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Abstract. A semi-analytical solution to an advection-diffusion equation is coupled with a nonlinear wavemaker model to
investigate the effect of strong nonlinearity on wave-induced mixing. The comparisons with weakly-nonlinear model predic-

tions reveal that in the case of waves of higher steepness, enhanced mixing affects the subsurface layer of the water column.

Ineluding-A fully-nonlinear model captures the neglected higher-order terms into—free-surface-boundary—conditions—of-the

wavemaker-problem—seeures-from a weakly-nonlinear solution and provides a reliable estimation of the time-mean velocity
field. The corrected wave-induced mass-transport velocity leads to improved estimates of subsurface mixing intensity and

ocean surface temperature.

1 Introduction

Mass-transport processes associated with the propagation of non-breaking ocean surface waves strongly affect the mixing
of oceanic waters and the global exchange of heat at the air-water interface. Surface waves transfer energy into turbulence
modifying the mixing intensity of the upper ocean (Qiao et al., 2004, 2010, 2013). Therefore, the correct identification and
quantification of mass-transport processes associated with water waves leading to mixing of subsurface ocean waters is of
practical importance for short-term and long-term weather forecasts.

Small-scale and large-scale climate modelling equally benefits from including the wave-induced mixing predictions into
the general ocean circulation simulations (e.g. Qiao et al., 2004; Xia et al., 2006). Including the parameterized wave-induced
mixing in ocean circulation models confirms that its contribution qualitatively improves the reliability of numerical results (e.g.
Song et al., 2007; Shu et al., 2011). Despite the fact that some field measurements lead to the conclusion that surface waves
contribute to heat exchange of the upper ocean (Matsuno et al., 2006), it is difficult to collect reliable in situ data confirming
the role of non-breaking surface waves in vertical mixing processes. An alternative approach to the problem is to investigate
the wave-induced mixing based on the physical tests in the-a wave flume or the-a wave basin.

Laboratory experiments are the source of valuable information on wave induced-mixing processes as weH-as-they provide
data supperting-enabling the evaluation of wave-induced mixing coefficient (e.g. Babanin and Haus, 2009; Dai et al., 2010;
Sulisz and Paprota, 2015). In the-a wave flume, the mixing originated from breaking and non-breaking wave-processes-may-be
eventualty separated-waves may be investigated to evaluate the real contribution from the non-breaking surface waves to general

ocean circulation, which is of fundamental importance for calibration of wave-induced mixing models (Sulisz and Paprota,
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2019). It should be noted that the experimental data are affected by undesirable spurious laboratory effects requiring special
attention when analyzing the results of mass-transport processes driven by waves (e.g. Paprota and Sulisz, 2018; Paprota,
2020).

The-study-study extends the analysis of wave-induced vertical mixing performed by Sulisz and Paprota (2019) en-the-basis-of

which used a weakly-nonlinear theory applied to mechanically generated water waves. The improvements cover the application
of-the-more-exactnonlinear-more exact calculations of the wave velocity field using a fully-nonlinear wavemaker model, which
was successfully verified with respect to kinematics of regular waves against laboratory measurements collected in the flume
(Paprota and Sulisz, 2018; Paprota, 2020). This higher-erder-method allows modelling of non-breaking waves with strong
nonlinearities and admits amplitude dispersion, nonlinear wave-wave interactions in deep and intermediate waters as well as
solitary waves propagation, which goes beyond the applicability of weakly-nonlinear approaches. Corresponding-methods-The
model belongs to a family of wave solutions basing on a pseudo-spectral approach, which consider highly-nonlinear non-
breaking waves and are originating from methods derived by Dommermuth and Yue (1987) and West et al. (1987) — (see also
Paprota and Sulisz, 2019, for a review).

This-The application of the fully-nonlinear model should lead to the more accurate estimation of the phase-averaged wave
velocity field and, hopefully, the more reliable evaluation of the evolving water temperature field under regular waves. Fa-this
waySince the numerical model provides a full description of the evolution of the velocity field, it is possible to separate the
Stokes drift from Lagrangian and Eulerian mean velocities (see Paprota et al., 2016; Paprota and Sulisz, 2018; Paprota, 2020).
Hence, the results presented in this study may improve simple models basing on Stokes drift applicable to ocean waves of
random (spectral) nature (Myrhaug et al., 2018), while the derived modelling framework may be modified to cover open ocean
hydrodynamics with other forms of introducing waves (Paprota, 2019).

New contributions are also presented with regard to methods of calculations of time-mean flows, which are essential for
the present analyses. Namely, a new Eulerian procedure is reported, which is different to Lagrangian-based method applied
in earlier studies (Paprota et al., 2016; Paprota and Sulisz, 2018; Paprota, 2020). The study also highlights the differences
between two methods of calculation of velocity distribution of time-mean wave-induced flows either based on Lagrangian
particle tracking or approximated Eulerian averaging. In case of the former, an improved and more accurate procedure of

estimating the phase-averaged velocity is developed.

