and carbon cycle more realistically than freely evolving uninitial-
ized simulations due to their improved initial conditions from reconstruction. In prediction studies, the term "uninitialized"
A_Prs to simulations that are not initialized from states constrained by observations or data products. This novel prediction will

coutribute to enhance the robustness of the coming GCB assessment of the Global Carbon Project.

2 Materials and Methods
2.1 Model and simulations

We use the MPI-ESM1.2-LR (Mauritsen et al., 2019), which is the low-resolution version of the MPI-ESM used for the sixth
phase of the Coupled Model Intercomparison Project (CMIP6). The atmospheric horizontal resolution has a spectral truncation
at T63 (approximately 200 km or 1.88 deg grid spacing at the equator) with 47 vertical levels. The resolution of the ocean
model MPIOM (Marsland et al., 2003) is about 150 km with 40 vertical levels. The ocean biogeochemistry component of the
MPI-ESM is represented by HAMOCC (Ilyina et al., 2013; Paulsen et al., 2017), and the land and vegetation components are
represented by JSBACH (Reick et al., 2021).

Similar to our previous prediction system (Li et al., 2016, 2019), we performed three sets of simulations (see Fig. 1 and Table
A1l): (i) uninitialized freely evolving historical simulations, (ii) an assimilation simulation (also referred to as reconstruction)
performed by assimilating the observational signal of climate variations into the model, and (iii) initialized simulations (also
referred to as hindcasts or retrospective predictions) starting from initial states obtained from the assimilation simulation, to
investigate the ability of our model to reconstruct and predict the global carbon budget. The assimilation run is needed for the
initialized prediction simulations, and the uninitialized simulations provide a reference to compare to and assess the improved
predictability due to initialization.

The major difference relative to the previous system (Li et al., 2016, 2019) is that the new prediction system is based on
emission-driven simulations, which are forced by COy emissions instead of prescribed atmospheric CO5 concentration. In
this way, the atmospheric COy concentration evolves in response to the magnitude and sign of the air-land and air-sea COq
fluxes. We use the CMIP6 (Eyring et al., 2016) historical emissions forcing for our simulations, and for simulations extended
to 2099 we use the emissions from the SSP2-4.5 scenario (Jones et al., 2016). While the fossil fuel emissions are prescribed,
the land-use change induced emissions are simulated interactively in our ESM and driven with the Land-Use Harmonization
(LUH2) forcing (Hurtt et al., 2020). We use transient land use transitions rather than land-use states and include natural
disturbances with dynamic vegetation (Reick et al., 2021). An ensemble of 10 members is run for the uninitialized historical

and initialized prediction simulations. The uninitialized ensembles are generated by starting from a different year of the pre-
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industrial control simulation (the model kas reached equilibrium as shown in the time series of ocean net primary production
and CO; fluxes from the control simulation in Fig. A1). The individual members of an initialized ensemble are generated with
1-day lagged initializations from a given branching point of the assimilation simulation, i.e., initialized from October 31st,
November 1st,...until November 9th. Note that the initialized 5-year long predictions start annually from November 1st for
the period 1960-2018. Fig. 1 illustrates the evolution of the atmospheric carbon growth rate in uninitialized, assimilation and

initialized simulations. More details of the simulations are summarized in Fig. 1 and Table A1l.

lllustration of decadal prediction system based on an Earth system model
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Figure 1. Illustration of the decadal prediction system based on the MPI Earth system model. The illustrated time series of the atmospheric
CO growth rate shows annual means from model simulations plotted together with observations from the Global Carbon Project. We conduct
three sets of simulations, from left to right in sequential order: i) uninitialized "free" simulations which are the same as the freely-evolving
Coupled Model Intercomparison Project (CMIP) historical type simulations; ii) an assimilation simulation to reconstruct the evolution of the
climate and carbon cycle towards the real world by nudging the model towards observation and reanalysis data during its integration; iii)
initialized predictions are started from reconstruction states produced by the assimilation simulation and integrated freely (i.e., no nudging
towards observations) for 5 years. The time series in the left panel A shows that the uninitialized simulations capture the long-term trend
well, but the year-to-year variations are out of phase with the observations. The time series in the middle panel B shows that the assimilation
simulation forces the variations in the uninitialized freely run simulation towards the real world, and results in a reconstruction that is closer
to the observations. The right panel C shows the reconstruction together with the 5-year long initialized predictions (i.e., hindcasts). To make

the illustration more clear, only predictions with starting years at 10-year intervals are shown.
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2.2 Assimilation methods

