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Abstract. A semi-analytical solution to
::
an

:
advection-diffusion equation is coupled with a nonlinear wavemaker model to

investigate the effect of strong nonlinearity on wave-induced mixing. The comparisons with weakly-nonlinear model predic-

tions reveal that in the case of waves of higher steepness, enhanced mixing affects
:::
the subsurface layer of the water column.

Including
::
A

:::::::::::::
fully-nonlinear

:::::
model

::::::::
captures

:::
the

::::::::
neglected

:
higher-order terms into free-surface boundary conditions of the

wavemaker problem secures
::::
from

:
a
:::::::::::::::
weakly-nonlinear

:::::::
solution

:::
and

::::::::
provides

:
a
:

reliable estimation of the time-mean velocity5

field. The corrected wave-induced mass-transport velocity leads to improved estimates of subsurface mixing intensity and

ocean surface temperature.

1 Introduction

Mass-transport processes associated with the propagation of non-breaking ocean surface waves strongly affect the mixing

of oceanic waters and the global exchange of heat at the air-water interface. Surface waves transfer energy into turbulence10

modifying the mixing intensity of the upper ocean (Qiao et al., 2004, 2010, 2013). Therefore, the correct identification and

quantification of mass-transport processes associated with water waves leading to mixing of subsurface ocean waters is of

practical importance for short-term and long-term weather forecasts.

Small-scale and large-scale climate modelling equally benefits from including the wave-induced mixing predictions into

the general ocean circulation simulations (e.g. Qiao et al., 2004; Xia et al., 2006). Including the parameterized wave-induced15

mixing in ocean circulation models confirms that its contribution qualitatively improves the reliability of numerical results (e.g.

Song et al., 2007; Shu et al., 2011). Despite the fact that some field measurements lead to the conclusion that surface waves

contribute to heat exchange of the upper ocean (Matsuno et al., 2006), it is difficult to collect reliable in situ data confirming

the role of non-breaking surface waves in vertical mixing processes. An alternative approach to the problem is to investigate

the wave-induced mixing based on the physical tests in the
:
a
:
wave flume or the

:
a wave basin.20

Laboratory experiments are the source of valuable information on wave induced-mixing processes as well as they provide

data supporting
:::::::
enabling

:
the evaluation of wave-induced mixing coefficient (e.g. Babanin and Haus, 2009; Dai et al., 2010;

Sulisz and Paprota, 2015). In the a
:
wave flume, the mixing originated from breaking and non-breaking wave processes may be

eventually separated
:::::
waves

:::
may

:::
be

::::::::::
investigated to evaluate the real contribution from the non-breaking surface waves to general

ocean circulation, which is of fundamental importance for calibration of wave-induced mixing models (Sulisz and Paprota,25
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2019). It should be noted that the experimental data are affected by undesirable spurious laboratory effects requiring special

attention when analyzing the results of mass-transport processes driven by waves (e.g. Paprota and Sulisz, 2018; Paprota,

2020).

The present study presents the methods of analysis of wave-induced vertical mixing from the wavemaker perspective. The

derived mathematical modelling approach may be directly applied to experimental activities aiming at recognising, quantifying30

and parameterising wave-induced vertical mixing effects (see e.g. Dai et al., 2010; Sulisz and Paprota, 2015) for a better design

of physical model setup and a wave parameter selection in the laboratory. The awareness of the influence of laboratory side

effects on the experimental outcome is essential for correct interpretation of the results. This issue was raised in the earlier

studies (Sulisz and Paprota, 2015, 2019).

The study
:::::
study extends the analysis of wave-induced vertical mixing performed by Sulisz and Paprota (2019) on the basis of35

:::::
which

::::
used

:
a
:
weakly-nonlinear theory applied to mechanically generated water waves. The improvements cover the application

of the more exact nonlinear
::::
more

:::::
exact

::::::::::
calculations

::
of

:::
the

::::
wave

:::::::
velocity

::::
field

:::::
using

:
a
:::::::::::::
fully-nonlinear wavemaker model, which

was successfully verified with respect to kinematics of regular waves against laboratory measurements collected in the flume

(Paprota and Sulisz, 2018; Paprota, 2020). This higher-order method allows modelling of non-breaking waves with strong

nonlinearities and admits amplitude dispersion, nonlinear wave-wave interactions in deep and intermediate waters as well as40

solitary waves propagation, which goes beyond the applicability of weakly-nonlinear approaches. Corresponding methods
:::
The

:::::
model

:::::::
belongs

::
to

::
a
::::::
family

::
of

:::::
wave

::::::::
solutions

:
basing on a pseudo-spectral approach, which consider highly-nonlinear non-

breaking waves
:::
and are originating from methods derived by Dommermuth and Yue (1987) and West et al. (1987) – (see also

Paprota and Sulisz, 2019, for a review).

This
:::
The

::::::::::
application

::
of

:::
the

:::::::::::::
fully-nonlinear

:::::
model

:
should lead to

::
the

:
more accurate estimation of the phase-averaged wave45

velocity field and, hopefully, the more reliable evaluation of the evolving water temperature field under regular waves. In this

way
:::::
Since

:::
the

::::::::
numerical

::::::
model

::::::::
provides

:
a
:::
full

::::::::::
description

::
of

:::
the

::::::::
evolution

:::
of

:::
the

:::::::
velocity

::::
field, it is possible to separate the

Stokes drift from Lagrangian and Eulerian mean velocities (see Paprota et al., 2016; Paprota and Sulisz, 2018; Paprota, 2020).

Hence, the results presented in this study may improve simple models basing on Stokes drift applicable to ocean waves of

random (spectral) nature (Myrhaug et al., 2018), while the derived modelling framework may be modified to cover open ocean50

hydrodynamics with other forms of introducing waves (Paprota, 2019).

New contributions are also presented with regard to methods of calculations of time-mean flows, which are essential for

the present analyses. Namely, a new Eulerian procedure is reported, which is different to Lagrangian-based method applied

in earlier studies (Paprota et al., 2016; Paprota and Sulisz, 2018; Paprota, 2020). The study also highlights the differences

between two methods of calculation of velocity distribution of time-mean wave-induced flows either based on Lagrangian55

particle tracking or approximated Eulerian averaging. In case of the former, an improved and more accurate procedure of

estimating the phase-averaged velocity is developed.