This study presents the methods of an analysis of wave-induced vertical mixing from the wavemaker perspective. The derived

mathematical modelling approach may be directly applied to experimental activities aiming at recognising, quantifying and

arameterising wave-induced vertical mixing effects (see e.g. Dai et al., 2010; Sulisz and Paprota, 2015) for a better design of
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Figure 1. Schematic view of mechanically-generated waves and the coordinate system.

hysical model setup and a wave parameter selection in the laboratory. The awareness of the influence of laboratory side effects

on the experimental outcome is essential for the correct interpretation of the results. This issue was raised in the earlier studies

Sulisz and Paprota, 2015, 2019).

The paper is composed as follows. First, the outline of the coupled theoretical model describing the mixing processes under

mechanically induced water waves is presented. Then, the comprehensive comparison between weakly and fully nonlinear
approaches is given using numerical results to evaluate the effects of strong nonlinearity on vertical mixing processes. Finally,
the discussion on the major results is provided together with remarks on accuracy and reliability of mathematical and numerical
methods together with further discussions on putting the results of the study in a broader context of earth system modeling

with respect to general ocean circulation. The paper is then completed by a summary and conclusions.

2 Materials and Methods

The considered numerical approach to the modeling of vertical mixing induced by mechanically generated waves is realized
through a procedure involving two fundamental steps referring to the solution of the wavemaker problem and advection-

diffusion balance, respectively.
2.1 Particle kinematics of mechanically-generated waves

First, the problem of the generation of waves in a numerical wave flume is formulated and solved. In the present study, a
potential flow wave theory is used to obtain the solution within the Eulerian frame of reference. Weakly-nonlinear analytical
approach-and higher-order numerical methods are employed to determine the wave fields in the rectangular domain, in which
the water elements are defined by the horizontal = and vertical z coordinates of the Cartesian system. The origin of the system
is located at the intersection of the wavemaker zero position and free-surface level corresponding to the hydrostatic conditions.
The mechanically-driven oscillation of the free surface represented by elevation function n(x,t) is induced by the piston-like
motion of the wavemaker paddle according to the displacement function x(¢). The flume bottom is assumed horizontal and the
water depth is h = const. The general presentation of the computational domain and the location of the coordinate system is

depicted in Fig. 1.
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According to the potential flow assumptions, the motion of the-an inviscid and incompressible fluid is irrotational. Moreover,
the solid boundaries are impervious. The scalar velocity potential function ¢(x,z,t) may be introduced to determine the

velocity vector field v(x, z,t) such that v = V¢. The wavemaker boundary-value problem is then formulated as

Vi¢=0, —h<z<n, (1)
N+ utle — ¢ =0, z =1, )
e+ 5 (¢ +02)+gn=0, z=n1, 3)
¢. =0, z=—h, 4)

— ¢ =0, r =X, ()

where g is the acceleration due to gravity.

The first part of a selution—proecedure-pseudo-spectral solution involves expanding the kinematic free-surface boundary
condition (2), the dynamic free-surface boundary condition (3), and the kinematic wavemaker boundary condition (5) in a
Taylor series about a mean position corresponding to the still water level (z = 0) for (2)-(3) and wavemaker paddle zero

position (z = 0) for (5)

077777,' azm(nt+¢wnx (bz):(), 2=0, ©
n" o s o
Zm|3m¢t+ (92 +&5)+gn) =0, z=0, -
am
zjofnl 8Zm( —¢z) =0, xz=0. ®

In this way, a simple rectangular form of the computational domain is preserved and the solution procedure is advanced further
using either the perturbation or spectral approach. In the present study both weakly-nonlinear (perturbation expansions) and

higher-erderfully-nonlinear (spectral expansions) solutions are briefly presented and applied to calculate the velocity field

for wave-induced mixing calculations. The order of nonlinearity depends on the order of nonlinear terms of Taylor series
expansions of boundary conditions. Second-order terms are retained for weakly-nonlinear solution, while the fully-nonlinear
solution is provided with no upper limit (arbitrary order).
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2.1.1 Weakly-nonlinear solution

The perturbation expansion is first applied to solve the wavemaker problem defined by Eqs. (1)-(5) according to the solution
derived by Hudspeth and Sulisz (1991); Sulisz and Hudspeth (1993). The monochromatic wavemaker paddle displacement of

amplitude s is assumed
X(t) = ssin(at + @), ©)

which generates periodic waves of the first-order amplitude of a, the angular frequency of o, and the phase ¢ in the semi-
infinite flume domain. Due to the fact that = goes to infinity, the radiation condition (outward propagating waves) is imposed
at the far end lateral boundary of the domain (Hudspeth and Sulisz, 1991).