Similar to our previous concentration-driven decadal prediction systems (Li et al., 2019), the assimilation is done by nudging
the simulated ocean 3-D temperature and salinity anomalies towards the ECMWF ocean reanalysis system 4 (ORAS4) (Bal-
maseda et al., 2013). Additionally, we nudge the simulated values towards atmospheric 3-D full-field temperature, vorticity,
divergence, and log of surface pressure from ECMWF Re-Analysis ERA40 (Uppala et al., 2005) during the period of 1959-
1979, and ERA-Interim (Dee et al., 2011) during the period ef 1980-2018. The sea-ice concentration is nudged towards the
National Snow and Ice Data Center (NSIDC) satellite observations (as described in Bunzel et al. (2016)). The nudging is ap-
plied at every model time step, but with different relaxation time, i.e., a relatively longer relaxation time of 10 days is used for
the ocean temperature and salinity, and a shorter relaxation time of 6 hours, 24 hours, and 48 hours are used for the atmospheric
vorticity, temperature and pressure, and divergence, respectively. The chosen variables for assimilation and their respective re-
laxation time are selected based on previous investigations of decadal climate predictions based on the MPI-ESM (Marotzke
et al., 2016). Direct assimilation of the carbon cycle related variables is not included because of the limited available data;
instead, we found that the global carbon cycle is well captured by assimilating only physical variables (Li et al., 2016, 2019;
Lovenduski et al., 2019b, a; Ilyina et al., 2021). Furthermore, a recent study based on a perfect-model framework (i.e., based
on simulations in which the model tries to predict itself) revealed that direct assimilation of the global carbon cycle only brings
trivial improvement to the predictive skill of the global carbon cycle (Spring et al., 2021). To avoid spurious upwelling in the
equatorial region caused by assimilation (Park et al., 2018), we exclude the equatorial band of 5°S-5°N from being nudged

towards observation-based ocean data.
2.3 Carbon budget decomposition with CBALONE simulations

The GCB from Global Carbon Project is decomposed into five terms plus an imbalance term: the two emissions terms from
fossil-fuel and land-use changes, and the three sink terms for the natural terrestrial sink, ocean sink, and atmospheric growth
on annual timescales. The fossil fuel emissions are prescribed as forcing, and the terrestrial and ocean carbon sinks and
atmospheric growth terms are simulated and therefore can be directly derived from the ESM. However, only the net land-
atmosphere exchange is directly deducible from an ESM, which is the sum of land-use change emissions and the natural
terrestrial sink. In order to separate the two land-related fluxes, we use a stand-alone component of JSBACH called CBALONE
as a diagnostic for a direct comparison with the land-use emissions term from the Global Carbon Project (Friedlingstein et al.,
2019). CBALONE is forced by the MPI-ESM daily outputs including 2m air temperature, soil temperature, precipitation, net
primary productivity (NPP) per plant functional type (PFT), leaf area index (also per PFT), and maximum wind. We run two
parallel simulations, i.e., one with anthropogenic land use changes, and another without those changes, differencing the two
simulations results in the land-use change induced emissions from the land sink. More details on this method of separating the

land-use change induced emissions can be found in Loughran et al. (2021).
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2.4 Predictive skill quantification

The focus of this study is on global mean variations in atmospheric CO- and globally integrated air-sea and air-land CO5 fluxes
on annual timescales. The initialized simulations are investigated according to their lead time, i.e., for how many model years
they have been freely integrated after restarting from the assimilation simulation. The time series of initialized simulations
at a lead time of 1 year (2, 3, 4, and 5 years) combine the 1st year (2nd, 3rd, 4th, and 5th year) predictions from initialized
simulations of all the starting years from 1959-2018. Therefore, the time series at lead time of 1 year (2, 3, 4, and 5 years)
corresponds to the period 1960-2019 (1961-2020, 1962-2021, 1963-2022, and 1964-2023). Illustration of how the time series
are concatenated is shown in Fig. 1C. The analyses of predictive skill quantification are based on the combined time series.
Bias correction is an unavoidable topic for decadal predictions due to an initial shock, which varies with lead time (Boer et al.,
2016; Meehl et al., 2021). The decadal prediction studies mostly present anomalies with focus on variations by removing the
climatological mean and/or trend bias due to model drift caused by the initialization of the model based on observations. The
anomalies are calculated relative to the respective climatology according to the lead time (Boer et al., 2016; Meehl et al., 2021).
To infer predictions of absolute values of the atmospheric COy concentration, the respective anomalies from the predictions
are added to the best estimates of climatology and trend from data; here the atmospheric CO5 observations from NOAA-GML
are used.