::::
This

::::
study

:::::::
presents

:::
the

:::::::
methods

::
of

:::
an

::::::
analysis

::
of

::::::::::::
wave-induced

::::::
vertical

::::::
mixing

:::::
from

::
the

::::::::::
wavemaker

::::::::::
perspective.

:::
The

:::::::
derived

:::::::::::
mathematical

:::::::::
modelling

::::::::
approach

::::
may

::
be

:::::::
directly

::::::
applied

:::
to

:::::::::::
experimental

::::::::
activities

::::::
aiming

::
at

::::::::::
recognising,

::::::::::
quantifying

::::
and

::::::::::::
parameterising

::::::::::::
wave-induced

::::::
vertical

::::::
mixing

::::::
effects

::::::::::::::::::::::::::::::::::::::::::
(see e.g. Dai et al., 2010; Sulisz and Paprota, 2015)

::
for

::
a
:::::
better

::::::
design

::
of60
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Figure 1. Schematic view of mechanically-generated waves and the coordinate system.

:::::::
physical

:::::
model

:::::
setup

:::
and

:
a
:::::
wave

::::::::
parameter

::::::::
selection

::
in

:::
the

:::::::::
laboratory.

:::
The

:::::::::
awareness

::
of

:::
the

::::::::
influence

::
of

::::::::
laboratory

::::
side

::::::
effects

::
on

:::
the

:::::::::::
experimental

:::::::
outcome

::
is

:::::::
essential

:::
for

:::
the

::::::
correct

:::::::::::
interpretation

:::
of

:::
the

::::::
results.

::::
This

::::
issue

::::
was

:::::
raised

::
in

:::
the

::::::
earlier

::::::
studies

::::::::::::::::::::::::::
(Sulisz and Paprota, 2015, 2019)

:
.

The paper is composed as follows. First, the outline of the coupled theoretical model describing the mixing processes under

mechanically induced water waves is presented. Then, the comprehensive comparison between weakly and fully nonlinear65

approaches is given using numerical results to evaluate the effects of strong nonlinearity on vertical mixing processes. Finally,

the discussion on the major results is provided together with remarks on accuracy and reliability of mathematical and numerical

methods together with further discussions on putting the results of the study in a broader context of earth system modeling

with respect to general ocean circulation. The paper is then completed by a summary and conclusions.

2 Materials and Methods70

The considered numerical approach to the modeling of vertical mixing induced by mechanically generated waves is realized

through a procedure involving two fundamental steps referring to the solution of the wavemaker problem and advection-

diffusion balance, respectively.

2.1 Particle kinematics of mechanically-generated waves

First, the problem of the generation of waves in a numerical wave flume is formulated and solved. In the present study, a75

potential flow wave theory is used to obtain the solution within the Eulerian frame of reference. Weakly-nonlinear analytical

approach and higher-order numerical methods are employed to determine the wave fields in the rectangular domain, in which

the water elements are defined by the horizontal x and vertical z coordinates of the Cartesian system. The origin of the system

is located at the intersection of the wavemaker zero position and free-surface level corresponding to the hydrostatic conditions.

The mechanically-driven oscillation of the free surface represented by elevation function η(x,t) is induced by the piston-like80

motion of the wavemaker paddle according to the displacement function χ(t). The flume bottom is assumed horizontal and the

water depth is h= const. The general presentation of the computational domain and the location of the coordinate system is

depicted in Fig. 1.
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According to the potential flow assumptions, the motion of the
::
an inviscid and incompressible fluid is irrotational. Moreover,

the solid boundaries are impervious. The scalar velocity potential function ϕ(x,z, t) may be introduced to determine the85

velocity vector field v(x,z, t) such that v =∇ϕ. The wavemaker boundary-value problem is then formulated as

∇2ϕ= 0, −h≤ z ≤ η, (1)

ηt +ϕxηx −ϕz = 0, z = η, (2)

90

ϕt +
1

2
(ϕ2

x +ϕ2
z)+ gη = 0, z = η, (3)

ϕz = 0, z =−h, (4)

χt −ϕx = 0, x= χ, (5)95

where g is the acceleration due to gravity.

The first part of a solution procedure
::::::::::::
pseudo-spectral

::::::::
solution involves expanding the kinematic free-surface boundary

condition (2), the dynamic free-surface boundary condition (3), and the kinematic wavemaker boundary condition (5) in a

Taylor series about a mean position corresponding to the still water level (z = 0) for (2)-(3) and wavemaker paddle zero

position (x= 0) for (5)100 ∑
m=0

ηm

m!

∂m

∂zm
(ηt +ϕxηx −ϕz) = 0, z = 0, (6)

∑
m=0

ηm

m!

∂m

∂zm
(ϕt +

1

2
(ϕ2

x +ϕ2
z)+ gη) = 0, z = 0, (7)

∑
m=0

χm

m!

∂m

∂zm
(χt −ϕx) = 0, x= 0. (8)105

In this way, a simple rectangular form of the computational domain is preserved and the solution procedure is advanced further

using either the perturbation or spectral approach. In the present study both weakly-nonlinear (perturbation expansions) and

higher-order
::::::::::::
fully-nonlinear (spectral expansions) solutions are briefly presented and applied to calculate the velocity field

for wave-induced mixing calculations.
:::
The

:::::
order

:::
of

::::::::::
nonlinearity

:::::::
depends

:::
on

:::
the

:::::
order

:::
of

::::::::
nonlinear

:::::
terms

:::
of

:::::
Taylor

::::::
series

:::::::::
expansions

::
of

::::::::
boundary

::::::::::
conditions.

:::::::::::
Second-order

:::::
terms

:::
are

:::::::
retained

:::
for

:::::::::::::::
weakly-nonlinear

:::::::
solution,

:::::
while

:::
the

:::::::::::::
fully-nonlinear110

::::::
solution

::
is
::::::::
provided

::::
with

::
no

:::::
upper

:::::
limit

::::::::
(arbitrary

::::::
order).
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2.1.1 Weakly-nonlinear solution

The perturbation expansion is first applied to solve the wavemaker problem defined by Eqs. (1)-(5) according to the solution

derived by Hudspeth and Sulisz (1991); Sulisz and Hudspeth (1993). The monochromatic wavemaker paddle displacement of

amplitude s is assumed115

χ(t) = ssin(σt+φ), (9)

which generates periodic waves of the first-order amplitude of a, the angular frequency of σ, and the phase φ in the semi-

infinite flume domain. Due to the fact that x goes to infinity, the radiation condition
:::::::
(outward

::::::::::
propagating

::::::
waves)

:
is imposed

at the far end lateral boundary of the domain (Hudspeth and Sulisz, 1991).

