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Abstract. The global carbon budget (GCB) — including fluxes of CO2 between the atmosphere, land, and ocean, and its
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tracing the fate of carbon and understanding the global carbon cycle in a changing climate. We use a novel approach to reconstruct
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which physical atmospheric and oceanic data products are assimilated show high confidence in predicting the following year’s
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Project (Canadell et al., 2007) assesses the anthropogenic GCB — i.e., CO2 emissions and their redistribution among the
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35 of net biome production between the dynamic global vegetation models (DGVMs) used in the GCBs and inversions that
match
the atmospheric CO2 growth rate (Bastos et al., 2020).
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carbon. In addition to assessing the GCB variations in the past, the Global Carbon Project also makes a prediction of the GCB
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(Li et al., 2016, 2019; Lovenduski et al., 2019b, a; llyina et al., 2021). However, as of now, the state-of-the-art decadal
45 prediction systems are typically forced with a prescribed atmospheric CO2 concentration without an interactive carbon cycle,
i.e., the effect of the changes in COz2 fluxes are not reflected in the atmospheric COz variations. With this conventional model

setup, one can only assess the atmosphere-land and atmosphere-ocean CO fluxes, but not the resulting variations in atmospheric - Deleted: into the land and ocean

CO2concentration and growth. Prediction systems have proven their skill in predicting air-sea and air-land CO2 fluxes (llyina et

al., 2021). For the first time, we extend our previously concentration-driven prediction system to an emission-driven system. The

emission-driven

50 system takes into account the interactive carbon cycle and therefore determines atmospheric CO2 prognostically and
predicts

atmospheric COz2 variations. In this study, we assess the global carbon budget in a simulation with assimilated observational
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products into the Max Planck Institute Earth System Model (MPI-ESM) model, and further estimate the predictive skill yelative - T Deleted: based on the Max Planck Institute Earth System

to the GCB from 2019 (GCB2019, Friedlingstein et al. (2019)) for COz2 fluxes and changes in atmospheric CO2 (Dlugokencky
and Tans, 2020).

The assimilation simulation is designed to reconstruct the evolution of the Earth system of the real world, by incorporating
essential fields from observational products into the MPI-ESM_model. The reconstruction from the fully coupled model simulation
(henceforth known as simply the assimilation simulation) enables the representation of the global carbon budget within a closed
Earth system. Therefore, by construction, this approach avoids the budget imbalance term arising from the need to balance carbon
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60 estimate. The assimilation simulation’s states, which are close to the real world through constraints from observations and data

products, are used to jnitialize simulations that predict the changes jn the global carbon budget. These initialized simulations are
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expected to capture the evolution of climate and carbon cycle more realistically than freely evolving uninitialized simulations due
to their improved initial conditions; In prediction studies, the term "uninitialized" refers to a state that is not constrained by
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65 robustness of the coming 2022 GCB assessment of the Global Carbon Project. A

2 Materials and Methods

2.1 Model and simulations

phase of the Coupled Model Intercomparison Project (CMIP6). The atmospheric horizontal resolution has a spectral truncation
70 at T63 (approximately 200 km or 1.88 deg grid spacing at the equator) with 47 vertical levels. The resolution of the ocean
model MPIOM (Marsland et al., 2003) is about 150 km with 40 vertical levels. The ocean biogeochemistry component of the

MPI-ESM is represented by HAMOCC (llyina et al., 2013; Paulsen et al., 2017), and the land and vegetation components are - {

represented by JSBACH (Reick et al., 2021).

