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Abstract. South Asian monsoon rainfall varies rapidly in the paleoclimate record, and this has been interpreted using simple

models as arising from tipping points. This study explores a class of simple monsoon models, based on convective quasi-

equilibrium, and the bifurcations permitted by their mathematical forms. Specifically, low-order models are derived starting

from the Quasi-equilibrium tropical circulation model (QTCM) to examine the bifurcations present. Previous studies that have

pointed to an abrupt transition in low-order monsoon models typically identify a saddle node bifurcation occurring as a result of5

changes in the radiation budget. The present study shows how such saddle node structures arise across a wide range of modeling

assumptions and parameter values, and yet permit a continuous transition into and out of precipitating regimes without any

bifurcation being physically manifest. This is because the bifurcation points lie in a regime that is not physically relevant

when the dry thermal stratification is sufficiently large. As a result, these low-order models can be interpreted as possessing

abrupt transitions that are latent in the equations but do not express themselves physically. However, when the dry thermal10

stratification is reduced, bifurcations can occur. This paper also shows that these latent saddle-node structures are themselves

part of the unfolding of a pitchfork bifurcation. These findings help understand the role of stabilizing phenomena on the general

absence of abrupt monsoon transitions despite the presence of nonlinear terms in these models.

1 Introduction

The South Asian monsoon is an extensively studied climatic phenomenon, important for the large and wide-ranging socioeco-15

nomic impact of monsoon rainfall for the region and its inhabitants (Gadgil and Gadgil, 2006). The monsoon itself is influenced

by broader climatic phenomena, from the El-Nino Southern Oscillation (ENSO) in the Pacific (Webster et al., 1998), north At-

lantic sea surface temperatures (Goswami et al., 2006; Kucharski et al., 2008; Pottapinjara et al., 2014), to oscillations in the

Indian ocean (Saji et al., 1999; Ashok et al., 2001). Fully coupled atmosphere-ocean general circulation models (AOGCMs)

are necessary to render the multi-scale nature of these interactions between the monsoon and rest of the climate system, as20

well as to simulate variability and change (Held, 2005; Zhou and Xie, 2018; Schneider and Dickinson, 1974). However, it

is increasingly recognized that understanding of these complex systems is aided by understanding the relationships among a

range of models of varying complexity, with model hierarchies being central to this effort (Held, 2005; Jeevanjee et al., 2017;

Maher et al., 2019; Polvani et al., 2017). For example, AOGCMs are perhaps too complex to permit isolation of the mecha-
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nisms that might give rise to bifurcation phenomena in monsoons. Lower order conceptual models, on the other hand, involve25

many simplifying assumptions and usually highlight particular facets of the overall dynamics, focusing on a small subset of

the wide range of scales that are typically involved (Held, 2005; Palmer, 2019). Still, these low-order models can be useful

if they help identify the roles of particular processes. Thus, in case of monsoons, if few processes give rise to nonlinear phe-

nomena (such as bifurcations) low order models that isolate these processes can still be useful (Ghil, 1989). Between the two

extremes, models of intermediate complexity such as the Quasi-equilibrium Tropical Circulation model (QTCM) (Neelin and30

Zeng, 2000; Zeng et al., 2000; Bellon and Sobel, 2008b, a, 2010; Burns et al., 2006), offer a middle ground, making simplifi-

cations to the fully three-dimensional equations describing the atmosphere, while retaining the horizontal structure that yields

the diversity of phenomena that persist once the convective quasi-equilibrium assumption is made. Moreover, such simplified

albeit infinite-dimensional models such as QTCM can serve as a basis for developing further low-order models, such as the

ones examined in this paper.35

This study examines the nonlinear dynamics of lower order models derived from the convective-equilibrium framework, in

particular the QTCM model, focusing on the behavior of steady-states of these models and the bifurcations they can admit.

An important simplification of QTCM1 to study monsoons (Boos and Storelvmo, 2016a) yields a set of three equations,

describing the interactions of the first baroclinic modes of velocity, temperature and moisture, which are advected from ocean

towards a tropical continent. The authors (Boos and Storelvmo, 2016a) used the model to examine whether the seasonal40

mean monsoon yielded an abrupt response to the change in the forcing from solar radiation. Furthermore, they noted that

any mechanism facilitating such an abrupt response might also explain the sudden onset of the Indian summer monsoon as

the seasonal cycle of insolation unfolds. Considering the steady-state, approximating the seasonal mean monsoon, the study

(Boos and Storelvmo, 2016a) found a single stable equilibrium in the mean monsoonal velocity, which did not display an

abrupt transition as the parameter describing solar insolation was varied. The monsoonal regime, with landward winds in the45

boundary layer and nonzero precipitation, was present if the source of energy to the atmospheric column was positive. The

non-monsoonal regime had zero precipitation and oceanward winds in the boundary layer, corresponding to a negative column

energy source. Transitions between these two regimes were continuous as the monsoonal regime shifted continuously from

the precipitating to nonprecipitating regime, and hence the monsoon’s response to changing energy source was found to be

near-linear. However if in the model, the term accounting for dry thermal stratification was neglected, the system exhibited50

an abrupt transition between these regimes as a saddle-node bifurcation became manifest in the monsoonal regime at positive

values of precipitation and winds (Boos and Storelvmo, 2016a, b).