Using the expansions of the boundary conditions Eqs. (6)-(8) and retaining the terms up to the second order, the weakly-120

nonlinear boundary conditions become

ηt −ϕz +ϕxηx − ηϕzz = 0, z = 0, (10)

ϕt +
1

2
(ϕ2

x +ϕ2
z)+ ηϕzt + gη = 0, z = 0, (11)

125

χt −ϕx −χϕxx = 0, x= 0. (12)

Additionally, the following small steepness parameter ϵ= ak (where k is the first-harmonic wave number) perturbation

expansions of the angular frequency ω (σ = ω0), the free-surface elevation, and the velocity potential functions are used (Hud-

speth and Sulisz, 1991)

ω =
∑
n=0

ϵnωn, (13)130

ϕ(x,z, t) =
∑
n=0

ϵnϕn+1, (14)

η(x,t) =
∑
n=0

ϵnηn+1. (15)

Substituting the perturbation forms Eqs. (13)-(15) into the boundary conditions correct up to the second order, Eqs. (10)-135

(12), leads to the final weakly-nonlinear solution to the velocity potential and free-surface elevation functions (Hudspeth and
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Sulisz, 1991). The formulas for the horizontal U(x,y) and vertical V (x,y) components of the time-independent mass-transport

velocity V(x,y) for the case of the piston-type wavemaker of full-depth draught are calculated from nondimensional forms

reported as in Eqs. (50a) and (50b) by Hudspeth and Sulisz (1991). In order to get dimensional values, the results calculated

by Eqs. (50a) and (50b) in the work by Hudspeth and Sulisz (1991) are multiplied by a
√
gk.140

Far away from the wavemaker paddle (x > 3h), the vertical component of the time-independent velocity vanishes and the

time-independent horizontal velocity profile along the water depth UL converges to the sum of the Stokes drift US and return

current UE velocities (Longuet-Higgins, 1953; Dean and Dalrymple, 1984), i.e.

UL(z) = US(z)+UE , (16)

where the Stokes drift profile is calculated as145

US(z) =
kσa2 cosh(2k(z+h))

2sinh2(kh)
, (17)

and the return current value takes the form

UE =−kσa2 sinh(2kh)

4khsinh2(kh)
=−a2kg

2σh
. (18)

2.1.2 Higher-order nonlinear
:::::::::::::
Fully-nonlinear solution

An alternative approach, which admits higher-order wave components, is based on the spectral method applied to the wave-150

maker problem (Paprota and Sulisz, 2018). Contrary to the presented perturbation approach, the waves are generated by an

arbitrary function χ(t) in a finite domain of length b which is taken sufficiently large to exclude the effect of wave reflection

from the far end wall of the flume. In this regard, only progressive waves are considered facilitating the comparisons with the

weakly-nonlinear solution.

The free-surface elevation function is expanded in a Fourier cosine series as155

η(x,t) =
∑
i=0

ai cos(λix), (19)

while the corresponding expansion of the velocity potential function is coupled with an additional term satisfying the wave-

maker boundary condition (5) to give

ϕ(x,z, t) =
∑
i=0

Ai
cosh(λi(z+h))

cosh(λih)
cos(λix)+B0((x− b)2 − (z+h)2)

+
∑
j=1

Bj
cosh(µj(x− b))

cosh(µjb)
cos(µj(z+h)), (20)160

where λi = iπ/b and µj = jπ/h are the eigenvalues of the expansions and the solution coefficients are the functions of time

(ai(t), Ai(t), and Bj(t)). The Bj coefficients are determined as (Paprota and Sulisz, 2018)

B0 =
χth+

∑M
m=1

χm

m! sin
mπ
2

∑
i=0λ

m
i Ai tanh(λih)

2h(χ− b)
, (21)
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Bj =
−2cos(µjh)

∑M
m=1

χm

m! sin(
mπ
2 )

∑
i=0

λm+2
i

λ2
i+µ2

j
Ai tanh(λih)

h
∑M

m=0µ
m+1
j

χm

m! cos(mπ)tanh(µjb)|cos
mπ
2 |

, j > 0. (22)165

The coefficients Ai, Bj , and ai are determined in an iterative solution procedure from the kinematic free-surface boundary

condition (6), the dynamic free-surface boundary condition (7), and the kinematic wavemaker boundary condition (8). For a

given time t, the uknown coefficients ai, Ai are calculated using
:
a Fourier transform of η and ϕ as

ai =
2

b

b∫
0

η(x,t)cos(λix)dx, Ai =
2

b

b∫
0

ϕ(x,0, t)cos(λix)dx, (23)

while Bj are determined using Eqs. (21) and (22). Time-stepping is then applied
::::
The

:::::::::
coefficients

:::
are

:::::
then

::::
used

::
to

::::::::
calculate170

::::::::::
free-surface

:::
and

:::::::
velocity

:::::::
potential

:::::
values

:::::
using

::::::
inverse

::::::
Fourier

:::::::::
transforms

::
to
:::::::
advance

:::
the

:::::::
solution

::
in

::::
time.

::::::
Hence,

::::::::::::
time-stepping

:
is
:::::::

applied
::
in

::::::::
physical

::::::
domain

:
to obtain values of ϕ and η at a new time level. A fourth-order Adams-Bashforth-Moulton

predictor-corrector approach is prefered
::::::::
preferred as a time-marching scheme (see e.g. Press et al., 1988), with initial values of

ϕ(x,0,0) = 0 and η(x,0) = 0. The wavemaker model used in the present study is reported in the work by Paprota and Sulisz

(2018).175

The instantaneous wave velocity field is derived by expressing the horizontal u and vertical w velocity components in terms

of the spatial derivatives of the velocity potential ϕx and ϕz respectively as

u(x,z, t) =−
∑
i=0

λiAi
cosh(λi(z+h))

cosh(λih)
sin(λix)+ 2B0(x− b)

+
∑
j=1

µjBj
sinh(µj(x− b))

cosh(µjb)
cos(µj(z+h)), (24)

180

w(x,z, t) =
∑
i=0

λiAi
sinh(λi(z+h))

cosh(λih)
cos(λix)− 2B0(z+h)

−
∑
j=1

µjBj
cosh(µj(x− b))

cosh(µjb)
sin(µj(z+h)). (25)