Using the expansions of the boundary conditions Eqgs. (6)-(8) and retaining the terms up to the second order, the weakly-

nonlinear boundary conditions become

Nt — @z + Pae — NP2z =0, z =0, (10)
1

et 5(07 +02) + 0oz tgn=0,  2=0, (11)

Xt_¢m_x¢xw:0> z=0. (12)

Additionally, the following small steepness parameter ¢ = ak (where k is the first-harmonic wave number) perturbation
expansions of the angular frequency w (o = wy), the free-surface elevation, and the velocity potential functions are used (Hud-

speth and Sulisz, 1991)

w= Z €W, (13)
n=0
A, 2,t) =) €"Pni1, (14)
n=0
n(@,t) =Y € Ny (15)
n=0

Substituting the perturbation forms Egs. (13)-(15) into the boundary conditions correct up to the second order, Egs. (10)-

(12), leads to the final weakly-nonlinear solution to the velocity potential and free-surface elevation functions (Hudspeth and
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Sulisz, 1991). The formulas for the horizontal U (x,y) and vertical V' (x,y) components of the time-independent mass-transport
velocity V (z,y) for the case of the piston-type wavemaker of full-depth draught are calculated from nondimensional forms
reported as in-Egs. (50a) and (50b) by Hudspeth and Sulisz (1991). In order to get dimensional values, the results calculated
by Egs. (50a) and (50b) in the work by Hudspeth and Sulisz (1991) are multiplied by a+/gk.

Far away from the wavemaker paddle (x > 3h), the vertical component of the time-independent velocity vanishes and the
time-independent horizontal velocity profile along the water depth U, converges to the sum of the Stokes drift Ug and return

current Ug, velocities (Longuet-Higgins, 1953; Dean and Dalrymple, 1984), i.e.
Up(2) =Us(z) + Ug, (16)

where the Stokes drift profile is calculated as

koa?cosh(2k(z + h))

Us(z) = 2sinh?(kh)

: (17)

and the return current value takes the form
koa?sinh(2kh) a’kg

Up = — =25 18
BT T 4khsimh(kh) | 20k (18)

2.1.2 Higher-ordernonlinear-Fully-nonlinear solution

An alternative approach, which admits higher-order wave components, is based on the spectral method applied to the wave-
maker problem (Paprota and Sulisz, 2018). Contrary to the presented perturbation approach, the waves are generated by an
arbitrary function x(¢) in a finite domain of length b which is taken sufficiently large to exclude the effect of wave reflection
from the far end wall of the flume. In this regard, only progressive waves are considered facilitating the comparisons with the
weakly-nonlinear solution.

The free-surface elevation function is expanded in a Fourier cosine series as
z,t) = a;cos(\iz), (19)

while the corresponding expansion of the velocity potential function is coupled with an additional term satisfying the wave-
maker boundary condition (5) to give

d(z,2,t) = ;AiWCOS(Ai@ +Bo((z —b)* = (z+h)?)

cosh(p;j(z —0))
—_— j h 20

+Z COSh /.L b) COS(ILL](Z—’_ ))7 ( )
where \; =im/b and p; = jm/h are the eigenvalues of the expansions and the solution coefficients are the functions of time

(a;(t), A;(t), and B;(t)). The B; coefficients are determined-as-(Paprota and Sulisz, 2018)

Xeh+ M X sinmr S A A, tanh(\h)

B
0= 2h(x —b) ’

21
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165 B; = ¥ — . >0 (22)
hzm OHT+ X7 cos(mr) tanh (g b)‘“’s |

The coefficients A;, Bj, and a; are determined in an iterative solution procedure from the kinematic free-surface boundary
condition (6), the dynamic free-surface boundary condition (7), and the kinematic wavemaker boundary condition (8). For a

given time ¢, the uknown coefficients a;, A; are calculated using a Fourier transform of 1 and ¢ as

0“\[\3

b b
2
/ x,t)cos(Nz)dx, A; 5/ (2,0,t) cos (\yz) dz, (23)
0 0

170 while B; are determined using Eqs. (21) and (22). Fime-stepping-is-then-applied-The coefficients are then used to calculate
free-surface and velocity potential values using inverse Fourier transforms to advance the solution in time. Hence, time-stepping.
is_applied in physical domain to obtain values of ¢ and 71 at a new time level. A fourth-order Adams-Bashforth-Moulton
predictor-corrector approach is prefered-preferred as a time-marching scheme (see e.g. Press et al., 1988), with initial values of
¢(x,0,0) = 0 and n(x,0) = 0. The wavemaker model used in the present study is reported in the work by Paprota and Sulisz

175 (2018).