The present understanding of this abrupt change in such models is that it is unphysical, being an artefact of neglecting

dry thermal stratification (Boos and Storelvmo, 2016a, b; Seshadri, 2017). This stratification, arising from the increase in dry

static stability with height, is the dominant contribution in the thermodynamic balance of monsoons. The thermal stratification55

counters the destabilizing nature of diabatic heating in the column, and comes from the fact that the dry static energy, and

consequently the moist static energy also, increases with height. Thus, the stratification was interpreted to add to the stability

of the system, and the resulting gross moist stability was positive, though small (Boos and Storelvmo, 2016a).
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It is to be noted that rapid changes are often apparent in the paleoclimatic evidence (Prell and Kutzbach, 1987; Jalihal et al.,

2019) but it is not known whether these transitions correspond to tipping behavior. Furthermore, while the rapid onset of60

monsoons as compared to the gradual progression of the seasonal cycle of solar insolation has intriguingly pointed to the role

of nonlinear processes (Boos and Storelvmo, 2016a), and several studies have considered the dynamical aspects that could play

a role, there is no conclusive account of a bifurcation origin for onset (Schneider and Bordoni, 2008; Bordoni and Schneider,

2008). As we noted earlier, Boos and Storelvmo (2016a) reported that a bifurcation was seen in their model only when a

dominant term in the thermodynamic balance, the dry thermal stratification, was ignored. Consistent with this result is the65

study of Seshadri (2017), which pointed out that bifurcation arose in the simple models of (Levermann et al., 2009) owing to

the neglect of the static stability of troposphere. Seshadri (2017) showed that dry thermal stratification provided a stabilizing

effect in the energy balance, which exported dry static energy through a term that is linear in the wind-speed. In contrast,

the stabilizing effect in the absence of this stratification is much weaker, relying on horizontal advection and thus depending

quadratically on wind-speed. Since the slope of quadratic terms is prone to become negligible as the circulation weakens, a70

bifurcation arose as an intrinsic part of models neglecting this thermal stratification. In the presence of thermal stratification,

its presence countered the destabilising effects of radiation and diabatic heating during monsoons. The study concluded that

bifurcation is not intrinsic to models in the presence of dry thermal stratification, and is unlikely to be present, but can arise in

a less probable region of parameter space wherein the stabilizing effect is weak (Seshadri, 2017).

This study extends these early investigations of monsoon bifurcations, through detailed analysis of low order models that are75

based on QTCM. While low-order monsoon models have been investigated to study whether they contain bifurcations, their

mathematical structure and range of bifurcations merit detailed study. The studies of Boos and Storelvmo (2016a) and Seshadri

(2017) illustrate that a model’s being nonlinear does not ensure that it will contain bifurcations. At the same time nonlinear

advection, whose effects motivated the account of Levermann et al. (2009), is expected to give rise to rich phenomena including

bifurcations. It is the goal of this paper to reconcile these apparently contradictory facts. Section 2 explains the QTCM and80

simplifications undertaken to obtain low-order models. Section 3.1 revisits the analysis and findings of Boos and Storelvmo

(2016a) and identifies a saddle node complex, which is the underlying phenomenon arising in the low order models derived

from QTCM, in cases of bifurcating as well as non-bifurcating behaviours. Section 3.2 describes in detail the stabilising role

of stratification in light of the saddle node complexes that exist and confirms that reducing the magnitude of the dry thermal

stratification makes a bifurcation more likely. Section 3.3 explores these results further and shows that the saddle node complex85

themselves arise from unfolding of a pitchfork bifurcation. Implications of these results for lower order models of monsoons

are further examined in Section 4.

2 Background & Methods

The quasi-equilibrium tropical circulation model (QTCM) uses tailored basis functions to describe the vertical profiles of tem-

perature, moisture, and winds, under the assumption of convective quasi-equilibrium (Neelin and Zeng, 2000). The framework90

assumes that there is a separation of time-scales between the removal of instability through convection, which occurs very
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Table 1. Variables and parameters used in the simplified model based on QTCM.