After the steady state of
:
a
:
fully-developed wave motion is achieved, the time-independent wave velocity field may be

approximated by time-averaging of the instantaneous wave velocity
::::::::::::::::::::::::::
(see Hudspeth and Sulisz, 1991) within the range limited

by two in-phase states of regular wave motion (over one wave period,
::::::
which

::
is

:::::
either

:::::
given

::
or

::::::::
calculated

:::::
from

:::
the

:::::::::
dispersion185

::::::
relation) as

U(x,z) =

〈
ux

∫
udt+uz

∫
wdt

+0.5uxx

(∫
udt

)2

+0.5uzz

(∫
wdt

)2〉
+ ⟨u⟩, (26)
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W (x,z) =

〈
wx

∫
udt+wz

∫
wdt190

+0.5wxx

(∫
udt

)2

+0.5wzz

(∫
wdt

)2〉
+ ⟨w⟩. (27)

and is referred here and after as the Eulerian-mean transport velocity (EMTV). The pair of triangle brackets <> denotes the

operator of time-averaging over one wave period. The velocities u and w are calculated using Eqs. (24) and (25), while their

derivatives are evaluated analytically. The integrals of u and w are determined directly from Eqs. (24) and (25) upon replacing

the time-dependent coefficients Ai and Bj with their integrals
∫
Aidt and

∫
Bjdt. The integration is achieved by expanding195

the Ai and Bj into a Fourier series with respect to time and integrating the resulting Fourier expansions analytically.

An alternative approach, which leads to the time-independent wave velocity field, is the procedure involving the Lagrangian

particle tracking - Lagrangian-mean transport velocity (LMTV). The time-averaged velocity is calculated based on the dis-

placement of
:
a water particle moving between its two successive in-phase positions along the particle trajectory (Paprota et al.,

2016). The trajectory of a water particle is determined by numerical integration of the system of differential equations200

dx

dt
= u(x,z, t), (28)

dz

dt
= w(x,z, t), (29)

for the set of initial particle locations.

In the present study, the improvements to the method of evaluation of mass transport velocity based on the Lagrangian205

particle tracking (Paprota and Sulisz, 2018) are introduced. In the previous works (Paprota et al., 2016; Paprota and Sulisz,

2018; Paprota, 2020), the procedure relied on distributing artificial tracers in a water column under fully developed regular

waves. Initially, the tracers are uniformly distributed along the water depth and they coincide with the zero down-crossing

phase of the wave for a given distance from the wavemaker. After one Lagrangian wave period (see e.g. Longuet-Higgins,

1986; Chen et al., 2009), the tracers move from their original position due to mass transport. The particle tracking procedure is210

employed to determine the mass transport velocity profile. The procedure is repeated for subsequent longitudinal positions to

cover the accepted region of interest.

Here, in order to get the better estimation of the time-independent velocity field, the two hydrodynamic states corresponding

to both zero up- and down-crossings of the regular wave are used to start-up the tracking procedure - contrary to the previ-

ous method based only on the zero down-crossings (e.g. Paprota et al., 2016; Paprota and Sulisz, 2018). The procedure is215

analogous, but involves more tracers and covers two phase positions. The resulting LMTV is calculated as the mean of the

time-independent velocity fields corresponding to both zero-crossing initial states.
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2.2 Wave-induced vertical mixing intensity

The numerical solution to the
:
a two-dimensional advection-diffusion equation with relevant boundary conditions is used to

predict evolution of
::
the

::::::::
evolution

::
of

:::
the

:
temperature field under mechanically generated regular waves in a

:::
the flume. Assuming220

that the changes of temperature are solely due to wave-induced and diffusion processes, the following boundary-value problem

is formulated as in the work by Sulisz and Paprota (2019)

Tt +UTx +WTz = ∂x(κTx)+ ∂z(κTz), (30)

Tz = 0, z = 0, (31)225

Tx = 0, x= 0, (32)

Tz = 0, z =−h, (33)

230

Tx = 0, x= b, (34)

where T is the water temperature, and κ is the diffusion coefficient represented as a sum of the molecular (κm) and wave-

induced (κv) diffusivities

κ= κm +κv. (35)

In
:::
the advection-diffusion equation (30) the velocities U an W are, in fact, Lagrangian velocities which reflect

:::::::
describe

:::
the235

mean transport velocity field (
:::
the Stokes drift and the a

:
return current in this case). The inclusion of

:::
the Stokes drift (without

return current) to advection equation was discussed explicitly for the case of ocean waves by McWilliams and Sullivan (2000).

The molecular diffusivity κm = 1.4× 10−7m/s2, while the wave-induced diffusivity is calculated by the formula reported

by Sulisz and Paprota (2015) as

κv(z) = αa3kσ
sinh2(k(z+h))cosh(k(z+h))

sinh3(kh)
, (36)240

where α= 0.002 is the dimensionless coefficient, which is evaluated based on measurements (Sulisz and Paprota, 2015). The

derivation of κv is based on the weakly-nonlinear theory. More information is provided in the work by Sulisz and Paprota

(2015), where the comparison between weakly-nonlinear and more general form is provided. The parameter α was estimated

9



based on the experiments only for the presented form of κv . In order to use a more general formula, new values of α must be

determined using experimental data from a wider range of wave conditions.245

The advection-diffusion equation Eq.(30) holds in the entire fluid domain, while the heat radiation is assumed zero at the

water surface - Eq.(31), the bottom - Eq.(33), and the lateral boundaries - Eqs.(32) and (34). The length b is taken sufficiently

long in order to reduce the effect of the finite domain on the results in the area of interest, which is limited to the region of

several water depths from the wavemaker paddle. The omitted procedure of incorporating the non-zero heat radiation at the

water surface is discussed in the paper by Sulisz and Paprota (2019).250

The solution of the advection-diffusion equation Eq.(30) is achieved by employing a similar methodology which is
:
to

::::
that

used to solve the wavemaker problem admitting higher-order nonlinearities presented in the previous section. Accordingly, the

scalar temperature field function is expanded into a double Fourier series of the form (Sulisz and Paprota, 2019)

T (x,z, t) =
∑
i=1

∑
j=1

dij cos(λi(x− b))cos(µj(z+h)). (37)

Again, the solution of Eq. (30) is achieved by a time-stepping procedure, which, in this case, consists of an application of255

the spectral expansion method to describe T and the Runge-Kutta formulas to proceed in time (see e.g. Press et al., 1988).

