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Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the evaluation 

routine for climate simulations. This classification is applicable for any region of the globe of any size given the reference 10 

data. Its unique novelty is the use of the structural similarity index metric (SSIM) instead of traditional distance metrics for 

cluster building. This classification method combines two classical clustering algorithms used iteratively, hierarchical 

agglomerative clustering (HAC) and k-medoids, with the only one pre-set parameter - the threshold on the similarity 

between two synoptic patterns expressed as the structural similarity index measure SSIM. This threshold is set by the user to 

imitate the human perception of the similarity between two images (similar structure, luminance and contrast) and the 15 

number of final classes is defined automatically. 

We apply the SSIM-based classification method on the geopotential height at the pressure-level of 500hPa from the 

reanalysis data ERA-Interim 1979-2018 and demonstrate that the built classes are 1) consistent to the changes in the input 

parameter, 2) well separated, 3) spatially and temporally stable, and 4) physically meaningful. 

We use the synoptic circulation classes obtained with the new classification method for evaluating CMIP6 historical climate 20 

simulations and an alternative reanalysis (for comparison purposes). The output fields of CMIP6 models (and of the 

alternative reanalysis) are assigned to the classes and the quality index is computed. We rank the CMIP6 simulations 

according to this quality index. 
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1 Introduction 

Research institutions around the world conduct climate studies and share their knowledge with the society and policy makers 

through The Intergovernmental Panel on Climate Change (IPCC, www.ipcc.ch). The climate simulations used in the IPCC 30 

reports are available to other scientists, besides those who run the models, through the Coupled Model Intercomparison 

Project (CMIP, www.wcrp-climate.org/wgcm-cmip). The first two phases (CMIP1 and CMIP2) of this initiative addressed 

the ability of numerical climate models to simulate the present climate and to respond to an increase of carbon dioxide 

concentration in the atmosphere (Meehl et al., 1997; Meehl et al., 2000). The extended follow-up phase CMIP3 (Meehl et al., 

2007) provided output of coupled ocean-atmosphere model simulations of 20th-22nd century climate for the 4th Assessment 35 

Report (AR4) of IPCC (www.ipcc.ch/report/ar4/syr/). As the number of climate simulations in subsequent projects CMIP5 

(Taylor et al., 2012) and CMIP6 (Eyring et al., 2016) continued to increase, new requirements on the "quality" and 

"reliability" of such simulations emerge.  

Hannachi et al (2017) emphasized the importance of the correct representation of weather regimes, their spatial patterns, and 

persistence properties in global circulation models as they could properly simulate the climate variability and long-term 40 

climatic changes under an external forcing such as, for example, the global warming. However, traditional techniques for 

model evaluation mainly focus on individual variables and/or derived indices and do not take into account, how well models 

simulate synoptic weather patterns and their frequencies of occurrence (Díaz-Esteban et al., 2020). As some studies have 

already demonstrated that the performance of a model varies as a function of weather regimes (Díaz-Esteban et al., 2020; 

Nigro et al., 2011; Perez et al., 2014; Radić and Clarke, 2011) we can no longer ignore the model dynamics in the evaluation 45 

routine. Therefore, we propose to examine the correctness of the representation of synoptic patterns in climate simulations 

additionally to commonly evaluated variables such as temperature and precipitation.  

The atmospheric circulation is a continuum that gradually changes and its dynamics can be described by a finite number of 

representative "states"/"typical patterns" i.e. classes. Hochman et al. (2021) proved that such representation of the 

atmosphere by quasi-stationary circulation patterns, often also termed as weather regimes, is a physically meaningful way to 50 

describe the atmosphere (and not only a useful statistical categorization as it may be argued). Muñoz et al. (2017) also 

suggested using the weather-typing approach to diagnose a range of variables in a physically consistent way helping to 

understand the causes of model biases. For evaluation purposes, any climate model simulation can be represented as a 

sequence of typical synoptic situations, previously classified. Common variables used for representing the synoptic 

circulation are the sea level pressure, geopotential heights and wind vector fields. Statistical measures, such as frequency and 55 

duration of each class, computed from the assigned sequence can be evaluated against reference data derived, for example, 

from a reanalysis.  

There is no objective number of the classes for describing the moving atmosphere. A set of classes can be determined 

subjectively by an expert, as the well-known Hess-Brezowski Grosswetterlagen (Gerstengarbe and Werner, 1993; Hess and 

Brezowsky, 1952; James, 2006) or the Lamb weather types (Lamb, 1972), or using an automated classification method. 60 
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Multiple different synoptic classifications have been developed over the years as summarized by Yarnal et al. (2001) and 

Huth et al. (2008). An overview and systematization of existing classification methods for synoptic patterns was compiled in 

a joint effort of multiple European Institutions in a COST Action 733 and summarized in the final project report (Tveito et 

al., 2016). However, we consider none of the methods from this report suitable for our purpose of synoptic pattern 

classification because these methods either use a debatable (in our opinion) initialization routine or a suboptimal (in our 65 

opinion) distance metric for cluster building. 

We introduce a new two-stage clustering algorithm for classification of the synoptic circulation patterns. The novelty of this 

method consists of the following features: it uses a similarity metric instead of a distance-metric, it represents clusters by 

their medoids instead of centroids, and it uses an iterative combination of the hierarchical agglomerative algorithm with a 

partitioning k-medoids algorithm to determine the number of clusters automatically. This clustering algorithm does not need 70 

an initial distribution of elements and gradually continues building and reviewing clusters until there is no more clusters to 

be built and reviewed according to a given threshold of similarity. 

We demonstrate that the new classification produces a set of well-separated classes, not necessarily of similar size, 

consistent (small changes in the pre-set parameters do not alter classes strongly), stable in various spatial resolutions and 

data volumes, and physically interpretable.   75 

The paper is structured in the following way: 1) data and domain description, 2) description of the clustering method, 3) 

presentation of resulting classes and 4) use of the derived classes for evaluating CMIP6 climate simulations computing the 

quality index, 5) our conclusions and an outlook for future applications. 