Notation Quantity

T1L Temperature basis associated with baroclinic wind for land boundary (in J/kg)

q1L Moisture basis associated with baroclinic wind for land boundary (in J/kg)

v1L Meridional component of baroclinic wind for land boundary (in m/s)

T1s Temperature basis associated with baroclinic wind for sea boundary (in J/kg)

q1s Moisture basis associated with baroclinic wind for sea boundary (in J/kg)

v1s Meridional component of baroclinic wind for sea boundary (in J/kg)

ϵ1 Coefficient of vertical momentum transfer for baroclinic wind

or inverse of mechanical damping time scale (per second)

κ Poisson constant ( ratio of gas constant to specific heat at constant

pressure for dry air)

L Horizontal length scale for the column of atmosphere (in m)

τc Convective adjustment time (in seconds)

Msr Reference gross dry stability (thermal stratification, in J/kg)

Msp Change in gross dry stability per T1 change (non-dimensional)

Mqr Reference value of gross moisture stratification (in J/kg)

Mqp Change in gross moisture stratification per q1 change (non-dimensional)

⟨a1v1⟩ Temperature advection coefficient associated with baroclinic wind

( vertical integral of product of temperature basis function a1

and velocity basis function v1)

⟨b1v1⟩ Moisture advection coefficient associated with baroclinic wind

( vertical integral of product of moisture basis function b1

and velocity basis function v1)

E Surface evaporation (in J/kg.s)

H Surface sensible heat flux (in J/kg.s)

R Atmospheric radiative flux convergence (in J/kg.s)

g Gravitational acceleration (in m/s2)

pt Reference pressure depth of troposphere (in Pa)

rapidly as compared to the large-scale dynamics. Thus, there is a reduction in the degrees of freedom of the model, whose

vertical structure is governed by its being approximately in convective equilibrium (Neelin and Zeng, 2000; Zeng et al., 2000).

Such an approach essentially has convective processes being strongly coupled to large-scale dynamics, with the resulting

framework providing for a sequence of intermediate models with successive degrees of completeness (Neelin and Zeng, 2000).95

The simplest formulation, called QTCM1 assumes a single vertical basis function derived from the convective equilibrium

profile of temperature (Zeng et al., 2000).
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In QTCM, the primitive equations describing the evolution of momentum, thermodynamic and moisture fields are approxi-

mated for the strongly convective regions and the resulting analytical solutions are embedded in the model’s numerical scheme

to be applied even to those regions that are not necessarily in convective equilibrium. This is an important simplification of100

the model, and leads to a set of vertically averaged partial differential equations (PDEs), which are obtained by projecting the

primitive equations onto the vertical basis functions (see Supplementary Information, Fig. S1 ). The basis functions in turn de-

scribe the barotropic and baroclinic modes of the zonal and meridional velocity components, along with associated temperature

and moisture fields.

unB , vnB Zonal (u) and meridional (v) components of

barotropic (n = 0) / baroclinic (n = 1) velocity over

land (B ≡ L)/ sea (B ≡ s) boundary

T1B , q1B Temperature (T ) and moisture (q) in energy

units for land (B ≡ L)/ sea (B ≡ s)

Figure 1. (b)Schematic of finite difference scheme for a square column of side L and boundaries A,B,C,D. For this study, the Land/Sea

boundary conditions on four sides are ‘LSSS’ clockwise from top, with the unknown variables in the column being interpolated from the

boundary values. The prescribed variables are shown in blue and the unknown variables are shown in red.

While QTCM by itself exhibits a reduction of mathematical complexity as compared to the three-dimensional primitive105

equations, it can be useful for obtaining yet simpler reduced order models too. Moreover, such models which embody convec-

tive closures that are based on a nearly moist-adiabatic atmosphere simplify the effort to obtain ever more simplified low-order

models that arise from this dynamics. There are many ways to go from PDE-based models such as QTCM to finite-dimensional

ODE based systems. Galerkin-based spectral methods that further project the equations onto horizontal basis functions are one

such approach. We do not take this approach, but instead reduce the set of PDEs (see Supplementary Information) to a set of110

ODEs using finite differences in order to approximate horizontal derivatives, following the approach of Boos and Storelvmo

(2016a). For generation of simple models, as in Boos and Storelvmo (2016a), a single tropospheric column or box over the

relevant landmass can be treated along with the conservation of quantities within it. At surface level, the column is supposed

to be bounded on its four sides (sides A-D in Fig. 1) either by land or by sea. Replacing partial derivatives in the QTCM equa-

tions with corresponding finite differences estimated over this box yields a system of ODEs. Thus, one could model, say, the115

Indian peninsula as a land column with land on one boundary and ocean/sea on the other three. For sake of convenience, this

configuration is labelled as LSSS, with the order of boundaries being clockwise, starting from the top or north. With additional
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simplifying assumptions relevant to the chosen region, a set of algebraic equations governing equilibrium solutions for the

system can be obtained, as in Boos and Storelvmo (2016a) (see Supplementary Information). For the assumptions considered

in the model of (Boos and Storelvmo, 2016a), the LSSS case effectively reduces to the Land-Ocean formulation in Boos and120

Storelvmo (2016a). This is the approach that we shall follow, yielding a range of simple models.