80 The major difference relative to the previous system (Li et al., 2016, 2019) is that the new prediction system is based on emission-

driven simulations, which are forced by CO2 emissions instead of prescribed atmospheric COz concentration. In this way, the

AR\
(R

emissions from the SSP2-4.5 scenario (Jones et al., 2016). While the fossil fuel emissions are prescribed, the land-use

85 change induced emissions are simulated interactively in our ESM and driven with the Land-Use Harmonization (LUH2) forcing
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vegetation (Reick et al., 2021). An ensemble of 10 members is run for the uninitialized historical and initialized prediction
simulations. The uninitialized ensembles are generated by starting from a different year of the pre-industrial control simulation (the
model has reached equilibrium as shown in the time series of ocean net primary production and COz2 fluxes from the control
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90 simulation in Fig. Al). The individual members of an initialized ensemble are generated with 1-day @gﬁggdﬁigitﬁialﬁi@tjopsﬁf[oin4 - { Deleted: s
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atmospheric carbon growth rate in uninitialized, assimilation, and initialized simulations. More details of the simulations are summarized in
Fig. 1 and Table Al.

A Uninitialized simulations B Assimilation reconstruction C Initialized predictions

Predictions are evaluated by
concatenating the color points
to time series according to the

lead time*
Single member Ensemble mean predictions
Initialized

Uninitialized “free” _— F—
simulations  capture Observational and s:;mls;{focﬂt'igpmgg Predictions are initialized predictions follow the
long-term trends, but reanalysis data products Coa from reconstruction evolution of

g 'S, oul e observed year-to-year b
ot the vear-to-year are assimilated. yearly and run freely for reconstruction, bias

A Y variations to a large several years. due to initialization
variations. extent.

needs to be corrected.

lllustration of decadal prediction system based on an Earth system model

*Note that not every starting year's predictions are shown.
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al., 2013). Additionally, we nudge the simulated values towards atmospheric 3-D full-field temperature, vorticity, divergence, and

log of surface pressure from
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ECMWF Re-Analysis ERA40 (Uppala et al., 2005) during the period of 1959-1979, and ERA-Interim (Dee et al., 2011)
during the period of 1980-2018. The sea-ice concentration is nudged towards the National Snow and Ice Data Center (NSIDC)

relaxation times, i.e., a relatively longer relaxation time of 10 days is used for the ocean temperature and salinity, and a shorter

relaxation time of 6 hours, 24 hours, and 48 hours are used for the atmospheric vorticity, temperature and pressure, and divergence,

respectively. The chosen variables for assimilation and their respective relaxation time are selected based on previous investigations
of decadal

climate predictions based on the MPI-ESM (Marotzke et al., 2016). Direct assimilation of the carbon cycle related variables is not
included because of the limited available data; instead, we found that the global carbon cycle is well captured by assimilating only
physical variables (Li et al., 2016, 2019; Lovenduski et al., 2019b, a; llyina et al., 2021). Furthermore, a recent study based on a
perfect-model framework (i.e., based on simulations in which the model tries to predict itself) revealed that direct assimilation of

2.3 Carbon budget decomposition with CBALONE simulations

The GCB from Global Carbon Project is decomposed into five terms plus an imbalance term: the two emissions terms from fossil-

—= N e T e e e T e Y T Y D T L

fuel and land-use changes, and the three sink terms for the natural terrestrial sink, ocean sink, and atmospheric growth on annual

115 timescales. The fossil fuel emissions are prescribed as forcing, and the terrestrial and ocean carbon sinks and atmospheric growth

120

terms are simulated and therefore can be directly derived from the ESM. However, only the net land-atmosphere exchange is

directly deducible from an ESM, which is the sum of land-use change emissions and the natural terrestrial sink. In order to
separate the two land-related fluxes, we use a stand-alone component of JSBACH called CBALONE as a diagnostic for a direct
by the MPI-ESM

daily outputs including 2m air temperature, soil temperature, precipitation, net primary productivity (NPP) per plant functional
type (PFT), leaf area index (also per PFT), and maximum wind. We run two parallel simulations, i.e., one with anthropogenic
land use changes, and another without those changes, differencing the two simulations results in the land-use change induced
emissions from the land sink. More details on this method of separating the land-use change induced emissions can be found
in Loughran et al. (2021).