2 Data 

We use the Reanalysis ERA-Interim (Dee et al., 2011) for period of 1979-2018 as a realistic historical representation of the 80 

atmospheric circulation in Europe. Simulated synoptic regimes are represented by the geopotential height (zg) at the pressure 

level of 500 hPa sampled daily at 12:00 UTC and spatially on a grid of 2ºx3º. The coarse-scale sampling is sufficient due to 

the fact that the synoptic-scale 500-hPa geopotential height does not require high resolution to reproduce the key physical 

mechanisms associated with (Muñoz et al., 2017). The chosen domain (Fig. 1) has 22x22 grid points with the lower left 

corner at (20ºW, 29ºN). 85 
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Figure 1: Domain for classification of synoptic circulation patterns: crosses show sample points every 2º in latitude and every 3º in 
longitude directions, 22x22 grid points in total. The solid black line shows the outer edge of the domain. 

 

Some typical synoptic patterns may occur in different seasons but should be grouped into one class. To allow this, we pre-90 

process the original geopotential height fields (zg):  remove the seasonal amplitude from the original daily data and 

normalize the resulting fields by the daily standard deviation as in Eq. (1): 

ܽ݃ݖ = ൫݃ݖ −  (1)              ߪ݃ݖ/൯݊ܽ݁݉݃ݖ

The mean zgmean and the standard deviation zgσ are calculated for each grid point and for each day of the year from the 40-

years of ERA-Interim data; both fields are smoothed in time with 151-days running average.  95 

We use the resulting from the classification set of synoptic patterns to evaluate 32 global circulation models (Table 3) 

available from the Coupled Model Intercomparison Project Phase 6 (CMIP6, https://www.wcrp-climate.org/wgcm-

cmip/wgcm-cmip6, (Eyring et al., 2016)) and compute quality indices for each model simulation. The models were chosen 

for the historical period 1950-2014, preferably simulation version r1i1p1f1 when available or r1i1p1f2/r1i1p1f3 otherwise.   

Additionally, we evaluate the alternative reanalysis data NCEP1 (Kalnay et al., 1996) for a comparison to the evaluation of 100 

the CMIP6 models. Assuming that the alternative reanalysis captures the synoptic circulation better than any unconstrained 

global circulation model, this evaluation gives the estimate for the best quality index possible. 

3 Method 

A very frequently used approach for identifying circulation regimes is to apply the k-means clustering algorithm to the 

synoptic circulation data (an overview can be found in the project report COST Action 733 by Tveito et al. (2016)). The k-105 

means method partitions the input data into k clusters, such that each data element belongs to the cluster with the nearest 

https://doi.org/10.5194/esd-2022-29
Preprint. Discussion started: 29 July 2022
c© Author(s) 2022. CC BY 4.0 License.



5 
 

centroid minimizing within-cluster variances; the k-means method is simple and always converges to a solution. Although k-

means and its multiple variants are commonly applied in the field of the atmospheric science, they exhibit serious limitations 

for our aims: 1) they use centroids (means) to represent classes, 2) they require a pre-specified number of classes and 3) they 

use structure-insensitive distance metrics (e.g. mean square error MSE) for the optimization of the element assignment 110 

among classes. The k-means clustering assigns every data element to the cluster center that is closest to it, if only by a small 

margin. This makes the method sensitive to noise in the data and may lead to an assignment of a data element to a 

structurally dissimilar cluster center (Falkena et al., 2021).  

Following the previous considerations, we made three essential decisions to modify the classic k-means algorithm in order to 

construct an algorithm better suitable (from our perspective) for building classes of synoptic patterns. 115 

Decision 1: use medoids to represent classes. Using the centroids to represent classes leads to two serious problems: the 

mean of the fields, each of which describes a meaningful synoptic circulation, is not always interpretable i.e. may represent 

an unrealistic synoptic situation; the mean field may serve as an “attractor” fields that are dissimilar to each other 

(“snowballing”). Therefore, we propose to use medoids for class representation. A medoid is the element of the class with 

the smallest dissimilarity to all other elements in this class. Each medoid itself is part of the data and represents a physically 120 

realistic synoptic situation. Additionally, using medoids makes the classification algorithm (k-medoids) less sensitive to 

outliers helping to avoid "snowballing" effects.  

Decision 2: use a two-stage algorithm. There are multiple ways of defining the number of classes for a k-medoids algorithm 

(similarly to k-means) ranging from a random guess to the analysis of the data based on principal component analysis PCA, 

also known as empirical orthogonal functions, Huth (2000). Lee and Sheridan (2012) suggested the initialization of the 125 

clustering algorithm by selected PCAs. The reason for this statement was the common (naïve) assumption that the first few 

modes returned by PCA were physically interpretable and should match the underlying signal in the data. However, Fulton 

and Hegerl (2021) tested this signal-extraction method and demonstrated that it has serious deficiencies when extracting 

multiple additive synthetic modes: false dipoles instead of monopoles, which may lead to serious misinterpretation of 

extracted modes. Fulton and Hegerl (2021) also found that PCA tends to mix independent spatial regions into single modes. 130 

Therefore, we back off using the PCA-based initialization of the clustering algorithm and employ another classic clustering 

algorithm, hierarchical agglomerative clustering (HAC), for initializing the k-medoids. We build an algorithm consisting of 

two parts – HAC and k-medoids – that are called iteratively. The HAC-algorithm combines similar clusters and, 

subsequently, the k-medoids algorithm reviews them. The two-stage algorithm stops when no similar clusters are left. 

Decision 3: use an alternative similarity measure. The mean squared error (MSE) and the Pearson correlation coefficient 135 

(PCC) are probably the dominant quantitative performance metrics in the field of model evaluation and optimization. 

However, Wang and Bovik (2009) demonstrated that the MSE has serious disadvantages when applied on data with temporal 

and spatial dependencies and on data where the error is sensitive to the original signal. Mo et al. (2014) in turn demonstrated 

that the PCC as a metric is insensitive to differences in the mean and variance. However, atmospheric data (pressure, 

geopotential, temperature fields) often reveal dependencies in time and space, as well as shifts in the mean and differing 140 
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variances. Both studies mentioned above (Mo et al., 2014; Wang and Bovik, 2009) recommend using an alternative measure 

to signal/image similarity, the Structural Similarity (SSIM) index, to quantify the goodness of match of two patterns. The 

SSIM (Wang et al., 2004) simulates the human visual system that “recognizes” structural patterns and error-signal 

dependencies, and shows a superior performance as a similarity measure over the MSE and PCC.  