In QTCM, precipitation affects the thermodynamic equation and moisture equation through convective heating and moist-

ening terms respectively, and its closure in the model can affect the overall dynamics. An often used closure has precipitation

P taken to be directly proportional to q1−T1, where q1 and T1 are the first terms in the respective expansions of moisture q

and temperature T , both of which are expressed in energy units in QTCM.125

P =
1
τc

(q1−T1)H(q1−T1) (1)

where H(q1−T1) is the Heaviside function, which ensures that precipitation is non-negative. Here, τc is the convective time

scale, over which convection causes the troposphere to move towards a equilibrium moist adiabatic state where q1 = T1 in

energy units. When T1 > q1, the dry and warm column is stable against moist convection and no precipitation is expected to

occur, leading to P = 0. The implication of this closure is that a warmer column without concomitant increase in moisture130

tends to be stable to moist convection.

Such a precipitation formulation also underpins analysis of the system behaviour in two parts. The simple lower order model

obtained from QTCM1 is examined in two distinct regimes: a case where the precipitation is positive (precipitating regime), and

a case where precipitation is zero (non-precipitating regime), i.e., q1−T1 ≤ 0. The consideration of these two cases separately

means that the QTCM1 equations are reduced to two distinct sets of ODEs using finite differences, one for the P = 0 case135

and the second for the non-zero case (See Supplementary Information). These two sets are identical at P = 0, elsewhere they

differ. Note that, the overall model follows each of these sets of equations in the corresponding regime, implied concisely by

the Heaviside function in the precipitation expression. Here, the emphasis is to understand the response of these two sets of

ODEs separately and describe the behaviour of the overall model in terms of their composite behavior. Further, it is to be noted

that the overall precipitation is not represented here as a superposition or linear combination of the P > 0 and P = 0 cases.140

Instead, the use of Heaviside function just means that the two cases have their own regions of relevance in the v1s−R space,

i.e., the variable-parameter space. The simplified system for the non-zero precipitation case is:

dv1s

dt
+ ϵ1v1s + (T1Lκ)/L− (T1sκ)/L = 0 . (2a)

dT1L

dt
+ T1L/τc− q1L/τc− (Msrv1s)/L− (Hg)/pt− (MspT1Lv1s)/L− (Rg)/pt+ (2b)145

(T1L⟨a1v1⟩v1s)/L− (T1s⟨a1v1⟩v1s)/L = 0.

dq1L

dt
+ q1L/τc−T1L/τc + (Mqrv1s)/L− (Eg)/pt + (Mqpq1Lv1s)/L+ (2c)

(⟨b1v1⟩q1Lv1s)/L− (⟨b1v1⟩q1sv1s)/L = 0.
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Note that the spatial derivatives have been replaced by the corresponding finite difference approximations. The parameters and150

variables are defined in Table 1. The simplified model for the P = 0 case is :

dv1s

dt
+ ϵ1v1s + (T1Lκ)/L− (T1sκ)/L = 0. (3a)

dT1L

dt
+ T1L⟨a1v1⟩v1s)/L− (Hg)/pt− (MspT1Lv1s)/L− (Rg)/pt− (3b)

(Msrv1s)/L− (T1s⟨a1v1⟩v1s)/L = 0.155

dq1L

dt
+ (Mqrv1s)/L− (Eg)/pt + (Mqpq1Lv1s)/L + (⟨b1v1⟩q1Lv1s)/L− (⟨b1v1⟩q1sv1s)/L = 0 . (3c)

To find the equilibria and their stability for the model system, the time derivatives are set to zero, yielding a single algebraic

equation for the equilibria in terms of a choice of one of the three state variables such as, for example, the meridional velocity.160

The resulting equilibrium equation is a cubic one for the P > 0 case and a quadratic one for the P = 0 case (see Equations 4

and 5). We recall that the simplifications describe a non-rotational, predominantly meridional and baroclinic flow, confined to

tropical latitudes.

The form of the resulting equations for the equilibria, in terms of the meridional velocity component v1 for the P > 0 case

is,165

Acv
3
1s + Bcv

2
1s + Ccv1s + Dc = 0, (4)

where,

Ac = (Msp−⟨a1v1⟩)(Mqp + ⟨b1v1⟩)Lϵ1ptτc,

Bc =−(Msp−⟨a1v1⟩−Mqp−⟨b1v1⟩)ϵ1L2pt + (−MsrMqp−Msr⟨b1v1⟩

−MspMqpT1s−MspT1s⟨b1v1⟩)κpt,170

Cc = (−Msr −MspT1s−⟨b1v1⟩q1s + Mqr)Lκpt− (RMqp + R⟨b1v1⟩+

HMqp + H⟨b1v1⟩)gτcκL + (Mqp + ⟨b1v1⟩)LT1sκpt,

Dc =−(R + H + E)gL2κ.