The instantaneous wave velocity field is derived by expressing the horizontal u and vertical w velocity components in terms

of the spatial derivatives of the velocity potential ¢, and ¢, respectively as

u(z, z,t) Z)\ A; Wsin()\ix) +2By(x —b)
+j§_jluijWcoswj<z+h», @
180
(x,2,t) Z)\ A; Smil%h /Z\—;)h)) cos(\jx) —2Bo(z+h)
—Z Hy Wsin(w(z—kh)). (25)

After the-steady—state-of-a fully-developed wave motion is achieved, the time-independent wave velocity field may be
approximated by time-averaging of the instantaneous wave velocity (see Hudspeth and Sulisz, 1991) within the range limited
185 by two in-phase states of regular wave motion (over one wave period, which is either given or calculated from the dispersion

relation) as

Ul(z,z) = <uw/udt+uz/wdt
2 2
—|—O.5um</udt> +O.5uzz</wdt> >+ (u), (26)
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W(xz,z) = <ww/udt+wz/wdt
+0.5ww</udt>2 +0.5w,, (/wdt>2> + (w). 27

and is referred here and after as the Eulerian-mean transport velocity (EMTV). The pair of triangle brackets <> denotes the
operator of time-averaging over one wave period. The velocities u and w are calculated using Eqgs. (24) and (25), while their
derivatives are evaluated analytically. The integrals of v and w are determined directly from Eqgs. (24) and (25) upon replacing
the time-dependent coefficients A; and B; with their integrals | A;d¢ and [ B;dt. The integration is achieved by expanding
the A; and B; into a Fourier series with respect to time and integrating the resulting Fourier expansions analytically.

An alternative approach, which leads to the time-independent wave velocity field, is the procedure involving the Lagrangian
particle tracking - Lagrangian-mean transport velocity (LMTV). The time-averaged velocity is calculated based on the dis-
placement of a water particle moving between its two successive in-phase positions along the particle trajectory (Paprota et al.,

2016). The trajectory of a water particle is determined by numerical integration of the system of differential equations

—Ccli:: =u(z,z,t), (28)
dz

—_ = 2
T = wl@D), 29)

for the set of initial particle locations.

In the present study, the improvements to the method of evaluation of mass transport velocity based on the Lagrangian
particle tracking (Paprota and Sulisz, 2018) are introduced. In the previous works (Paprota et al., 2016; Paprota and Sulisz,
2018; Paprota, 2020), the procedure relied on distributing artificial tracers in a water column under fully developed regular
waves. Initially, the tracers are uniformly distributed along the water depth and they coincide with the zero down-crossing
phase of the wave for a given distance from the wavemaker. After one Lagrangian wave period (see e.g. Longuet-Higgins,
1986; Chen et al., 2009), the tracers move from their original position due to mass transport. The particle tracking procedure is
employed to determine the mass transport velocity profile. The procedure is repeated for subsequent longitudinal positions to
cover the accepted region of interest.

Here, in order to get the better estimation of the time-independent velocity field, the two hydrodynamic states corresponding
to both zero up- and down-crossings of the regular wave are used to start-up the tracking procedure - contrary to the previ-
ous method based only on the zero down-crossings (e.g. Paprota et al., 2016; Paprota and Sulisz, 2018). The procedure is
analogous, but involves more tracers and covers two phase positions. The resulting LMTV is calculated as the mean of the

time-independent velocity fields corresponding to both zero-crossing initial states.
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2.2 Wave-induced vertical mixing intensity

The numerical solution to the-a two-dimensional advection-diffusion equation with relevant boundary conditions is used to
predict evelution-of-the evolution of the temperature field under mechanically generated regular waves in a-the flume. Assuming
that the changes of temperature are solely due to wave-induced and diffusion processes, the following boundary-value problem

is formulated as in the work by Sulisz and Paprota (2019)

T+ UT, +WT, = 0,(kT}) + 0.(kTy), (30)
T.=0, z2=0, €1
T,=0, x=0, (32)
T.,=0, z=-—h, (33)
T,=0, x=b, (34)

where T is the water temperature, and « is the diffusion coefficient represented as a sum of the molecular (x,,) and wave-

induced (k, ) diffusivities
K= Km + Ky. (35)

In the advection-diffusion equation (30) the velocities U an W are, in fact, Lagrangian velocities which refleet-describe the
mean transport velocity field (the Stokes drift and the-a return current in this case). The inclusion of the Stokes drift (without
return current) to advection equation was discussed explicitly for the case of ocean waves by McWilliams and Sullivan (2000).