Considering the previous arguments, we develop a new classification method for synoptic circulation patterns that uses the 145 

similarity measure SSIM. This method is a new two-stage classification algorithm that builds classes of synoptic circulation 

patterns according to a given threshold on the similarity without pre-defining the number of classes. The method uses 

medoids for representing classes, instead of the commonly used centroids, and thereby makes the classification algorithm 

less sensitive to outliers (anomalous/untypical synoptic patterns). 

3.1 Similarity measure for synoptic patterns  150 

We use the Structural Similarity index SSIM (Wang et al., 2004) for measuring the similarity between synoptic pattern (SP) 

fields represented by the geopotential height zga–anomalies. These fields are highly structured images, meaning that the 

sample points of these images have strong neighbour dependencies, and these dependencies carry important information 

about the structures of the highs and lows in the field. The SSIM incorporates three perception-based components of image 

difference: structure (covariance), luminance (mean) and contrast (variance):  155 

,ݔ)ܯܫܵܵ (ݕ =
൫ଶஜೣஜ೤ା௖భ൯൫ଶఙೣ೤ା௖మ൯

൫ஜೣ
మାஜ೤

మ ା௖భ൯൫ఙೣ
మାఙ೤

మା௖మ൯
          (2) 

 

where 

x, y - images, 

µx, µy - average values for x and y, 160 

σx, σy - variance for x and y, 

σxy - covariance of x and y, 

c1 = (k1L)2, c2 = (k2L)2- stabilizing constants for weak denominator,  

L = 20 – dynamic range of zga-values, 

k1 = 0.01, k2 = 0.03.  165 

 

Each SP is treated as a two-dimensional image. For each pair of images the SSIM-value is computed. The SSIM takes value 

1 only for two identical images; a value less than 1 identifies some difference between two images. Typically, the SSIM-

value is computed for multiple sliding windows inside the image. But for simplicity here, only one SSIM-value is computed 

for the whole domain (Fig. 1). As the selected domain is relatively large and extends to high latitudes, areal weighting was 170 

applied to all fields before computing the SSIM.   
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3.2 Classification method: two-stage clustering algorithm 

The two-stage clustering algorithm combines two clustering methods - the hierarchical agglomerative clustering (HAC) and 

the k-medoids clustering - in such way that the output from the first is used as input into the second (Fig. 2). Medoids are 175 

used for cluster centers. A medoid is the element of the cluster with the smallest dissimilarity to all other elements in the 

cluster. The HAC is a very flexible clustering method that can use any distance or [dis]similarity measure as it allows 

different rules for aggregating data into clusters(Schubert and Rousseeuw, 2021). The k-medoids algorithm is then initialized 

with the medoids built by HAC and rearranges data elements between these clusters (an operation that HAC cannot do) in 

order to maximize the within-cluster homogeneity. It builds clusters (similarly to the wide-known method of k-means) using 180 

the medoid-prototypes and an arbitrary [dis]similarity measure for cluster similarity (D’Urso and Massari, 2019; Schubert 

and Rousseeuw, 2021).  

The two-stage clustering inherits the strengths of both contributing algorithms. Initially each data element represents its own 

cluster. The first step, HAC, determines the number of clusters and their medoids without a prior estimation. For each two 

clusters merged into one, the medoid of the new cluster is recomputed. The threshold on the SSIM-value for merging similar 185 

clusters THmerge is set by the user. The second step, k-medoids, in few iterations produces optimized clusters using the “seed” 

of cluster medoids delivered by the first step. 

 

 

Figure 2: Flow diagram of the two-stage clustering algorithm. 190 
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At each iteration of the two-stage clustering, two steps are done as illustrated in Fig. 2 in the following way: 

1. The 1st Step: HAC (merging clusters):  

1.1. Clusters with sufficient similarity SSIM>THmerge are merged to create bigger clusters: clusters with higher similarity 

are merged prior to those with lower similarity. 195 

1.2. Temporary cluster medoids are recomputed.   

2. The 2nd Step: k-medoids (recompose clusters): 

2.1. Temporary cluster medoids from the first step are used to initialize the k-medoids clustering algorithm.  

2.2. Each data element is assigned to the cluster with the most similar medoid. 

2.3. Cluster medoids are recomputed. 200 

2.4. K-medoids clustering is repeated until an optimum (for the given number of medoids!) distribution of all data 

elements is achieved. 

Both steps are repeated until no cluster pair is sufficiently similar to be merged.  

The presented classification method, as any other classification method, requires some pre-set parameters. The final number 

of clusters (that later build classes) produced by the two-stage clustering algorithm depends on the threshold THmerge for 205 

cluster merging and, eventually, on the amount of data to be clustered. Although the choice of THmerge is crucial, there is no 

statistical or analytical formula for computing this threshold. THmerge can only be chosen subjectively by comparing pairs of 

images and asking an observer about his/her perception of similarity. Examples of “similar” synoptic patterns are shown in 

Fig. 3. We analyzed multiple pairs of SP-images and, based on the personal perception of similarity (our own as well as of 

persons not evolved into the development of this classification method!), estimated the threshold value THmerge=0.45 for 210 

recognized similarity i.e. image pairs with SSIM-value less than THmerge being perceived as dissimilar. Figure 3 illustrates 

examples of similarity between three exemplary reference SP-images and arbitrarily chosen SP-images with SSIM-values of 

0.75, 0.55, 0.50, 0.45, 0.40, and 0.10 to each reference. SPs with SSIM≥0.75 are "strongly similar" to the reference. SPs with 

the SSIM<0.45 are considered "weakly similar" to the reference. SPs with SSIM<0.10 are "dissimilar" to the reference. 
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 215 

Figure 3: Examples of three synoptic patterns zga (left column "reference"). Each row contains examples of alternative synoptic 
patterns with the SSIM-value to the “reference”. 

