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Abstract. The global carbon budget (GCB) -
::
— including fluxes of CO2 between

:::
the atmosphere, land and ocean, and its

atmospheric growth rate -
::
—

:
show large interannual to decadal variations. Reconstructing and predicting the variable GCB is

essential for tracing the fate of carbon and understanding the global carbon cycle in the
:
a changing climate. We use a novel

approach to reconstruct and predict the next-years’ variations in GCB based on our decadal prediction system enhanced with

an interactive carbon cycle. By assimilating physical atmospheric and oceanic data products into the Max Planck Institute5

Earth system model
::::::
System

::::::
Model

:
(MPI-ESM), we can well reproduce the annual mean historical GCB variations from

1970-2018, with high correlations relative to the assessments from the Global Carbon Project of 0.75, 0.75 and 0.97 for

atmospheric CO2 growth, air-land CO2 fluxes and air-sea CO2 fluxes, respectively. Such a fully coupled decadal prediction

system, with an interactive carbon cycle enables representation of the GCB within a closed Earth system, and therefore provides

an additional line of evidence for the ongoing assessments of the anthropogenic GCB. Retrospective predictions initialized from10

the assimilation simulation show high confidence in predicting the following year’s GCB. The predictive skill is up to 5 years

for the air-sea CO2 fluxes, and 2 years for the air-land CO2 fluxes and atmospheric carbon growth rate. This is the first study

investigating the GCB variations and predictions with an emission-driven prediction system,
:::
and

:
such a system also enables the

reconstruction and prediction of the evolution of atmospheric CO2 concentration changes. The earth
::::
Earth

:
system predictions

in this study provide valuable inputs for understanding the global carbon cycle and informing climate relevant policy.15

1 Introduction

The CO2 fluxes between the atmosphere, land and ocean, and thus the atmospheric carbon growth rate, vary substantially on

interannual to decadal time-scales (Peters et al., 2017; Friedlingstein et al., 2019; Landschützer et al., 2019; Friedlingstein

et al., 2020). These variations reflect
::
the

:
combined effects of

:::
the internal variability of the global carbon cycle (Li and Ilyina,

2018; Séférian et al., 2018; Spring et al., 2020; Fransner et al., 2020) and its responses to external forcings (McKinley et al.,20

2020).

To constrain the global carbon budget (GCB) of the past and facilitate its prediction and projection into the future, the

Global Carbon Project (Canadell et al., 2007) assesses the anthropogenic GCB -
::
—

:
i.e., CO2 emissions and their redistribution

among the atmosphere, ocean, and land -
::
—

:
every year since 2007. The annual updates of the GCB are important in informing
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policy/society on the ongoing variations in the carbon cycle, and will be critical in decarbonization processes. This assessment25

is based on anthropogenic CO2 emissions, observations of the atmospheric CO2 concentration, and individual stand-alone

model simulations of CO2 fluxes for the ocean and land. The air-land CO2 fluxes from earth
:::::
Earth system models are the sum

of natural fluxes and the land-use change induced emissions, and hence the GCBs use a separate bookkeeping approach (e.g.

Hansis et al. (2015)) to calculate only the land-use emissions term. The stand-alone simulations for the land and ocean are

forced by different observation/reanalysis data and thus do not provide an internally consistent estimate of the CO2 fluxes.30

Moreover, the accumulated CO2 fluxes from these stand-alone model simulations do not exactly match the observations.

Therefore, the global carbon budget is not closed but ends up with a budget imbalance term
::
of

:
up to 2 PgC/year for some

years
:::::
though

:::
the

::::::::::::
climatological

:::::
mean

:::::
value

::
is

:::::
nearly

::::
zero

::
of

::::
0.17

::::::::
PgC/year (Friedlingstein et al., 2020), which hinders

::
the

:
full

attribution of the global carbon cycle variations. A large part of the budget imbalance could also be attributed to the mismatch

of net biome production between the dynamic global vegetation models (DGVMs) used in the GCBs and inversions that match35

the atmospheric CO2 growth rate (Bastos et al., 2020).

Reconstruction of the variable GCB within a closed Earth system model (ESM) is of essential value of tracing the fate of

carbon. In addition to assessing the GCB variations in the past, the Global Carbon Project also makes a prediction of the GCB

for the next year, however, it is only based on statistical approaches, which is not possible to trace back to the processes. The

decadal prediction systems based on ESMs (Marotzke et al., 2016) show
:
a potential to reconstruct and predict the global carbon40

cycle (Li et al., 2016; Spring and Ilyina, 2020). By assimilating observational products of physical fields, the decadal prediction

systems are able to reproduce the variations of CO2 fluxes as found in observation-based products; decadal prediction systems

can then use states from an assimilation simulation as initial conditions for further multi-year predictions of the global carbon

cycle (Li et al., 2016, 2019; Lovenduski et al., 2019b, a; Ilyina et al., 2021). However, as of now, the state-of-the-art decadal

prediction systems are typically forced with
:
a prescribed atmospheric CO2 concentration without an interactive carbon cycle,45

i.e., CO2 fluxes are not reflected in the atmospheric CO2 variations. With this conventional model setup, one can only assess

the CO2 fluxes into the land and ocean, but not the resulting variations in atmospheric CO2 concentration and growth.

Prediction systems have proven
::::
their skill in predicting air-sea and air-land CO2 fluxes (Ilyina et al., 2021), for .

::::
For

the first time, we extend our previously concentration-driven prediction system to an emission-driven system, taking
:
.
::::
The

:::::::::::::
emission-driven

::::::
system

:::::
takes into account the interactive carbon cycle and hence resolving prognostic

:::::::
therefore

::::::::::
determines50

atmospheric CO2 and making
:::::::::::
prognostically

:::
and

:::::::
predicts

:
atmospheric CO2 predictions

::::::::
variations. In this study, we assess the

global carbon budget in a simulation with assimilated observational products into the model, and further estimate the predic-

tive skill based on the Max Planck Institute Earth system model
::::::
System

::::::
Model (MPI-ESM) relative to the GCB from 2019

(GCB2019, Friedlingstein et al. (2019)) CO2 fluxes and atmospheric CO2 (Dlugokencky and Tans, 2020).