The predictive skill is quantified by the anomaly correlation coefficient, and the anomalies are calculated by removing the
respective climatological mean state. In that sense, the climatological mean bias is removed and the coherence reflects the
multi-year variations for which we evaluate the predictions. Here the climatological mean state is based on the ensemble
mean of the focus time period, 1970-2018 for Figs. 1-6, and the last 10 years for Figs. 7-8. We exclude the first 12 years,
i.e., 1958-1969, from the analyses and focus on the period from 1970-2018, because the assimilation in the first decade is
affected by model adjustment. As an example, the spatial pattern of climatological mean ocean net primary production and
phosphate nutrient concentration are shown in Fig. A2 in comparison with the respective observations. For the atmospheric
COs, concentration, which has high correlations close to 1 with observations because of the coherent linear trends, we have also
added the root mean square error (RMSE) metric to investigate the added value of assimilation and initialization. In this study,
the significance of the predictive skill is tested with a nonparametric bootstrap approach (Goddard et al., 2013). The analyses

are based on annual mean data with a focus on the frequency of interannual to multi-year variations.

3 Reconstruction of the global carbon budget

By incorporating observation-based information, the assimilation simulation from the decadal prediction system based on the
MPI-ESM captures the evolution of the global carbon budget as well as the climate in observations. The time series of carbon
fluxes from the MPI-ESM assimilation simulation in comparison to the data and suite of simulations from GCB2019 are shown
in Fig. 2.

The CO2 emissions from fossil fuels and industry are generally consistent with those from GCB2019 but with a slight

difference in the 1960-1990s since the assimilation simulation uses the CO5 emission forcing provided by CMIP6 for historical
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Figure 2. Time series of (A) fossil fuel and industry CO2 emissions (Err), (B) emissions from land-use change (Ervc), (C) the budget

imbalance (Bras) that is not accounted for by the other terms, (D) atmospheric carbon growth rate (Garar), (E) the natural terrestrial carbon

fluxes (Sranp), and (F) air-sea CO2 fluxes (Socran) from MPI-ESM1.2-LR assimilation in comparison to the Global Carbon Budget

(GCB 2019, (Friedlingstein et al., 2019)). Emissions (A & B) are positive into the atmosphere, while sinks (D, E & F) are positive into their

respective compartments. A positive By, means a higher sum of emissions than sinks. The thin grey curves in B, E, and F show individual

GCB stand-alone model results. The numbers in the legend show the correlation coefficients between carbon fluxes from the assimilation

simulation and GCB2019.
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and SSP2-4.5 simulations. This highlights the uncertainty in the CO, forcing, which affects the change in the simulated
atmospheric COy concentration as it is a cumulative quantity. The CMIP6 CO, emission forcing yields 8.20 PgC higher
cumulative emissions than those from the GCB2019, which is equivalent to a difference of atmospheric CO5 of about 1.93
ppm assuming that 50% of the emissions stay in the atmosphere (i.e., by dividing 4.10 PgC with a factor of 2.124 PgC ppm~—!
(Ballantyne et al., 2012)). This discrepancy in CO2 emissions might explain to some extent that the simulated atmospheric CO5
concentration is a few ppm higher than the NOAA_GML observations (Dlugokencky and Tans, 2020) (Fig. A3). However, this
small difference of a few ppm in atmospheric CO2 concentration magnitude doesn’t noticeably affect the interannual variations
in CO;, fluxes and the corresponding atmospheric carbon increment (see Fig. 2D-F).

The land-use change induced emissions diagnosed by CBALONE are within the range of GCB2019 multi-model (including
JSBACH) simulations from Dynamic Global Vegetation Models (DGVMs) (Fig.2B). The estimates from bookkeeping models
show smaller variations than those produced by the DGVMs. Note that th Bs use the bookkeeping approach for the land-
use emissions term. The term bookkeeping implies that carbon fluxes arewerermined from area changes in vegetation types
of different vegetation and their soil carbon densities, with specific response curves characterizing the evolution of decay of
deforested biomass and recovery of natural vegetation thereafter. Biomass and soil carbon densities may be based on recent
observations or models, but are generally kept fixed in time, i.e. the effect of changes in environmental conditions are not
accounted for. The DGVMs by contrast (which are used to provide only an uncertainty range around the bookkeeping models in
the GEBs) calculate land-use emissions under transient environmental conditions. This implies first that interannual variability
in bookkeeping models is only driven by land-use change, but not by climate variability, which makes the DGVM estimates
of LUC emissions in general more variable from year to year than the bookkeeping estimates-are. Second, the DGVM-based
land-use emissions estimates include the so-called "loss of additional sink capacity" (Pongratz et al., 2014), which refers to
the carbon that could have been stored in forests additionally over the course of history (e.g., due to the "CO,-fertilization"
effect) had these forests not been cleared by the expansion of agriculture and forestry. This loss of additionally sink capacity
generally increases over time and amounts to about 40% (0.8+£0.3 PgC yr™1) over 2009-2018 (Obermeier et al., 2021). This
explains why DGVM estimates in Fig. 2B show higher emissions than bookkeeping estimates in recent decades. The DGVM-
and expert-based uncertainty range around the GEB, bookkeeping estimates for LUC emissions is large and MPI-ESM-based
land-use change emission estimates have been found to be at the high end of the GEB; for all decades by Loughran et al. (2021),
consistent with our findings.