The pre-set threshold for merging clusters THmerge is crucial for the two-stage clustering algorithm. It is chosen subjectively 

and can vary. The definition of this threshold implies that a reduction of its value loosens the requirement on data similarity 

for cluster building and provides a smaller number of final classes. In contrary, an increase of THmerge stratifies the 220 

requirement on the data similarity for cluster building and, therefore, leads to a larger number of final classes. At the same 

time, the higher THmerge also loosens the requirement of separation among classes and permits a higher similarity among 

them. Thus varying the value of THmerge may be used, in some extent, to steer the clustering algorithm to produce the number 

of final classes in the particularly desired magnitude.  

Keeping in mind the intended application (evaluation of climate models) the question arises: how many classes do we need 225 

to describe the synoptic flow? In the present study, we use 40 years of daily synoptic patterns, 14600 data elements, which is 

a usual number of available reference data in climate research for the industrial time. How many classes do we need to 

represent synoptic situations of these 40 years? Would 10 or 100 be sufficient? The answer to this question is not trivial. The 

number of derived classes depends on the pre-set parameter THmerge. Whereas, values of THmerge smaller than 0.45 were 

mainly discarded by observers, testing higher values remains reasonable. Tests of various values for THmerge yielded the 230 

following results: the value of 0.45 produces typically less than 60 synoptic classes, the value of 0.55 – over 100 classes. We 

set THmerge=0.45, the minimum value of the considered range, for two reasons: 1) using this value produces fewer large 

classes, which can be meaningfully statistically analyzed (a higher threshold value would produce many classes with few 

members), 2) a smaller number of classes is easier to describe verbally, more intuitive to understand and visually more 

separated. 235 
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3.3 Criteria for the evaluation of the clustering algorithm 

We analyze the performance of the new method using four criteria suggested by Huth (1996): The clusters should (i) be 

consistent when pre-set parameters are changed, (ii) be well separated both from each other and from the entire data set, (iii) 

be stable in space and time, and (iv) reproduce realistic synoptic patterns. 

Cluster consistency. The consistent evolution of classes implies that small changes in the pre-set parameter THmerge lead only 240 

to small changes in the classes. For illustrating the sensitivity of the clustering algorithm to the choice of THmerge it was run 

for three values: the reference value 0.45, and two higher values 0.50 and 0.55. 

We observe that an increase in the number of classes, caused by a change in THmerge, is realized predominantly by splitting 

few classes, with others remaining almost unchanged. Such evolution is difficult to quantify. The 'consistency' of the clusters 

is illustrated by similarity diagrams alike to the "arrow diagrams" in Huth (1996) for the sets of classes built with varying 245 

parameters.  

Cluster separability. According to the stop-criterion of the clustering algorithm, the derived classes have SSIM< THmerge for 

each pair of classes. Although the classes are represented by the cluster medoids in the clustering algorithm, it is also 

reasonable to require that the resulting cluster centroids (means) be at least not "strongly similar" (SSIM<0.75) to each other. 

We compute matrices of similarities for medoids and for centroids and analyze how well the medoid-separation algorithm 250 

provides the separation of centroids in the final set of classes. 

Additionally, we calculate three metrics introduced in in the COST Action 733 report (Tveito et al., 2016) for characterizing 

the separability and within-type variability. These metrics are not independent from each other. The separation of clusters 

from randomly chosen data is addressed by the comparison of the metrics calculated on the clusters to the metrics calculated 

on "random groups". The "random groups" are generated for each cluster as groups of the same size but of randomly chosen 255 

data elements (one realization).    

The explained variation EV of the data is determined as the ratio of the sum of squares within classes (synoptic types) WSS 

and the total sum of squares TSS: 

ܸܧ = 1 −
ௐௌௌ

்ௌௌ
            (3) 

The distance ratio DRATIO is the ratio of the mean distance between elements assigned to the same class DI and the mean 260 

distance between elements assigned to different classes DO. The Euclidean distance is used for computing DI and DO: 

ܱܫܶܣܴܦ =
஽ூ

஽ை
            (4) 

The "faster Silhouette Index" FSIL is calculated for each data element i from the distances to their own class (fai) and the 

distance to its closest neighboring class (fbi). The Euclidean distance is used for computing fai and fbi and for determining the 

closest neighboring class: 265 

ܮܫܵܨ =
ଵ

௡
∑ ௙௕೔ି௙ ೔

௠௔௫(௙௕೔,௙௔೔)
௡
௜ୀଵ            (5) 
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Cluster stability. The amount of input synoptic data is crucial for building the representative set of classes. In periods of only 

few years of data important synoptic circulations might be simply un- or under-represented and, therefore, omitted in the 

final set of classes. The clustering algorithm is run on a continuously increasing data amount from one to 40 years. After a 

certain critical data amount is accumulated, further increase does not lead to a discovery of new classes. This demonstrates 270 

the temporal stability of the method. The minimum critical data amount is detected when the number of resulting classes 

"levels out" and stabilizes.   

The stability of the method in space cannot be addressed by applying the clustering algorithm straightforward to the data on 

lower/higher spatial resolution because the pre-set threshold for cluster merging THmerge is not directly transferable to other 

spatial grids. The reason for this is simple: a pair of images at a high resolution that appears dissimilar to an observer may 275 

have similar low-resolution prototypes (when similarity-determining details are averaged out). However, it can be required 

that the method determines identical types at any spatial resolution. To test this, the clustering algorithm is run on the same 

data but of reduced (4ºx6º) and increased (1ºx1.5º) spatial resolution. The retrieved classes are compared to the reference 

classes (2ºx3º).  

Cluster reproduction and representativity. The method uses medoids as cluster centers and, therefore, the resulting classes 280 

(set of medoids) are elements of the original data and are physically interpretable/plausible synoptic patterns. However, it is 

necessary to demand that a cluster medoid represents all cluster elements and their whole entity as a group. For each cluster, 

we compare the cluster center (medoid) to the cluster mean (centroid) and calculate the similarity value. Based on the 

similarity values we analyze the representativity of the cluster elements by the medoids. We require the “strong similarity” 

between the medoid and centroid of each cluster with minimum similarity value of 0.75.  285 

3.4 Statistics for model evaluation 

The model output was assigned to the 43 reference classes derived from ERA-Interim and the following statistics were 

computed: histogram of frequencies (HIST) for SP-classes (year through), histograms of frequencies for each season 

(HISTDJF, HISTMAM, HISTJJA, HISTSON), matrix of transitions (TRANSIT) between available classes (frequency for each SP to 

follow another SP), and probability of persistence (PERSIST) of each SP for 1,2, .. 25 days. For each of these seven statistics 290 

an individual quality index (QI) is computed. The overall quality index is then computed as the mean of the seven individual 

quality indices.  