This is a non-homogenous cubic equation. The cubic coefficient essentially reflects the competition between the advection and

stratification terms in the thermodynamic and moisture equations. Also note that the radiative forcing R affects both the zeroth175

order and the linear terms. The corresponding equilibrium equation for the case of P = 0 is

Bqv
2
1s + Cqv1s + Dq = 0, (5)
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where,

Bq = (⟨a1v1⟩−Msp)ϵ1,

Cq = (Msr + MspT1s)κ/L,180

Dq = (H + R)gκ/pt = 0.

This equation is quadratic, and setting P = 0 essentially decouples the temperature and the moisture fields. The moisture

variable is now a function of v1s and is in fact a diagnostic quantity (see Eq. 2b, with q1L = T1L resulting from P = 0),

since it has no influence on the evolution of the other variables. The system, with respect to the computation of equilibria,

is 2− d in nature with the velocity equation and the thermodynamic equation being coupled to each other. The nonlinear185

effects of moisture advection and convergence are removed from the overall dynamics of the system, and the decoupling of

the moisture variable from temperature leads to the nonlinearity being one order smaller for the equilibrium equation (also see

Supplementary Information).

3 Results

3.1 A Complex of saddle node curves190

As noted above, there are two different systems of ODEs, for the two cases where P > 0 and P = 0. The equilibrium equations

for these respective systems are separately examined and bifurcation diagrams plotted (Fig.2). This figure depicts the response

of the model for the standard set of parameters used in Boos and Storelvmo (2016a). For both the cases, distinction is made

between stable and unstable equilibrium branches, and furthermore between those parts of the bifurcation diagram for which

the corresponding precipitation condition is indeed satisfied and the parts where it is not met. In other words, the curves are195

demarcated into parts which are physically relevant in the context of the overall model and the parts which are not (see Fig.2).

The model equations thus contain physically irrelevant equilibria too, as depicted by the thin magenta and red curves, which

do not manifest in the final solution to the overall model once the corresponding precipitation regimes are taken into account.

The physically valid stable velocity equilibria are described for P = 0, where R < 0, by the thick solid magenta segment; and

for P > 0, where R > 0, by the thick solid red segment in Fig.2.200

It is clear from these results that there is indeed a saddle-node bifurcation in each of the two precipitation regimes. However,

neither of the two regimes is valid across the range of insolation R. The domains of relevance of the two solutions are thus

restricted, with there being an exchange of relevance between the P > 0 case and P = 0 case at v = 0, where R = 0 (see Fig.2).

These relevant segments together form the thick magenta-red bifurcation curve for the system as a whole. The exchange of

relevance at v = 0,R = 0 is illustrated by comparing Fig.2, where the bifurcation curve for P > 0 case crosses the boundary205

between the two regimes of relevance. The thick magenta-red curve in Fig.2 clearly shows that there is no physical bifurcation

in the precipitating monsoon regime of the monsoon model derived from QTCM. However, each of these curve segments are

themselves part of two distinct saddle-node structures ensuing from the two contrasting assumptions about precipitation. This

is clear in Figure 2 where the two saddle-node (S-N) curves appear explicitly.
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Figure 2. Standard Case of Boos & Storelvmo (2016) with stratification being present. Segments of the bifurcation curves are shaded

corresponding to their stability and physical relevance. The thicker solid curves indicate the composite stable, relevant solution, which is

seen to emanate from a pair of saddle-node curves. The shaded region corresponds to the portion of v1s−R space for which P is indeed

positive, or in other words, P > 0 is physically relevant. Likewise, in the unshaded portion, P = 0, i.e., (q1L−T1L)≤ 0 holds true. This

illustrates that the P > 0 bifurcation curve (in red) spans both the regions, and must be further interpreted in light of relevance shown here.

In summary, although the final solution comprising the relevant segments itself does not contain any S-N bifurcation, the210

present discussion shows that this result arises from a complex of two S-N bifurcation curves that exchange their physical

relevance where precipitation is zero for both the cases. The individual members of the complex do possess a S-N bifurcation

and thus the figures show that equilibrium solutions are not guaranteed for all negative values of R. Since the corresponding

model is applied only in the relevant regime the overall bifurcation diagram, which is the composite of the relevant portions of

the two bifurcation curves, contains a single bifurcation point for large negative values of R where the v1s equilibria for P = 0215

case vanish. Furthermore, the physically important lesson is that both bifurcation points correspond to non-positive values of

v1s (oceanward winds in the boundary layer) and hence zero precipitation, and there is no bifurcation point with positive values

of v1s. As a result, the composite solution for precipitation seems to be bifurcation-free, despite the presence of a bifurcation

point for large negative value of R.