The molecular diffusivity x,, = 1.4 x 10~"m/s2, while the wave-induced diffusivity is calculated by the formula reported
by Sulisz and Paprota (2015) as
sinh?(k(z 4 h)) cosh(k(z + h))

sinh®(kh) ’

ko(2) = ad’ko (36)

where o = 0.002 is the dimensionless coefficient, which is evaluated based on measurements (Sulisz and Paprota, 2015). The
derivation of k, is based on the weakly-nonlinear theory. More information is provided in the work by Sulisz and Paprota

(2015), where the comparison between weakly-nonlinear and more general form is provided. The parameter o was estimated
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based on the experiments only for the presented form of «,. In order to use a more general formula, new values of o must be
determined using experimental data from a wider range of wave conditions.

The advection-diffusion equation Eq.(30) holds in the entire fluid domain, while the heat radiation is assumed zero at the
water surface - Eq.(31), the bottom - Eq.(33), and the lateral boundaries - Egs.(32) and (34). The length b is taken sufficiently
long in order to reduce the effect of the finite domain on the results in the area of interest, which is limited to the region of
several water depths from the wavemaker paddle. The omitted procedure of incorporating the non-zero heat radiation at the
water surface is discussed in the paper by Sulisz and Paprota (2019).

The solution of the advection-diffusion equation Eq.(30) is achieved by employing a similar methodology whieh-is-to that
used to solve the wavemaker problem admitting higher-order nonlinearities presented in the previous section. Accordingly, the

scalar temperature field function is expanded into a double Fourier series of the form (Sulisz and Paprota, 2019)

T(x,z,t) = Z Zdij cos(Ai(z — b)) cos(pj(z+ h)). 37

i=1j=1

Again, the solution of Eq. (30) is achieved by a time-stepping procedure, which, in this case, consists of an application of
the spectral expansion method to describe 7" and the Runge-Kutta formulas to proceed in time (see e.g. Press et al., 1988).
Accordingly, the wave-induced diffusivity is determined using Eq. (36), while the velocity field is either calculated by means
of the weakly-nonlinear solution (Hudspeth and Sulisz, 1991) or higher-order approach (Paprota and Sulisz, 2018) for selected
wave parameters. The initial condition of given vertical temperature distribution 7(z) is used to start-up the time stepping
procedure. The time derivative of temperature T is calculated from Eq. (30) with the aid of the expansion Eq. (37) after

the coefficients d;; are determined by applying a two-dimensional cosine fast Fourier transform. The implementation of this
rocedure is freely available in a supplementary material to this article.

3 Results and discussion

The evaluation of temperature evolution of an oscillating water body is analyzed in a numerical wave flume environment. This
approach provides a basis for the straightforward verification of the major outcome of the modelling procedures, which are
presented in the previous section, against measurements in the real laboratory. On the other hand, the numerical model may be
modified to cover pseudo-random ocean waves in a large periodic domain (see e.g. Paprota, 2019) to analyze the wave-induced

vertical mixing processes in offshore conditions.
3.1 Numerical test cases

The waves are generated by a monochromatic wavemaker motion in a numerical flume. The transitional and shallow water
wave cases are considered for three depth-relative dimensionless parameters kh of 0.5, 1 and 2. The effect of wave height H
is also studied and corresponds to the dimensionless steepness parameter H /h of 0.05, 0.1 and 0.2. In the case of the higher-
order solution, the waves are generated starting from rest with the ramp function applied to the stroke of the wavemaker motion

for the first five wave periods. As previously stated, the longitudinal size of the flume b is taken sufficiently long to exclude

10
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Table 1. Basic dimensionless parameters of mechanically-generated regular waves.

Depth Height-depth ~ Steepness ~ Wave-iindueced-Wave-induced Ursell

parameter ratio parameter diffusivity number
kh H/h Ak k0(0)/Km HL?*/h?
0.5 0.05 0.0125 0.36 7.9
0.5 0.1 0.025 291 15.8
0.5 0.2 0.05 233 31.6
1 0.05 0.025 0.8 1.97
1 0.1 0.05 6.4 3.95
1 0.2 0.1 51.3 7.9
2 0.05 0.05 2.01 0.49
2 0.1 0.1 16.1 0.99
2 0.2 0.2 128.9 1.97

wave reflections from the analysis and it corresponds to ten wavelengths (L) for kh =2 and 20L in the remaining longer
wave cases. The selected progressive wave parameters are in-aceordanee-to-the same as in previous studies on the modeling
of wave-induced mixing in wave flumes (Sulisz and Paprota, 2019). After the steady—fully-developed state is achieved, the
time-independent wave velocity field is determined. The resulting horizontal and vertical velocity components U and W are
then substituted to Eq. (30) and the temperature field evolution is predicted. The summary of wave parameters is provided in
Table 1 together with wave-induced diffusivity values at the surface in relation to its molecular counterpart.