3.5 Quality index 

We use the Jensen–Shannon divergence for measuring the similarity between two probability distributions P and Q defined 

on the same probability space ૏.  295 

ܲ)ܦܵܬ ∥ ܳ) =
ଵ

ଶ
∑ (ݔ)ܲ ln

௉(௫)

ெ(௫)௫∈௑ +
ଵ

ଶ
∑ (ݔ)ܳ ln

ொ(௫)

ெ(௫)௫∈௑        (6) 
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The probability distributions in our case are the normalized (to the sum of 1.0) frequency histograms, transitions- and 

persistence-matrices of the reference (Q) and a model (P). M is the mean probability distribution: 

ܯ =  
௉ାொ

ଶ
            (7) 300 

The Jensen–Shannon divergence is based on the Kullback–Leibler divergence, but it is symmetric and it always has a finite 

value. It is common to compute the square root of JSD as a true metric for distance: 

ܲ)ܬ ∥ ܳ) = ඥܦܵܬ(ܲ ∥ ܳ)           (8) 

The quality index QI is calculated as suggested by Sanderson et al. (2015) but using the Jensen-Shannon distance as follows: 

ܲ)ܫܳ ∥ ܳ) =  ௔ ඥ௃(௉∥ொ)          (9) 305ି݌ݔ݁ 

Where a - normalizing constant: a=10 for histograms and a=100 for matrices. 

4 Method 

4.1. Derived classes 

The two-stage clustering applied to the 40 years of ERA-Interim data produced 43 SP-classes (Fig. 4). According to the stop-

criterion of the clustering algorithm the final classes have mutual SSIM-value less than THmerge=0.45 to each other.  310 

 

Figure 4: Classes derived from ERA-interim reanalysis 1979-2018 with THmerge=0.45 ordered by the frequency of occurrence 
(shown at the top of each plot). The legend for colour shading is the same as in Fig. 3. 
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The most frequent synoptic pattern SP 14 (Fig. 5) retrieved by the new classification roughly corresponds to the westerly 

flow described by Gerstengarbe and Werner (1993) as Cyclonic Westerly flow (orig. definition in German “Westlage, 315 

zyklonal”, WZ). The second most frequent pattern SP 3 resembles two flow patterns of the same study - HM (Germ.: “Hoch 

Mitteleuropa“) and HNA (Germ.: ”Hoch Nordmeer-Island, antizyklonal”);  the third most frequent pattern SP 2 represents 

the flow pattern TWE (Germ.: “Trog Westeuropa”). This correspondence gives us an evidence that, albeit not tuned to and 

not required to mimic semi-manual classifications, the new classification method determines not just arbitrary synoptic 

patterns but those described by experts in semi-manual classifications.  320 

The next three most frequent synoptic classes (SP 18, SP 8 and SP 1) in Fig. 5 roughly correspond to the Grosswetterlagen 

NEA (Germ.: Nordostlage, antizyclonal), SEA/SEZ (Germ.; Südostlage, antizyclonal/zyclonal) and WS (Germ.: Südliche 

Westlage) of Gerstengarbe and Werner (1993) and James (2015).  

 

Figure 5: Six most frequent synoptic patterns (absolute geopotential height at 500 hPa [m]: anomaly * seasonal variance + seasonal 325 
mean). 

The set of classes is further analysed on its consistency, separability, stability, and representativity of the data. 
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4.2 Cluster consistency 

The evolution of classes built with THmerge of 0.45, 0.50 and 0.55 is presented in the form of a diagram (Fig. 6). The classes 

are derived by running the clustering algorithm on the full reference data set of 40 years. Identical classes (SSIM=1 for the 330 

medoids) between each two sets of classes are connected with a solid black line, "strongly similar" (0.75≤SSIM<1) classes 

are connected with solid a blue line, classes with 0.45≤SSIM<0.75 are connected with a thin grey line. The solid lines in Fig. 

6 shows multiple classes that are simply “transferred” to the next set of classes obtained with a higher THmerge. When 

increasing the merging threshold 0.45  0.50 the total number of classes rises 43  81 with 35 classes remaining identical 

and 4 being "strongly similar" (Fig. 6);  only 4 classes from the original set remain without a strongly similar counterpart. 335 

Further rising the threshold value 0.50  0.55 leads to building of 133 classes with 65 preserved identical and 5 "strongly 

similar" to their counterpart (Fig. 6). The fulfilment of the demand on the consistency of class evolution is shown by the 

prevalence of identical classes in the diagram, indicating one-to-one correspondence between sets of classes. The identical 

classes, that remain unchanged, are accompanied by a ‘bunch’ of thin lines, which indicate that the left classes have some 

similarity to the right classes. Such 'bunches' are mainly produced by splitting of classes on the left side into two or more (on 340 

the right side). An unwanted form of the diagram would be a distribution of classes from set to set connected with thin lines, 

without clearly preserved identical types. 
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Figure 6: Similarity between classes derived with different merging threshold: (left) 43 classes obtained with THmerge=0.45, 345 
(middle) 81 classes with THmerge=0.50, and (right) 133 classes with THmerge=0.55. Numeration of classes is done for each class on the 
left; only every 2nd class in the middle and only every 3rd class on the right set of classes to avoid over-plotting. Black thick lines 
connect identical classes (SSIM=1), blue lines connect "strongly similar" classes (0.75≤SSIM<1), grey lines connect classes with 
some similarity (0.45≤SSIM<0.75). 