The annual assessment from Global Carbon Project has a budget imbalance term. This is because the individual budget terms
are based on separate measurements, together with ocean and land model simulations, which are not linked to each other in
an internally consistent manner (Friedlingstein et al., 2019). In this study, we assimilate atmosphere and ocean data products
within a fully coupled ESM that considers their interactions. The assimilation ensures the evolution of the carbon cycle and
climate towards the real world, and in contrast to the GCB, the budget is closed within the Earth system, i.e., no budget
imbalance occurs by design (Fig. 2C). Therefore, the assimilation simulation based on a fully coupled ESM enables better
attribution of the GCB variations than when an imbalance is present. The current method ef the Global Carbon Project’s-6E€Bs

(Friedlingstein et al., 2019) whiehuses the directly measured atmospheric COq increment has the advantage of representing the
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actual evolution of atmospheric CO5. Our ESM-based assimilation shows a high correlation of 0.75 with the atmospheric CO2
measurements, but still needs to be improved. Further efforts are required to constrain the atmospheric CO4 from observations.
200 Atmospheric carbon growth rate and carbon fluxes are reasonably well reproduced in emission-driven assimilation with
prognostic atmospheric CO, (Fig. 2D-F). The atmospheric carbon growth and the land carbon sink show more pronounced
variations on interannual time scales, however, the ocean carbon sink has more pronounced variations on decadal time scales.
These variations are captured in the assimilation with high correlations between the results from the assimilation simulation

and the GCB2019 of 0.75, 0.75, and 0.97 for the atmospheric growth, air-land CO, fluxes, and air-sea CO4 fluxes, respectively.
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Figure 3. Spatial distribution of the CO2 fluxes from model assimilations compared to GCB2019. Climatological mean CO- fluxes into the
land and ocean from the atmosphere in assimilation (A) and Global Carbon Budget (GCB 2019 (Friedlingstein et al., 2019)) (B). Temporal
variability, i.e., standard deviation, of CO2 fluxes in assimilation (C) and GCB2019 (D). Correlation and root mean square difference between

assimilation and GCB2019 are shown in E and F. The results are based on annual mean data for the time period from 1970-2018. Positive
values in A and B refer to CO2 fluxes into the ocean or land.

205 The spatial distribution of climatological mean COs fluxes, their variability expressed as standard deviation, and the com-

parison in carbon fluxes between GCB2019 and the MPI-ESM assimilation are shown in Fig. 3. The mean states show a COq

influx into the ocean and land in the mid- to high-latitudes, and outgassing into the atmosphere in tropical areas, especially
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over the tropical Pacific (Fig. 3A-B). The variability of CO5 over land is larger than that over the ocean; and the magnitude
of variability is larger in the assimilation simulation than in the GCB2019 (Fig. 3C-D). This is expected as the GCB2019 is
a multi-model mean estimate and therefore smooths out part of the high frequency variability. The correlation of CO, fluxes
between the assimilation simulation and GCB2019 is high over the ocean, the correlation is relatively lower over the land
(Fig. 3E). The root mean square deviation (RMSD) scales with the magnitude of carbon fluxes, i.e., with larger values on land
than over ocean (Fig. 3F). The large RMSD, especially over land, is because the relatively low coherence of CO, fluxes, also
because of the larger values of CO5 fluxes in the MPI-ESM single model simulation than in a smoothed magnitude of fluxes in
GCB2019 from the multi-model mean simulations. The difference in magnitude of fluxes between assimilation and GCB2019
is more prominent in local areas (Fig. 3A-D) than in the global average (Fig. 2E).

In general, the historical GCB is well reproduced by the MPI-ESM when assimilating observational products, which enables
a quantification of the GCB within a closed Earth system, showing that prediction systems yield internally-consistent estimates
of the air-sea and air-land CO;, fluxes and are able to provide complementary information, in addition to the estimates provided

by the Global Carbon Project, for evaluating annual GCB.

4 Predictability of the global carbon budget

The initialized predictions start from assimilation states which are close to observations. Therefore, information from the
observations is incorporated into the prediction system through realistic initial states of the components of the climate system,
which enables a more realistic evolution of the global carbon cycle and climate that follows the trajectory of observations until
the predictability horizon is reached.

