

1 How does the phytoplankton-light feedback affect the marine N₂O inventory?

2 Sarah Berthet ^{1*}, Julien Jouanno ², Roland Séférian ¹, Marion Gehlen ³, William Llovel ⁴

3 ¹ CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

4 ² LEGOS, Université de Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France

5 ³ LSCE, Université Paris-Saclay, Institut Pierre Simon Laplace, Gif-Sur-Yvette, France

6 ⁴ LOPS, CNRS/University of Brest/IFREMER/IRD, Brest, France

7 (*correspondence: sarah.berthet@meteo.fr)

8

9 **Abstract**

10 The phytoplankton-light feedback (PLF) describes the interaction between phytoplankton
11 biomass and the downwelling shortwave radiation entering the ocean. The PLF allows to
12 simulate differential heating across the ocean water column as a function of phytoplankton
13 concentration. Only one third of the Earth system models contributing to the 6th phase of the
14 Coupled Model Intercomparison Project (CMIP6) includes a complete representation of the
15 PLF. In other models, the PLF is approximated either by a prescribed climatology of chlorophyll
16 or not represented at all. Consequences of an incomplete representation of the PLF on the
17 modelled biogeochemical state have not yet been fully assessed and remain a source of multi-
18 model uncertainty in future projection. Here, we evaluate within a coherent modelling
19 framework how representations of the PLF of varying complexity impact ocean physics and
20 ultimately marine production of nitrous oxide (N₂O), a major greenhouse gas. We exploit global
21 sensitivity simulations at 1-degree of horizontal resolution over the last two decades (1999-
22 2018) coupling ocean, sea ice and marine biogeochemistry. The representation of the PLF
23 impacts ocean heat uptake and temperature of the first 300 meters of the tropical ocean.
24 Temperature anomalies due to an incomplete PLF representation drive perturbations of ocean
25 stratification, dynamics and oxygen concentration. These perturbations translate into different
26 projection pathways for N₂O production depending on the choice of the PLF representation.
27 The oxygen concentration in the North Pacific oxygen minimum zone is overestimated in model
28 runs with an incomplete representation of the PLF which results in an underestimation of local
29 N₂O production. This leads to important regional differences of sea-to-air N₂O fluxes: fluxes are
30 enhanced by up to 24% in the south Pacific and south Atlantic subtropical gyres, but reduced
31 by up to 12% in oxygen minimum zones of the northern hemisphere. Our results based on a
32 global ocean-biogeochemical model at CMIP6 state-of-the-art shed light on current
33 uncertainties in modelled marine nitrous oxide budgets in climate models.

34

35 **Plain language summary**

36 Phytoplankton absorbs the solar radiation entering the ocean surface, and contributes to keep
37 the associated energy in surface waters. This natural effect is either not represented in the
38 ocean component of climate models, or in a simplified manner. We show that an incomplete
39 representation of this biophysical interaction affects the way climate models simulate ocean
40 warming, which leads to uncertainties in projections of oceanic emissions of an important
41 greenhouse gas called the nitrous oxide.

47 **Key-words:** phytoplankton-light interaction; bio-physical feedback; nitrous oxide; N₂O; CMIP6
48 Earth system models; CNRM-ESM2-1; ocean-biogeochemical model; greenhouse gases; marine
49 emission; climate

50
51 **Key points:**

52 - forced ocean-biogeochemical simulations reveal that marine production of nitrous oxide is
53 sensitive to the representation of the phytoplankton-light feedback
54 - the phytoplankton-light feedback perturbs the accumulation of heat and the ocean
55 dynamics which drive changes in nitrous oxide production patterns
56 - an incomplete phytoplankton-light feedback overestimates sea-to-air N₂O fluxes by up to
57 24% in subtropical gyres and reduces them by up to 12% in oxygen minimum zones

58
59 **1. Introduction**

60 Feedbacks between the physical, biogeochemical, or ecosystem components of the ocean can
61 trigger abrupt system changes (Heinze et al., 2021). At present the interactive phytoplankton-
62 light feedback (PLF) is the only coupling in Earth system models between modelled marine
63 biogeochemistry and ocean dynamics (Séférian et al., 2020). It implies that the chlorophyll
64 (CHL) produced by the biogeochemical model is used to determine the fraction of shortwave
65 radiation penetrating ocean surface waters. In this case, the CHL concentration profile used to
66 approximate the influence of plankton biomass on the vertical redistribution of heat in the
67 upper ocean is consistent with the one used to compute biogeochemical cycling.

68
69 **a) Phytoplankton-light feedback (PLF)**

70 Since the first observational evidence on how suspended matter in surface waters will impact
71 light absorption by the ocean and change the radiative imbalance within the mixed layer (Kahru
72 et al. 1993), this biophysical interaction has been gradually included to ocean models. Gildor
73 and Naik (2005) highlighted the importance of considering monthly variations of CHL to capture
74 the first-order effect of marine biota on light penetration in ocean models. Adding light-CHL
75 interactions to numerical simulations affected oceanic processes over a wide range of spatial
76 and temporal scales. Enabling a phytoplankton-light interaction modifies the hydrodynamics of
77 the water column (Edwards et al., 2001; Edwards et al., 2004), the intensity of the spring-bloom
78 in subpolar regions (Oschlies, 2004), the maintenance of the Pacific Cold Tongue (Anderson et
79 al., 2007), the seasonality of the Arctic Ocean (Lengaigne et al., 2009), the strength of the
80 tropical Pacific annual cycle, as well as the ENSO variability (Timmermann and Jin, 2002;
81 Marzeion et al., 2005), the northward extension of the meridional overturning circulation
82 (Patara et al., 2012) and the cooling of the Atlantic and Peru-Chili upwelling systems (Hernandez
83 et al., 2017, Echevin et al., 2022).

84
85 However, the mean effect of the PLF on sea surface temperature has been argued to depend
86 on the numerical framework (forced ocean versus coupled ocean-atmosphere models). The
87 conflicting results reported in the literature were mainly due to diverging bio-optical protocols
88 among models rather than to the inclusion of air-sea coupling. According to Park et al. (2014)
89 atmosphere-ocean coupling amplifies the mean of PLF-induced changes, but without altering
90 the sign of the response obtained in ocean-only simulations. Two main causes were put forward

94 to explain the sign of the final heat perturbation: either an indirect dynamical response
95 (Murtugudde et al., 2002; Löptien et al., 2009) or a direct thermal effect (Mignot et al., 2013;
96 Hernandez et al., 2017). Hernandez et al. (2017) further distinguished a local from a remote
97 thermal effect by highlighting the important role played by the advection of offshore CHL-
98 induced cold anomalies in the Benguela upwelling waters. The interplay of these mechanisms
99 is regionally variable (Park et al., 2014). Despite the diversity of modelled responses, a
100 consensus emerges on the first order effect of PLF on the ocean physics, which is to perturb
101 the ocean thermal structure (Nakamoto et al., 2001; Murtugudde et al., 2002; Oschlies, 2004;
102 Manizza et al., 2005, 2008; Anderson et al., 2007; Lengaigne et al., 2007; Gnanadesikan and
103 Anderson, 2009; Löptien et al., 2009; Patara et al., 2012; Mignot et al., 2013; Hernandez et al.,
104 2017). By trapping more heat at the ocean surface in eutrophic regions, such as coastal or
105 equatorial upwellings areas, the presence of phytoplankton initially increases the surface
106 warming. Confining heat at the surface leads to less heat penetrating in subsurface. In some
107 cases, the advection and upwelling of subsurface cold anomalies can lead to remote cooling
108 effects (Hernandez et al., 2017; Echevin et al., 2022). Dynamical readjustment in response to
109 perturbations in thermal structure has also been shown to have a cooling effect, by increasing
110 upwelling of cold water to the ocean surface (Manizza et al. 2005; Marzeion et al., 2005;
111 Nakamoto et al., 2001; Löptien et al., 2009; Lengaigne et al., 2007; Park et al., 2014). Because
112 these effects depend on upper ocean stratification, an important role is attributed to modelled
113 seasonal deepening of the mixed layer as it determines the intensity of the underlying
114 temperature anomaly and its vertical movement to the surface. In other terms, whatever the
115 temporality of the causal chain, changes in the PLF representation are expected to both perturb
116 the ocean heat uptake, and trigger perturbations of both the water column stratification and
117 associated ocean dynamics.

118
119 b) This study: implications for N_2O budget uncertainties

120
121 Nitrous oxide (N_2O) is a major ozone-depleting substance (Ravishankara et al., 2009; Freing et
122 al., 2012) and a potent greenhouse gas, whose global warming potential is 265-298 times that
123 of CO_2 for a 100-year timescale (Myhre et al., 2013). The spatial coherence between marine
124 productive areas and observed hot-spots of N_2O production leads to question the impact of an
125 incomplete representation of the PLF on the simulated N_2O inventory. Recent observational
126 studies highlight that N_2O production is high in low-oxygen tropical regions and cold upwelling
127 waters (Arévalo-Martínez et al. 2018; 2020; Yang et al., 2020; Wilson et al., 2020). N_2O becomes
128 increasingly saturated in surface waters of equatorial upwelling regions due to the upward
129 advection of N_2O -rich waters (Arévalo-Martínez et al., 2017). Regions known to account for the
130 most productive areas of the ocean spatially coincide with highest N_2O production: 64% of the
131 annual N_2O flux occurs in the tropics, and 20% in coastal upwelling systems that occupy less
132 than 3% of the ocean area (Yang et al., 2020).

133
134 Despite recent advances, a large range of uncertainties still surrounds oceanic N_2O emissions
135 as large areas of both the open and coastal ocean remain undersampled by observations
136 (Wilson et al., 2020). In particular, the paucity of observational data over key source regions
137 contributes to increase uncertainties. The recent global budget of Tian et al. (2020) estimates
138 natural sources from soils and oceans to contribute with up to 57% to the total N_2O emissions
139 between 2007 and 2016, with the ocean flux reaching 3.4 (2.5–4.3) Tg N yr⁻¹. A large uncertainty
140 range is associated to the ocean flux estimate, as it is based on outputs from only a small

141 number of global ocean-biogeochemical models. Very few climate models, even in the current
142 CMIP6 generation, include emissions (and beforehand a complete representation of N cycling)
143 of N₂O fluxes: only 4 out of the 26 Earth system models considered in Séférian et al. (2020)
144 simulate marine N₂O emissions.

145
146 The last generation of Earth system models projects an enhanced ocean warming in response
147 to climate change, which is in turn expected to increase upper-ocean stratification (Sallée et
148 al., 2021) and to contribute to greater reductions in upper-ocean nitrate and subsurface oxygen
149 ventilation (Kwiatkowski et al., 2020). Ocean warming and deoxygenation constitute two
150 triggers of high-probability high-impact climate tipping points (Heinze et al., 2021) and are
151 identified as two of the main environmental factors influencing marine N₂O distributions (IPCC,
152 2019; Hutchins and Capone, 2022). Through its expected impacts on the upper ocean
153 stratification, the PLF representation could further change the oceanic N₂O source by
154 modulating the mixing between N₂O-rich water and intermediate depths, perturbing the way
155 N₂O-rich water reacheses the air-sea interface (Freing et al., 2012).