Accordingly, the wave-induced diffusivity is determined using Eq. (36), while the velocity field is either calculated by means

of the weakly-nonlinear solution (Hudspeth and Sulisz, 1991) or higher-order approach (Paprota and Sulisz, 2018) for selected

wave parameters. The initial condition of given vertical temperature distribution T0(z) is used to start-up the time stepping

procedure. The time derivative of temperature T is calculated from Eq. (30) with the aid of the expansion Eq. (37) after260

the coefficients dij are determined by applying a two-dimensional cosine fast Fourier transform.
:::
The

:::::::::::::
implementation

::
of

::::
this

::::::::
procedure

::
is

:::::
freely

::::::::
available

::
in

:
a
::::::::::::
supplementary

:::::::
material

::
to
::::
this

::::::
article.

3 Results and discussion

The evaluation of temperature evolution of an oscillating water body is analyzed in a numerical wave flume environment. This

approach provides a basis for the straightforward verification of the major outcome
:
of

:::
the

:::::::::
modelling

::::::::::
procedures,

::::::
which

:::
are265

::::::::
presented

::
in

:::
the

:::::::
previous

:::::::
section, against measurements in the real laboratory. On the other hand, the numerical model may be

modified to cover pseudo-random ocean waves in a large periodic domain (see e.g. Paprota, 2019) to analyze the wave-induced

vertical mixing processes in offshore conditions.

3.1 Numerical test cases

The waves are generated by a monochromatic wavemaker motion in a numerical flume. The transitional and shallow water270

wave cases are considered for three depth-relative dimensionless parameters kh of 0.5, 1 and 2. The effect of wave height H

is also studied and corresponds to the dimensionless steepness parameter H/h of 0.05, 0.1 and 0.2. In the case of the higher-

order solution, the waves are generated starting from rest with the ramp function applied to the stroke of the wavemaker motion

for the first five wave periods. As previously stated, the longitudinal size of the flume b is taken sufficiently long to exclude

10



Table 1. Basic dimensionless parameters of mechanically-generated regular waves.

Depth Height-depth Steepness Wave-iinduced
:::::::::::
Wave-induced Ursell

parameter ratio parameter diffusivity number

kh H/h Ak κv(0)/κm HL2/h3

0.5 0.05 0.0125 0.36 7.9

0.5 0.1 0.025 2.91 15.8

0.5 0.2 0.05 23.3 31.6

1 0.05 0.025 0.8 1.97

1 0.1 0.05 6.4 3.95

1 0.2 0.1 51.3 7.9

2 0.05 0.05 2.01 0.49

2 0.1 0.1 16.1 0.99

2 0.2 0.2 128.9 1.97

wave reflections from the analysis and it corresponds to ten wavelengths (L) for kh= 2 and 20L in the remaining longer275

wave cases. The selected progressive wave parameters are in accordance to
::
the

:::::
same

::
as

::
in

:
previous studies on the modeling

of wave-induced mixing in wave flumes (Sulisz and Paprota, 2019). After the steady
:::::::::::::
fully-developed

:
state is achieved, the

time-independent wave velocity field is determined. The resulting horizontal and vertical velocity components U and W are

then substituted to Eq. (30) and the temperature field evolution is predicted. The summary of wave parameters is provided in

Table 1 together with wave-induced diffusivity values at the surface in relation to its molecular counterpart.280

It should be noted that the model may be applied to deep-water as well as shallow water conditions, which was already
::
is

presented in the work by Sulisz and Paprota (2015). Here, the cases correspond to a limited range of kh from 0.5 to 2.0. In this

way, the results from the previous work (Sulisz and Paprota, 2019) may be directly compare
::::::::
compared. Moreover, deep water

conditions corresponding to kh > π, the mixing would completely swept
:::::
sweep away the warmer water from the

:::::::
analysed

::::
part

::
of

:::
the

::::
fluid domain for the selected time frame and this case was omitted in the present study.285

3.2 Phase-averaged velocity distribution

The accurate assessment of the time-independent velocity field is of significant importance in the modeling of temperature

changes under undulating water surface. The increasing steepness of generated waves intensifies wave-induced mixing pro-

cesses, but also changes the structure of heat fluxes distribution in the region occupied by the fluid. The analysis of phase-

averaged velocity distribution in
:::
the direct vicinity of the wavemaker paddle helps to identify the effect of advection terms of290

the Eq.(30) on the temperature evolution driven by waves.

In Figs. 2-4, time-independent velocity fields calculated by weakly-nonlinear and higher-order methods are presented. The

arrows represent the vectors of a phase-averaged velocity corresponding to mass-transport induced by waves. Black arrows cor-
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respond to
:
a
:
weakly-nonlinear solution, while green and blue arrows correspond to

:
a higher-order solution and two methods

of averaging – EMTV and LMTV, respectively (Figs. 2-4). The way of the presentation of the results is in line with the expected295

velocity vector field pattern , which
::
in

:::
the

:::
part

::
of

:::
the

::::
fluid

::::::
domain

:::::::
adjacent

::
to

:::
the

::::::::::
wavemaker

::::::::::::::::::::::::::::::::::::::::::::::::::
(see Paprota and Sulisz, 2018, for a more detailed description)

:
.
:::
The

::::
fluid

::::
flow

:
forms half of the circulation cell limited by the air-water interface (z/h= 0), the wavemaker paddle (x/h= 0)

and the bottom (z/h=−1). The water mass flows with the direction of wave propagation near the surface, while the adverse

flow pushes the water to the wavemaker paddle in the lower part of the water column. At the wavemaker paddle, the water flows

vertically forming the lateral boundary of the general circulation in the flume. Far away from the paddle, the vertical velocity300

components vanish and the typical mass-transport velocity profile over depth emerges as a sum of the Stokes drift Eq. (17) and

the return current velocity Eq. (18). Thus, the figures are complemented by the weakly-nonlinear horizontal mass-transport

velocity profile UL(z) calculated outside the direct vicinity of the wavemaker paddle Eq. (16), where the evanescent mode

effect
::::
effect

:::
of

:::::::::
evanescent

:::::::
standing

:::::
waves

:::::::::
generated

::
by

:::
the

:::::::::
wavemaker

:::::::::::::::::::::::::::::::
(see e.g. Dean and Dalrymple, 1984) may be neglected

(x > 3h). UL(z) is plotted at the right outer edge of the graph at x= 3h for convenience of comparison.
:::::
Vector

:::::
plots

:::
are305

::::::::::::
complemented

::
by

:::::::
bubble

:::::
charts

::
of

:::::::
relative

:::::::::
differences

::::::::
between

::::::::::::
corresponding

:::::
vector

::::::::::
magnitudes

:::
as

::::::::
presented

::
in

:::::
Figs.