The assimilation simulation is designed to reconstruct the evolution of the earth
::::
Earth system of the real world, by incor-55

porating essential fields from observational products into the MPI-ESM. The reconstruction from the fully coupled model

simulation (henceforth known as simply the assimilation simulation) enables representation of the global carbon budget within

a closed Earth system. Therefore, by construction, this approach avoids the budget imbalance term arising from the need to

budget carbon fluxes from stand-alone models and observations. Our reconstructions of the carbon budget provide an additional
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and novel estimate. The assimilation simulation
::
’s states, which are close to the real world , are then

::::::
through

:::::::::
constraints

:::::
from60

::::::::::
observations

:::
and

::::
data

::::::::
products,

:::
are used to start our retrospective initialized prediction simulationsto

::
the

:::::::::
initialized

::::::::::
simulations,

:::::
which predict the changes of the global carbon budgetin the next years. Initialized predictions are expected to capture internal

variability better
::
the

::::::::
evolution

::
of

:::::::
climate

:::
and

::::::
carbon

::::
cycle

:::::
more

::::::::::
realistically than freely evolving uninitialized simulations due

to the
::::
their improved initial conditions

::::
from

::::::::::::
reconstruction. In prediction studies, the

:::
term

:
"uninitialized" refers to not initial-

ized from states constrained by observations or data products. This novel prediction will be added to enhance
:::
the robustness of65

the coming GCB assessment of the Global Carbon Project.

2 Materials and Methods

2.1 Model and simulations

We use the MPI-ESM1.2-LR (Mauritsen et al., 2019), which is the low resolution version
:
of

:::
the

:::::::::
MPI-ESM

:
used for the sixth

phase of the Coupled Model Intercomparison Project (CMIP6). The atmospheric horizontal resolution has a spectral truncation70

at T63 or approximately 200-km grid spacing
::::::::::::
(approximately

::::
200

:::
km

::
or
:::::

1.88
:::
deg

::::
grid

:::::::
spacing

::
at

:::::::
equator)

:
with 47 vertical

levels. The resolution of the ocean model MPIOM (Marsland et al., 2003) is about 150 km with 40 vertical levels. The ocean

biogeochemistry component of MPI-ESM is represented by HAMOCC (Ilyina et al., 2013; Paulsen et al., 2017), and the land

and vegetation component is represented by JSBACH (Reick et al., 2021).

Similar to our previous prediction system (Li et al., 2016, 2019), we performed 3 sets of simulations (see Table S1
:::
Fig.

::
175

:::
and

:::::
Table

:::
A1): (i) uninitialized freely evolving historical simulations, (ii) an assimilation simulation performed by nudging

the observational signal of climate variations into the model, and (iii) initialized simulations (also referred to as hindcasts

or retrospective predictions) starting from states of the assimilation simulation, to investigate the capacity of our model to

reconstruct and predict the global carbon budget. The assimilation run is needed for the initialized prediction simulations, and

the uninitialized simulations are references to compare to and assess the improved predictability due to initialization.80

The major difference relative to the previous system (Li et al., 2016, 2019) is that the new prediction system is based on

emission-driven simulations, which are forced by CO2 emissions instead of prescribed atmospheric CO2 concentration. In this

way, the atmospheric CO2 concentration evolves in response to the interaction with the strength in CO
::::::
strength

:::
of

::::::
air-land

::::
and

:::::
air-sea

:::
CO2 uptake/outgassing of the land and ocean

:::::
fluxes. We use the CMIP6 (Eyring et al., 2016) historical emissions forcing

for our simulations
:
, and for extension simulations to 2099 we use the emissions from the SSP2-4.5 scenario (Jones et al., 2016).85

While the fossil fuel emissions are prescribed, the land-use change induced emissions are prognostic in the ESMs and driven

with the Land-Use Harmonization (LUH2) forcing (Hurtt et al., 2020). We use transient land use transitions rather than land-

use states and include natural disturbances with dynamic vegetation (Reick et al., 2021). An ensemble of 10 members is run for

the uninitialized historical and initialized prediction simulations. The uninitialized ensembles are generated by starting from
:
a

different year of the
:::::::::::
pre-industrial

:
control simulation (the model has reached equilibrium as shown in the time series of ocean90

net primary production and CO2 fluxes from the control simulation in Fig. A1). The initialized ensembles are generated with

lagged 1-day initializations from a given branching point of the assimilation simulation,
::::
i.e.,

:::::::::
initialized

::::
from

:::::::
October

:::::
31st,
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::::::::
November

:::::::::
1st...until

:::::::::
November

:::
9th. Note that the initialized 5-year long predictions start annually from November 1st for

the period 1960-2018. Fig. 1 illustrates the evolution of
:::
the atmospheric carbon growth rate in uninitialized, assimilation and

initialized simulations. More details of the simulations are summarized in
::::
Fig.

:
1
:::
and

:
Table A1.95

Ensemble members

Single member

*Note that not every starting year predictions are shown.

Illustration of decadal prediction system based on an Earth system model 

A Uninitialized simulations B Assimilation reconstruction

Uninitialized “free” 
simulations capture 

long-term trends, but 
not the year-to-year 

variations.

Observational and 
reanalysis data products 

are assimilated. 

Reconstruction by 
assimilation captures 
observed year-to-year 
variations to a large 

extent. 

Initialized 
predictions follow the 

evolution of 
reconstruction, bias 
due to initialization 

needs to be corrected.

Predictions are initialized 
from reconstruction 

yearly and run freely for 
several years. 

Ensemble mean predictions

Predictions are evaluated by 
concatenating the color points to 
time series according to the lead 
time*. 

C Initialized predictions

Figure 1. Sketch plot
::::::::
Illustration

:
of reconstruction and

:
a
::::::
decadal

:
prediction

:::::
system

::::
based

::
on

:::
an

::::
Earth

::::::
system

:::::
model

::::::::
MPI-ESM

::::::::
simulation

of the atmospheric CO2 growth rate. The time series are original model outputs on annual mean frequency
:::::
means

::::
from

:::::
model

:::::::::
simulations

:::::
plotted

::::::
together

::::
with

::::::::::
observations

::::
from

::
the

::::::
Global

::::::
Carbon

:::::
Project.

::
We

:::::::
conduct

:
3
:::
sets

::
of

::::::::::
simulations,

::::
from

::
left

::
to
::::
right

::
in

::::::::
sequential

:::::
order:

:
i)
::::::::::
uninitialized

::::
"free"

:::::::::
simulations

:::::
which

:::
are

::
the

::::
same

::
as
:::
the

:::::::
Coupled

:::::
Model

::::::::::::
Intercomparison

::::::
Project

::::::
(CMIP)

:::::::
historical

:::
type

::::::::::
simulations;

::
ii)

::
an

:::::::::
assimilation

::::::::
simulation

::
to

:::::::::
reconstruct

::
the

::::::::
evolution

::
of

::
the

::::::
climate

:::
and

::::::
carbon

::::
cycle

::::::
towards

:::
the

:::
real

:::::
world

::
by

:::::::
nudging

:::::::::
observation

:::
and

:::::::
reanalysis

::::
data

:::::
during

::
the

:::::::::
integration;

::
iii)

::::::::
initialized

::::::::
predictions

:::
are

:::::
started

::::
from

:::::::::::
reconstruction

::::
states

:::::::
produced

::
by

:::
the

:::::::::
assimilation

::::::::
simulation

:::
and

:::::::
integrated

:::::
freely

::::
(i.e.,

::
no

:::::::
nudging

::
of

::::
data)

::
for

::
5

::::
years.