It should be noted that the model may be applied to deep-water as well as shallow water conditions, which was-already-is
presented in the work by Sulisz and Paprota (2015). Here, the cases correspond to a limited range of kh from 0.5 to 2.0. In this
way, the results from the previous work (Sulisz and Paprota, 2019) may be directly eemparecompared. Moreover, deep water
conditions corresponding to kh > 7, the mixing would completely swept-sweep away the warmer water from the analysed part

of the fluid domain for the selected time frame and this case was omitted in the present study.
3.2 Phase-averaged velocity distribution

The accurate assessment of the time-independent velocity field is of significant importance in the modeling of temperature
changes under undulating water surface. The increasing steepness of generated waves intensifies wave-induced mixing pro-
cesses, but also changes the structure of heat fluxes distribution in the region occupied by the fluid. The analysis of phase-
averaged velocity distribution in the direct vicinity of the wavemaker paddle helps to identify the effect of advection terms of
the Eq.(30) on the temperature evolution driven by waves.

In Figs. 2-4, time-independent velocity fields calculated by weakly-nonlinear and higher-order methods are presented. The

arrows represent the vectors of a phase-averaged velocity corresponding to mass-transport induced by waves. Black arrows cor-

11



respond to a weakly-nonlinear solution, while green and blue arrows correspond to a higher-order solution and two methods
295 of averaging— EMTYV and LMTYV, respectively (Figs. 2-4). The way of the presentation of the results is in line with the expected
velocity vector field pattern ;-whieh-in the part of the fluid domain adjacent to the wavemaker (see Paprota and Sulisz, 2018, for a more detai
. The fluid flow forms half of the circulation cell limited by the air-water interface (z/h = 0), the wavemaker paddle (x/h = 0)
and the bottom (z/h = —1). The water mass flows with the direction of wave propagation near the surface, while the adverse
flow pushes the water to the wavemaker paddle in the lower part of the water column. At the wavemaker paddle, the water flows
300 vertically forming the lateral boundary of the general circulation in the flume. Far away from the paddle, the vertical velocity
components vanish and the typical mass-transport velocity profile over depth emerges as a sum of the Stokes drift Eq. (17) and
the return current velocity Eq. (18). Thus, the figures are complemented by the weakly-nonlinear horizontal mass-transport
velocity profile U (z) calculated outside the direct vicinity of the wavemaker paddle Eq. (16), where the evanescent-rode
effecteffect of evanescent standing waves generated by the wavemaker (see ¢.g. Dean and Dalrymple, 1984) may be neglected
305 (x> 3h). Ur(z) is plotted at the right outer edge of the graph at = = 3h for convenience of comparison. Vector plots are
complemented by bubble charts of relative differences between corresponding vector magnitudes as presented in Figs. 5-7,

where black circles denote the differences between LMTYV and weakly-nonlinear results, while green filled circles refer to the
differences between LMTV and EMTYV.

The results presented in Fig. 2 provide information on the time-independent velocity field predicted in the direct vicinity
310 of the wavemaker paddle and the differences between the weakly-nonlinear approach and the solution admitting higher-order
terms in the most extreme nonlinear regime of shallow water (kh = 0.5). Due to the fact that the considered wave cases are
characterized by highest values of the Ursell number, the differences between the two wavemaker models immediately appear
even for the lowest amplitude of free-surface oscillations of H/h = 0.05 (Fig. 2a). The highest differences in the range between
10% and 20% correspond to the velocities near the wavemaker paddle and the surface, respectively —(Fig. 5a). With increasing
315 the magnitude of the surface oscillations to H/h = 0.1 and H/h = 0.2 (Figs. 2b and 2c), the differences are becoming higher
in the larger area of the wavemaker paddle vicinity. The higher-order model predicts more intensive mass-transport near the
bottom and the surface. The increase in the subsurface velocity and the magnitude of the current near the bottom may reach

even from 15% to 30% for H/h = 0.1 and from 20% to 40 % for H/h = 0.2 —(Figs. 5b and 5Sc, respectively).
Some important information may be also acquired from the comparison between two methods of averaging corresponding
320 to either Lagrangian particle tracking (LMTV) or Eulerian averaging (EMTV) basing on Eqgs. 26 and 27, respectively. Al-
though both methods of averaging provide consistent results for lower wave heights of the generated waves, EMTYV results are
less reliable in the case of highest waves H/h = 0.2 (Fig. 2c). It can be seen that the velocity vectors near the corner point
determined by the intersection of the wavemaker paddle mean position and the surface (x/h =0, z/h = 0) are unnaturally

large as the velocity in this area (green arrows around the point (0,0) in Figs. 2c and 3c¢) is expected to vanish —The-problems

325 (see Grilli and Svendsen, 1990, for a comprehensive discussion on numerical methods inaccuracy at corner points of a fluid domain with 1