4.3 Cluster separability 350 

From the setting of the stop-criterion in the clustering algorithm, the maximum similarity between medoids is less than 

THmerge=0.45. In other words, there is no pair of final medoids similar to each other. Although it cannot be demanded that 

cluster centroids (means) also satisfy the same criterion on the maximum similarity pairwise, it can be demanded that cluster 

centroids are at least not "strongly similar" i.e. SSIM<0.75, for all pairs of centroids. Figure 7 shows the matrices of 

similarities for medoids and for centroids. Some pairs of centroids have similarity value higher than any pair of medoids 355 

(Fig. 7: circles show SSIM>0.55). This is due to the fact, that the similarity of medoids but not of centroids was the 

optimized criterion in the clustering algorithm. The maximal similarity for a pair of centroids is SSIM=0.69 (for centroids 14 
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and 18) i.e. there is no pair of "strongly similar" centroids. This gives an evidence that the two-stage clustering algorithm that 

uses medoids as class centres produces classes with also meaningfully separated centroids. 

 360 

Figure 7: Matrix of pairwise similarity values for 43 classes derived with THmerge=0.45. Left panel: the matrix of SSIM-values for 
cluster medoids. Right panel: the matrix of SSIM-values for cluster centroids. Circles show similarity values greater than 0.55. 
Only upper left half of each matrix is shown because of the symmetry; diagonal elements have SSIM-value of 1. 

The metrics EV, DRATIO, and FSIL computed on the classes obtained with three different values of THmerge illustrate the 

importance of the choice of this threshold and its influence on the number of derived classes and their separability. Table 1 365 

presents the values of the chosen metrics. Please note: these metrics illustrate only (!) the influence of the THmerge on the final 

set of classes and do not describe the quality of classes as EV, DRATIO, and FSIL are computed using the Euclidean 

Distance – a measure that was not optimized by the clustering algorithm. Also EV, DRATIO, and FSIL should not be used to 

access the absolute performance of the classification, but the relative performance depending on the pre-set parameter 

THmerge.  370 

Table 1. Metrics for classes obtained in three experiments with varying merging-threshold (THmerge) applied on the full 40 years of 
reference data. Values after “/” are those computed on random groups. 

THmerge Number of  classes EV classes/random DRATIO classes/random FSIL classes/random 

0.45 43 0.42/0.00 0.57/1.00 0.12/-0.13 

0.50 81 0.47/0.01 0.53/0.99 0.15/-0.12 

0.55 133 0.50/0.01 0.48/0.98 0.17/-0.12 

 

Classifications with larger numbers of classes generally achieve a better skill (EV) than those with lower numbers due to the 

natural fact that a larger number of classes captures a higher fraction of the variation: in the extreme case when the number 375 
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of classes k is equal to number of data n, the total variation is explained and EV=1. Therefore, it would be dangerous to 

favour classifications with larger numbers of classes based on this metric. EV should only be used to measure the ratio to 

which a set of classes accounts for the dispersion in the given data set. In the present study, the set of classes obtained with 

THmerge=0.55 provides the highest ratio of explained variation (0.50). Randomly chosen groups explain no variation (Table 

1). 380 

The metric DRATIO can be interpreted as the mean distance of cluster elements within clusters DI to the mean distance to 

elements of other clusters DO. In a randomly chosen set of groups the value of DI and DO are nearly equal and their ratio is 

close to 1.00 (Table 1). In the hypothetical case of the largest number of classes, when k = n, DO=0 and DRATIO=0. A value 

of DRATIO=0.50 means that the mean distance between cluster elements is half as large as the mean distance to elements of 

other clusters. All three sets of classes provide a DRATIO less than 0.60. Expectantly, the strictest threshold on the similarity 385 

for merging classes provides the tightest classes and, therefore, the lowest DRATIO.  

The metric FSIL can be interpreted as the mean normalized difference of distances between each data element to its own 

cluster fa and to its nearest neighbor cluster fb. In the "best case" fa is small, fb>fa and FSIL>0. Note that FSIL>0 indicates 

the separation of the cluster from any randomly assigned clusters. In the "worst case" fb<fa and FSIL shows negative values. 

All three sets of clusters provide positive values of this metric indicating the separation between each cluster and its nearest 390 

neighbor cluster. 

4.4 Cluster stability 

We run the two-stage clustering with THmerge of 0.45, 0.50 and 0.55 on the input data from one to 40 years and plot the 

number of classes against the amount of input data (Fig. 8, solid lines). Figure 8 illustrates the influence of the tightening the 

requirement on similarity for building clusters: higher thresholds THmerge produce larger numbers of final classes. However, 395 

at the same time the higher THmerge also loosens the requirement to separation among classes (higher similarity between 

classes is possible).     
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Figure 8: Number of classes depends on the threshold THmerge and on the amount of clustered data. Horizontal lines show the 
regression line with the min regression coefficient in a sliding window of 20 data points (each data point – one number of classes 400 
with corresponding data for 20 years). Crosses show number of classes build on alternative data volumes of 5, 10, 15, 20 and 25 
years. Alternative periods were generated by sliding the time window by one year. The spread of the crosses illustrates the 
variation of number of classes for selected data volumes. 

The number of classes increases with the data volume in the beginning and then it levels out for all three tested values of the 

threshold THmerge (Fig. 8). The routine to detect the minimal data volume after the number of classes stabilizes is the 405 

following. For the first 20 years of data the linear regression line is drawn through the corresponding 20 numbers of classes. 

The regression coefficient is saved for this step. For the next step, the regression line is drawn trough the next 20 numbers of 

classes (shifted by one year in the x-axis direction relative to the previous series). And so on until the last 20 numbers of 

classes for data volumes from 21 to 40 years are used. We obtain a series of 21 linear regression coefficients ordered by the 

increasing data volume. We search for regression coefficients that have absolute value close to 0 i.e. in the interval [0.01, 410 

0.01]; if there are several coefficients correspond to this criterion, we choose the one that relates to the smallest data amount. 

Finally, the related data amount (x-axis, vertical lines in Fig. 8) is the estimation of the min data volume for building the 

stable number of synoptic classes, the number that does not grow by adding more data into the clustering.    
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The threshold of 0.50 produces the stable number of classes already by 8 years of data. Other thresholds lead to a later 

stabilization of the number of classes, after at least 19 and 21 years of data used. Therefore, we recommend using of at least 415 

more than 21 years of data for building a representative set of SP-classes with the algorithm of this study. 