:
The upper

::
left

:
panel plot A , time series show that the

:::::::::
uninitialized

:::::::::
simulations

:::::
capture

:::
the

::::::::
long-term

::::
trend

::::
well,

:::
but

:::
the

:::::::::
year-to-year

::::::::
variations

::
are

:::
out

::
of
:::::
phase

::
to

:::
the

::::::::::
observations.

:::
The

::::::
middle

::::
panel

::::
plot

:
B
::::
time

:::::
series

::::
shows

::::
that

::
the

:
assimilation simulation forces the variations in the uninitialized freely run simulation towards the observation (GCB data)

:::
real

:::::
world, and results in a reconstruction close to the data

:::::::::
observations. The lower

:::
right panel plot B

:
C presents the reconstruction together with

5-year long
:::::::
initialized

:::::::::
predictions

::::
(i.e., hindcastsand forecasts). To make the illustration clearly

::::
more

::::
clear, only

::::::::
predictions

::::
with starting

years at 10 year intervals are shown.

4



2.2 Assimilation methods

Similar to our previous concentration-driven decadal prediction systems (Li et al., 2019), the assimilation is done with
::
by

nudging the ocean 3-D temperature and salinity anomalies from
::::::
towards

:
the ECMWF ocean reanalysis system 4 (ORAS4)

(Balmaseda et al., 2013)and .
:::::::::::
Additionally,

:::
we

::::::
nudge the atmospheric 3-D full-field temperature, vorticity, divergence, and

log surface pressure from ECMWF Re-Analysis ERA40 (Uppala et al., 2005) during the period 1960-1979
::
of

:::::::::
1959-1979,

:
and100

ERA-Interim (Dee et al., 2011) during the period
::
of

:
1980-2018. The sea-ice concentration is nudged towards the National

Snow and Ice Data Center (NSIDC) satellite observations (as described in Bunzel et al. (2016)). The nudging is applied to

every model time step
:
, but with different relaxation time, i.e., a relative

::::::::
relatively longer relaxation time of 10 days for the

ocean temperature and salinity, and a shorter relaxation time of 6 hours, 24 hours and 48 hours for the atmospheric vorticity,

temperature and pressure, and divergence, respectively. The chosen variables for assimilation and the
::::
their respective relaxation105

time are according to
::::::
selected

:::::
based

:::
on previous investigations of decadal climate prediction

:::::::::
predictions

:
based on MPI-ESM

(Marotzke et al., 2016). Direct assimilation of the carbon cycle related variables is not included because of the limited available

data; instead, we found that the global carbon cycle is well represented from the assimilation of physical variables only
:::::::
captured

::
by

::::::::::
assimilating

::::
only

:::::::
physical

::::::::
variables (Li et al., 2016, 2019; Lovenduski et al., 2019b, a; Ilyina et al., 2021), and furthermore,

:
.

::::::::::
Furthermore,

:
a recent study based on a perfect-model framework (i.e., based on simulations in which the model tries to predict110

itself) revealed that direct assimilation of the global carbon cycle only brings trivial improvement of
::
the

:
predictive skill of the

global carbon cycle (Spring et al., 2021). To avoid spurious upwelling in the equatorial region caused by assimilation (Park

et al., 2018), we exclude the equatorial band of 5◦S-5◦N from nudging ocean data.

2.3 Carbon budget decomposition with CBALONE simulations

The GCB from Global Carbon Project is decomposed into 5 terms plus an imbalance term: the two emissions terms from115

fossil-fuel and land-use changes, and the three sink terms for the natural terrestrial sink, ocean sink, and atmospheric growth

on annual timescale
::::::::
timescales. The fossil fuel emissions are prescribed as forcing, and

::
the

:
terrestrial and ocean carbon sinks

and atmospheric growth terms can be directly derived from the ESM. However, only the net land-atmosphere exchange is

directly deducible from an ESM, which is the sum of land-use change emissions and the natural terrestrial sink. In order to

separate the two land-related fluxes, we use a stand-alone component of JSBACH called CBALONE as a diagnostic for a120

direct comparison with the land-use terms from the Global Carbon Project (Friedlingstein et al., 2019). CBALONE is forced

by the MPI-ESM daily outputs including 2m air temperature, soil temperature, precipitation, net primary productivity (NPP)

per plant functional type (PFT), leaf area index (also per PFT), and maximum wind. We run two parallel simulations, i.e.,

one with anthropogenic land use changes
:
, and another without those changes, comparison of

::::::::::
differencing the two simulations

differentiate
:::::
results

::
in
:
the land-use change induced emissions from the land sink. More details of the method on

::
on

:::
this

:::::::
method125

::
of separating the land-use change induced emission

::::::::
emissions can be found in Loughran et al. (2021).
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2.4 Predictive skill quantification

The focus of the
:::
this study is on global mean variations in atmosphere CO2 and globally integrated air-sea and air-land CO2

fluxes on annual timescale
::::::::
timescales. The initialized simulations are investigated according to their lead time, i.e.,

:::
for how

many model years they have been integrated freely
:::::
freely

::::::::
integrated

:
after restarting from the assimilation simulation. The time130

series of initialized simulations at
:
a
:
lead time of 1 year (2, 3, 4, and 5 years) combine the 1st year (2nd, 3rd, 4th, and 5th

year) predictions from initialized simulations of all the starting years from 1959-2018, therefore,
:
.
:::::::::
Therefore, the time series at

lead time of 1 year (2, 3, 4, and 5 years) are from 1960-2019 (1961-2020, 1962-2021, 1963-2022, and 1964-2023).
:::::::::
Illustration

::
of

::::
how

:::
the

::::
time

:::::
series

:::
are

:::::::::::
concatenated

::
is

::::::
shown

::
in

::::
Fig.

:::
1C.

:
The analyses of predictive skill quantification are based on the

combined time series. Bias correction is an unavoidable topic for decadal predictions due to initial shock, which varies with lead135

time . Therefore, Boer et al. (2016) recommends leadtime-dependent bias correction.
::::::::::::::::::::::::::::::
(Boer et al., 2016; Meehl et al., 2021)

:
.