::::
5-7,

:::::
where

:::::
black

:::::
circles

::::::
denote

:::
the

::::::::::
differences

:::::::
between

::::::
LMTV

:::
and

:::::::::::::::
weakly-nonlinear

::::::
results,

:::::
while

:::::
green

:::::
filled

:::::
circles

:::::
refer

::
to

:::
the

:::::::::
differences

:::::::
between

::::::
LMTV

::::
and

::::::
EMTV.

The results presented in Fig. 2 provide information on the time-independent velocity field predicted in the direct vicinity

of the wavemaker paddle and the differences between the weakly-nonlinear approach and the solution admitting higher-order310

terms in the most extreme nonlinear regime of shallow water (kh= 0.5). Due to the fact that the considered wave cases are

characterized by highest values of the Ursell number, the differences between the two wavemaker models immediately appear

even for the lowest amplitude of free-surface oscillations of H/h= 0.05 (Fig. 2a). The highest differences in the range between

10% and 20% correspond to the velocities near the wavemaker paddle and the surface, respectively .
::::
(Fig.

::::
5a). With increasing

the magnitude of the surface oscillations to H/h= 0.1 and H/h= 0.2 (Figs. 2b and 2c), the differences are becoming higher315

in the larger area of the wavemaker paddle vicinity. The higher-order model predicts more intensive mass-transport near the

bottom and the surface. The increase in the subsurface velocity and the magnitude of the current near the bottom may reach

even from 15% to 30% for H/h= 0.1 and from 20% to 40 % for H/h= 0.2 .
:::::
(Figs.

::
5b

::::
and

::
5c,

::::::::::::
respectively).

Some important information may be also acquired from the comparison between two methods of averaging corresponding

to either Lagrangian particle tracking (LMTV) or Eulerian averaging (EMTV) basing on Eqs. 26 and 27, respectively. Al-320

though both methods of averaging provide consistent results for lower wave heights of the generated waves, EMTV results are

less reliable in the case of highest waves H/h= 0.2 (Fig. 2c). It can be seen that the velocity vectors near the corner point

determined by the intersection of the wavemaker paddle mean position and the surface (x/h= 0, z/h= 0) are unnaturally

large as the velocity in this area
:::::
(green

::::::
arrows

::::::
around

:::
the

:::::
point

::::
(0,0)

:::
in

::::
Figs.

::
2c

::::
and

:::
3c) is expected to vanish . The problems

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Grilli and Svendsen, 1990, for a comprehensive discussion on numerical methods inaccuracy at corner points of a fluid domain with moving boundaries)325

:
.
:::
The

::::::::
problem still persists when considering the subsurface velocity in some distance away from the wavemaker. The dif-

ferences between the LMTV and EMTV may reach even 20% in the velocity magnitude near the intersection between the
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Figure 2. Time-independent velocity field under mechanically-generated regular waves characterized by kh= 0.5, a) H/h= 0.05, b)

H/h= 0.1, c) H/h= 0.2; weakly-nonlinear theory - black arrows and line, higher-order theory EMTV - green arrows, LMTV - blue

arrows; higher-order vectors are shifted upwards for convenience of comparison.

.

wavemaker and the surface, while even greater discrepancy is visible at corner points in most extreme longer wave cases (Fig.

2
:
5c).

With the increasing the relative water depth (Figs. 3 and 4), the differences between weakly-nonlinear and higher-order330

time-independent velocity are less pronounced but still significant for steeper waves. In the case characterized by kh= 1, the

discrepancies are generally less then 10% for H/h= 0.05 and 0.1 ranging from 10% to 20% for the highest waves (Fig. 3ab
:
6).
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Figure 3. Time-independent velocity field under mechanically-generated regular waves characterized by kh= 1, a) H/h= 0.05, b) H/h=

0.1, c) H/h= 0.2; weakly-nonlinear theory - black arrows and line, higher-order theory EMTV - green arrows, LMTV - blue arrows; higher-

order vectors are shifted upwards for convenience of comparison.

Again the more intensive mass circulation is apparent when higher-order terms are taken into account for the case of kh= 1

and H/h= 0.2 (Fig. 3c). The similar conclusions may be drawn for the deeper water kh= 2 (Fig. 4). However, in the case of

the mass transport velocity profile relatively far away from the wavemaker paddle (x= 3h) the differences are twice as high335

than in the wave cases corresponding to kh= 1. It should be noted that, for higher kh
::::
(Fig.

::
7), the results corresponding to two

methods of averaging are more consistent, however the highest difference may still reach 20% as in the case of longer waves .

::::
(Fig.

:::
5c).

:
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Figure 4. Time-independent velocity field under mechanically-generated regular waves characterized by kh= 2, a) H/h= 0.05, b) H/h=

0.1, c) H/h= 0.2; weakly-nonlinear theory - black arrows and line, higher-order theory EMTV - green arrows, LMTV - blue arrows; higher-

order vectors are shifted upwards for convenience of comparison.

Putting aside the problems with averaging of the velocity fieldand basing on previous comparisons of the higher order

solution against experiments in the flume (Paprota, 2020), the general conclusion from the analysis of the results depicted in340

Figs. 2-4
:
7
:
is that admitting higher-order terms of the Taylor series expansions of the boundary conditions imposed at the

moving boundaries leads to more accurate prediction of the time-independent velocity near the wavemaker
::
as

:::::::
expected. This is

of significant importance especially for the modeling of wave-induced mixing and the evolution of the water temperature field
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Figure 5.
::::::
Relative

:::::::::
differences

:::
for

:::::::::::::
time-independent

::::::
velocity

::::
field

::::
under

::::::::::::::::::
mechanically-generated

::::::
regular

:::::
waves

::::::::::
characterized

::
by

::::::::
kh= 0.5,

:
a)
::::::::::
H/h= 0.05,

::
b)
:::::::::
H/h= 0.1,

::
c)
:::::::::
H/h= 0.2;

::::::
LMTV

::
vs

:::::::::::::
weakly-nonlinear

:::::
theory

:
-
:::::
black

:::::
circles,

::::::
LMTV

::
vs

:::::
EMTV

:
-
:::::
green

::::
filled

::::::
circles.