To support the Global Carbon Project in predicting the next year’s GCB one year in advance, we also investigate the pre-
dictability, focusing on model hindcasts at a lead time of 1 year. As shown in Fig. 4 and Fig. 5, the initialized simulations at
a lead time of 1 year show high correlations with GCB2019. The correlations of global atmospheric CO, growth, net air-sea
CO., fluxes and net air-land CO- fluxes are 0.59, 0.52, 0.70 after removing the linear trends (Fig. 5 left panels); the correlation
of the original time series are 0.76, 0.97, and 0.66 (Fig. 4 left panels). The initialized simulations at a lead time of 2 years
still resemble the variations in the GCB2019, with correlations of 0.49 and higher (Fig. 6 left panels), and the detrended time
series also show higher correlations than the detrended uninitialized simulations. This shows that internal variability can be
constrained by initialization (Fig. 6 right panels). As for atmospheric carbon growth, the initialized simulations at a lead time of
2 years show coherent interannual variations compared to GCB2019 although with a smaller correlation (0.49) than that of the
historical freely evolving run (0.61), primarily due to the trends in atmospheric CO5 growth rate in the freely evolving run and
in GCB2019. After detrending, the correlations are higher in the initialized simulations than in the uninitialized simulations
(comparing Fig. 6 A and D).

The initialized and uninitialized simulations show a comparably good match to GCB2019 with respect to the net CO» flux
into the ocean (with a high correlation up to 0.98) (Fig. 4B). The variations of the globally integrated ocean carbon sink are

driven primarily by external forcing rather than internal variability, as found in McKinley et al. (2020). Fig. 4B shows that the

10



A Atmospheric carbon growth .
0 4 L ! ! L D Atmospheric carbon growth

—GCB2019 1.0
’;_; 8 —init_LY1: 0.76 F
S =Uninit: 0.61 (T 0.8 1 r
> A A 8 O] i
o s »
@ 3 061 ® ol
X 5 ° ° i
s ;_/ 0.4 r
S % [ i
S 02 -
-2 T T T T 0.0 T T T T T T
1970 1980 1990 2000 2010 Uninit 1 2 3 4 5
Lead years

B Net air-sea GO, fluxes E air-sea CO, flux

30 { ——GCB2019 T w9 @ © @© ©® 7T
< { =nit_LY1: 0.97 [
S 251 —Uninit: 0.98 0.8 1 r
£ ] S
a ] 2 ] a
% 2.0 ] s 0.6
x =
> 1 o
= 15 € 04 L
8 &

3 1.0 02 ] L

0.5

t T T T T 0.0 T T T T T T

1970 1980 1990 2000 2010 Uninit 1 2 3 4 5

) Lead years
oo CNetarland CO, fluxes F air-land CO, flux

] =—GCB2019 ‘ [ 1.0
= —init_LY1: 0.66
> 4.0 q|
O 1 . 0.8 1 r
€ o\ § ® :
= 20 i ] L
¢ g ® |
= 7 5 :
= 0.0 o h [
s = 41 @

=

2 1 »
S 2.0 1 0.2 - o O}

1 o

-4.0 T T T 0.0 T T T T T T
1970 1980 1990 2000 2010 Uninit 1 2 3 4 5
Year Lead years

Figure 4. Left panels: Time series of atmospheric carbon growth rate, i.e., Garar (A), net air-sea CO2 fluxes, i.e., Socean (B), and net air-
land COx fluxes, i.e., ELuc+Sranp (C) from the initialized simulations at a lead time of 1 year together with values from the uninitialized
simulations and estimates from the 2019 Global Carbon Budget (GCB 2019, Friedlingstein et al. (2019)). Positive values in panels B and
C indicate CO; fluxes into the ocean or land. The numbers in the legend show the correlation coefficients between the simulations and
GCB2019, and the ensemble mean data is used for this correlation calculation. Right panels: Predictive skill of the atmospheric carbon
growth rate, i.e., Garar (D), air-sea CO2 fluxes, i.e., Socean (E), and net air-land COz fluxes, i.e., ELyc+Sranp (F) in reference to
Global Carbon Budget (GCB 2019, (Friedlingstein et al., 2019)). The filled red circles on top of the open red circles show that the predictive
skill is significant at a 95% confidence level, and the additional larger blue circles indicate an improved significant predictive skill due to
initialization, in comparison to the uninitialized simulations. We use a nonparametric bootstrap approach (Goddard et al., 2013) to assess the

significance of predictive skill. The results are based on annual mean data for the time period of 1970-2018.
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ocean carbon sink variations (especially on decadal time-scales) in the historical freely evolving uninitialized run are simulated

reasonably well.
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The net carbon flux into land shows a higher correlation for initialized simulations at a lead time of 2 years than that for
uninitialized simulations (Fig. 4F and Fig. 5F). This indicates that the interannual variations are better captured in the initialized
model system even after 2 years of free integration. This result implies a predictability of the air-land CO» flux for up to 2
years. The air-land COs, fluxes are regulated by El Nifio-Southern Oscillation (ENSO) variations (Loughran et al., 2021; Dunkl
et al., 2021), and the poor skill in predicting ENSO limits the predictability of the air-land CO- fluxes. However, the predictive
skill of air-land CO; of 2 years is beyond the predictability horizon of ENSO, which is limited to a seasonal scale.