The role of dry thermal stratification in the previous result becomes clear once this effect is suppressed (Fig. 3). Without220

dry thermal stratification, Boos and Storelvmo (2016a) reported the presence of S-N bifurcations in the model. In this study
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Figure 3. Standard Case of Boos & Storelvmo (2016) with stratification being suppressed.Note that the saddle-node curves persist, but they

have drifted across parameter space and the composite solution, indicated by thicker solid lines manifests abrupt change.

too, without dry thermal stratification the precipitation (Fig. 4) as well as meridional velocity do show S-N bifurcation in the

relevant regimes, with the resulting transition being abrupt . Notably, the underlying dynamics even here is very similar to

the previous case (Fig. 2) , except for the shift in the bifurcation points of the model owing to omission of stratification. This

results in an important change in the overall form of the final, stable and relevant curve. In other words, the key difference in225

mathematical structure of these systems is in the bifurcation points, with equilibria at the bifurcation point having v > 0, giving

rise to abrupt onset of landward wind and consequently nonzero precipitation as the column energy source is increased. Thus,

in the absence of stratification, there is a minimum wind-speed below which the monsoon circulation cannot be stable.

Figure 3 also shows that the two S-N curves intersect at R = 0,v = 0, where they exchange relevance.In this figure, these

curves do not appear to meet elsewhere. Indeed, it turns out that in all the cases the two S-N curves appear to meet only at230

R = 0, as in the case with stratification. Quite evidently, the intersection at R = 0 follows from the fact that the equilibrium

equations are then homogeneous and thus v = 0 is a common solution to both the P > 0 and P = 0 cases.

In summary, these results demonstrate that the underlying complex of S-N curves differs only quantitatively when strati-

fication is suppressed, but this quantitative change makes all the difference to the nonlinear dynamics when the relevance of
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Figure 4. Precipitation corresponding to the stable, relevant equilibria in Fig.2 and Fig. 3. The results agree with those of Boos and Storelvmo

(2016a), with abrupt onset of non-zero precipitation occurring for the case of suppressed stratification (Ms = 0, black , dashed curve).

solutions is considered. Consideration of relevance or otherwise of portions of S-N curves explains both the scenarios of the235

model, with and without physically relevant bifurcation being present, as stratification is either suppressed or maintained.

3.2 Effect of Stratification on Saddle-Node complex

To further understand the effects of changes in stratification on steady-states of the model, the dry thermal stratification Ms is

decreased from its standard value in Boos and Storelvmo (2016a) to 0. Figure 5 shows the gradual change in the S-N curves

and their interaction as Ms is varied. It is seen that, as this stratification parameter is reduced to 20% of its original value, the240

S-N curve corresponding to the P > 0 case has a bifurcation occurring for positive values of precipitation and consequently

the abrupt onset phenomenon that was found earlier for the case of Ms = 0 has appeared. Note that such a scenario occurs

only for the P > 0 solution. At higher stratification such as 60%Ms, such a bifurcation already begins to appear. Additionally,

since the two solution curves exchange their physical relevance at the origin, two consequences immediately follow. First, a

bifurcation is present in the overall solution whenever the bifurcation point of the P > 0 solution occurs at a value of v1s for245

which indeed P > 0 - in other words, the bifurcation point is physically relevant. This is in contrast to the results in Fig.2 with

100%Ms, where the bifurcation points of both P > 0 and P = 0 are in the negative v1s region. Second, owing to the manner

in which these solution curves shift as the stratification is lowered, the non-monsoonal branch corresponding to P = 0 exists

for only a short range of negative R as stratification is lowered. Both parameter values, 20%Ms and 60%Ms, display a small

regime of multistability close to R = 0.250
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This is consistent with the result of Seshadri (2017) that lowered stratification diminishes the stabilizing influence during the

monsoonal circulations, thereby making a bifurcation more likely. Thus, as the stratification is lowered further, there occurs

a concomitant increase in the minimum wind-speed below which the monsoon steady state cannot exist (Figure 5). At the

same time, lowered stratification gives a stronger circulation and greater precipitation for the same column energy input, as the

atmospheric stabilizing effect diminishes. Overall, the monsoonal regime acquires conditions for more rainfall but only above255

some threshold, with there being an abrupt onset, as the stratification is lowered.

The non-monsoonal branches with P < 0 shift to the right as stratification diminishes substantially. Owing to their crossing

through the origin they also shift upwards. Weaker stratification leads to weaker steady-state winds in this regime. Furthermore

this solution branch exists over a narrower regime, with the bifurcation occurring for less negative values of the column energy

source.
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Figure 5. Standard Case of Boos & Storelvmo (2016) with stratification being present. Effect of reducing Ms from its standard value to zero

shows the gradual change in dynamics, and appearance of bifurcation as the stratification is lowered. A note regarding suitable choice of aT

is given in Supplementary Information.