125 2.4 Predictive skill quantification

annual timescales. The initialized simulations are investigated according to their lead time, i.e., for how many model years they

= { Deleted: of

- { Deleted: ing

- { Deleted: 5

- { Deleted: s

- { Deleted: e




have been freely integrated after restarting from the assimilation simulation. The time series of initialized simulations at a lead
time of 1 year (2, 3, 4, and 5 years) combine the 1st year (2nd, 3rd, 4th, and 5th year) predictions from initialized
130 simulations of all the starting years from 1959-2018. Therefore, the time series at lead time of 1 year (2, 3, 4, and 5 years)

corresponds to the period 1960-2019 (1961-2020, 1962-2021, 1963-2022, and 1964-2023). lllustration of how the time series

are concatenated
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is shown in Fig. 1C. The analyses of predictive skill quantification are based on the combined time series. Bias correction is an
| unavoidable topic for decadal predictions due to an initial shock, which varies with lead time (Boer et al., 2016; Meehl et al.,
2021). The decadal prediction studies mostly present anomalies with focus on variations by removing the climatological
| 135 mean and/or trend bias due to model drift caused by the initialization of the model based on observations. The anomalies are
calculated relative to the respective climatology according to the lead time (Boer et al., 2016; Meehl et al., 2021). To infer
predictions of absolute values of the atmospheric CO2 concentration, the respective anomalies from the predictions are added
The predictive skill is quantified by the anomaly correlation coefficient, and the anomalies are calculated by removing the

140 respective climatological mean state. In that sense, the climatological mean bias is removed and the coherence reflects the multi-
production and phosphate nutrient concentration are shown in Fig. A2 in comparison with the respective observations. [Here the
climatological mean state is based on the ensemble mean of the focus time period, 1970-2018 for Figs. 1-6, and the last 10 years
for Figs. 7-8. We exclude the first 12 years, i.e., 1958-1969, from the analyses and focus on the period from 1970-2018,

145 because the assimilation in the first decade is affected by model adj ustment.[ For the atmospheric CO2 concentration, which has
high correlations close to 1 with observations because of the coherent linear trends, we have also added the root mean square
error (RMSE) metric to investigate the added value of assimilation and initialization. In this study, the significance of the
predictive skill is tested with a nonparametric bootstrap approach (Goddard et al., 2013). The analyses are based on annual

mean data with a focus on the frequency of interannual to multi-year variations.

150 3 Reconstruction of the global carbon budget

By incorporating observation-based information, the assimilation simulation from the decadal prediction system based on the

The time series of carbon fluxes from the MPI-ESM assimilation simulation in comparison to the data and suite of simulations
from GCB2019 are shown in Fig.2.

difference in the 1960-1990s

highlights the uncertainty in the CO2forcing, which affects the change in the simulated atmospheric CO2 concentration as it is a
cumulative quantity. The CMIP6 COzemission forcing yields 8.20 PgC higher cumulative emissions than those from the GCB

w— - e . T = Y Y Y e e e ——_ =

160 discrepancy in CO2 emissions might explain to some extent that the simulated atmospheric CO2 concentration is a few ppm
higher than the NOAA_GML observations (Dlugokencky and Tans, 2020) (Fig. A3). However, this small difference of a few
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MPI-ESM captures the near-term evolution of the global carbon budget as well as the climate that is closer to observations.

The CO2 emissions from fossil fuels and industry are generally consistent with those from GCB 2019, but with a slight _

155 since the assimilation simulation uses the CO2 emission forcing provided by CMIP6 for historical and SSP2-4.5 simulations; This
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2019, which is equivalent to a difference of atmospheric CO2 of about 1.93 ppm assuming that 50% of the emissions stay in the “\ >

N
N

- { Deleted: ,

o ‘[ Formatted: Subscript

- ’( Deleted: T

X<
\

\

\
\
N

=

~
\
N

\
\

\
N

Commented [A(I|hh(1]: This seems out of place. You
were talking about Figure A2 and then you switched to this.