We further quantify the predictive skill of the GCB through all the lead times up to 5 years (Fig. 4 right panels and Fig. 5 right
panels). The correlation skill relative to GCB2019 is significant for the lead time of 5 years in the atmospheric carbon growth
and the ocean carbon sink. However, the skill for the air-land CO» flux is not statistically significant at the 95% level after lead
time of 2 years (Fig. 4 D-F). The improved predictive skill of initialized hindcasts compared to the historical uninitialized run
occurs at a lead time of 1 year for atmospheric carbon growth and at a lead time of 2 years for air-land CO; flux. The detrended
results (Fig. SD-F) are similar to those from the original time series. The correlation of atmospheric carbon growth at a lead
time of 2 years in the initialized hindcasts, compared to the estimates from the GCB2019, is higher than the uninitialized
historical run when detrended. This indicates the contribution of a linear trend to the skill of atmospheric carbon growth in
uninitialized historical runs as shown in Fig. 4D. Although the improvement of predictive skill in the initialized simulation
relative to the uninitialized simulation is not significant for atmospheric CO, growth rate, the correlations of both initialized
simulations at a lead time of 2 years and the uninitialized simulations are significantly high, as indicated with red solid dots.
This suggests the predictability of atmospheric carbon growth for up to 2 years.

From our MPI-ESM1.2-LR initialized hindcasts, we find that predictive skill of the air-sea CO; flux is relatively high for up
to 5 years, and that of the air-land COs fluxes is up to 2 years. This is consistent with previous studies without an interactive
carbon cycle (Ilyina et al., 2021; Lovenduski et al., 2019a, b). Here we have extended the prediction system for emission-
driven simulations, enabling prognostic CO4 and preserving features of predictability. The prognostic CO5 from the novel

emission-driven decadal prediction system suggests a predictive skill of 2 years for the atmospheric CO2 growth rate.

5 Atmospheric CO; concentration

Fig. 7 shows the spatial pattern and time series of atmospheric CO, concentration from MPI-ESM simulations, including
uninitialized, assimilation, and initialized simulations, together with the satellite XCOs, (i.e., atmospheric column-average dry-
air mole fraction CO3) and NOAA_GML observations for the last-eeuple-years. The XCO4 from the assimilation simulation
(Fig. 7B) shows the spatial distribution of atmospheric COy concentration which compares well with the satellite XCOq
(Fig. 7A). High CO; concentrations are found in the tropical to mid-latitudes of the northern hemisphere. Relatively low CO4
concentrations are found in the southern hemisphere and the polar regions. Note the model simulation is several ppm higher than
the satellite data, and this deviation can be attributed back to the uninitialized historical simulation (see Fig. A3). Additionally,
the satellite data does not cover all the seasons in high latitudes and therefore the sampled values from assimilation simulation

also represents more the summer season’s XCO- there. The surface level CO, shows more dominant higher concentration
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Figure 7. Upper panels: Spatial distribution of 2015-2018 mean satellite-based Obs4MIPs XCO2 (A) and model assimilation of XCO,
(resampled according to satellite data availability) (B) and model assimilation of atmospheric CO2 concentration at 1000hPa level (C). A
short time period of 2015-2018 is used because of the limited temporal coverage of satellite data. The satellite XCO2 data product is obtained
from the Climate Data Store Copernicus Climate Change Service (Reuter et al., 2013). The conversion of model simulated CO2 to XCO»
is performed according to Gier et al. (2020) (their Appendix A). Lower panels: Atmospheric CO2 concentration globally-averaged (D), at
Mauna Loa (E), and at the South Pole (F) from the uninitialized (Uninit), assimilation (Assim) simulations, and initialized simulations at a
lead time of 1 year (Init_LY1), compared to observations over the 2010-2018 period. The location of Mauna Loa and the South Pole is shown
in panel (C). The numbers in the figure’s legend show the correlation (left) and root mean square error (RMSE, right) of the simulations
relative to observational data from NOAA_GML (Dlugokencky and Tans, 2020). The simulated time series from the MPI-ESM simulations,
including uninitialized, assimilation, and initialized simulation, are bias corrected by removing the difference of mean states and the linear

trend between observations and simulations according to Boer et al. (2016).
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Figure 8. A: Time series of atmospheric CO2 concentration anomalies from initialized simulations at a lead time of 1 year and 2 years,
compared to the NOAA_GML observations (Dlugokencky and Tans, 2020) over the last 10 years. Anomalies are calculated by detrending
the time series and with climatological mean removed. B: Time series of CO2 fluxes from initialized simulations at a lead time of 1 year and
2 years together with estimates from the GCB2019; The red curves present the sum of predictions at a lead time of 2 years and the previous
year of prediction at a lead time of 1 year (air-land_ly1n2). C: Time series of nino3.4 SST from model simulations and HadISST. The time

series are original model outputs and concatenated according to the lead time of years.

in the northern hemisphere than in the southern hemisphere (Fig. 7C). Here we also compare the surface atmospheric CO2
concentration to compare with the measurements at the Mauna Loa and South Pole stations (locations are shown in the figure
with stars).