. The problem still persists when considering the subsurface velocity in some distance away from the wavemaker. The dif-

ferences between the LMTV and EMTV may reach even 20% in the velocity magnitude near the intersection between the
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Figure 2. Time-independent velocity field under mechanically-generated regular waves characterized by kh = 0.5, a) H/h = 0.05, b)
H/h=0.1, ¢) H/h=0.2; weakly-nonlinear theory - black arrows and line, higher-order theory EMTV - green arrows, LMTV - blue

arrows; higher-order vectors are shifted upwards for convenience of comparison.

wavemaker and the surface, while even greater discrepancy is visible at corner points in most extreme longer wave cases (Fig.
25c¢).

With the increasing the-relative water depth (Figs. 3 and 4), the differences between weakly-nonlinear and higher-order
time-independent velocity are less pronounced but still significant for steeper waves. In the case characterized by kh = 1, the

discrepancies are generally less then 10% for H/h = 0.05 and 0.1 ranging from 10% to 20% for the highest waves (Fig. 3ab6).
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Figure 3. Time-independent velocity field under mechanically-generated regular waves characterized by kh = 1,a) H/h = 0.05,b) H/h =
0.1, ¢) H/h = 0.2; weakly-nonlinear theory - black arrows and line, higher-order theory EMTYV - green arrows, LMTV - blue arrows; higher-

order vectors are shifted upwards for convenience of comparison.

Again the more intensive mass circulation is apparent when higher-order terms are taken into account for the case of kh =1
and H/h = 0.2 (Fig. 3c). The similar conclusions may be drawn for the deeper water kh = 2 (Fig. 4). However, in the case of
the mass transport velocity profile relatively far away from the wavemaker paddle (x = 3h) the differences are twice as high
than in the wave cases corresponding to ki = 1. It should be noted that, for higher kh (Fig. 7), the results corresponding to two

methods of averaging are more consistent, however the highest difference may still reach 20% as in the case of longer waves -
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Figure 4. Time-independent velocity field under mechanically-generated regular waves characterized by kh = 2,a) H/h = 0.05,b) H/h =
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order vectors are shifted upwards for convenience of comparison.

Putting aside the problems with averaging of the velocity fieldand-basing-on—previeus—comparisons—of-the-higher-order
solution-against-experiments-in-the-flume-(Paprota; 2020), the general conclusion from the analysis of the results depicted in

Figs. 2-4-7 is that admitting higher-order terms of the Taylor series expansions of the boundary conditions imposed at the

moving boundaries leads to more accurate prediction of the time-independent velocity near the wavemaker as expected. This is

of significant importance especially for the modeling of wave-induced mixing and the evolution of the water temperature field
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Figure 5. Relative differences for time-independent velocity field under mechanically-generated regular waves characterized by kh = 0.5,
b) H/h=0.1,¢c) H/h = 0.2; LMTV vs weakly-nonlinear theory - black circles, LMTV vs EMTV - green filled circles.

as the higher-order approach predicts enhanced streaming in layers adjacent to the bottom and the surface. This leads to more

345 intense mixing processes and heat exchange.
3.3 Evolution of a temperature field

The modeling of wave-induced vertical mixing in terms of the temperature redistribution in the water column relies on the

solution to the two-dimensional boundary-value problem defined by Egs. (30)-(34). The input parameters being introduced to
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the governing advection-diffusion equation Eq. (30) are the diffusion coefficient x, calculated using the-Eqs. (35) and (36)

350 and the time-independent wave velocity field (U, W). The modeling procedure remains in accordance with previously pub-

lished results Sulisz-andPaprota204+9)-(Sulisz and Paprota, 2019) with different velocity field input. The temperature Tg(z)

determines the initial thermal state of the fluid (Fig.8).
In Figs. 9-11, the temperature spatial distributions representing the thermal states of the undulating water body after 100

s are provided for the test cases listed in Table 1. The results in the plots correspond to the-a weakly-nonlinear solution and
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355 higher-order model predictions of the time-independent wave velocity field. Both methods are compared in order to highlight
the effects of nonlinearity on vertical mixing due to waves.

In the direct vicinity of the wavemaker paddle, the initial state of the water temperature is uniformly stratified according to

Ty. The moving wavemaker paddle generates regular waves and the layers of water of equal temperature are deformed by the

oscillatory motion of the water body according to the time-independent velocity field presented in Figs. 2-4. Advection plays

360 an important role in wave-induced mixing processes as even small changes in the velocity strongly affect the evolution of the

temperature field. This implies the major differences between weakly-nonlinear and higher-order predictions of the resultant
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Figure 9. Changes in the temperature field due to waves after 100 s for kh = 0.5, a) and b) - H/h = 0.05,c) andd) - H/h = 0.1, e) and f) -
H/h = 0.2; weakly-nonlinear theory a), ¢) and e) (left), higher-order theory b), d) and f) (right).

temperature when the steepness of waves increases. This effect is clearly seen in the Figs. 9-11. As previously stated, the
discrepancy between weakly-nonlinear velocities and the velocity predictions admitting higher-order terms in the free-surface
boundary conditions grows with increasing steepness and wave nonlinearity (Ursell number) and may even reach 40% in the
subsurface layer.