156
157 Here we investigate how an incomplete representation of the PLF leads to uncertainties in N₂O
158 projection in an up-to-date global ocean-biogeochemical model making up the current
159 generation of Earth system models. Section 2 describes the numerical model and the set of
160 simulations, as well as the existing options to consider CHL modulations of the incoming
161 shortwave radiation. Section 3 presents the effect of an interactive PLF on the ocean heat
162 content, associated ocean stratification and dynamics, and its feedback on marine N₂O
163 inventory. Finally, Section 4 summarizes the main results, addresses their broader implications,
164 and discusses the future work motivated by this study.

165 166 2. Methodology

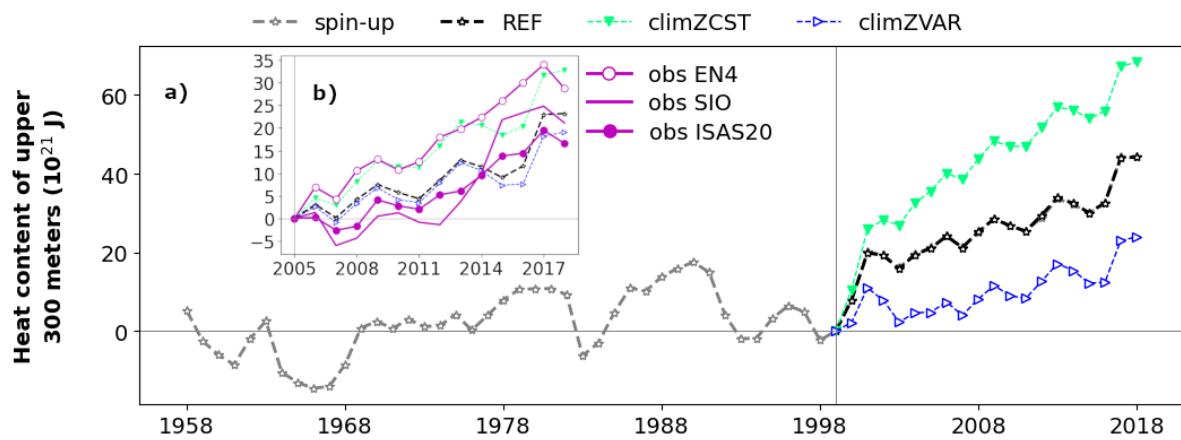
167 168 a) Configuration of the global ocean-biogeochemical model

169
170 Recent projections of future N₂O emissions contributing to intercomparison projects like CMIP6
171 are still based on Earth system models with a low spatial resolution (Séférian et al., 2020). For
172 sake of coherence with CMIP biogeochemical modelling efforts, in the following we use a global
173 ocean-biogeochemical configuration of the NEMO-PISCESv2 model (Madec, 2008; Aumont et
174 al., 2015) at 1° of horizontal resolution. This model corresponds to the oceanic component of
175 CNRM-ESM2-1 (Séférian et al., 2019) and is one of the few CMIP6-class models that contributed
176 to the Global N₂O budget (Tian et al., 2020). Our modelled ocean has 75 vertical levels and the
177 first level is at 0.5 meter depth. Vertical levels are unevenly spaced with 35 levels being in the
178 first 300 meters of depth. Atmospheric forcings of momentum, incoming radiation,
179 temperature, humidity, and freshwater are provided to the ocean surface by bulk formulae
180 following Large and Yeager (2009). Details on physical configuration are given in Berthet et al.
181 (2019). Using an ocean-only configuration allows to isolate the local response induced by the
182 PLF by not confounding it with potential inter-basin feedbacks acting through the atmosphere.

183
184 JRA55-do atmospheric reanalysis (Tsujino et al., 2018; Tsujino et al., 2020) provided the
185 atmospheric forcings of the ocean. The global domain was first spun-up under preindustrial
186 conditions during several hundred years ensuring that all fields approached a quasi-steady
187 state. The historical evolution of atmospheric CO₂ and N₂O concentrations was prescribed since

188 1850. To avoid the warming jump between the end of the spin-up and the onset of the
189 reanalyses in 1958, the first 5 years of JRA55-do forcings were cycled, followed by the complete
190 period of JRA55-do atmospheric forcing from 1958 to 2018.

191
192 **b) Experimental design: three representations of the PLF**


193
194 The control simulation (hereafter REF) together with the spin-up both account for a fully
195 interactive PLF: the penetration of shortwave radiation into the ocean surface is constrained
196 by the CHL concentration ([CHL]) produced by the PISCESv2 biogeochemical component (Figure
197 S1, REF).

198
199 PISCESv2 (Pelagic Interactions Scheme for Carbon and Ecosystem Studies v2) is a 3D
200 biogeochemical model which simulates the lower trophic levels of marine ecosystems
201 (nanophytoplankton, diatoms, microzooplankton and mesozooplankton), the biogeochemical
202 cycles of carbon and of the main nutrients (phosphate, nitrogen, iron, and silicate) along the
203 75 levels of our numerical ocean. A comprehensive presentation of the model is found in
204 Aumont et al. (2015). PISCESv2 simulates prognostic 3D distributions of nanophytoplankton
205 and diatom concentrations. The evolution of phytoplankton biomasses is the net outcome of
206 growth, mortality, aggregation and grazing by zooplankton. Growth rate of phytoplankton
207 mainly depends on the length of the day, depths of the mixed layer and of the euphotic zone,
208 the mean residence time of the cells within the unlit part of the mixed layer and includes a
209 generic temperature dependency (Eppley, 1972). Nanophytoplankton growth depends on the
210 external nutrient concentrations in nitrogen and phosphate (Monod-like parameterizations of
211 N and P limitations), and on Fe limitation which is modeled according to a classical quota
212 approach. The production terms for diatoms are defined as for nanophytoplankton, except that
213 the limitation terms also include silicate.

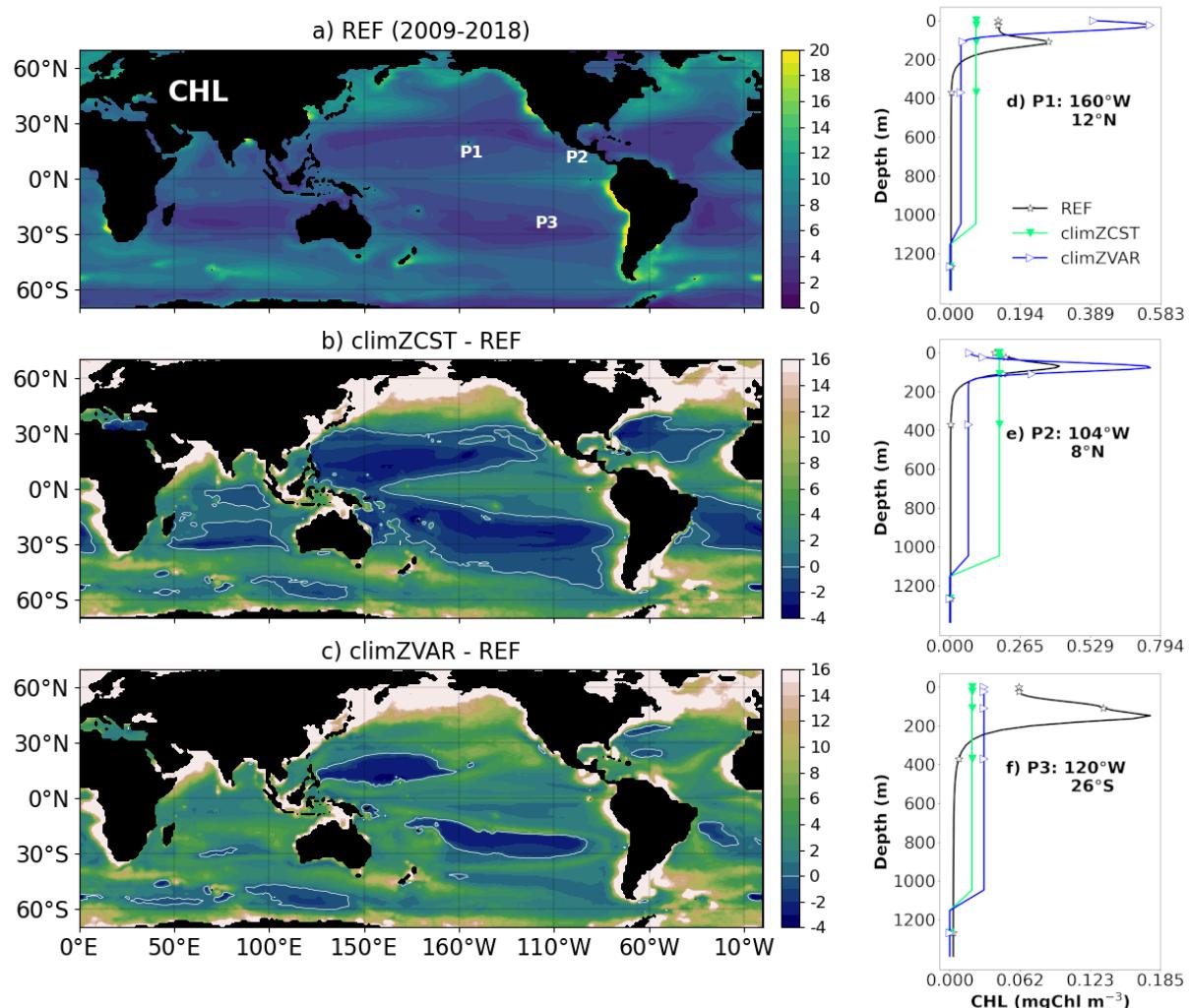
214
215 Light absorption by phytoplankton depends on the waveband and on the species (Bricaud et
216 al., 1995). A simplified formulation of light absorption by the ocean is used in our experiments
217 to calculate both the phytoplankton light limitation in PISCESv2 and the oceanic heating rate
218 (Lengaigne et al., 2007). In this formulation, visible light is split into three wavebands: blue
219 (400–500 nm), green (500–600 nm) and red (600–700 nm); for each waveband, the CHL-
220 dependent attenuation coefficients, k_R , k_G and k_B , are derived from the formulation proposed
221 in Morel and Maritorena (2001):

222
223
$$k_{WLB} = \sum_{\lambda_1}^{\lambda_2} (k(\lambda) + \chi(\lambda)[CHL]^{e(\lambda)}) \quad (1)$$

224 where WLB means the wavelength band associated to red (R), green (G) or blue (B), and
225 bounded by the wavelengths λ_1 and λ_2 as detailed above. $k(\lambda)$ is the attenuation coefficient
226 for optically pure sea water. $\chi(\lambda)$ and $e(\lambda)$ are fitted coefficients which allows to determine
227 the attenuation coefficients due to chlorophyll pigments in sea water (Morel and Maritorena,
228 2001).