Deleted: al signals

Deleted: in

Deleted: in

Deleted: ,

Deleted: between

Deleted: (which

Deleted: ) and GCB2019

1

Deleted: Cumulatively, t

Deleted: is

Deleted: that

At
{
i
{
|
|
\
{

Deleted: by

N Y Y D N N D Y




ppm in atmospheric COz2 concentration magnitude doesn’t noticeably affect the interannual variations in CO2 fluxes and the
corresponding atmospheric carbon increment (see Fig. 2D-F).
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The land-use change induced emissions diagnosed by CBALONE are within the range of GCB2019 multi-model (including
JSBACH) simulations from Dynamic Global Vegetation Models (DGVMs) (Fig.2B). The estimates from bookkeeping models
show smaller variations than those produced by the DGVMs. Note that the GCBs use the bookkeeping approach for the land-use

emissions term. The term bookkeeping implies that carbon fluxes are determined from area changes in vegetation types of different _ -
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vegetation and their soil carbon densities, with specific response curves characterizing the evolution of decay of deforested biomass
and recovery of natural vegetation thereafter. Biomass and soil carbon densities may be based on recent observations or models

but are generally kept fixed_in time, i.e. the effect of changes in environmental conditions are not

accounted for. The DGVMs by contrast (which are used to provide only an uncertainty range around the bookkeeping models in the
GCBs) calculate land-use emissions under transient environmental conditions. This implies first that interannual variability in
bookkeeping models is only driven by land-use change, but not by climate variability, which makes the DGVM estimates of LUC

estimates include the so-called "loss of additional sink capacity" (Pongratz et al., 2014), which refers to the carbon that could

e T

have been stored in forests additionally over the course of history (e.g., due to the "CO2-fertilization" effect) had these forestspot - {

been cleared by the expansion of agriculture and forestry. This loss of additionally sink capacity generally increases over time and
amounts to about 40% (0.840.3 PgC yr-1) over 2009-2018 (Obermeier et al., 2021). This explains why DGVM estimates in Fig.
2B show higher emissions than bookkeeping estimates in recent decades. The DGVM- and expert-based uncertainty range around
the GCB bookkeeping estimates for LUC emissions is large and MPI-ESM-based land-use change

emission estimates have been found to be at the high end of the GCB for all decades by Loughran et al. (2021), consistent with

our findings.

consistent manner (Friedlingstein etal., 2019). In this study, we assimilate atmosphere and ocean data products within a fully coupled
ESM that

considers their interactions. The assimilation ensures the evolution of the carbon cycle and climate towards the real world, and
in contrast to the GCB, the budget is closed within the Earth system, i.e., no budget imbalance occurs by design (Fig. 2C).
Therefore, the assimilation simulation based on a fully coupled ESM enables better attribution of the GCB variations than when

an imbalance is present. The current method of the Global Carbon Project’s GCBs (Friedlingstein et al., 2019) which uses the
directly measured atmospheric CO2 increment has the advantage of representing the actual evolution of atmospheric CO2. Our
ESM-based assimilation shows a

high correlation of 0.75 with the atmospheric CO2 measurements, but still needs to be improved. Further efforts are required to
constrain the atmospheric CO2 from observations.
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Atmospheric carbon growth rate and carbon fluxes are reasonably well reproduced in emission-driven assimilation with
prognostic atmospheric COz2 (Fig. 2D-F). The atmospheric carbon growth and the land carbon sink show more pronounced
variations on interannual time scales, however, the ocean carbon sink has more pronounced variations on decadal time scales.