:::
The

:::::::
decadal

::::::::
prediction

::::::
studies

::::::
mostly

:::::::
present

::::::::
anomalies

::::
with

:::::
focus

:::
on

::::::::
variations

::
by

::::::::
removing

:::
the

::::::::::::
climatological

:::::
mean

::::::
and/or

::::
trend

::::
bias

:::
due

::
to

::::::
model

:::
drift

::::::
caused

:::
by

:::
the

::::::::::
initialization

::
of

:::::::::::
observations.

::::
The

:::::::::
anomalies

::
are

:::::::::
calculated

::::::
relative

::
to

:::
the

:::::::::
respective

::::::::::
climatology

::::::::
according

::
to

:::
the

::::
lead

:::::
time

:::::::::::::::::::::::::::::::
(Boer et al., 2016; Meehl et al., 2021).

:::
To

::::
infer

::::::::::
predictions

::
of

::::::::
absolute

:::::
values

:::
of

:::
the

::::::::::
atmospheric

::::
CO2::::::::::::

concentration,
:::
the

:::::::::
respective

::::::::
anomalies

:::::
from

:::
the

:::::::::
predictions

:::
are

:::::
added

:::
to

:::
the

:::
best

::::::::
estimates

:::
of

::::::::::
climatology140

:::
and

::::
trend

:::::
from

::::
data,

::::
here

:::
the

:::::::::::
observations

::::
from

:::::::::::
NOAA-GML

:::
are

:::::
used.

The predictive skill is quantified by the anomaly correlation coefficient,
:::
and

:
the anomalies are calculated by removing

the respective climatological mean state. In that sense, the climatological mean bias is removed and the coherence reflects

the multi-year variations that
::
for

::::::
which we evaluate the predictions. The spatial pattern of climatological mean ocean net

primary production and phosphate nutrient concentration are shown in Fig. A2 in comparing
:::::::::
comparison

:
with the respective145

observations. Here the climatological mean state is based on the ensemble mean of the focus time period, 1970-2018 for Figs.

1-6,
:
and the last 10 years for Figs. 7-8. We exclude the first 12 years, i.e., 1958-1969, from the analyses and focus on the

period from 1970-2018, because the assimilation in the first decade is affected by model adjustment. For the atmospheric CO2

concentration, which has high correlations close to 1 with observations because of the coherent linear trends, we have also

added the root mean square error (RMSE) metric to investigate the added value of assimilation and initialization. In this study,150

the significance of the predictive skill is tested with a nonparametric bootstrap approach (Goddard et al., 2013). The analyses

are based on annual mean data with
:
a focus on the frequency of interannual to multi-year variations.

3 Reconstruction of the global carbon budget

By incorporating observational signals, the assimilation simulation from the decadal prediction system based on MPI-ESM

captures the evolution of the global carbon budget as well as the climate in observations. The time series from the MPI-ESM155

assimilation simulation in comparison to the data and suite of simulations from the GCB2019 are shown in Fig.2.

The CO2 emissions from fossil fuel
::::
fuels and industry are in general consistent

:::::::
generally

:::::::::
consistent,

:
but with a slight dif-

ference in the 1960-1990s between the assimilation simulation (which uses the CO2 emission forcing provided by CMIP6

for historical and SSP2-4.5 simulations) and GCB2019. This highlights the uncertainty in the CO2 forcing, which affects the

6



Figure 2. Time series of (A) fossil fuel and industry CO2 emissions (EFF ), (B) emissions from land-use change (ELUC ), (C) the budget

imbalance (BIM ) that is not accounted for by the other terms, (D) atmospheric carbon growth rate (GATM ), (E) the natural terrestrial carbon

fluxes (SLAND), and (F) air-sea CO2 fluxes (SOCEAN ) from MPI-ESM1.2-LR assimilation in comparison with Global Carbon Budget (GCB

2019, (Friedlingstein et al., 2019)). Emissions (A & B) are positive when they are fluxes into the atmosphere, while sinks (D, E & F) are

positive as fluxes into the respective compartment. A positive BIM means a higher sum of emissions than sinks. The thin grey curves in B,

E, and F show individual GCB stand-alone model results. The numbers in the legend show the correlation coefficients between assimilation

and GCB2019.
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amplitude of
:::::
change

::
in

:
the atmospheric CO2 concentration as it is a cumulative quantity. Cumulatively, the CMIP6 CO2 emis-160

sion forcing is 8.20 PgC higher than that from the GCB2019, which results in
:
is
:::::::::

equivalent
:::

to a difference of atmospheric

CO2 of 3.86 ppm (by dividing
:::
1.93

::::
ppm

::::::::
assuming

::::
that

::::
50%

:::
of

:::
the

::::::::
emissions

::::
stay

::
in
::::

the
:::::::::
atmosphere

:::::
(i.e.,

::
by

::::::::
dividing

::::
4.10

:::
PgC

::::
with

:
a factor of 2.124 PgC ppm−1 globally

::

−1
:
(Ballantyne et al., 2012)). This discrepancy of

::
in CO2 emission

::::::::
emissions

might explain to some extent that the simulated atmospheric CO2 concentration is
:
a
:
few ppm higher than the NOAA_GML

observations (Dlugokencky and Tans, 2020) (Fig. A3). However, this little
::::
small

:
difference of a few ppm in atmospheric CO2165

concentration magnitude doesn’t noticeably affect the variations in the CO2 fluxes and the corresponding atmospheric carbon

increment (see Fig. 2D-F).

The land-use change induced emissions diagnosed by CBALONE are within the range of GCB2019 multi-model (including

JSBACH) simulations from Dynamic Global Vegetation Models (DGVMs) (Fig.2B). The estimates from bookkeeping models

show smaller variations than those produced by the DGVMs. Note that the GCBs use the bookkeeping approach for the land-170

use emissions term. Bookkeeping implies that carbon fluxes are determined from area changes in vegetation types of different

vegetation and soil carbon densities, with specific response curves characterizing the evolution of decay and recovery. Carbon

densities may stem from recent observations or models, but are kept fixed, i.e. changes in environmental conditions are not

accounted for. The DGVMs by contrast (which are used to provide only an uncertainty range around the bookkeeping models in

the GCBs) calculate land-use emissions under transient environmental conditions. This implies first that interannual variability175

in bookkeeping models is only driven by land-use change, not further interactions with
:::
but

:::
not

:::
by climate variability, which

makes the DGVM estimates in general more variable from year to year than the bookkeeping estimates are. Second, it implies

that the DGVM-based land-use emissions estimates include the so-called "loss of additional sink capacity" (Pongratz et al.,