The number of classes derived for more than 20 years of data is 45±5 (mean±standard deviation) with THmerge=0.45, 73±6 

and 138±8 for the higher values of merging threshold. The clustering method does not constrain the number of classes and, 

therefore, shows some dependency on the input data as it may contain elements of different degree of similarity and result in 

various numbers of final classes. However, this number of classes does not vary arbitrarily, but in a narrow range (Fig. 8) 420 

that indicates its stabilization after more than 20 years of data is used.  

For testing the stability of the method in space, additionally to the classes on the reference data set (2ºx3º), further two sets of 

classes were built: on the low-resolution (4ºx6º) and on the high-resolution (1ºx1.5º) data. Our clustering algorithm built 46 

classes on the high-resolution data and 39 classes on the low-resolution data. The threshold on similarity for merging clusters 

was the same as for the reference data THmerge=0.45 (43 classes). This poses some restrictions on the interpretation of the 425 

results. First: two images on different spatial resolutions derived from the same original image are not necessarily identical 

(!) in terms of SSIM (SSIM<1) because they contain different amounts of information. The SSIM-value deteriorates with the 

increasing spatial resolution as the degree of detail in the images grows. Following this argument, it would be impossible to 

build the same set of classes at various spatial resolutions with the same threshold on similarity. However, it can be required 

that some classes emerge at all spatial resolutions. Examples of such SP-classes are shown in Fig. 9 at all three spatial 430 

resolutions.  
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Figure 9: Examples of SPs from the reference data (2ºx3º, 22x22 grid cells) and corresponding low-resolution (4ºx6º, 11x11 grid 
cells) and high-resolution (1ºx1.5º, 44x44 grid cells) SPs obtained with the same threshold on cluster merging. The frequency of 
each synoptic pattern in the reference data is given on the top of the reference SP plot. 435 

Figure 9 shows six SP-classes at the original resolution (centre plots) and their counterparts in the low- and high-resolution 

sets of classes. Please note: the SP-classes are built at each resolution independently and are not just re-sampled copies of the 

same classes. Therefore, some discrepancy must be tolerated among the classes at different resolutions as they are medoids 

of independently formed classes. Despite of such discrepancies the SP-classes show essentially the same synoptic situations 

at all spatial resolutions.  440 

4.5 Cluster reproduction and representativity 

For each class the similarity value between its centroid and medoid is calculated. A good representativity is achieved when 

medoid and centroid of each class are "strongly similar" and SSIM(medoidi, centroidi)≥0.75 for all classes i. Figure 10 

illustrates medoids and centroids for the five most frequent SP-classes. As expected, each medoid has a higher contrast of 
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anomalies and the corresponding centroid shows essentially the same pattern but with less contrast. The Mean Absolute 445 

Difference (MD) between the two shows the highest values at the locations of strong amplitudes in the medoid fields and 

lower values at locations on "edges" of synoptic patterns. This illustrates the strength of using the SSIM as a similarity 

measure for pairs of geopotential fields: the clustering method sensitively groups SP-patterns with similar "edges" i.e. similar 

composition of the anomalies.      

 450 

Figure 10: Medoids (right), centroids (centre) and their Mean Absolute Difference (left) for five most frequent SP-classes. Index of 
the SP-class is shown on top of each plot, SSIM between medoid and centroids is shown on the top of centroid plot. 

The similarity value between medoid and centroid for each class is computed and listed for all classes in the Table 2. The 

"strong similarity" between medoids and centroids for all 43 classes was found indicating the very good representability of 

clusters by their medoids. The mean similarity over all 43 classes is 0.84.  455 
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Table 2: Classes of Synoptic Patterns (SP), number of elements (N) in the class, Fraction (Fr) in percent of the class in the 
reference data and the Similarity (SSIM) value between medoid and centroid of the class. 

SP N Fr SSIM SP N Fr SSIM SP N Fr SSIM 

1 649 4.4 0.89 16 239 1.6 0.80 31 71 0.5 0.82 

2 688 4.7 0.90 17 374 2.6 0.89 32 124 0.8 0.77 

3 849 5.8 0.91 18 679 4.6 0.85 33 310 2.1 0.82 

4 347 2.4 0.86 19 315 2.2 0.82 34 124 0.8 0.81 

5 532 3.6 0.84 20 216 1.5 0.87 35 194 1.3 0.87 

6 404 2.8 0.86 21 209 1.4 0.82 36 210 1.4 0.76 

7 314 2.1 0.84 22 141 1.0 0.82 37 99 0.7 0.86 

8 674 4.6 0.85 23 109 0.7 0.82 38 301 2.1 0.83 

9 404 2.8 0.82 24 151 1.0 0.81 39 171 1.2 0.81 

10 389 2.7 0.88 25 253 1.7 0.87 40 198 1.4 0.89 

11 208 1.4 0.84 26 274 1.9 0.87 41 54 0.4 0.85 

12 446 3.1 0.85 27 426 2.9 0.86 42 94 0.6 0.79 

13 434 3.0 0.89 28 199 1.4 0.85 43 105 0.7 0.82 

14 1681 11.5 0.89 29 117 0.8 0.80     

15 361 2.5 0.80 30 473 3.2 0.86     

4.6 Quality indices for CMIP6 historical climate simulations 460 

For each model, each statistic (HIST, HISTJFD, HISTMAM, HISTJJA, HISTSON, TRANSIT, PERSIST) is normalized to build the 

probability distribution (normalized to 1.0). Then the quality index QI between the two probability distributions is computed 

for each model and the reference. Table 3 shows individual and mean quality indices for all models. The mean quality index 

for a model is computed as the equally weighted mean of individual quality indices for the seven statistics of this model. A 

quality index of 1 indicates the identity of distributions; the quality indices for the alternative reanalysis are shown for 465 

comparison to the quality indices computed for models.    

 

 

 

 470 
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Table 3: CMIP6 Models and their quality indices. For illustrating the quality of each model relative to the spread of multiple 
models, individual indices are highlighted in colour as follows: green shows “good” quality QIi > MEAN + STDDEV, red shows 
“bad” quality QIi < MEAN - STDDEV,  for each model i. MEAN and STDDEV are computed from the respective individual QI-475 
values for all models.  The mean quality index (Mean QI) is computed as the mean of individual quality indices for each model 
statistic. 