.
:

as the higher-order approach predicts enhanced streaming in layers adjacent to the bottom and the surface. This leads to more

intense mixing processes and heat exchange.345

3.3 Evolution of
:
a
:
temperature field

The modeling of wave-induced vertical mixing in terms of the temperature redistribution in the water column relies on the

solution to the two-dimensional boundary-value problem defined by Eqs. (30)-(34). The input parameters being introduced to
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Figure 6.
::::::
Relative

:::::::::
differences

::
for

:::::::::::::
time-independent

:::::::
velocity

:::
field

:::::
under

::::::::::::::::::
mechanically-generated

:::::
regular

:::::
waves

::::::::::
characterized

:::
by

::::::
kh= 1,

::
a)

::::::::::
H/h= 0.05,

::
b)

:::::::::
H/h= 0.1,

:
c)
::::::::::
H/h= 0.2;

:::::
LMTV

::
vs

:::::::::::::
weakly-nonlinear

:::::
theory

:
-
:::::
black

:::::
circles,

::::::
LMTV

::
vs

:::::
EMTV

:
-
:::::

green
::::
filled

::::::
circles.

the governing advection-diffusion equation Eq. (30) are the diffusion coefficient κv calculated using the Eqs. (35) and (36)

and the time-independent wave velocity field (U , W ). The modeling procedure remains in accordance with previously pub-350

lished results Sulisz and Paprota (2019)
::::::::::::::::::::::
(Sulisz and Paprota, 2019) with different velocity field input. The temperature T0(z)

determines the initial thermal state of the fluid (Fig.8).

In Figs. 9-11, the temperature spatial distributions representing the thermal states of
:::
the undulating water body after 100

s are provided for the test cases listed in Table 1. The results in the plots correspond to the
:
a weakly-nonlinear solution and
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Figure 7.
::::::
Relative

:::::::::
differences

::
for

:::::::::::::
time-independent

:::::::
velocity

:::
field

:::::
under

::::::::::::::::::
mechanically-generated

:::::
regular

:::::
waves

::::::::::
characterized

:::
by

::::::
kh= 2,

::
a)

::::::::::
H/h= 0.05,

::
b)

:::::::::
H/h= 0.1,

:
c)
::::::::::
H/h= 0.2;

:::::
LMTV

::
vs

:::::::::::::
weakly-nonlinear

:::::
theory

:
-
:::::
black

:::::
circles,

::::::
LMTV

::
vs

:::::
EMTV

:
-
:::::

green
::::
filled

::::::
circles.

higher-order model predictions of the time-independent wave velocity field. Both methods are compared in order to highlight355

the effects of nonlinearity on vertical mixing due to waves.

In the direct vicinity of the wavemaker paddle, the initial state of the water temperature is uniformly stratified according to

T0. The moving wavemaker paddle generates regular waves and the layers of water of equal temperature are deformed by the

oscillatory motion of the water body according to the time-independent velocity field presented in Figs. 2-4. Advection plays

an important role in wave-induced mixing processes as even small changes in the velocity strongly affect the evolution of the360

temperature field. This implies the major differences between weakly-nonlinear and higher-order predictions of the resultant
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Figure 8. Initial temperature in the fluid domain; a) spatial distribution; b) vertical profile.

Figure 9. Changes in the temperature field due to waves after 100 s for kh= 0.5, a) and b) - H/h= 0.05, c) and d) - H/h= 0.1, e) and f) -

H/h= 0.2; weakly-nonlinear theory a), c) and e) (left), higher-order theory b), d) and f) (right).

temperature when the steepness of waves increases. This effect is clearly seen in the Figs. 9-11. As previously stated, the

discrepancy between weakly-nonlinear velocities and the velocity predictions admitting higher-order terms in the free-surface

boundary conditions grows with increasing steepness and wave nonlinearity (Ursell number) and may even reach 40% in the

subsurface layer.365

Although the highest relative differences are relevant for the longest waves, the effect of including higher-order terms is

most apparent for waves of the largest kh characterized by the highest time-independent velocities. It may be seen in the

Fig. 9 that after 100 s the colder water is moved to the surface close to the wavemakeer only for the steepest waves (Fig. 9f)

when predicted by
:::
the higher-order model, while for the corresponding weakly-nonlinear temperature field this process is less

intensive (Fig. 9e). Additionally, the higher-order results exhibit some variation of mixing along the flume (Fig. 9f).370

In the case of waves characterized by kh= 1, the wave-induced mixing is more intensive
:::
(see

:::::
Table

:::
1) and for the steepest

waves (Fig. 10e and f
::
ef) the warmer water is moved away from the wavemaker. It should be noticed that

::
the

:
higher-order

solutions
::::::
solution

:
predicts an enhanced streaming near the surface (Fig. 10f). In this way, the decreased water surface tem-
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Figure 10. Changes in the temperature field due to waves after 100 s for kh= 1, a) and b) - H/h= 0.05, c) and d) - H/h= 0.1, e) and f) -

H/h= 0.2; weakly-nonlinear theory a), c) and e) (left), higher-order theory b), d) and f) (right).

Figure 11. Changes in the temperature field due to waves after 100 s for kh= 2, a) and b) - H/h= 0.05, c) and d) - H/h= 0.1, e) and f) -

H/h= 0.2; weakly-nonlinear theory a), c) and e) (left), higher-order theory b), d) and f) (right).
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perature affects regions located further away from the wavemaker, when compared to weakly-nonlinear results (Fig. 10). The

similar temperature field modification affect the waves of kh= 2, but for the lower analyzed height (cf. Figs. 10ef and 11cd).375

In the case of the highest waves of kh= 2,
:
the warmer water is almost completely swept away from the region of direct

wavemaker action (Fig. 11e and f
:
ef).