230
231 Figure 1: Modelled tropical [35°S-35°N] heat content of upper 300 m (OHC300; in ZJ) for each
232 simulation described in Table 1: REF (black; empty stars), climZCST (green; full downward
233 triangles) and climZVAR (blue; empty rightward triangles). In (a) final part of the spin-up has
234 been added in gray to illustrate the branching protocol in year 1999, and OHC300 anomalies
235 have been computed with respect to year 1999. Subplot (b) zooms over the Argo period to
236 compare modelled tropical OHC300 anomalies with 3 in situ-based products (see section 2c).
237

238 At year 1999 two sensitivity experiments were branched off (Figure 1). Both simulations
239 climZCST and climZVAR account for an incomplete and external PLF, as they consider an
240 observed climatology of surface [CHL] from ESACCI (Valente et al., 2016) in order to compute
241 the light penetration into sea water (Equation 1; Figure S1). These two simulations differ from
242 each other by the "realism" of the vertical profile derived in each grid point from the surface
243 value of the ESACCI CHL climatology to the level of light extinction (Table 1). climZCST uses
244 constant profiles of CHL spreading uniformly in the vertical direction (Figure 2, b and d-f).
245 climZVAR uses variable vertical profiles computed following Morel and Berthon (1989) (Figure
246 2, c and d-f). This set of simulations is representative of the several configurations used in the
247 case of CMIP intercomparison project.


248
249 Table 1: Experimental set-up.
250

<u>Simulation</u>	Which CHL fields to interact with incoming <u>shortwave</u> radiation?	PLF nature
<u>REF</u>	uses directly the 3D CHL produced by the biogeochemical component	interactive
<u>climZCST</u>	uses the prescribed monthly climatology of ESACCI CHL with a constant vertical profile, equal to the value of the surface climatology up to the level of light extinction	incomplete
<u>climZVAR</u>	uses the prescribed monthly climatology of ESACCI CHL with a variable vertical profile, derived from the surface climatology following Morel and Berthon (1989)	incomplete

251
252 Table 1: Experimental set-up.
253

254 In climZCST and climZVAR, PISCESv2 prognostically simulates [CHL], a key component of
 255 biogeochemical cycles, but feedback of CHL on physics (stratification, ocean heat content) is
 256 determined by the externally prescribed [CHL] climatology. The CHL concentrations used for
 257 radiation or for biogeochemical cycles are not consistent, and phytoplankton biomass
 258 computed by the biogeochemical model does not affect the physical properties of the ocean
 259 waters.

260
 261 Consequences on the marine biogeochemical mean state of incomplete representations of the
 262 PLF are assessed in the following by difference to the control run REF. This methodology allows
 263 to evaluate how different levels of realisms and complexity in resolving bio-physical interactions
 264 impact the physical and biogeochemical content of the modelled ocean. A complete
 265 description of the marine N₂O parameterization used in this model is presented in the
 266 supplementary material.

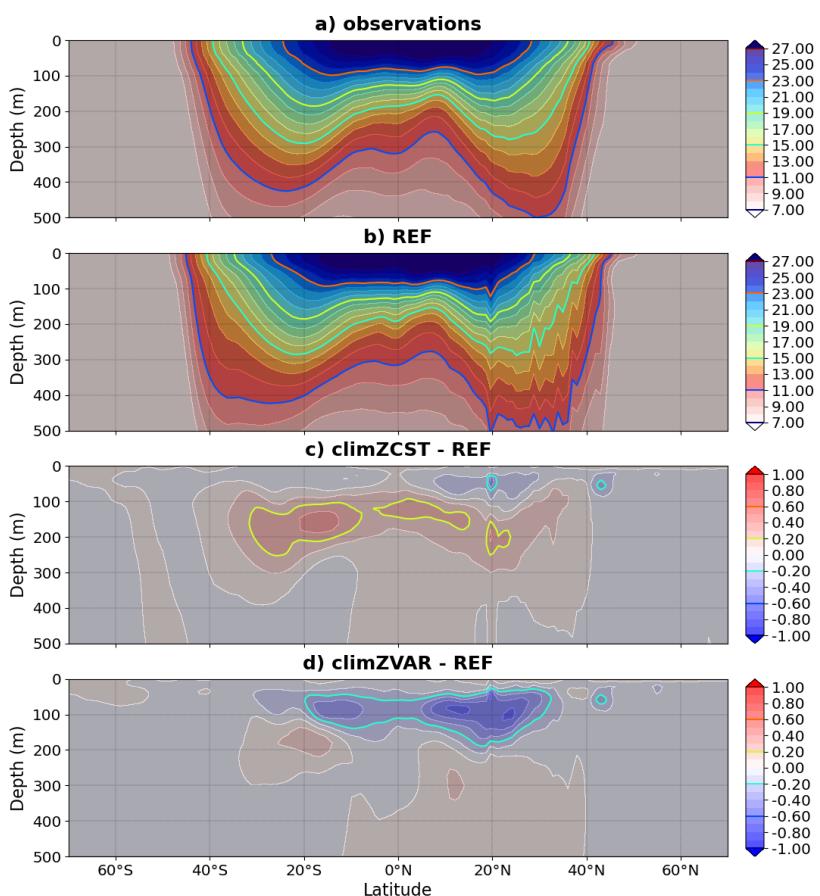
267
 268 Figure 2: CHL concentration (mgCHL m^{-3}) interacting with the incoming shortwave radiation for
 269 each numerical experiment (Table 1). Maps a-c show annual means of the vertical sum over 0-
 270 6000 m, a) as modelled over the 2009-2018 period for REF, and its differences with the external
 271 CHL prescribed for b) climZCST and c) climZVAR experiments. Labels P1 to P3 on subplot a)
 272 locate vertical profiles shown on subplots d-f).

274
275 **c) Observations and analyses**
276

277 Model results are compared with available observational-based gridded temperature and
278 salinity datasets. Ocean heat content (OHC) of the upper 0-300 meter layer was inferred from
279 three different products: i) the global objective analysis of subsurface temperature EN4 (Good
280 et al., 2013), ii) the SIO product of the Scripps Institution of Oceanography (Roemmich anf
281 Gilson, 2009), and iii) the ISAS20 optimal interpolation product released by Ifremer
282 (Kolodziejczyk et al., 2019; Kolodziejczyk et al., 2021). While the SIO and ISAS20 products
283 consider only Argo temperature and salinity profiles, the EN4 dataset considers all types of *in*
284 *situ* profiles providing temperature and salinity (when available). These three *in situ*-based
285 datasets are considered since 2005, the year the Argo coverage became sufficient to
286 characterize the global ocean. Details on OHC computation are given in Llovel and Terray (2016)
287 and Llovel et al. (2022). The authors also refer to cross-validations of OHC of deeper layers (0-
288 700 m and 0-2000 m) against OHC anomalies from World Ocean Atlas 2009 (Levitus et al.,
289 2012). A monthly climatology (1955-2012) of oceanic temperature from World Ocean Atlas
290 2013 version 2 (Locarnini et al., 2013) was used to evaluate modelled temperatures. Modelled
291 O₂ was compared to the annual climatology of O₂ from World Ocean Atlas 2013 (Garcia et al.,
292 2014) and modelled CHL was compared to the 3D monthly climatological global product
293 estimated from merged satellite and hydrological data of Uitz et al. (2006). Modelled N₂O
294 partial pressure difference across the air-sea interface (Dpn2o) was compared to the recent
295 dataset of Dpn2o observations compiled by Yang et al. (2020).
296

297 In the following temporal means cover the last 10 years of simulations, from 2009 to 2018. In
298 other analyses the whole simulated period is shown (1999-2018).
299

300 **3. Results**
301


302 **a) Impact of PLF on the upper ocean heat content and dynamics**
303

304 Meridional sections reveal that heat perturbations in response to changing CHL fields
305 interacting with light are limited to the top 0-300 m layer of the ocean and predominantly affect
306 the tropical area (Figure 3 and Figure S2, c-d).
307

308 The largest temperature anomalies are observed near the thermocline depth and reflect upper
309 ocean warming and deepening of the thermocline in climZCST (Figure 3c), and cooling and
310 shallowing of the thermocline in climZVAR (Figure 3d). In climZCST the ocean warming reflects
311 large-scale patterns of a tropical CHL deficit compared to REF (Figure 2, b). Temperature
312 differences are lower in the near-surface layer (0-50 m) than in the 50-300 m layer. This is
313 expected as a result from weak stratification but also from simulations run with a forced
314 atmosphere in which the temperature of the ocean surface layer is constrained by the
315 atmospheric prescribed state.
316

317 When using an incomplete representation of the PLF, two contrasting trends of the upper
318 ocean heat content (OHC) emerge compared to our control run REF (Figure 1a). Over the Argo
319 period (2005-present) EN4 estimates of tropical OHC300 are in very good agreement with our
320 warmest simulation climZCST (Figure 1b), while the two other dataproducts SIO and ISAS20 are