Nr Model name 
QI(variable) Mean QI 

(all QIs) HIST HISTJFD HISTMAM HISJJA HISTSON TRANSIT PERSIST 

- ERAINT (reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
- NCEP1 (alternative) 0.94 0.89 0.89 0.87 0.88 0.91 0.96 0.90 
1 ACCESS-CM2 0.93 0.70 0.87 0.80 0.83 0.87 0.93 0.85 
2 AWI-ESM-1-1-LR 0.88 0.79 0.82 0.74 0.61 0.86 0.94 0.81 
3 BCC-CSM2-MR 0.90 0.76 0.83 0.82 0.80 0.86 0.94 0.84 
4 BCC-ESM1 0.93 0.74 0.83 0.80 0.86 0.87 0.94 0.85 
5 CanESM5 0.90 0.72 0.84 0.78 0.78 0.85 0.94 0.83 
6 CESM2 0.91 0.78 0.88 0.82 0.66 0.87 0.94 0.84 
7 CESM2-FV2 0.91 0.73 0.87 0.81 0.67 0.87 0.94 0.83 
8 CESM2-WACCM-FV2 0.92 0.78 0.83 0.76 0.69 0.86 0.94 0.83 
9 CMCC-CM2-SR5 0.89 0.60 0.87 0.64 0.77 0.85 0.94 0.79 
10 CNRM-CM6-1 0.87 0.70 0.82 0.69 0.70 0.86 0.93 0.80 
11 CNRM-ESM2-1 0.88 0.73 0.82 0.68 0.70 0.86 0.92 0.80 
12 EC-Earth3 0.91 0.68 0.92 0.80 0.71 0.87 0.94 0.83 
13 EC-Earth3-Veg 0.91 0.75 0.85 0.75 0.75 0.87 0.94 0.83 
14 FGOALS-f3-L 0.87 0.63 0.75 0.72 0.85 0.85 0.93 0.80 
15 FGOALS-g3 0.89 0.58 0.79 0.78 0.85 0.85 0.92 0.81 
16 GISS-E2-1-G 0.88 0.64 0.79 0.71 0.82 0.86 0.93 0.80 
17 HadGEM3-GC31-LL 0.92 0.68 0.87 0.83 0.75 0.87 0.94 0.84 
18 HadGEM3-GC31-MM 0.92 0.76 0.87 0.85 0.72 0.87 0.94 0.85 
19 INM-CM4-8 0.91 0.78 0.84 0.70 0.72 0.86 0.94 0.82 
20 INM-CM5-0 0.93 0.86 0.79 0.82 0.73 0.87 0.93 0.85 
21 IPSL-CM6A-LR 0.88 0.80 0.81 0.68 0.65 0.85 0.93 0.80 
22 IPSL-CM6A-LR-INCA 0.87 0.70 0.86 0.66 0.53 0.85 0.93 0.77 
23 KACE-1-0-G 0.93 0.77 0.83 0.80 0.88 0.87 0.93 0.86 
24 MIROC6 0.88 0.83 0.89 0.52 0.82 0.86 0.93 0.82 
25 MPI-ESM-1-2-HAM 0.92 0.78 0.83 0.82 0.76 0.87 0.94 0.85 
26 MPI-ESM1-2-HR 0.94 0.82 0.87 0.85 0.84 0.88 0.95 0.88 
27 MPI-ESM1-2-LR 0.90 0.72 0.86 0.79 0.74 0.86 0.93 0.83 
28 MRI-ESM2-0 0.94 0.76 0.85 0.76 0.88 0.87 0.94 0.86 
29 NorESM2-LM 0.91 0.77 0.77 0.78 0.63 0.86 0.93 0.81 
30 NorESM2-MM 0.93 0.82 0.87 0.81 0.71 0.88 0.94 0.85 
31 TaiESM1 0.93 0.73 0.91 0.74 0.78 0.88 0.94 0.84 
32 UKESM1-0-LL 0.92 0.81 0.83 0.80 0.73 0.86 0.94 0.84 
- MEAN (all 32 models) 0.91 0.74 0.84 0.76 0.75 0.86 0.94 - 
- STDDEV (all 32 models) 0.02 0.07 0.04 0.07 0.08 0.01 0.01 - 
 

The mean quality index indicates how well the respective model captures the synoptic circulation in the reference data ERA-

Interim. This quality index together with quality indices for scalar variables can be used for ranking the climate model 480 

simulations and as an evaluation measure. For example, the climate simulation MPI-ESM1-2-HR seems to outperform all 
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other models (Table 3) with the mean quality score of 0.88 that is close to the mean quality score of NCEP1-reanalysis 

(0.90). This model showed good individual quality indices for all individual model statistics (Table 3, all QI are marked 

green except the quality index for histograms in spring months QI(HISTMAM) indicating the “good” quality of the model). 

There poorest mean QI=0.77 showed the model IPSL-CM6A-LR-INCA, that resulted from poor representation of the 485 

frequency of the synoptic classes (low QI for individual model statistics HIST, HISTJJA, HISTSON) and from the poor 

representation of the transition frequencies (TRANSIT-matrix) i.e. incorrect representation of the sequence of the synoptic 

patterns. This diagnostic is a useful instrument to evaluate climate models, which gives an insight into the reasons for the 

poor model performance and the valuable feedback to model developers.   

5 Conclusions 490 

The presented two-stage clustering algorithm uses the Structural Similarity Index Measure (SSIM) for quantifying the 

similarity of synoptic circulation patterns pairwise. This measure mimics the perception of similarity by humans, is 

intuitively simple and computationally inexpensive. The use of SSIM in the clustering algorithm produces a set of well 

separated, consistent, stable and representative classes.  

There is no "optimal classification" for all purposes and this set of classes is only one realization of multiple variants of other 495 

sets of classes that can be used to describe the atmospheric flow. The set of classes derived on some reference data, for 

example a reanalysis, may be used as the "reference set of classes for synoptic circulation". Statistical parameters (for 

example, the frequency of occurrence of each pattern or sequence of patterns) computed on some arbitrary climate 

simulation data attributed to these reference set of classes and compared to the parameters computed on the reference data 

may be used for evaluation of climate simulations. Such parameters would quantify how well the synoptic circulation 500 

patterns are represented in the climate simulation data (as compared to the reference data) and provide additional diagnostic 

measures to the quality of these simulation.  
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