3.4 Further discussions

Energy input from wind to ocean surface waves is tremendous and exceeds 60 TW (Wang and Huang, 2004). A large amount

of energy dissipates and
:::::
which

:
implies stirring and mixing processes in the oceanic mixed layer. A parameterization scheme380

for surface wave-induced mixing was proposed and numerical experiments indicate that this parameterization affects the per-

formance and outcome of ocean circulation models (Qiao et al., 2004, 2010; Xia et al., 2006) as well as climate predictions

(Song et al., 2007; Huang et al., 2008). Although field observations suggest that surface waves can generate vertical mixing

(Matsuno et al., 2006), it is still difficult to distinguish the mixing originating from the variety of processes that accompanied

ocean waves. Although the problem of wave-induced vertical mixing is of significant importance for physical oceanographers385

and climatologists, the research on this subject is still in its infancy. A wave-induced
::::::::::::
Wave-induced mixing is a very impor-

tant process from a practical point of view and is a challenging problem for theoretical investigations. The understanding of

wave-induced mixing is of fundamental importance for the modeling and accurate prediction of ocean transport processes

and climate changes. The problem is that the parameterization scheme applied in the modeling and prediction of ocean surface

wave-induced mixing is based on drastic simplifications. Wave models derived using simplifying assumptions cannot be applied390

to predict ocean surface wave-induced mixing with sufficient accuracy. The present studies clearly show that it is necessary to

apply at least a weakly-nonlinear wave theory to obtain reasonable results
:::
(no

:::::::::::
wave-induced

:::::
mass

::::::::
transport

::
in

:::::
linear

::::::
theory

:::::
means

:::
no

::::
heat

::::::::
exchange

:::::
along

:::
the

::::::::
direction

::
of

:::::
wave

:::::::::::
propagation), while an increased accuracy is possible using advanced

nonlinear wave models admitting higher order effects.
::::::::::
higher-order

:::::::
effects.

:
It
::::::
should

::::
also

:::
be

:::::
noted

:::
that

::
in

:::
the

:::::::
present

::::::
studies

::
the

::::::
effects

:::
of

:::::::::
turbulence

:::
and

:::
the

:::::::::::
development

::
of

:::::::
viscous

::::::::
boundary

:::::
layers

::
is

:::::::::
neglected,

:::::
while

::::
these

:::::::::
processes

::::
may

::::
have

:::::
some395

:::::
impact

:::
in

:::::
larger

::::
time

::::::
scales.

:::
For

::::::::
example,

:::
the

:::::
mass

:::::::
transport

:::::::
velocity

::::::
profile

:::::::
changes

::::
due

::
to

:::
the

::::::
effects

::
of

::::::::
viscosity

::::
near

:::
the

:::::::::
boundaries

:::
(the

:::::::::
undulating

::::
free

::::::
surface

:::
and

:::
the

:::::::
bottom)

:::
for

:
a
::::::::::
sufficiently

::::
long

::::
time

:::::::
interval,

:::::
which

::::
was

::::::
studied

::::::::::
theoretically

:::
by

::::::::::::::::::::
Longuet-Higgins (1953)

:::
and

::::
also

::::::::::
investigated

::::::::::::
experimentally

::
in

::
a

::::
wave

:::::
flume

:::::::::::::::::::::::::::::::::::::
(see e.g. Swan, 1990; Grue and Kolaas, 2017)

:
.

One
:::::
There

::
is

:::
one

:
more critical outcome from the point of view of engineers and scientists working on the modeling of

ocean transport processes, wave-induced mixing, and climate changesis important. Namely, since it is difficult to distinguish400

the mixing that accompanied ocean waves, the only chance to provide reliable insight into the wave-induced mixing processes

is to conduct laboratory experiments in a wave flume. The repeatable experiments in the well-controlled environment of a wave

flume enable us to perform an accurate investigation that is essential in the analysis of the physics of the wave-induced mixing

phenomenon. Moreover, a laboratory investigation provides
::::::::
laboratory

::::::::::::
investigations

:::::::
provide useful data for the analysis of

the correlations between spectral and statistical characteristics of wave regimes and wave-induced mixing processes. Finally,405

laboratory experiments enable us to avoid various side effects and separate the mixing from other processes that accompanied

ocean waves
:::
such

:::
as

::::
wave

::::::::
breaking. This is of fundamental importance for understanding of mixing and accurate calibration
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and verification of numerical models. The problem is that, in addition to progressive laboratory waves, the moving wavemaker

represented by the kinematic wavemaker boundary condition, enforces the return current that affects transport processes and

wave-induced mixing.410

It is the idea behind the present study, which employ
:
a
:
numerical wave flume model, to thoroughly analyse wave-induced

mixing effects using
::
the

:
derived numerical approach and assist further works on experimental fluid mechanics aiming at better

understanding of transport processes in the open ocean. To the best of the authors knowledge, the derived wave-induced mixing

model
:::::::
approach

:
is the only available numerical solution that, in addition to nonlinear free-surface boundary conditions, also

satisfies the kinematic wavemaker boundary condition. Accordingly, the derived model admits
:::::::::
wavemaker

::::::
model

::::::
admits

::
a415

return current and may be applied to quantify and separate the effects of
:::
the return flow on wave-induced mixing processes.

Moreover, the
:::
The presented results should hopefully improve simple models basing on

::
the

:
Stokes drift applicable to random

ocean waves (Myrhaug et al., 2018). As it was previously mentioned, the derived modelling framework may be modified

to cover open ocean conditions for the periodic domains and quasi-random sea states using other forms of wave excitation

(Paprota, 2019).420

4 Conclusions

The applicability of the wave-induced mixing model for waves generated in a wave flume is validated based on the solution

admitting higher-order nonlinearities. In the range of wave conditions covering transitional and shallow waters, the weakly-

nonlinear results are in
:
a reasonable agreement with

:::
the more accurate pseudo-spectral solution in the case of waves of low to

moderate steepness. The general discrepancy grows with increasing the wave height and the wavelength. Contrary to
::::::
Unlike425

the weakly-nonlinear approach, the higher-order model is able to predict enhanced subsurface streaming affecting the evolution

of the surface temperature for more severe sea states. It is due to the fact that the time-independent velocity field predicted by

both methods differs especially in the subsurface and near-bottom layer
::::
layers

:
of the oscillating water body.

General ocean circulation models admitting wave-induced vertical mixing but relying on simplified assumptions cannot

predict input from mixing with sufficient accuracy. It is necessary to apply at least
:
a
:

weakly-nonlinear correction to obtain430

reasonable approximation. For improved predictions, advanced highly-nonlinear models are preferred, which is confirmed by

the present study. Moreover, the derived model allows
::::::
method

::::::
allows

:
a
:
return current to be correctly quantified in experimental

investigations on wave-induced vertical mixing for better interpretation of laboratory results giving more information for further

improvements to parametrization schemes.

Data availability. Datasets for this research are available in these in-text data citation reference: Wave-induced mixing in a numerical wave435

flume submitted with DOI https://doi.org/10.5061/dryad.80gb5mkqw by Maciej Paprota.
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