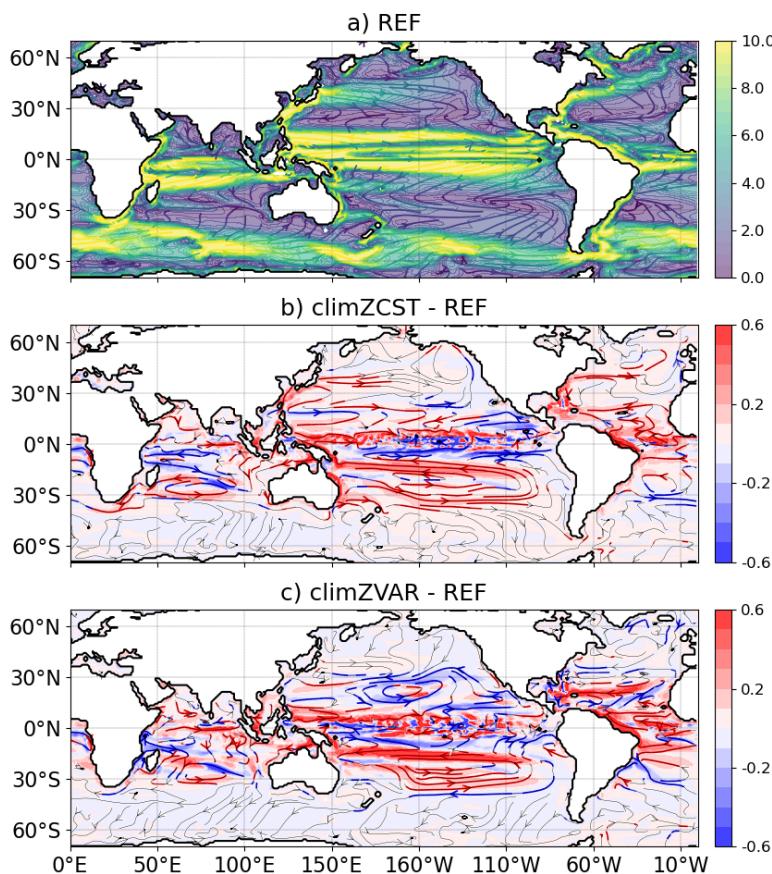
321 in better agreement with our control run [REF](#) and with [climZVAR](#). The good accordance
 322 between modeled OHC300 and observations is not [a systematic feature of model-data](#)
 323 [comparisons](#) (Cheng et al., 2016; Liao et al., 2022). [Moreover](#), non-negligible differences [exist](#)
 324 among OHC dataproducts [which](#) are generally particularly strong in the upper 0-300 m layer
 325 (Lyman et al., 2010; Liang et al., 2021). The spread between these products at the end of the
 326 2005-2018 period ($12.1 \cdot 10^{21}$ J) is comparable [to](#) that of our numerical set ($13.6 \cdot 10^{21}$ J). The
 327 modelled OHC in [REF](#) is in very good agreement with current global mean *in situ* observations
 328 (Meyssignac et al., 2019; see their Figure 11) and with OHC anomalies derived from [World](#)
 329 [Ocean Atlas 2009](#) (Levitus et al., 2012). In accordance with these observations, our ocean-
 330 biogeochemical model simulates a global mean increase of OHC over the 2006-2016 period of
 331 order $40 \cdot 10^{21}$ J for the upper 700 m, and of about $70 \cdot 10^{21}$ J for the 0-2000 m layer.
 332

333
 334

[Figure 3](#): Mean 2009-2018 meridional section of temperature (°C) averaged over the whole
 tropical band (0-360°E) for a) observations, b) [REF](#) and its differences with c) [climZCST](#) and d)
[climZVAR](#).

335 Subsurface thermal anomalies develop rapidly (Figure S3) after branching of [climZVAR](#) and
 336 [climZCST](#) in 1999. The dipole structure of the anomaly seen in [climZCST](#) reflects the surface
 337 heat trapping in [REF](#) and the associated subsurface cooling (Figure S3, b). Indeed in [climZCST](#)
 338 the vertically constant and weaker profiles of CHL trap less incoming [shortwave](#) than the CHL
 339 maximum seen in [REF](#) between 0 and 100 m depth (Figure 2, d-f). The negative anomaly in
 340 [climZVAR](#) suggests that the parameterization of Morel and Berthon (1989) contributes to
 341 underestimate the ocean heat uptake (Figure S3, c and Figure S2, d) by comparison to [REF](#). This

342 heat deficit results from the overestimation of the vertical integral of CHL over large areas of
343 the tropical domain in climZVAR compared to REF (Figure 2, c). As a result, the energy
344 associated with the incoming radiation is caught in surface waters without being distributed
345 over the water column.

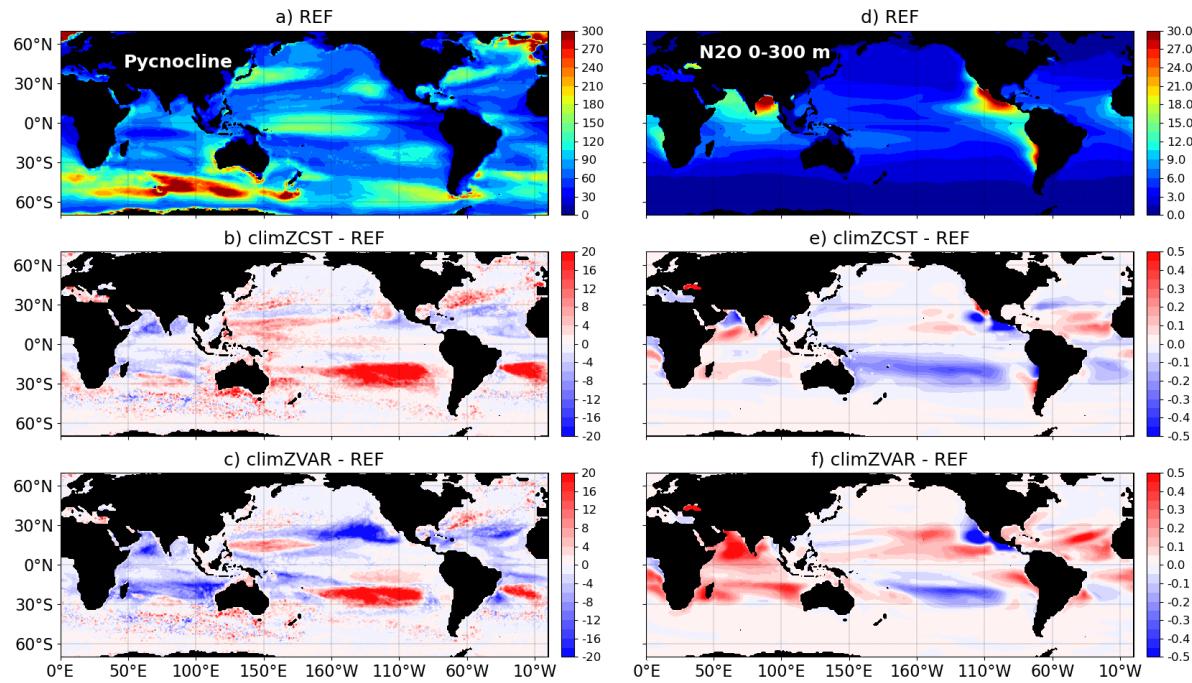

346
347 In both climZCST and climZVAR the subsurface temperature anomaly deepens progressively
348 over the first six years of simulation as a result of vertical mixing (Figure S3). This evolution
349 indicates that part of the OHC300 differences between simulations comes from the adjustment
350 of climZCST and climZVAR to the spin-up mean state yielded by an interactive PLF. It can be
351 expected that experiments having spin-ups run with different representations of the PLF, would
352 give even stronger sensitivities than those highlighted in this study. The sensitivities of OHC300
353 to the PLF formulation evaluated here should be considered at the lower end of estimate of
354 OHC discrepancies that may emerge from changing the PLF representation.

355
356 Prescribing a constant vertical profile of CHL (climZCST) to compute the penetration of the
357 radiation into the ocean increases the OHC300 by more than $20 \cdot 10^{21}$ J during the last two
358 decades (1999-2018) compared to REF (Figure 1). This rise of OHC300 decreases the vertically-
359 weighted sum of the tropical potential density of the upper 300 m at the end of the simulated
360 period by 5 kg/m^3 compared to REF (Figure S4). The opposite trend (a reduced OHC300
361 compared to REF) is simulated with the same state-of-the-art CMIP6 ocean-biogeochemical
362 model when considering a variable vertical profile of CHL (climZVAR). However Figure 1
363 highlights that the simulation using a consistent CHL for interacting with both incoming
364 shortwave radiation and biogeochemical cyclings (REF) does not amplify one of these two
365 trends, as climZCST and climZVAR surround REF. Average ranges of uncertainties associated
366 with the PLF representation over the extended tropical domain (35°S - 35°N) exceed $40 \cdot 10^{21}$ J in
367 terms of OHC300 (Figure 1), 4 meters for the thermocline depth and more than 9 kg/m^3 for the
368 potential density perturbation (Figure S4).

369
370 Similar to OHC300, ranges of uncertainty for the OHC estimates of deeper layers (0-700 m and
371 0-2000 m) also slightly exceed $40 \cdot 10^{21}$ J. Such uncertainty ranges are quite important as they
372 are obtained by only changing the PLF representation in a single ocean-biogeochemical model.
373 By comparison and in the context of OMIP protocols, Tsujino et al. (2020) give spreads between
374 CMIP model estimates of the order of $50 \cdot 10^{21}$ J for the OHC of the upper 700m after 20 years
375 (please refer to their Figure 24, a-b). Regarding the OHC integrated over the 0-2000m layer,
376 they report an inter-model spread between 50 and $100 \cdot 10^{21}$ J, depending on the OMIP protocol
377 considered (see their Figure 24, d-e). The OHC300 uncertainty of $40 \cdot 10^{21}$ J triggered by the
378 representation of the PLF in our set of simulations has a comparable order of magnitude than
379 the current spread of multi-model estimations of OHC. The present study suggests that part of
380 the OHC multi-model uncertainty in current climate models may be due to different
381 representations of the phytoplankton-light interaction.

382
383 The heat and associated density perturbations also cause dynamical modifications of upper
384 ocean currents (Figure 4). Absolute differences in upper ocean velocities (average between 0
385 and 300m depth) are between $|0.05|$ and $|0.6| \text{ cm/s}$ with strongest differences along the
386 equator revealing perturbations of the equatorial undercurrent (Figure 4, b and c). Circulation
387 around the subtropical gyres is also impacted, in particular for the South Pacific subtropical
388 gyre. These modifications of zonal and meridional dynamics spread over the entire tropical

389 latitudes, from 30°S to 30°N, strongly supporting the idea that heat_perturbations induced by
390 different interactions between CHL and incoming shortwave cause non-negligible
391 modifications of the equatorial and tropical ocean dynamics.
392