260

Figure 6 shows the effect of increasing the stratification parameter beyond 100%Ms, i.e., the value used in the standard

case. An increase of Ms much beyond the standard value seems to cause only quantitative changes in the steady states, with

no qualitative changes in the bifurcation diagram. In this case, the S-N bifurcation points for both the regimes with P > 0
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Figure 6. Standard Case of Boos & Storelvmo (2016) with stratification being present. An increase of Ms much beyond the standard value

of Ms seems to cause only quantitative change but no qualitative effect on dynamics.

and P = 0 occur for more negative values of the column energy source as Ms is increased. This is in contrast to the case

of decreasing Ms described above, where the two bifurcation curves drifted in opposite directions. In the monsoonal regime,265

stronger stratification diminishes precipitation. In the non-monsoonal regime, a stronger stratification imports more energy into

the control volume, thereby stabilizing this solution (where the temperature gradient is reversed) for larger negative values of

R.

3.3 Unfolding of Pitchfork bifurcation

Although there is a change in qualitative behavior, with physically relevant bifurcations emerging in the model as the stratifi-270

cation is decreased, the overall saddle-node complex structure is itself persistent to the parameter changes considered above.

This explains the dynamics observed earlier in models derived from QTCM when the effect of stratification is strong (Boos and

Storelvmo, 2016a). The P = 0 case always yields a quadratic equilibrium equation and can be expected to exhibit saddle-node

structures always. However, the appearance of these saddle-node structures themselves for the cubic equation describing the

P > 0 regime merits attention.275

In special cases of the parameters, this cubic equation reduces to a quadratic. This occurs, for example, where the param-

eter describing the effects on the gross moist stratification (Mqp) cancels the moisture advection coefficient (aq or ⟨b1v1⟩),
ultimately yielding saddle node structures (see Eq. 4). This is because, the balance between these two parameters causes the

cubic term to vanish, leading to another quadratic equilibrium equation. Thus, saddle-node structures are typical for this system
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Figure 7. Standard Case of Boos & Storelvmo (2016) with stratification being present. Mqp is reduced from its standard value. The left panels

show a supercritical and a subcritical pitchfork bifurcation as Mqp is slightly varied from its standard value (i.e, constraint Mqp =−aq is

broken). The right panels show that an analogous change in aq , keeping Mqp fixed at its standard value, causes the same effect. Note that the

saddle node curves exist here too. However, the saddle-node curve corresponding to P > 0 case is now a part of the unfolding of a pitchfork

bifurcation.

under these conditions. In addition, such a choice eliminates the effect of radiative forcing on the linear terms in the equilib-280

rium equation for the velocity, so that the forcing terms, R, E, H appear together and in only one term in the equation, which

allowed Boos and Storelvmo (2016a) to treat them as a single entity R.

For other cases, the cubic term would persist and the equation could be expected to exhibit other bifurcations. To study

equilibria present in the more generic version of the model, where the cubic coefficient does not vanish, we modify aq and

Mqp. The parameter aq describes the efficiency with which horizontal advection affects moisture, whereas Mqp describes the285

effect of moisture on the change in gross moisture stratification. When these no longer cancel, the equilibria depend on the sign

of the cubic term. The results for reduction in Mqp are shown in Fig. 7. The left panels clearly show that the system permits

pitchfork bifurcations, supercritical and subcritical respectively in the upper left and bottom left figures. This is expected, since

the change in Mqp over and below its standard value causes the cubic term to be positive (subcritical bifurcation) and negative

(supercritical) respectively.290
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It is notable that the quadratic curves (saddle-node) obtained for the quadratic equation analyzed earlier persist in the cubic

case (red curves, P > 0 case) too, although as a part of unfolding of a pitchfork bifurcation. The upper left figure clearly

shows that the saddle-node curves corresponding to the non-bifurcating result in Fig. 2 are almost exactly present here, with

an additional, highly negative, stable equilibrium emerging due to the cubic nature. The right panels in Fig. 7 show that an

increase in aq produces the same effect as a commensurate decrease in Mqp. Similarly, a decrease in aq produces the same295

result as a commensurate increase in Mqp. Not only do three equilibria result, but the plots are evidently analogous to plots for

opposite changes in the value of aq , since moisture advection and its stratification balance each other in the moisture equation.

Physically, these can be interpreted as resulting from a partial cancellation between stratification and advection terms in the

moisture equation, and the balance between the terms influencing the propagation of nonlinearities in the moisture field to

other fields.300

Notably, similar to the result in the upper left panel of Fig. 7, an unfolding of pitchfork bifurcation is present in the results of

Levermann et al. (2009). However, in that study, the bifurcation was ever present owing to the absence of stratification in their

model. Here, a pitchfork bifurcation occurs only when Mqp ̸= aq . In other words, when the moisture advection doesn’t partially

nullify the moisture stratification, the resultant system is cubic and permits pitchfork bifurcations. Further investigations into

the various scenarios of unfolding while taking into account the different parameter effects are to be discussed in a subsequent305

paper.