2014), which refers to the carbon that could have been stored in forests additionally over the course of history (e.g., due to

the "CO2-fertilization" effect) if these forests had not been cleared by
::
the

:
expansion of agriculture and forestry. This loss180

of additionally sink capacity generally increases over time and amounts to about 40% (0.8±0.3 PgC yr−1) over 2009-2018

(Obermeier et al., 2021). This explains why DGVM estimates in Fig. 2B show higher emissions than bookkeeping estimates in

recent decades. The DGVM- and expert-based uncertainty range around the GCB bookkeeping estimates
:::
for

::::
LUC

:::::::::
emissions

is large and MPI-ESM-based land-use change emission estimates have been found to be at the high end of the GCB for all

decades by Loughran et al. (2021), consistent with our findings.185

By design of the Global Carbon Budget, there is
:::
The

::::::
annual

:::::::::
assessment

::::
from

::::::
Global

:::::::
Carbon

::::::
Project

:::
has a budget imbalance

term.
::::
This

::
is because the individual budget terms originate

::
are

:
from separate measurementstogether with stand-alone

:
,
:::::::
together

::::
with ocean and land model simulations

:
,
:::::
which

:::
are

:::
not

:::::
linked

::
to
:::::
each

::::
other

::::::::
internally

:
(Friedlingstein et al., 2019). In this study,

we assimilate data products in each sub-models
:::::::::
atmosphere

::::
and

:::::
ocean

::::
data

:::::::
products within a fully coupled ESM that considers

their interactions. The assimilation ensures
:::
the evolution of the carbon cycle and climate towards the real world, and in contrast190

to the GCB, the budget is closed within the Earth system, i.e., no budget imbalance occurs by design (Fig. 2C). Therefore, it

is more consistent to attribute the GCB variations using the
::
the

:
assimilation simulation based on a fully coupled ESM . The

advantage of the current way of
::::::
enables

:::::::::
attribution

::
of

:::
the

::::
GCB

:::::::::
variations.

::::
The

::::::
current

:::::::
method

::
of

:::
the Global Carbon Projectin

assessing GCBs (Friedlingstein et al., 2019) ensures the
:
’s
::::::
GCBs

::::::::::::::::::::::
(Friedlingstein et al., 2019)

:::::
which

::::
uses

:::
the

:::::::
directly

::::::::
measured
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atmospheric CO2 directly from measurements, so far
::::::::
increment

:::
has

:::
the

:::::::::
advantage

:::
of

::::::::::
representing

::::
the

:::::
actual

::::::::
evolution

:::
of195

::::::::::
atmospheric

::::
CO2.

::::
Our

:
ESM-based assimilation requires further efforts in improving the constraint of

:::::
shows

::
a

::::
high

:::::::::
correlation

::
of

::::
0.75

::::
with

:::
the

::::::::::
atmospheric

:::::
CO2 ::::::::::::

measurements,
:::
but

::::
still

:::::
needs

::
to

::
be

:::::::::
improved.

:::::::
Further

:::::
efforts

:::
are

::::::::
required

::
to

::::::::
constrain

:::
the

atmospheric CO2 from observations.

Atmospheric carbon growth rate and carbon fluxes are reasonably well reproduced in emission-driven assimilation with

prognostic atmospheric CO2 (Fig. 2D-F). The atmospheric carbon growth and the land carbon sink show more pronounced200

variations on interannual time scales, however, the ocean carbon sink has more pronounced variations on decadal time scales.

These variations are captured in the assimilation with high correlations between the assimilation and the GCB2019 of 075
:::
0.75,

0.75, and 0.97 for
::
the

:
atmospheric growth, land sink, and ocean sink, respectively.

Figure 3. Spatial distribution of the CO2 fluxes from model assimilations comparing
::::::::
compared to GCB2019. Climatological mean CO2

fluxes into the land and the ocean from
::
the

:
atmosphere in reconstruction (A) and Global Carbon Budget (GCB 2019 (Friedlingstein et al.,

2019)) (B). Temporal variability, i.e., standard deviation, of CO2 fluxes reconstruction (C) and GCB2019 (D). Correlation and root mean

square difference between reconstruction and GCB2019 are shown in E and F. The results are based on annual mean data for the time period

from 1970-2018. Positive values in A-D
::
A

:::
and

:
B
:
refer to CO2 fluxes into the ocean or the land.
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The spatial distribution of climatological mean CO2 fluxes, the variability as standard deviation, and the coherence in carbon

fluxes between GCB2019 and the MPI-ESM reconstruction are shown in Fig. 3. The mean states show a CO2 influx into the205

ocean and land in the mid- to high-latitudes
:
, and outgassing into the atmosphere in the tropical areas

::::::
tropical

:::::
areas,

:
especially

over the tropical Pacific (Fig. 3A-B). The variability of CO2 over land is larger than that over
::
the

:
ocean; and the magnitude

of variability is larger in the assimilation simulation than in the GCB2019 (Fig. 3C-D). This is expected as the GCB2019

is a multi-model mean estimate and therefore smooths out part of
::
the

:
high frequency variability. The correlation of CO2

fluxes between the reconstruction and GCB2019 is high, especially over the ocean (Fig. 3E). The root mean square deviation210

(RMSD) scales with the magnitude of carbon fluxes, i.e., with greater values on land than over ocean (Fig. 3F). The large

RMSD is partially due to a
:
smoothed magnitude of fluxes in GCB2019 from the multi-model mean and also the differences in

::
the

:
climatology state for GCB2019 and reconstruction, as shown in Fig. 2E-F.

In general, the historical GCB is well reproduced by the MPI-ESM with assimilating observational products, which enables
:
a

quantification of the GCB within a closed Earth system, showing that prediction systems provide internally-consistent estimates215

of the ocean and land carbon sink
::::
sinks

:
and serve as an additional line of evidence for the GCB in the future.