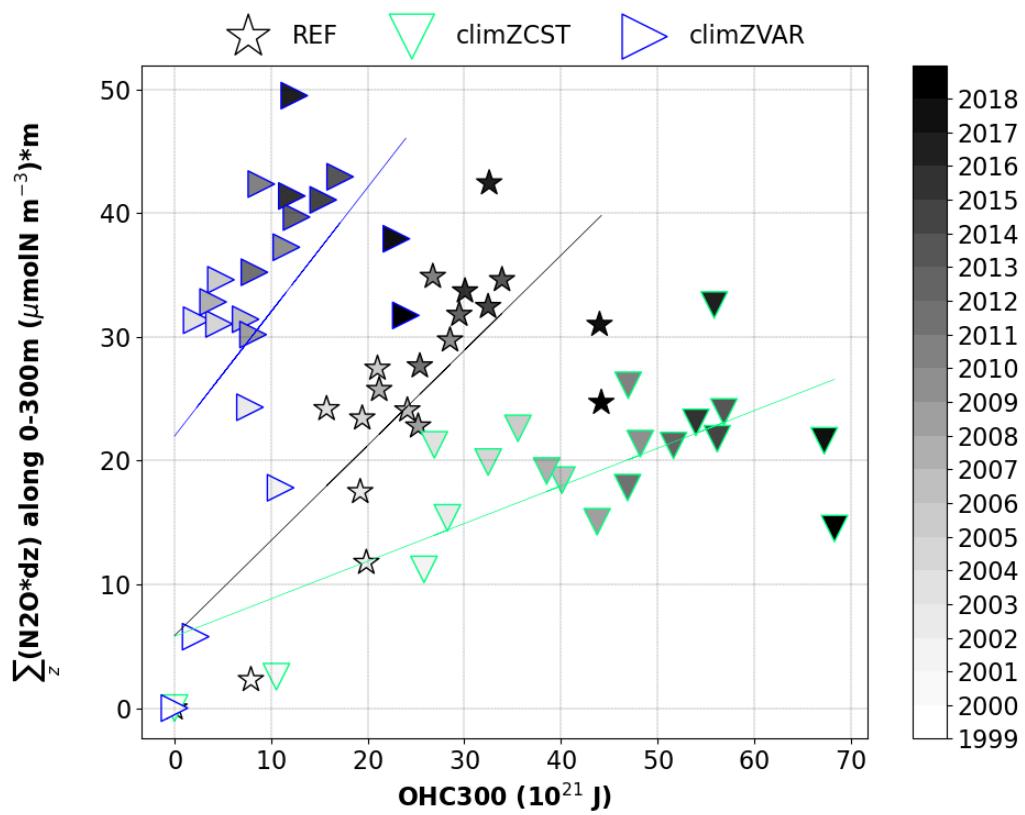


393
394 [Figure 4](#): Annual mean speed (color; cm/s) and streamlines of oceanic currents between 0-300
395 m over the 2009-2018 period for a) REF, and its differences with b) climZCST and c) climZVAR.
396 In b-c) streamlines are colored when absolute speed are larger than 0.05 cm/s.

397
398 b) PLF impact on N₂O production
399

400 Perturbations of the annual pycnocline depth ([Figure 5](#), a-c) highlight a vertical adjustment to
401 the heat ([Figure S2](#)) and subsequent large-scale dynamical anomalies ([Figure 4](#)). Variations of
402 the pycnocline integrate perturbations of both thermal and salinity stratifications. However, in
403 our simulations heat anomalies appear to drive perturbations and pycnocline depth anomalies
404 mainly reflect those of the thermocline. The cold anomaly dominating the tropical domain in
405 climZVAR ([Figure S2](#), d) appears to be vertically redistributed, as it triggers an upward
406 displacement of the isopycnals ([Figure 5](#), c). In contrast to the anomalies seen over most of the
407 tropical Pacific, a deepening of the isopycnals reaching up to 20 meters is modelled in both
408 South Pacific and Atlantic subtropical gyres in climZCST and climZVAR ([Figure 5](#), b and c). Over
409 these subtropical gyres heat is redistributed along the vertical as the subsurface warm anomaly
410 dives. The subduction of these heat anomalies causes in turn a deepening of the pycnocline
411 ([Figure 5](#), b and c). As stressed by Sweeney et al. (2005), small changes in CHL concentration
412 ([Figure S5](#)) may have important effects on the mixed layer depth in these subtropical gyres due

413 to low local wind speeds and low mixing conditions. This is thought to explain the large
 414 sensitivity we observe in terms of pycnocline depth (Figure 5) and ocean heat content in these
 415 regions. In line with their results, our set of simulations highlights that small CHL changes in low
 416 productivity regions trigger a vertical redistribution of density anomalies affecting the
 417 stratification.



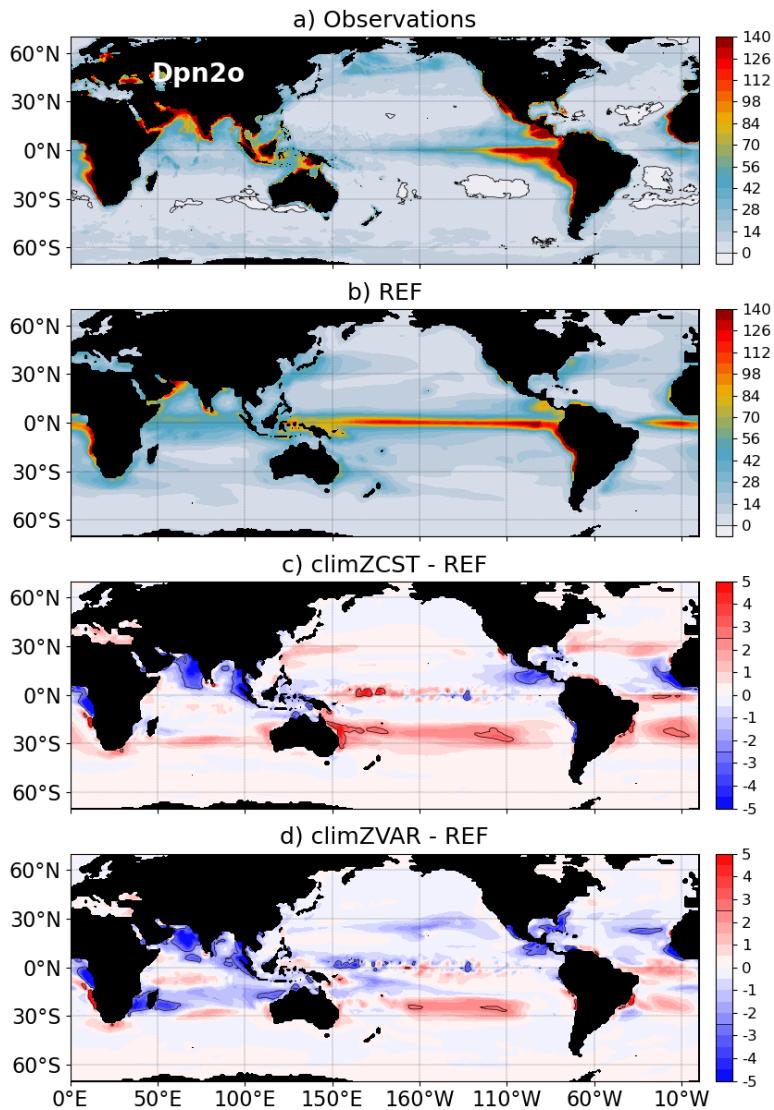
420
 421 Figure 5: a-c) Depth of annual pycnocline (m) for 2009-2018 computed as the annual mean
 422 depth of the maximum of the Brunt-Väisälä frequency $N^2(T, S)$ over the water column (Maes
 423 and O Kane, 2014). d-f) Mean $[N_2O]$ ($\mu\text{mol}/\text{m}^3$) over the first 300 meters depth. For REF (upper
 424 panel) and its mean-state differences with climZCST (middle panel) and climZVAR (bottom
 425 panel).

426
 427 Anomalies of N_2O concentration integrated over the first 300 meters of the water column
 428 (Figure 5, e and f) are in good agreement with patterns of pycnocline anomalies over the tropics
 429 (Figure 5, b and c). These comparable spatial structures attest that N_2O anomalies are driven
 430 by perturbations of stratification in large parts of the tropical domain.

431
 432 In the South Pacific subtropical gyre, the concomitance of i) an increased temperature (Figure
 433 S2, c and d), ii) a reinforced transport (Figure 4, b and c) and iii) a weakened stratification
 434 illustrated by a local deepening of the pycnocline (Figure 5, b and c), contributes to decrease
 435 the N_2O concentration in both climZCST and climZVAR (Figure 5, e and f). In contrast, in the
 436 South Indian Ocean and North tropical Atlantic the increase of N_2O concentration seems to be
 437 mainly driven by the mean shoaling of the local pycnocline, as both regions exhibit contrasted
 438 perturbations in terms of transport and temperature. Finally, in the North Pacific oxygen
 439 minimum zone, the strong N_2O deficits in both climZCST and climZVAR compared to REF do not
 440 respond to stratification and transport anomalies but are rather driven by a local rise of O_2
 441 concentration (Figure S6). Considering an incomplete PLF contributes to overestimate the
 442 oxygen concentration in this oxygen minimum zone and leads to a lack of local N_2O production.

443
444 The relationship between N_2O concentration and OHC300 in the Tropical Ocean is derived from
445 a linear regression for each of the three 20-years simulations (Figure 6). The resulting slopes
446 allow to identify three distinct tropical N_2O production pathways along time as a function of
447 the oceanic heat uptake: from 0.3 $\mu\text{molN m}^{-2}$ per ZJ for the most simplified PLF scenario
448 climZCST, to 1 $\mu\text{molN m}^{-2}$ per ZJ for climZVAR. The slope of the simulation with the higher level
449 of realism in terms of interactivity (REF) appears a solution between the two previous extremes,
450 as it increases its N_2O production by 0.8 $\mu\text{molN m}^{-2}$ per ZJ. Each of these N_2O production
451 pathways will translate into a different temporal evolution of the N_2O budget and hence future
452 climate. This result stresses the importance of having an interactive PLF in order to neither
453 overestimate nor underestimate the N_2O production projections due to a simplified
454 representation of the PLF.
455

456
457 Figure 6: Annual N_2O inventory over the first 300 meters depth ($\mu\text{molN/m}^2/\text{yr}$) as a function
458 of the annual OHC300 (ZJ/yr) and averaged over an extended tropical domain (35°S-35°N). All
459 points reflect anomalies compared to year 1999.


460 461 c) Impacts on oceanic N_2O emissions

462
463 By perturbing the OHC, the ocean dynamics and the N_2O production, the way PLF is modelled
464 has non-negligible consequences on Dpn2o and thus on N_2O emissions at the air-sea interface
465 (Figure 7). Because the atmospheric partial pressure of N_2O is identical among simulations,
466 differences in Dpn2o are driven by changes in surface N_2O concentration normalized by those
467 in N_2O solubility. Since solubility is mainly driven by temperature and because surface
468 temperature anomalies are very weak (Figure S3, c and d), we do not expect solubility

469 [perturbations close to the surface](#). It results that spatial patterns of Dpn2o anomalies ([Figure 470 7](#)) reflect differences in surface [N₂O](#) concentration.

471
472 Compared to a scenario considering a fully interactive PLF ([REF](#)), an incomplete representation
473 of the PLF underestimates Dpn2o in all [oxygen minimum zones](#) of the northern hemisphere,
474 which are strong emission zones ([Figure 7](#), c and d). Large Dpn2o anomalies of -2.5 [n](#)atm
475 encompasses northern [parts of the oxygen minimum zones](#) of the Indian, Pacific and Atlantic
476 oceans and anomalies reach up to -5 [n](#)atm locally. Consequently, [climZCST](#) and [climZVAR](#)
477 underestimate [N₂O](#) fluxes by more than 12% in these [oxygen minimum](#) regions compared to
478 [REF](#). This result highlights that the [representation of](#) the PLF can be an important source of
479 uncertainty in modelling [N₂O](#) fluxes. As a matter of fact, the oceanic contribution to the recent
480 global [N₂O](#) budget by Tian et al. (2020) is based on only five global ocean-biogeochemical
481 models (as still only few models simulate marine [N₂O](#) emissions). These models have different
482 configurations of the PLF which adds considerable uncertainty to simulated marine [N₂O](#)
483 emissions.