The atmospheric carbon burden and therefore CO2 concentration is an accumulative quantity and shows mainly a linear
increasing trend in recent decades in response to increasing anthropogenic emissions. Systematically lower or higher simulated
carbon uptake by land and ocean, compared to the real world, therefore accumulate over the time period while the model
is integrated. The simulated atmospheric CO2 concentration can deviate relative to observations. In the MPI-ESM simulated
global mean atmospheric CO» concentration is around 8ppm higher compared to the observations in the 2010s (see Fig. A4).
The NOAA_GML data represents the average of atmospheric CO, over marine surface sites (Dlugokencky and Tans, 2020),
and these values are slightly lower than the values over land since the anthropogenic CO, emissions occur mainly on land.
The time series shown in Fig. 7D-F are bias corrected by removing the difference of mean states and linear trends between
observations and simulations according to Boer et al. (2016).

The atmospheric CO5 concentration from assimilation shown follows the evolution of NOAA_GML observations well, with
a RMSE of 0.22 ppm, which is better than the uninitialized historical run with a RMSE of 0.47 ppm (Fig. 7D). In general,
the RMSE increases from a lead time of 1 year to 2 years and decreases until a lead time of 5 years in both the global and
observatory sites of Mauna Loa and the South Pole (Fig. A5 and A6). The relatively low predictive skill at a lead time of 2

years in atmospheric CO» concentration is because the model failed to predict the neutral ENSO events in 2010 and La Nifia

16



295

300

305

310

315

320

325

in 2011, and instead predicts a strong El Nifio in both years (Fig. 8C). The corresponding air-land COs fluxes are reversed,
i.e., the land takes up less CO4 than expected in 2011 (Fig. 8B blue solid curve and black solid curve). As the atmospheric
COs concentration is a cumulative quantity, the magnitude of atmospheric CO, concentration is affected by the CO4 fluxes
in the current and previous years. We also present the cumulative air-land CO- fluxes of the 1st and 2nd year prediction
(see the red curves in Fig. 8B), and the variations in cumulative air-land CO, fluxes are reverse to those in atmospheric CO5
concentration changes at a lead time of 2 years, as shown in Fig. 8A blue curves. The results indicate that the air-land CO4
flux and corresponding atmospheric CO3 has predictive skill, though the skill at a lead time of 2 years is degraded by the poor
predictive skill of ENSO in some starting year predictions.

This retrospective prediction demonstrates the ability of an ESM-based decadal prediction system in reconstructing and
predicting the global carbon cycle, with only assimilation of the physical atmosphere and ocean fields. As presented in Fig. 5’s
right panels, the hindcasts also show a predictive skill of 5 years for air-sea CO5 fluxes and 2 years for air-land CO, fluxes and

atmospheric carbon growth. Hence the ability of ESMs to predict the next year’s GCB is high.

6 Conclusions

For the first time, we have extended a decadal prediction system based on the MPI-ESM to include an interactive carbon cycle,
driven by fossil fuel emissions, and that enables prognostic atmospheric CO, predictions. The new assimilation and initialized
predictions have one more degree of freedom, i.e., prognostic atmospheric CO5, and this framework represents the global
carbon cycle as it operates in the real world.

The variations of atmospheric carbon growth rate and CO, fluxes among the atmosphere, ocean, and land are well recon-
structed in our assimilation simulations, with high correlations (0.75, 0.97, and 0.75) compared to the estimates from the
GCB2019. This provides confidence in the quantification of the GCB in a closed system within an Earth system model. Recon-
structions of the GCB based on ESMs are therefore able to potentially provide additional lines of evidence for quantifying the
annual GCB and opens new opportunities in assessing the efficiency of carbon sinks. In particular, this approach eliminates the
budget imbalance term that arises in GCBs of the Global Carbon Project due to the combination of various, not fully consistent
model and data approaches.

To further support the Global Carbon Project in predicting next year’s GCB, the focus of the predictability investigations
are on the lead time of 1 year. The results show high confidence in predicting the global carbon budget for the next year
with the MPI-ESM prediction system. We further demonstrate that retrospective predictions of the global carbon budget have a
predictive skill for up to 5 years for air-sea CO» fluxes and up to 2 years for air-land fluxes and atmospheric carbon growth rate.
This indicates that the variations of atmospheric CO are better reproduced in the assimilation and retrospective predictions
than in the uninitialized freely evolving historical simulations.