4 Predictability of
:::
the global carbon budget

The initialized predictions start from the assimilation states which are close to observations. Therefore, the information of

:::::::::
information

:::::
from the observations are incorporated into the prediction system as initial states, which enables the evolution of

the global carbon cycle and climate to follow the trajectory of the observations until the predictability horizon is reached.220

To support the Global Carbon Project in predicting the next-year
:::
next

::::
year’s GCB one year in advance, we also investigate the

predictabilityfocusing on the
:
,
:::::::
focusing

::
on

:
model hindcasts at

:
a lead time of 1 year. As shown in Fig. 4 and Fig. 5, the initialized

simulations at
:
a lead time of 1 year show high correlations with the GCB2019. The correlations of global atmospheric CO2

growth, net air-sea CO2 fluxes and net air-land CO2 fluxes are 0.59, 0.52, 0.70 after removing the linear trends (Fig. 5 left

panels); the correlation of
:::
the original time series are 0.76, 0.97, and 0.66 (Fig. 4 left panels). The initialized simulations at

:
a225

lead time of 2 years still resemble the variations in the GCB2019,
:
with correlations of 0.49 and higher (Fig. 6 left panels),

:::
and

the detrended time series also show higher correlations than the detrended uninitialized simulations, showing
:
.
::::
This

:::::
shows

:
that

internal variability can be constrained by initialization (Fig. 6 right panels). As for atmospheric carbon growth, the initialized

simulations at
:
a lead time of 2 years show coherent interannual variations even with a smaller correlation (0.49) than that of

the historical freely evolving run (0.61), which is mainly contributed by the coherent trends of the freely evolving run and230

the GCB2019. After detrending, the correlations are higher in the initialized simulations than in the uninitialized simulations

(comparing Fig. 6 A and D).

The initialized and uninitialized simulations show a comparably good match to GCB2019 with respect to
::
the

:
net carbon flux

into the ocean (with
:
a high correlation up to 0.98) (Fig. 4B),

:::
and

:
it suggests the good representation of the ocean carbon sink

variations (especially on decadal time-scale
:::::::::
time-scales) in the historical freely evolving uninitialized run. This implies that235
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Figure 4. Left panels: Time series of initialized simulations at
:
a
:
lead time of 1 year in

::
the atmospheric carbon growth rate, i.e., GATM (A),

net air-sea CO2 fluxes, i.e., SOCEAN (B), and net air-land CO2 fluxes, i.e., ELUC+SLAND (C) together with Global Carbon Budget (GCB

2019, Friedlingstein et al. (2019)). Positive values in B-C refer to CO2 fluxes into the ocean or the land. The numbers in the legend show

the correlation coefficients between the simulations and GCB2019,
::
and

:
the ensemble mean data is used for the calculation. Right panels:

Predictive skill of
:::
the atmospheric carbon growth rate, i.e., GATM (D), air-sea CO2 fluxes, i.e., SOCEAN (E), and net air-land CO2 fluxes,

i.e., ELUC+SLAND (F) reference to Global Carbon Budget (GCB 2019, (Friedlingstein et al., 2019)). The filled red circles on top of the open

red circles show that the predictive skill is significant at
:
a 95% confidence level,

:
and the additional larger blue circles indicate

:
an

:
improved

significant predictive skill due to initialization
:
, in comparison to the uninitialized simulations. We use a nonparametric bootstrap approach

(Goddard et al., 2013) to assess the significance of predictive skill. The results are based on annual mean data for the time period from
::
of

1970-2018.
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Figure 5. The same as Fig. 4, but with linearly detrended time series.
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Figure 6. Left panels: Time series of initialized simulations at
:
a lead time of 2 years in

::
the atmospheric carbon growth rate, i.e., GATM (A),

net air-sea CO2 fluxes, i.e., SOCEAN (B) and net air-land CO2 fluxes, i.e., ELUC+SLAND (C) together with Global Carbon Budget (GCB

2019, (Friedlingstein et al., 2019)). Right panels: the same as the left panels, but for linearly detrended time series. The shown time series

:::::
shown are based on annual mean data for the time period from

:
of

:
1970-2018. Positive values in B-C and E-F refer to CO2 fluxes into the

ocean or land. The numbers in the legend show the correlation coefficients between the simulations and GCB2019,
::
and

:
the ensemble mean

data is used for the calculation.
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these variations of the globally integrated ocean carbon sink are more from external forcing rather than internal variability
:
, as

found in McKinley et al. (2020).

The net carbon flux into the land shows
::::
land

:::::
shows

::
a higher correlation for initialized simulations at

:
a
:
lead time of 2 years

than that for uninitialized simulations (Fig. 4F and Fig. 5F). This indicates the interannual variations are better captured in the

initialized model system even after 2 years of free integration. This result implies a predictability of the air-land CO2 flux of
:::
for240

::
up

::
to

:
2 years. The air-land CO2 fluxes are regulated by the El Niño-Southern Oscillation (ENSO) variations (Loughran et al.,

2021; Dunkl et al., 2021),
:::
and

:
the poor skill in predicting ENSO limits the predictability of the air-land CO2 fluxes. However,

the predictive skill of air-land CO2 of 2 years is beyond the predictability horizon of ENSO, which is limited to
:
a
:
seasonal

scale.

We further quantify the predictive skill of the GCB through all the lead time
:::::
times up to 5 years (Fig. 4 right panels and245

Fig. 5 right panels). The correlation skill relative to GCB2019 is significant for the lead time of 5 years in
::
the

:
atmospheric

carbon growth and the ocean carbon sink, however,
:
.
::::::::
However,

:
the skill is lower up

:::::::::
lower—up

:
to 2 years for

:::::::::
years—for the

air-land CO2 flux (Fig. 4 D-F). The improved predictive skill of initialized hindcasts compared to the historical uninitialized

run is at
:
a lead time of 1 year for atmospheric carbon growth and at

:
a lead time of 2 years for air-land CO2 flux. The detrended

results (Fig. 5D-F) are similar to those from the original time series. The correlation of atmospheric carbon growth at a lead250

time of 2 years in the initialized hindcasts are higher than the uninitialized historical run when detrended. This indicates the

contribution of a linear trend to the skill of uninitialized historical runs. Although the improvement of predictive skill in the

initialized simulation relative to the uninitialized simulation is not significant, the correlations of both initialized simulations

at
:
a lead time of 2 years and the uninitialized simulations are significantly high

:
, as indicated with red solid dots. This suggests

the predictability of atmospheric carbon growth in
::
for

::
up

:::
to 2 years.255

From our MPI-ESM1.2-LR initialized hindcasts, we find that predictive skill of
::
the

:
air-sea CO2 flux is relatively high for up

to 5 years, and that of the air-land CO2 fluxes is up to 2 years. This is consistent with previous studies without an interactive

carbon cycle (Ilyina et al., 2021; Lovenduski et al., 2019a, b). Here we extend the prediction system into emission-driven

simulations
:
, enabling prognostic CO2 and preserving features of predictability. Furthermore, the prognostic CO2 from the

novel emission-driven decadal prediction system suggests predictability as well, and the atmospheric CO2 growth rate shows260

:
a predictive skill of 2 years in the initialized predictions.

5 Atmospheric CO2 concentration

Fig. 7 shows
::
the

:
spatial pattern and time series of atmospheric CO2 concentration from MPI-ESM simulations together with

the satellite XCO2 and NOAA_GML observations for the last couple years. The XCO2 from
::
the

:
model assimilation (Fig.