484
485 In subtropical gyres, the strong and direct effect of temperature ([Figure S2](#), c and d) on [in-depth](#)
486 [N₂O concentration](#) ([Figure 5](#), e and f) is in line with Yang et al. (2020) who [demonstrate](#) that [the](#)
487 [seasonality of Dpn2o in that regions is driven by](#) a solubility regime. Both [climZCST](#) and
488 [climZVAR](#) overestimate Dpn2o in subtropical gyres of the South Pacific and South Atlantic
489 ([Figure 7](#), c and d). This leads to an overestimation of the regional N₂O fluxes by 24% compared
490 to a simulation having a complete and interactive PLF representation ([REF](#)).
491

492
 493 [Figure 7](#): Mean sea-to-air Dpn2o (natm) computed from a) observations, b) [REF](#) over the 2009-
 494 2018 period, and its differences with c) [climZCST](#) and d) [climZVAR](#) compared to [REF](#).

495
 496 **4. Discussion and conclusion**

497
 498 In this study we use the ocean component (including ocean physics, sea ice and marine
 499 biogeochemistry) of [the](#) global Earth system model [CNRM-ESM2-1 which](#) contributed to the
 500 last [phase of the Coupled Model Intercomparison Project](#) (CMIP6). Our ocean-biogeochemical
 501 model is one of the few currently able to represent an interactive phytoplankton-light feedback
 502 (PLF) by constraining the penetration of shortwave radiation into the ocean as a function of the
 503 [CHL](#) concentration produced by the biogeochemical model. Three [simulations](#) have been run
 504 at the horizontal resolution currently used for intercomparisons of Earth system models (1°).
 505 Analyses are based on differences between a control run with an interactive PLF ([REF](#)) and two
 506 experiments [with](#) an incomplete PLF ([climZCST](#) and [climZVAR](#)) [using](#) a prescribed CHL
 507 climatology to interact with the incoming solar radiation. Changing the [approach](#) to compute
 508 how CHL filters the light [penetrating](#) into the ocean [highlights the consequences](#) of using an
 509 interactive PLF.

510
511 Our results demonstrate that the approach commonly used to account for the impact of the
512 phytoplankton on light penetration significantly interferes with upper ocean heat uptake (Figure
513 1), the associated dynamics (Figure 4) and stratification in the tropics (Figure 5, a-c). Our set of
514 forced ocean-biogeochemical simulations reveals that marine production of nitrous oxide
515 (N_2O) is sensitive to the representation of the PLF (Figure 5, d-f). The heat perturbations added
516 to the uncertainty of modelled oceanic N_2O production and resulted in three N_2O production
517 trajectories along time (Figure 6) that in turn trigger regional differences of $Dpn2O$ and sea-air
518 N_2O fluxes (Figure 7). Compared to an ocean model using a fully interactive PLF (REF), an
519 incomplete PLF results in an overestimation of N_2O fluxes by up to 24% in the South Pacific and
520 South Atlantic subtropical gyres, and a reduction by up to 12% in oxygen minimum zones of the
521 northern hemisphere. Our results based on a model at CMIP6 state-of-the-art emphasize an
522 overlooked important source of uncertainty in climate projections of marine N_2O production
523 and in current estimations of the marine nitrous oxide budget.

524
525 In subtropical gyres of the southern Hemisphere which are regions of low productivity, small
526 CHL changes have a strong and direct effect on temperature (Figure S2, c and d), transport
527 (Figure 4, b and c) and local stratification (Figure 5, b and c). These concomittant effects result
528 in a local decrease of N_2O concentrationss in both experiments with a simplified PLF
529 representation (climZCST and climZVAR).

530
531 In forced ocean simulations, atmospheric forcings constrain surface temperature, salinity and
532 thus solubility. However, the N_2O concentration integrated over the upper 300 meters depth
533 of the water column (Figure 5, e-f) showed differences with the control run that follow those
534 of the in-depth temperature (Figure S2, c-d): in climZCST (climZVAR), a warmer (colder) tropical
535 ocean leads to a decreased (an increased) N_2O concentration. Because higher marine
536 greenhouse gas emissions will increase the temperature of the coupled atmosphere-ocean
537 system, adding an interactive atmospheric component is expected to amplify the PLF-induced
538 mean changes in marine N_2O concentration highlighted in this ocean-only numerical set (Park
539 et al., 2014; Asselot et al., 2022).

540
541 Our results also question the reliability of current modelled estimates of the area and volume
542 of oxygen minimum zones, as well as their trends in a future climate. The expansion rate of O_2 -
543 depleted waters still remains unclear and its controlling mechanisms are not yet fully
544 understood and represented in today's models. Observation based assessments suggested that
545 the ocean has already lost around 2% of the global marine oxygen since 1960 (Schmidtko et al.,
546 2017). The expansion of oxygen minimum zones is expected to result in an increase of the
547 volume of suboxic water and to have an impact on the production and decomposition of N_2O
548 (Freing et al., 2012). Our set of simulations highlights that an incomplete representation of the
549 PLF underestimates the expansion of oxygen-depleted waters over the 20 years of simulation
550 in comparison to REF. In climZCST and climZVAR the global volume (0-1000 m) of hypoxic water
551 with $[O_2]$ under 50 mmol m^{-3} is up to $2.3 \cdot 10^{14} \text{ m}^3$ lower in 2018 compared to that of the control
552 run REF. Thus an incomplete representation of the PLF might lead to an underestimation by 1.2
553 % of the modelled tropical volume of low-oxygenated waters after 20 years.

554
555 Recent regional studies demonstrated that the interactive PLF strongly affects upwelling
556 systems of the South Pacific and Atlantic oceans (Hernandez et al., 2017; Echevin et al., 2021).

557 Coastal upwellings are known to be sites of high N₂O production with an annual N₂O flux
558 amounting to approximately 20% of the global fluxes while these systems occupy less than 3%
559 of the ocean area (Yang et al., 2020). However, in the present study main modelled
560 perturbations are rather localized over oxygen minimum zones or subtropical gyres (Figure 5;
561 Figure 7). While the latter regional studies were performed at horizontal resolutions compatible
562 with the complex dynamics of coastal upwellings (from 10 km to about 28 km), the resolution
563 of climate models (~1-degree of horizontal resolution) does not allow to resolve these
564 dynamics. A step further would be to evaluate how the sensitivity of N₂O emission to the
565 representation of the PLF depends on the horizontal resolution by running simulations at higher
566 resolution with the same climate model. This would help to better determine how coastal
567 upwelling systems may impact the modelled N₂O inventory through different PLF
568 representations, as well as the associated modelled range of uncertainty.

569

570

571 **Code availability**

572 Sources for NEMO and PISCESv2 codes are available from <https://forge.nemo-ocean.eu/nemo>.

573

574 **Acknowledgements**

575 The OHC data were collected and made freely available by the International Argo Program and
576 the national programs that contribute to it (<https://argo.ucsd.edu>, <https://www.ocean-ops.org>). The Argo Program is part of the Global Ocean Observing System. R. Séférian
577 acknowledges the European Union's Horizon 2020 research and innovation program under
578 grant agreement No. 101003536 (ESM2025 – Earth System Models for the Future).

579

580

581 **References**

582

583 **Anderson**, W. G., A. Gnanadesikan, R. Hallberg, J. Dunne, and B. L. Samuels (2007), Impact of ocean color on
584 the maintenance of the Pacific Cold Tongue, *Geophys. Res. Lett.*, 34, L11609, doi:10.1029/2007GL030100.

585

586 **Asselot**, R., Lunkeit, F., Holden, P. B., & Hense, I. (2022). Climate pathways behind phytoplankton-induced
587 atmospheric warming. *Biogeosciences*, 19(1), 223-239.

588

589 **Aumont**, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical
590 model for carbon and ecosystem studies. *Geoscientific Model Development*, 8, 2465–2513.

591

592 **Arévalo-Martínez**, D. L., A. Kock, T. Steinhoff, P. Brandt, M. Dengler, T. Fischer, A. Körtzinger, and H. W.
593 Bange (2017), Nitrous oxide during the onset of the Atlantic cold tongue, *J. Geophys. Res. Oceans*, 122,
594 171–184, doi:10.1002/2016JC012238

595

596 **Arévalo-Martínez**, D. L., Steinhoff, T., Brandt, P., Körtzinger, A., Lamont, T., Rehder, G., & Bange, H. W.
597 (2019). N₂O emissions from the northern Benguela upwelling system. *Geophysical Research Letters*, 46,
598 3317–3326. <https://doi.org/10.1029/2018GL081648>

599

600 **Berhet**, S., Séférian, R., Bricaud, C., Chevallier, M., Voldoire, A., & Ethé, C. (2019). Evaluation of an online
601 grid-coarsening algorithm in a global eddy-admitting ocean biogeochemical model. *Journal of Advances in
602 Modeling Earth Systems*, 11, 1759–1783. <https://doi.org/10.1029/2019MS001644>

603

604

605 Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T.,
606 Séférian, R., Tjiputra, J., and Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century:
607 projections with CMIP5 models, *Biogeosciences*, 10, 6225–6245, doi:10.5194/bg-10-6225-2013.