4 Discussion

The results described above bring out the following:

1. A near linear response in these models arises from strong dry thermal stratification, despite bifurcations being present

in the underlying saddle-node curves. Fig.2 depicts the response of the model for the standard set of parameters used310

in Boos and Storelvmo (2016a). The thick magenta and red curves, from the two regimes respectively, correspond to

the meridional velocity equilibria of the composite model and are consistent with prior analyses of Boos and Storelvmo

(2016a) for the case where the effect of stratification is included in the model. These are indeed the physically relevant

and stable portions of the bifurcation curves of the set of ODEs corresponding to P = 0 and P > 0 regimes. Figure

4 shows the corresponding precipitation (solid blue curve), which also concurs with Boos and Storelvmo (2016a). The315

final solution comprising only the relevant segments contains no bifurcations- and therefore Boos and Storelvmo (2016a)

have interpreted this as a near-linear response.

2. The saddle-node complexes discussed above are intrinsic to the low order models derived from QTCM. Therefore,

they underlie the two contrasting cases of the models, where bifurcations manifest physically and where they do not.

This provides the reconciliation of the absence of physical bifurcations, in the presence of large stratification, with the320

nonlinearities of the model. In other words, a physically relevant bifurcation depends on whether the bifurcation point

for the equation set with nonzero precipitation occurs with landward winds. More generally, similar behavior can be
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envisaged for other simple atmospheric models where different equation sets are obtained under contrasting, mutually

exclusive, regimes.

3. The dry thermal stratification affects each of the (linear and nonlinear) coefficients in the equilibrium equation, except325

the constant term (Eq.4 and Eq.5). It can be seen from these equations that a purely quadratic equation for the equilibria

yields a saddle-node curve with its bifurcation point at the origin. The presence of a linear term, which generally appears

in the equilibrium expressions for both the precipitating and nonprecipitating regimes, causes the point to drift in the

equilibrium-parameter space. Hence, the main effect of change in stratification is to cause a drift in bifurcation curves,

for both these regimes. Thus the change in stratification affects whether the bifurcation point for the precipitating regime330

occurs at a positive or negative value of landward winds. The former case corresponds to a physical bifurcation in the

model.

4. For such systems where solutions of two regimes must be spliced, the question of physical relevance of equilibria and

bifurcations might be examined considering a “critical relevance curve", distinguishing relevant and irrelevant equilibria.

For the present model, this is the curve/line corresponding to P = (q1−T1)/L = 0, dividing the parameter-variable space335

into region with and without precipitation (i.e., (q1−T1 ≤ 0)). This naturally distinguishes the bifurcation curve for the

two regimes into physically relevant and irrelevant segments, with Figure 2 illustrating this well. The overall problem

is one where a saddle-node bifurcation complex, or saddle-nodes within the unfolding pitchfork, interacts with a curve

separating relevant and irrelevant portions of the parameter space. This might yield, as in this case, composite bifurcation

diagrams arising from simple bifurcations such as saddle-node or pitchfork, which need not directly resemble either of340

these canonical bifurcations, and where bistability might be an emergent property depending also on the relevance

criteria. Further analysis of these systems is a promising avenue of further study. Moreover, such systems are in general

non-smooth, and their transient dynamics may contain additional surprises that are beyond our present scope.

5 Conclusions

The study of whether monsoon systems exhibit bifurcations has become an important research topic, ever since low order345

models were first published that suggested that such phenomena are intrinsic to monsoon systems (Levermann et al., 2009).

The analysis and interpretation of nonlinear dynamics using a variety of models holds lessons not only for interpretation of

the paleoclimatic record, but also for understanding monsoon evolution in the context of global change. The present study

is consistent with lessons from prior studies (Boos and Storelvmo, 2016a; Seshadri, 2017) that have indicated that physical

bifurcations are not intrinsic to climate models and may not always be manifested by such models, because thermal stratification350

of the atmosphere provides an important stabilizing effect. Furthermore, when this stratification is large, such as in present-day

South Asian monsoon, a bifurcation is not present.

Such a finding left open the precise effect of the nonlinear terms in these models, and this study reconciles this nonlinear

dynamics with the absence of bifurcation phenomena. The resolution resides in the fact that bifurcations appear in the solu-
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tions to the model equations, however may not manifest due to their physical irrelevance. Solutions to the composite system355

describing the monsoon and non-monsoon regime are obtained by splicing together the respective solutions with and without

precipitation. Bifurcations in the monsoonal, i.e. precipitating, regime are physically relevant only if they occur in they occur

for landward winds, otherwise they do not comprise the physically relevant solution curves. This paper elaborates the behavior

of the underlying complex of saddle-node bifurcations in these simple models derived form the Quasi-Equilibrium Tropical

Circulation model, showing that they do not manifest if the stratification is sufficiently large. Statification is an important sta-360

blizing effect on the precipitating branch of the solution, and details of the stabilizing effects of stratification are explicable

in this framework. More generally, it is seen that the saddle-node structures themselves are part of unfolding of pitchfork bi-

furcations. Thus, even the simplest monsoon models derived here exhibit rich dynamics, and a fuller characterization of this

dynamics is an important avenue for future investigations.
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