7B) shows the spatial distribution of atmospheric CO2 concentration which is close to the satellite XCO2 (Fig. 7A). High265

CO2 concentration is found in the tropical to middle latitude
:::::::::::
mid-latitudes of the northern hemisphere. Relatively low CO2

concentration is
::::
found

:
in the southern hemisphere and the polar regions. Note the model simulation is several ppm higher

than the satellite data,
:::
and

:
this deviation can be attributed back to the uninitialized historical simulation (see Fig. A3), and

:
.
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Figure 7. Upper panels: Spatial distribution of 2015-2018 mean satellite-based Obs4MIPs XCO2 (A) and model assimilation of XCO2

(resampled according to satellite data availability) (B) and model assimilation of atmospheric CO2 concentration at 1000hPa level (C). We

take a short time period of 2015-2018 because of the limited coverage of satellite data. The satellite XCO2 data product is from the Climate

Data Store Copernicus Climate Change Service (Reuter et al., 2013). The conversion of model simulated CO2 to XCO2 is according to Gier

et al. (2020) Appendix A. Lower panels: Atmospheric CO2 concentration in global
::::::
globally (D),

::
at Mauna Loa (E), and

:
at
:::
the South Pole (F)

from the uninitialized (Uninit), assimilation (Assim) simulations, and initialized simulations at
:
a lead time of 1 year (Init_LY1)

:
, in comparing

::::::::
comparison

:
with observations in the last decade. The location of Mauna Loa and

::
the

:
South Pole is shown in panel (C). The numbers in the

figure
:
’s
:

legend show the correlation (left) and root mean square error (RMSE, right) of the simulations relative to observational data from

NOAA_GML (Dlugokencky and Tans, 2020). The time series are bias corrected by removing the difference of mean states and
::
the

:
linear

trend between observation
:::::::::
observations

:
and simulations according to Boer et al. (2016).
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Figure 8. A: Time series of atmospheric CO2 concentration from initialized simulations at a
:

lead time of 1 year and 2 years,
:
together

with NOAA_GML observation
:::::::::
observations (Dlugokencky and Tans, 2020) in the last 10 years; the time series are detrended and with

climatological mean removed. B: Time series of CO2 fluxes from initialized simulations at
:
a
:
lead time of 1 year and 2 years and from

GCB2019; The red curves present
:::
the sum of prediction

::::::::
predictions at

:
a lead time of 2 years and the previous year of prediction at

:
a
:
lead

:::
time

:
of 1 year (air-land_ly1n2). C: Time series of nino3.4 SST from model simulations and HadISST. The time series are original model

outputs and concatenated according to the lead time of years.

::::::::::
Additionally,

:
the satellite data does not cover all the seasons in high latitudes

:::
and therefore the sampled model assimilation

also represents more summer season
:::
the

:::::::
summer

:::::::
season’s

:
XCO2 there. The surface level CO2 shows more dominant higher270

concentration in the northern hemisphere than in the southern hemisphere (Fig. 7C). Here we also
::
use

:
the surface atmospheric

CO2 concentration to compare with the measurements in stations
::
the

:
Mauna Loa and the South Pole

:::::
South

::::
Pole

:::::::
stations

(locations are shown in the figure with stars).

As the atmospheric CO2 concentration is an accumulative quantity and shows mainly a linear increasing trend, it is necessary

to zoom in to visualize the trend slope changes. In addition, the deviation of model simulated atmospheric CO2 relative to275

observations in the previous period is accumulated along with the integration of the model, therefore, .
:::::::::
Therefore,

:
it ends up

with around 8ppm higher global atmospheric CO2 concentration in the model simulation than in the observations (see Fig. A4).

The NOAA_GML data represents the average of atmospheric CO2 over marine surface sites (Dlugokencky and Tans, 2020),

:::
and

:
they are slightly smaller than the values on land since the anthropogenic CO2 emissions are mainly on land. The time

series shown in Fig. 7D-F are bias corrected by removing the difference of mean states and linear trends between observation280

::::::::::
observations

:
and simulations according to Boer et al. (2016).

The shown atmospheric CO2 concentration from assimilation
:::::
shown

:
follows the evolution of NOAA_GML observation

::::::::::
observations

:
well, with

:
a
:
RMSE of 0.22 ppm,

:
which is better than the uninitialized historical run with

:
a
:
RMSE of 0.72 ppm

(Fig. 7D). The initialized simulations could represent the observed evolution well even at
:
a
:
lead time of 5 years, with

:
a lower

RMSE of 0.46 ppm than
::
in

:::
the uninitialized historical run (Fig. A5 and A6). In general, the RMSE increases from

:
a lead time285

16



of 1 year to 2 years and decreases until a
:

lead time of 5 years in both
:::
the global and observatory sites as

:
of

:
Mauna Loa and

::
the

:
South Pole (Fig. A5 and A6). The relatively low predictive skill at

:
a lead time of 2 years in atmospheric CO2 concentration

is because the model failed to predict the neutral ENSO events in 2010 and La Niña in 2011, and in stead predicts
::::::
instead

::::::
predicts

::
a strong El Niño in both years (Fig. 8C). The corresponding air-land CO2 fluxes are reversed, i.e., the land takes up

less CO2 than expected (Fig. 8B blue solid curve and black solid curve). As the atmospheric CO2 concentration is a cumulative290

quantity, the magnitude of interannual variations might be affected by the last several years. We also present the cumulative

air-land CO2 fluxes of the 1st and 2nd year prediction (see the red curves in Fig. 8B),
::
and

:
the variations in cumulative air-land

CO2 fluxes are reverse to those in atmospheric CO2 concentration changes at
:
a
:
lead time of 2 years,

:
as shown in Fig. 8A blue

curves. The results indicate that the air-land CO2 flux and corresponding atmospheric CO2 has predictive skill, though the skill

at
:
a lead time of 2 years is intervened by the predictability

:::::::
degraded

::
by

:::
the

::::
poor

:::::::::
predictive

::::
skill of ENSO in some starting year295

predictions.

This retrospective prediction demonstrates the ability of
::
an ESM-based decadal prediction system in reconstructing and pre-

dicting the global carbon cycle, with only assimilating
::::::::::
assimilation

::
of the physical atmosphere and ocean fields. As presented

in Fig. 5
:
’s right panels, the hindcasts also show

:
a predictive skill of 5 years for air-sea CO2 fluxes and 2 years for air-land CO2

fluxes and atmospheric carbon growth. Hence the confidence of using the ESMs to predict the next year’s global carbon budget300

is high.