608

609 **Bricaud, A., Babin, M., Morel, A., and Claustre, H.: Variability in the chlorophyll-specific absorption**
610 **coefficients of natural phytoplankton: analysis and parameterization, *J. Geophys. Res.*, 100, 13321–13332,**
611 **1995.**

612

613 **Cheng, L., Trenberth, K. E., Palmer, M. D., Zhu, J., and Abraham, J. P.: Observed and simulated full-depth**
614 **ocean heat-content changes for 1970–2005, *Ocean Sci.*, 12, 925–935, <https://doi.org/10.5194/os-12-925-2016>, 2016.**

615

616

617 **Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J.,**
618 **Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J. (2013). Oxygen and indicators of stress for**
619 **marine life in multi-model global warming projections, *Biogeosciences*, 10, 1849–1868, doi:10.5194/bg-10-1849-2013.**

620

621

622 **Echevin, V., Hauschmidt, J., Colas, F., Thomsen, S., & Aumont, O. (2021). Impact of chlorophyll shading on**
623 **the Peruvian upwelling system. *Geophysical Research Letters*, 48, e2021GL094429.**
624 <https://doi.org/10.1029/2021GL094429>

625

626 **Edwards, A. M., Wright, D. G., Platt, T. (2004) Biological heating effect of a band of phytoplankton. *Journal***

627 **of *Marine Systems*, 49, 89–103. doi: 10.1016/j.jmarsys.2003.05.011.**

628

629 **Edwards, A. M., Platt, T., Wright, D. G. (2001) Biologically induced circulation at fronts. *Journal of***

630 ***geophysical research*, 49, 89–103. doi: 10.1016/j.jmarsys.2003.05.011.**

631

632 **Eppley, R. W.: Temperature and phytoplankton growth in the sea, *Fish. Bull.*, 70, 1063–1085, 1972.**

633

634 **Freing, A., D. W. R. Wallace, and H. W. Bange, 2012: Global oceanic production of nitrous oxide. *Philos. Trans.***

635 **R. Soc. London Ser. B, 367, 1245–1255.**

636

637 **Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O.K. Baranova, M.M. Zweng, J.R. Reagan, D.R.**
638 **Johnson, (2014). World Ocean Atlas 2013, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and**
639 **Oxygen Saturation. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 75, 27 pp.**

640

641 **Gildor, H., and N. H. Naik (2005), Evaluating the effect of interannual variations of surface chlorophyll on**
642 **upper ocean temperature, *J. Geophys. Res.*, 110, C07012, doi:10.1029/2004JC002779.**

643

644 **Gnanadesikan, A., and W. G. Anderson (2009), Ocean water clarity and the ocean general circulation in a**
645 **coupled climate model, *J. Phys. Ocean.*, 39, 314–332.**

646

647 **Good, S. A., M. J. Martin and N. A. Rayner, (2013). EN4: quality controlled ocean temperature and salinity**
648 **profiles and monthly objective analyses with uncertainty estimates, *Journal of Geophysical Research: Oceans*,**
649 **doi:10.1002/2013JC009067**

650

651 **Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki,**
652 **D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M. (2020). Development of the**
653 **MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, *Geosci.***
654 **Model Dev.**, 13, 2197–2244, <https://doi.org/10.5194/gmd-13-2197-2020>.

655

656 **Heinze, C., T. Blenckner, H. Martins, D. Rusiecka, R. Döscher, M. Gehlen, N. Gruber, E. Holland, Ø. Hov, F.**
657 **Joos, J. B. R. Matthews, R. Rødven and S. Wilson (2021). The quiet crossing of ocean tipping points,**
658 **Proceedings of the National Academy of Sciences, 118 (9) e2008478118; DOI: 10.1073/pnas.2008478118**

659
660 **Hernandez**, O., J. Jouanno, V. Echevin, and O. Aumont (2017), Modification of sea surface temperature by
661 chlorophyll concentration in the Atlantic upwelling systems, *J. Geophys. Res. Oceans*, 122, 5367–5389,
662 doi:10.1002/2016JC012330.

663
664 **Hutchins**, D.A., Capone, D.G. The marine nitrogen cycle: new developments and global change. *Nat Rev
665 Microbiol* (2022). <https://doi.org.insu.bib.cnrs.fr/10.1038/s41579-022-00687-z>

666
667 **Ilyina**, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. Li, and I. Núñez-Riboni (2013), Global ocean
668 biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth
669 system model in different CMIP5 experimental realizations, *J. Adv. Model. Earth Syst.*, 5, 287–315,
670 doi:10.1029/2012MS000178.

671
672 **IPCC**: Summary for Policymakers, in: *IPCC Special Report on the Ocean and Cryosphere in a Changing
673 Climate*, edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E.,
674 Mrintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., 2019.

675
676 **Ji**, Q., A. R. Babbin, A. Jayakumar, S. Oleynik, and B. B. Ward (2015), Nitrous oxide production by
677 nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone, *Geophys. Res.
678 Lett.*, 42, 10,755–10,764, doi:10.1002/2015GL066853.

679
680 **Ji**, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., & Ward, B. B. (2018). Global nitrous oxide
681 production determined by oxygen sensitivity of nitrification and denitrification. *Global Biogeochemical
682 Cycles*, 32, 1790–1802. <https://doi.org/10.1029/2018GB005887>

683
684 **Kahru**, M., Leppänen, J.-M., and Rud, O. (1993). Cyanobacterial blooms cause heating of the sea surface,
685 *Mar. Ecol.-Prog. Ser.*, 101, 1–7.

686
687 **Kolodziejczyk**, N., W. Llovel, and E. Portela (2019). Interannual variability of upper ocean water masses as
688 inferred from Argo Array, *Journal of Geophysical Research: Oceans*. doi:10.1029/2018JC014866.

689
690 **Kolodziejczyk**, N., A. Prigent-Mazella and F. Gaillard (2021). ISAS temperature and salinity gridded fields.
691 SEANOE. <https://doi.org/10.17882/52367>

692
693 **Kortzinger**, A., Hedges, J. I., and Quay, P. D.: Redfield ratios revisited: removing the biasing effect of
694 anthropogenic CO₂, *Limnol. Oceanogr.*, 46, 964–970, 2001.

695
696 **Kwiatkowski**, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M.,
697 Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y.,
698 Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H.,
699 Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification,
700 deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections,
701 *Biogeosciences*, 17, 3439–3470, <https://doi.org/10.5194/bg-17-3439-2020>, 2020.

702
703 **Lam**, P., and M. Kuypers (2011). Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones, *Annual
704 Review of Marine Science* 3:1, 317-345, doi:10.1146/annurev-marine-120709-142814

705
706 **Large**, W. G., and S. Yeager (2009). The global climatology of an interannually varying air-sea ux data set,
707 *Clim. Dyn.*, 33, 341–364, doi:10.1007/s00382-008-0441-3.

708
709 **Lengaigne**, M., G. Madec, L. Bopp, C. Menkes, O. Aumont, and P. Cadule (2009). Bio-physical feedbacks in
710 the Arctic Ocean using an Earth system model, *Geophys. Res. Lett.*, 36, L21602,
711 doi:10.1029/2009GL040145.

712

713 **Lengaigne**, M., Menkes, C., Aumont, O. et al. Influence of the oceanic biology on the tropical Pacific climate
714 in a coupled general circulation model. *Clim. Dyn.*, 28, 503–516 (2007). <https://doi.org/10.1007/s00382-006-0200-2>

715

716

717 **Levitus**, S., J. I. Antonov, T. P. Boyer, O. K. Baranova, H. E. Garcia, R. A. Locarnini, A.V. Mishonov, J. R.
718 Reagan, D. Seidov, E. S. Yarosh, M. M. Zweng, (2012): World Ocean heat content and thermosteric sea level
719 change (0-2000 m) 1955-2010. *Geophys. Res. Lett.*, 39, L10603, doi:10.1029/2012GL051106

720

721 **Liang**, X., Liu, C. R., Ponte, M., and Chambers, D. P. (2021). A Comparison of the Variability and Changes in
722 Global Ocean Heat Content from Multiple Objective Analysis Products During the Argo Period, *J. Climate*,
723 34(19), 7875–7895, <https://doi.org/10.1175/JCLID-20-0794.1>.

724

725 **Llovel**, W. and L. Terray (2016). Observed southern upper-ocean warming over 2005–2014 and associated
726 mechanisms, *Environ. Res. Lett.*, 11, 124023.

727

728 **Llovel**, W., N. Kolodziejczyk, S. Close, T. Penduff, J.-M. Molines and L. Terray (2022). Imprint of intrinsic
729 ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles,
730 *Environ. Res. Lett.*, 17, 044063.

731

732 **Locarnini**, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R.
733 Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov, (2013). World Ocean Atlas 2013, Volume 1:
734 Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.

735

736 **Löptien**, U., C. Eden, A. Timmermann, and H. Dietze (2009), Effects of biologically induced differential
737 heating in an eddy-permitting coupled ocean-ecosystem model, *J. Geophys. Res.*, 114, C06011,
738 doi:10.1029/2008JC004936.

739

740 **Lyman**, J., Good, S., Gouretski, V. et al. Robust warming of the global upper ocean. *Nature* 465, 334–337
(2010). <https://doi.org/10.1038/nature09043>

741

742 **Madec**, G. (2008). Nemo ocean engine. Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace, 27,
1–217.

743

744 **Maes**, C., and T. J. O’Kane (2014), Seasonal variations of the upper ocean salinity stratification in the
745 Tropics, *J. Geophys. Res. Oceans*, 119, 1706–1722, doi:10.1002/2013JC009366.

746

747 **Manizza**, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis (2005), Bio-optical feedbacks among
748 phytoplankton, upper ocean physics and sea-ice in a global model, *Geophys. Res. Lett.*, 32, L05603,
749 doi:10.1029/2004GL020778.

750

751 **Manizza**, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis (2008), Ocean biogeochemical response to
752 phytoplankton-light feedback in a global model, *J. Geophys. Res.*, 113, C10010, doi:10.1029/2007JC004478.

753

754 **Martinez-Rey**, J., Bopp, L., Gehlen, M., Tagliabue, A., and Gruber, N.: Projections of oceanic N₂O emissions
755 in the 21st century using the IPSL Earth system model, *Biogeosciences*, 12, 4133–4148,
756 <https://doi.org/10.5194/bg-12-4133-2015>, 2015.

757

758 **Marzeion**, B., Timmermann, A., Murtugudde, R., & Jin, F. (2005). Biophysical Feedbacks in the Tropical
759 Pacific, *Journal of Climate*, 18(1), 58–70.

760

761 **Meyssignac** B, Boyer T, Zhao Z, Hakuba MZ, Landerer FW, Stammer D, Köhl A, Kato S, L’Ecuyer T, Ablain M,
762 Abraham JP, Blazquez A, Cazenave A, Church JA, Cowley R, Cheng L, Domingues CM, Giglio D, Gouretski V,
763 Ishii M, Johnson GC, Killick RE, Legler D, Llovel W, Lyman J, Palmer MD, Piotrowicz S, Purkey SG, Roemmich
764 D, Roca R, Savita A, von Schuckmann K, Speich S, Stephens G, Wang G, Wijffels SE and Zilberman N (2019)

765 Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. *Front. Mar. Sci.* 6:432. doi:
766 10.3389/fmars.2019.00432

767

768 **Mignot**, J., D. Swingedouw, J. Deshayes, O. Marti, C. Talandier, R. Séférian, M. Lengaigne, G. Madec (2013).
769 On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state
770 comparison, *Ocean Modelling*, Volume 72, Pages 167-184, ISSN 1463-5003,
771 <https://doi.org/10.1016/j.ocemod.2013.09.001>.

772

773 **Morel** A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (Case I
774 waters). *J Geophys Res* 93:10749–10768

775

776 **Morel**, A. and J.-F. Berthon, 1989 : Surface pigments, algal biomass profiles, and potential production of the
777 euphotic layer : Relationships reinvestigated in view of remote-sensing applications. *Limnol. Oceanogr.*,
778 34(8), 1545–1562.