195 These variations are captured in the assimilation with high correlations between the results from the assimilation simulation and
the GCB2019 of 0.75, 0.75, and 0.97 for the atmospheric growth, atmosphere-land CO2 flux, and atmosphere-ocean CO2 flux,
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Figure 3. Spatial distribution of the COz2 fluxes from model assimilations compared to GCB2019. Climatological mean COz fluxes into the

land and ocean from the atmosphere|in reconstruction (A)jand Global Carbon Budget (GCB 2019 (Friedlingstein et al., 2019)) (B). Temporal -~ {

variability, i.e., standard deviation, of CO2 fluxes [reconstruction](c) and GCB2019 (D). Correlation and \root mean square difference ]between

values in A and B refer to CO2 fluxes into the ocean or land.

ocean and land in the mid- to high-latitudes, and outgassing into the atmosphere in tropical areas, especially over the tropical
Pacific (Fig. 3A-B). The variability of CO2 over land is larger than that over the ocean; and the magnitude of variability is larger
in the assimilation simulation than in the GCB2019 (Fig. 3C-D). This is expected as the GCB2019 is a multi-model mean estimate
and therefore smooths out part of the high frequency variability. The correlation of COz2 fluxes between the reconstruction and
GCB2019 is high, especially over the ocean (Fig. 3E). The root mean square deviation (RMSD) scales with the magnitude of
carbon fluxes, i.e., with greater values on land than over ocean (Fig. 3F). The large RMSD is partially due to

a smoothed magnitude of fluxes in GCB2019 from the multi-model mean and also the bifferences in the climatology state rfgri
GCB2019 and reconstruction, as shown in Fig. 2E-F.
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210 4 Predictability of the global carbon budget

The initialized predictions start from assimilation states which are close to observations. Therefore, information from the

observations Js incorporated into the prediction system through realistic initial states of the components of the climate system,

!

the predictability horizon is reached.

To support the Global Carbon Project in predicting the next year’s GCB one year in advance, we also investigate the pre-
215 dictability, focusing on model hindcasts at a lead time of 1 year. As shown in Fig. 4 and Fig. 5, the initialized simulations at a
lead time of 1 year show high correlations with GCB2019. The correlations of global atmospheric CO2 growth, net air-sea CO2

v

fluxes and net air-land CO2 fluxes are 0.59, 0.52, 0.70 after removing the linear trends (Fig. 5 left panels); the correlation of the
original time series are 0.76, 0.97, and 0.66 (Fig. 4 left panels). The initialized simulations at a lead time of 2 years still resemble
the variations in the GCB2019, with correlations of 0.49 and higher (Fig. 6 left panels), and the detrended time

220 series also show higher correlations than the detrended uninitialized simulations. This shows that internal variability can be
constrained by initialization (Fig. 6 right panels). As for atmospheric carbon growth, the initialized simulations at a lead time of 2

GCB2019. After detrending, the correlations are higher in the initialized simulations than in the uninitialized simulations

v

(comparing Fig. 6 A and D).
225 The initialized and uninitialized simulations show a comparably good match to GCB2019 with respect to the net CO2 flux into

w==_""_"_ -

etal. (202Q). Figure 4B shows that the ocean carbon sink variations (especially on decadal time-scales) in the historical freely
evolving uninitialized run are simulated reasonably well.

230 The net carbon flux into land shows a higher correlation for initialized simulations at a lead time of 2 years than that for uninitialized
simulations (Fig. 4F and Fig. 5F). This indicates that the interannual variations are better captured in the initialized model system
even after 2 years of free integration. This result implies a predictability of the air-land CO2 flux for up to 2 years. The air-land
CO:2 fluxes are regulated by EI Nino-Southern Oscillation (ENSO) variations (Loughran et al., 2021; Dunkl et al., 2021), and the
poor skill in predicting ENSO limits the predictability of the air-land CO2 fluxes. However, the predictive