6 Conclusions

For the first time, we extend a decadal prediction system based on MPI-ESM to integrate the
::
an

:
interactive carbon cycle,

driven by fossil fuel emissions, and hence enabling prognostic atmospheric CO2 predictions. This new setup of assimilation

and initialized predictions has one more degree of freedom, i.e., enabling prognostic atmospheric CO2 and the corresponding305

interactive effects, and represents the global carbon cycle closer to observations.

The variations of atmospheric carbon growth rate and CO2 fluxes among
::
the

:
atmosphere, ocean, and land are well recon-

structed in our assimilation simulations, with high correlations (0.75, 0.97, and 0.75) with the GCB2019. This enables a closed

quantification of the GCB
::
in

:
a
::::::
closed

::::::
system within an Earth system model. Furthermore, our reconstruction of the GCB pro-

vides an additional line of evidence for quantifying the annual GCB and opens new opportunities in assessing the efficiency of310

carbon sinksand internally consistent metrics. In particular, this approach eliminates the budget imbalance term that arises in

GCBs of the Gobal
:::::
Global

:
Carbon Project due to the combination of various, not fully consistent model and data approaches.

To further support the Global Carbon Project in predicting next year
::
’s GCB, the focus of the predictability investigation

:::::::::::
investigations

:
are on the lead time of 1 year. The results show high confidence of

::
in predicting the global carbon budget in

:::
for

the next year with the MPI-ESM prediction system. We further demonstrate that retrospective predictions of the global carbon315

budget have
:
a predictive skill for up to 5 years for air-sea CO2 fluxes and up to 2 years for air-land fluxes and atmospheric carbon

growth rate. This means that the variations of atmospheric CO2 are better reproduced in the assimilation and retrospective

predictions than in the uninitialized freely evolving historical simulations.
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We preserve the high predictive power of the prediction system when transferred to an emission-driven configuration, sim-

ulating the atmospheric CO2 with reasonable accuracy. But the emission-driven decadal prediction system delivers the huge320

advantage of simulating the land and ocean fluxes in response to fossil-fuel and land-use change emissions, including all feed-

backs. Further efforts towards increasing observations to initialize the ESMs, assess the predictive skill, and provide reliable

global estimated
:
a
::::::
reliable

::::::
global

:::::::
estimate

:
and spatial distribution of anthropogenic and natural emissions, will lead to more

reliable reconstruction and predictions. This study is based on single model simulations,
:::
and further multi-model simulations

will alleviate
::
the

:
dependence of individual model responses and hence demonstrate robust changes of the global carbon cycle.325

We demonstrate that our emission-driven decadal prediction system shows
::::::
exhibits

:::
the

:
capability to reconstruct and predict

the GCB and atmospheric CO2 concentration variations. This will be a powerful
:::::
useful

:
tool in supporting the global carbon

stocktaking and informing policies that comply
::
in

::::::::::
compliance with the goals of the Paris Agreement.

Code and data availability. Primary data and scripts used in the analysis that may be useful in reproducing the authors’ work are archived

by the Max Planck Institute for Meteorology and can be obtained via the institutional repository http://hdl.handle.net/21.11116/0000-0009-330

6B84-A.

S1

Table A1. Simulations based on MPI-ESM1.2-LR. Resolution for Atmosphere: T63L47, Ocean: GR15L40. The design of the prediction

simulations is according to previous study
:::::
studies (Marotzke et al., 2016; Li et al., 2019). The assimilation starts from the end of year 1958

in an uninitialized simulation. The nudging is strong
:
, therefore an assimilation starting from a different uninitialized simulation would end

up with similar evolution of the climate and carbon cycle. Fig. 1 illustrates the simulations with evolution of atmospheric CO2 growth rate

together with observation
::::::::::
observations. The initialized simulations start from the assimilation yearly from October 31st and run freely for 2

months plus 5 years afterwards. We have 60 runs for one ensemble of initialized simulations starting from 1960 to 2019 annually and run

for 5 years and 2 months each, i.e., Nov. 1960 - Dec. 1965 for starting year 1960, Nov. 1961 - Dec. 1966 for starting year 1961, and so forth

until Nov. 2018 - Dec. 2023. The ensembles are generated with lagged 1-day initialization, i.e., the simulations start from 10 consecutive

days from October 31st to November 9th. The ensembles for uninitialized simulations (shown as in Fig. A3) are generated by starting from

different year of the control simulation (Fig. A1).

Simulations Ensemble members Nudging Initial condition Time period

Uninitialized 10 N/A Preindustrial 1850-2099

Assimilation 1 Atm.: ERA

Ocean: ORAS4 anomalies

(without 5N-5S band)

Sea Ice: NSIDC

Uninitialized 1959-2018

Initialized 10 N/A Assimilation 1960-1965

... 2018-2023
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Figure A1. Time series of model simulations of ocean net primary production, air-sea CO2 flux and air-land CO2 flux in the pre-industrial

control run. The thin lines are annual mean time series, and the thick lines are 20-year running mean time series.
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Figure A2. Climatological mean of ocean net primary production (NPP) and phosphate concentration from observation
:::::::::
observations

and from model simulations. NPP observational reference data are estimated from ocean color measurements obtained by the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) instrument of the OrbView-2 satellite for September 1997 to December 2002 and the

Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite from 2003 to 2014 ((Behrenfeld and Falkowski, 1997),

http://science.oregonstate.edu/ocean.productivity/index.php). Phosphate observations are from the World Ocean Atlas 2018 (Garcia et al.,

2019). The corresponding NPP data from models are
:::

from
:::
the 1998-2017 mean

:
, and phosphate data are from

::
the

:
1970-2018 mean.
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Figure A3. Time series of atmospheric CO2 concentration from model simulations and observation from 1850-2020. The assimilation and

uninitialized simulations are shown with orange and blue solid lines, respectively. The CMIP6 input4MIPs atmospheric CO2 concentration

forcing and the NOAA_GML observation (Dlugokencky and Tans, 2020) are shown with blue dashed line and black solid lines, respectively.

Figure A4. Atmospheric CO2 concentration from the assimilation and initialized simulations at a
:

lead time of 1 year together with

NOAA_GML observation
:::::::::
observations

:
(Dlugokencky and Tans, 2020) in the last 10 years. The time series are original model outputs

and concatenated according to the lead time of years.
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Figure A5. Atmospheric CO2 concentration from initialized simulations at
:
a
:
lead time of 2-5 years together with NOAA_GML observation

:::::::::
observations

:
(Dlugokencky and Tans, 2020) in the last 10 years. The time series are original model outputs and concatenated according to

the lead time of years.

Figure A6. The same as Fig. A5, but with bias corrected mean states and linear trend.
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