779

780 **Morel** A, and Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. *J Geophys Res*
781 106:7163–7180

782

783 **Murtugudde**, R., Beauchamp, J., McClain, C. R., Lewis, M., & Busalacchi, A. J. (2002). Effects of Penetrative
784 Radiation on the Upper Tropical Ocean Circulation, *Journal of Climate*, 15(5), 470-486.

785

786 **Myhre**, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B.
787 Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, (2013). Anthropogenic and
788 Natural Radiative Forcing. In: *Climate Change 2013: The Physical Science Basis. Contribution of Working*
789 *Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Stocker, T.F., D.
790 Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
791 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

792

793 **Nakamoto**, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin (2001), Response of
794 the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnical ocean general circulation model,
795 *Geophys. Res. Lett.*, 28, 2021– 2024.

796

797 **Oschlies**, A. (2004), Feedbacks of biotically induced radiative heating on upper-ocean heat budget,
798 circulation, and biological production in a coupled ecosystem-circulation model, *J. Geophys. Res.*, 109,
799 C12031, doi:10.1029/2004JC002430.

800

801 **Park**, JY., Kug, JS., Seo, H. et al. Impact of bio-physical feedbacks on the tropical climate in coupled and
802 uncoupled GCMs. *Clim Dyn* 43, 1811–1827 (2014). <https://doi.org/10.1007/s00382-013-2009-0>

803

804 **Patara**, L., Vichi, M., Masina, S. et al. Global response to solar radiation absorbed by phytoplankton in a
805 coupled climate model. *Clim Dyn* 39, 1951–1968 (2012). <https://doi.org/10.1007/s00382-012-1300-9>

806

807 **Ravishankara**, A. R., J. S. Daniel, and R. W. Portmann, 2009: Nitrous oxide (N₂O): The dominant ozone-
808 depleting substance emitted in the 21st century. *Science*, 326, 123–125.

809

810 **Roemmich**, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and
811 steric height in the global ocean from the Argo Program. *Prog. Oceanogr.*, 82,
812 81–100, <https://doi.org/10.1016/j.pocean.2009.03.004>.

813

814 **Sallée**, JB., Pellichero, V., Akhoudas, C. et al. Summertime increases in upper-ocean stratification and
815 mixed-layer depth. *Nature* 591, 592–598 (2021). <https://doi.org/10.1038/s41586-021-03303-x>

816

817 **Schmidtke**, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five
818 decades. *Nature* 542, 335–339 (2017).

819
820 **Séférian**, R., Berthet, S., Yool, A. et al. Tracking Improvement in Simulated Marine Biogeochemistry
821 Between CMIP5 and CMIP6. *Curr Clim Change Rep* **6**, 95–119 (2020). <https://doi.org/10.1007/s40641-020-00160-0>
822
823
824 **Séférian**, R., Nabat, P., Michou, M., Saint-Martin, D., Volodire, A., Colin, J., et al (2019). Evaluation of CNRM
825 Earth-System model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate.
826 *Journal of Advances in Modeling Earth Systems*, 11. <https://doi.org/10.1029/2019MS001791>
827
828 **Sweeney**, C., Gnanadesikan, A., Griffies, S. M., Harrison, M. J., Rosati, A. J., & Samuels, B. L. (2005). Impacts
829 of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport, *Journal of Physical*
830 *Oceanography*, 35(6), 1103-1119.
831
832 **Takahashi**, T., Broecker, W. S., and Langer, S.: Redfield ratio based on chemical data from isopycnal
833 surfaces, *J. Geophys. Res.*, 90, 6907–6924, 1985.
834
835 **Tian**, H., Xu, R., Canadell, J.G., R. L. Thompson, W. Winiwarter, P. Suntharalingam, E. A. Davidson, P. Ciais, R.
836 B. Jackson, G. Janssens-Maenhout, M. J. Prather, P. Regnier, N. Pan, S. Pan, G. Peters, H. Shi, F. N. Tubiello,
837 S. Zaehle, F. Zhou, A. Arneth, G. Battaglia, S. Berthet, L. Bopp, A. F. Bouwman, E. T. Buitenhuis, J. Chang,
838 Martyn P. Chipperfield, S. R.S. Dangal, E. Dlugokencky, J. Elkins, Bradley D. Eyre, B. Fu, B. Hall, A. Ito, F. Joos,
839 P. B. Krummel, A. Landolfi, G. G. Laruelle, R. Lauerwald, W. Li, S. Lienert, T. Maavara, M. MacLeod, D. B.
840 Millet, S. Olin, P. K. Patra, R. G. Prinn, P. A. Raymond, D. J. Ruiz, Guido R. van der Werf, N. Vuichard, J.
841 Wang, R. Weiss, K. C. Wells, C. Wilson, J. Yang and Y. Yao (2020). A comprehensive quantification of global
842 nitrous oxide sources and sinks. *Nature* 586, 248–256.
843 <https://doi.org/10.1038/s41586-020-2780-0>.
844
845 **Tiano**, L., E. Garcia-Robledo, T. Dalsgaard, A. H. Devol, B. B. Ward, O. Ulloa, D. E. Canfield, N. P. Revsbech
846 (2014). Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen
847 minimum zones. *Deep Sea Research Part I: Oceanographic Research Papers*, Volume 94, Pages 173-183,
848 <https://doi.org/10.1016/j.dsr.2014.10.001>.
849
850 **Timmermann**, A., and F.-F. Jin, 2002. Phytoplankton influences on tropical climate, *Geophys. Res. Lett.*,
851 29(23), 2104, doi:10.1029/2002GL015434.
852
853 **Tsujino**, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T.,
854 Bamber J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
855 P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G.,
856 Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.
857 (2018). JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), *Ocean Model.*, 130, 79–
858 139, <https://doi.org/10.1016/j.ocemod.2018.07.002>.
859
860 **Tsujino**, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen,
861 M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P.
862 G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay,
863 K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y.,
864 Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z. (2020).
865 Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean
866 Model Intercomparison Project phase 2 (OMIP-2), *Geosci. Model Dev.*, 13, 3643–3708,
867 <https://doi.org/10.5194/gmd-13-3643-2020>, 2020.
868
869 [Uitz, J., Claustre, H., Morel, A., and Hooker, S. B. \(2006\). Vertical distribution of phytoplankton communities
870 in open ocean: An assessment based on surface chlorophyll, *J. Geophys. Res.*, 111, C08005,
871 doi:10.1029/2005JC003207.](#)
872

873
874 [Wanninkhof, R. \(1992\). Relationship between wind speed and gas exchange over the ocean, J. Geophys.](#)
875 [Res., 97, 7373–7382, doi:10.1029/92JC00188.](#)
876
877 [Wanninkhof, Rik, \(2014\), Relationship between wind speed and gas exchange over the ocean revisited,](#)
878 [Limnol. Oceanogr. Methods, 12, doi:10.4319/lom.2014.12.351.](#)
879
880 [Yang, S., B. X. Chang, M. J. Warner, T. S. Weber, A. M. Bourbonnais, A. E. Santoro, A. Kock, R. E. Sonnerup, J.](#)
881 [L. Bullister, S. T. Wilson and D. Bianchi \(2020\). Global reconstruction reduces the uncertainty of oceanic](#)
882 [nitrous oxide emissions and reveals a vigorous seasonal cycle, Proceedings of the National Academy of](#)
883 [Sciences, 117 \(22\) 11954–11960; DOI: 10.1073/pnas.1921914117](#)
884 [Valente, A, Sathyendranath, S, Brotas, V, Groom, S, Grant, M, Taberner, M, Antoine, D, Arnone, R, Balch, W,](#)
885 [Barker, K, Barlow, R, Bélanger, S, Berthon, JF, Besiktepe, S, Brando, V, Canuti, E, Chavez, F, Claustre, H,](#)
886 [Crout, R, Frouin, R, García-Soto, C, Gibb, SW, Gould, R, Hooker, S, Kahru, M, Klein, H, Kratzer, S, Loisel, H,](#)
887 [McKee, D, Mitchell, BG, Moisan, T, Muller-Karger, F., O'Dowd, L, Ondrusek, M, Poulton, A, Repecaud, M,](#)
888 [Smyth, T, Sosik, HM, Twardowski, M, Voss, K, Werdell, J, Wernand, M, Zibordi, G \(2016\) A compilation of](#)
889 [global bio-optical in situ data for ocean-colour satellite applications. Earth Syst. Sci. Data, 8, 235–252, doi:](#)
890 [10.5194/essd-8-235-2016](#)
891
892 [Wanninkhof, R. \(1992\). Relationship between wind speed and gas exchange over the ocean, J. Geophys.](#)
893 [Res., 97, 7373–7382, doi:10.1029/92JC00188.](#)
894
895 [Wanninkhof, Rik, \(2014\), Relationship between wind speed and gas exchange over the ocean revisited,](#)
896 [Limnol. Oceanogr. Methods, 12, doi:10.4319/lom.2014.12.351.](#)
897
898 [Weiss, R. F., and B. A. Price \(1980\). Nitrous oxide solubility in water and seawater Marine Chemistry,](#)
899 [Volume 8, Issue 4, Pages 347-359; DOI: 10.1016/0304-4203\(80\)90024-9](#)
900
901 [Wilson, S. T., Al-Haj, A. N., Bourbonnais, A., Frey, C., Fulweiler, R. W., Kessler, J. D., Marchant, H. K., Milucka,](#)
902 [J., Ray, N. E., Suntharalingam, P., Thornton, B. F., Upstill-Goddard, R. C., Weber, T. S., Arévalo-Martínez, D.](#)
903 [L., Bange, H. W., Benway, H. M., Bianchi, D., Borges, A. V., Chang, B. X., Crill, P. M., del Valle, D. A., Farías, L.,](#)
904 [Joye, S. B., Kock, A., Labidi, J., Manning, C. C., Pohlman, J. W., Rehder, G., Sparrow, K. J., Tortell, P. D.,](#)
905 [Treude, T., Valentine, D. L., Ward, B. B., Yang, S., and Yurganov, L. N.: Ideas and perspectives: A strategic](#)
906 [assessment of methane and nitrous oxide measurements in the marine environment, Biogeosciences, 17,](#)
907 [5809–5828, https://doi.org/10.5194/bg-17-5809-2020, 2020.](#)
908
909 [Yang, S., B. X. Chang, M. J. Warner, T. S. Weber, A. M. Bourbonnais, A. E. Santoro, A. Kock, R. E. Sonnerup, J.](#)
910 [L. Bullister, S. T. Wilson and D. Bianchi \(2020\). Global reconstruction reduces the uncertainty of oceanic](#)
911 [nitrous oxide emissions and reveals a vigorous seasonal cycle, Proceedings of the National Academy of](#)
912 [Sciences, 117 \(22\) 11954–11960; DOI: 10.1073/pnas.1921914117](#)
913