The MPI-ESM decadal prediction framework preserves the high predictive power in an emission-driven configuration, sim-
ulating the atmospheric CO2 growth rate with reasonable accuracy. In addition, the emission-driven decadal prediction system

delivers the huge advantage of simulating the air-land and air-sea CO; fluxes in response to fossil-fuel and land-use change
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emissions, including all feedbacks in a consistent framework. Further future efforts that assimilate more observations to ini-
tialize ESMs, and assess their predictive skill will lead to more reliable reconstructions and predictions in global estimates and
spatial distribution of CO, fluxes and the atmospheric CO5. This study is based on simulations from a single ESM. Multi-
model simulations that adopt a framework similar to that used in this study will allow to identify robust changes in the global
carbon cycle expected to occur over the next few years.

We have demonstrated that the MPI-ESM based emission-driven decadal prediction system exhibits the capability to recon-
struct and predict the GCB and atmospheric CO2 concentration variations. Such ESM-based applications will be a useful tool

in supporting the global carbon stocktaking in compliance with the goals of the Paris Agreement.

Code and data availability. Primary data and scripts used in the analysis that may be useful in reproducing the authors’ work are archived
by the Max Planck Institute for Meteorology and can be obtained via the institutional repository http://hdl.handle.net/21.11116/0000-0009-
6B84-A.

St
Table Al. Simulations based on MPI-ESM1.2-LR. Resolution for Atmosphere: T63L47, Ocean: GR15L40. The design of the prediction
simulations is according to previous studies (Marotzke et al., 2016; Li et al., 2019). The assimilation starts from the end of year 1958 in an
uninitialized simulation. The nudging is strong, therefore an assimilation starting from a different uninitialized simulation would end up with
similar evolution of the climate and carbon cycle. Fig. 1 illustrates the simulations with evolution of atmospheric CO2 growth rate together
with observations. The initialized simulations start from the assimilation yearly from October 31st and run freely for 2 months plus 5 years
afterwards. We have 60 runs for one ensemble of initialized simulations starting from 1960 to 2019 annually and run for 5 years and 2 months
each, i.e., Nov. 1960 - Dec. 1965 for starting year 1960, Nov. 1961 - Dec. 1966 for starting year 1961, and so forth until Nov. 2018 - Dec.
2023. The ensembles are generated with lagged 1-day initialization, i.e., the simulations start from 10 consecutive days from October 31st to
November 9th. The ensembles for uninitialized simulations (shown as in Fig. A3) are generated by starting from different year of the control

simulation (Fig. Al).

Simulations Ensemble members Nudging Initial condition Time period
Uninitialized 10 N/A Preindustrial 1850-2099
Assimilation 1 Atm.: ERA Uninitialized 1959-2018

Ocean: ORAS4 anomalies

(without SN-5S band)

Sea Ice: NSIDC
Initialized 10 N/A Assimilation 1960-1965

... 2018-2023
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Figure A1l. Time series of model simulations of ocean net primary production, air-sea CO5 flux and air-land CO> flux in the pre-industrial

control run. The thin lines are annual mean time series, and the thick lines are their 20-year running means.
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Figure A2. Climatological mean of ocean net primary production (NPP, A-C) and phosphate concentration (D-F) from observations and
from model simulations. NPP observation-based data are estimated from ocean color measurements obtained by the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) instrument of the OrbView-2 satellite for September 1997 to December 2002 period and the Moderate
Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite for the 2003 to 2014 period ((Behrenfeld and Falkowski, 1997),
http://science.oregonstate.edu/ocean.productivity/index.php). Phosphate observations are from the World Ocean Atlas 2018 (Garcia et al.,
2019). The corresponding NPP data from model simulations are averaged over the 1998-2017 period, and phosphate data are averaged over

the 1970-2018 period according to the availability of the observation data.

20



420 ——~Assimilation
—Uninitialized
390 -~ ——-input4MIPs -

1 —NOAA-GML -
360

330

Atm. CO, concentration (ppm)

300

1860 1890 1920 1950 1980 2010
Year

Figure A3. Time series of atmospheric CO2 concentration from model simulations and observation from 1850-2020. The assimilation and
uninitialized simulations are shown with orange and blue solid lines, respectively. The CMIP6 input4MIPs atmospheric CO» concentration

forcing and the NOAA_GML observation (Dlugokencky and Tans, 2020) are shown with blue dashed line and black solid lines, respectively.
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Figure A4. Atmospheric CO2 concentration from the assimilation and initialized simulations at a lead time of 1 year together with
NOAA_GML observations (Dlugokencky and Tans, 2020) over the last 10 years. The time series are original model outputs and concatenated

according to the lead time of years.
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