235 skill of air-land CO2 of 2 years is beyond the predictability horizon of ENSO, which is limited to a seasonal scale.
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We further quantify the predictive skill of the GCB through all the lead times up to 5 years (Fig. 4 right panels and Fig. 5
right panels). The correlation skill relative to GCB2019 is significant for the lead time of 5 years in the atmospheric carbon
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are based on annual mean data for the time period of 1970-2018.
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270 shown in Fig. 7D-F are bias corrected by removing the difference of mean states and linear trends between observations and
simulations according to Boer et al. (2016).
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The relatively low predictive skill at a lead time of 2 years in atmospheric COz2 concentration is because the model failed to
predict the neutral ENSO events in 2010 and La Nina in 2011, and instead predicts a strong El Nino in both years (Fig. 8C). The
corresponding air-land COz2 fluxes are reversed, i.e., the land takes up less CO2 than expected in WHICH YEAR (Fig. 8B blue
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280 curve and black solid curve). LAs the atmospheric COz concentration is a cumulative quantity, the magnitude of interannual variations
(see the red curves in Fig. 8B), and the variations in cumulative air-land COz2 fluxes are reverse to those in atmospheric CO2 \
concentration changes at a lead time of 2 years, as shown in Fig. 8A blue curves. The results indicate that the air-land CO2 flux
and corresponding atmospheric COz has predictive skill, though the skill at a lead time of 2 years is degraded

285 by the poor predictive skill of ENSO in some starting year predictions.

This retrospective prediction demonstrates the ability of an ESM-based decadal prediction system in reconstructing and
predicting the global carbon cycle, with only assimilation of the physical atmosphere and ocean fields. As presented in Fig. 5°s
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right panels, the hindcasts also show a predictive skill of 5 years for air-sea COz2 fluxes and 2 years for air-land COz fluxes and
atmospheric carbon growth. Hence the ability of ESMs to predict the next year’s global carbon budget,

290 6 Conclusions
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on the lead time of 1 year. The results show high confidence in predicting the global carbon budget for the next year with the
MPI-ESM prediction system. We further demonstrate that retrospective predictions of the global carbon budget have a
predictive skill for up to 5 years for air-sea COz2 fluxes and up to 2 years for air-land fluxes and atmospheric carbon growth
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Code and data availability. Primary data and scripts used in the analysis that may be useful in reproducing the authors’ work are archived by
the Max Planck Institute for Meteorology and can be obtained via the institutional repository http://hdl.handle.net/21.11116/0000-0009-

6B84-A.
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Table Al. Simulations based on MPI-ESM1.2-LR. Resolution for Atmosphere: T63L47, Ocean: GR15L40. The design of the prediction
simulations is according to previous studies (Marotzke et al., 2016; Li et al., 2019). The assimilation starts from the end of year 1958 in an
uninitialized simulation. The nudging is strong, therefore an assimilation starting from a different uninitialized simulation would end up with
similar evolution of the climate and carbon cycle. Fig. 1 illustrates the simulations with evolution of atmospheric CO2 growth rate together
with observations. The initialized simulations start from the assimilation yearly from October 31st and run freely for 2 months plus 5 years
afterwards. We have 60 runs for one ensemble of initialized simulations starting from 1960 to 2019 annually and run for 5 years and 2 months
each, i.e., Nov. 1960 - Dec. 1965 for starting year 1960, Nov. 1961 - Dec. 1966 for starting year 1961, and so forth until Nov. 2018 - Dec.
2023. The ensembles are generated with lagged 1-day initialization, i.e., the simulations start from 10 consecutive days from October 31st to
November 9th. The ensembles for uninitialized simulations (shown as in Fig. A3) are generated by starting from different year of the control
simulation (Fig. Al).

Simulations Ensemble members Nudging Initial condition Time period
Uninitialized 10 N/A Preindustrial 1850-2099
Assimilation 1 Atm.: ERA Uninitialized 1959-2018
Ocean: ORAS4 anomalies
(without 5N-5S band)
Sea Ice: NSIDC
Initialized 10 N/A Assimilation 1960-1965
... 2018-2023
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