Although the highest relative differences are relevant for the longest waves, the effect of including higher-order terms is
most apparent for waves of the largest kh characterized by the highest time-independent velocities. It may be seen in the
Fig. 9 that after 100 s the colder water is moved to the surface close to the wavemakeer only for the steepest waves (Fig. 9f)
when predicted by the higher-order model, while for the corresponding weakly-nonlinear temperature field this process is less
intensive (Fig. 9¢). Additionally, the higher-order results exhibit some variation of mixing along the flume (Fig. 9f).

In the case of waves characterized by kh = 1, the wave-induced mixing is more intensive (see Table 1) and for the steepest
waves (Fig. 10e-and-fef) the warmer water is moved away from the wavemaker. It should be noticed that the higher-order

solutions-solution predicts an enhanced streaming near the surface (Fig. 10f). In this way, the decreased water surface tem-
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Figure 11. Changes in the temperature field due to waves after 100 s for kh = 2, a) and b) - H/h = 0.05, ¢) and d) - H/h = 0.1, ¢) and f) -
H/h = 0.2; weakly-nonlinear theory a), ¢) and e) (left), higher-order theory b), d) and f) (right).
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perature affects regions located further away from the wavemaker, when compared to weakly-nonlinear results (Fig. 10). The
similar temperature field modification affect the waves of kh = 2, but for the lower analyzed height (cf. Figs. 10ef and 11cd).
In the case of the highest waves of kh = 2, the warmer water is almost completely swept away from the region of direct
wavemaker action (Fig. 11e-and-fef).

3.4 Further discussions

Energy input from wind to ocean surface waves is tremendous and exceeds 60 TW (Wang and Huang, 2004). A large amount
of energy dissipates and-which implies stirring and mixing processes in the oceanic mixed layer. A parameterization scheme
for surface wave-induced mixing was proposed and numerical experiments indicate that this parameterization affects the per-
formance and outcome of ocean circulation models (Qiao et al., 2004, 2010; Xia et al., 2006) as well as climate predictions
(Song et al., 2007; Huang et al., 2008). Although field observations suggest that surface waves can generate vertical mixing
(Matsuno et al., 2000), it is still difficult to distinguish the mixing originating from the variety of processes that accompanied
ocean waves. Although the problem of wave-induced vertical mixing is of significant importance for physical oceanographers
and climatologists, the research on this subject is still in its infancy. A-wave-indueed-Wave-induced mixing is a very impor-
tant process from a practical point of view and is a challenging problem for theoretical investigations. The understanding of
wave-induced mixing is of fundamental importance for the modeling and accurate prediction of ocean transport processes
and climate changes. The problem is that the parameterization scheme applied in the modeling and prediction of ocean surface
wave-induced mixing is based on drastic simplifications. Wave models derived using simplifying assumptions cannot be applied

to predict ocean surface wave-induced mixing with sufficient accuracy. The present studies clearly show that it is necessary to

apply at least a weakly-nonlinear wave theory to obtain reasonable results (no wave-induced mass transport in linear theory
means no heat exchange along the direction of wave propagation), while an increased accuracy is possible using advanced
nonlinear wave models admitting higher-order-effeets-higher-order effects. It should also be noted that in the present studies
the effects of turbulence and the development of viscous boundary layers is neglected, while these processes may have some

boundaries (the undulating free surface and the bottom) for a sufficiently long time interval, which was studied theoretically b

in a wave flume (see e.g. Swan, 1990; Grue and Kolaas, 2017).

One-There is one more critical outcome from the point of view of engineers and scientists working on the modeling of
ocean transport processes, wave-induced mixing, and climate changesis-impertant. Namely, since it is difficult to distinguish
the mixing that accompanied ocean waves, the only chance to provide reliable insight into the wave-induced mixing processes
is to conduct laboratory experiments in a wave flume. The repeatable experiments in the well-controlled environment of a wave
flume enable us to perform an accurate investigation that is essential in the analysis of the physics of the wave-induced mixing
phenomenon. Moreover, a-laberatory-investigation-provides-laboratory investigations provide useful data for the analysis of
the correlations between spectral and statistical characteristics of wave regimes and wave-induced mixing processes. Finally,
laboratory experiments enable us to avoid various side effects and separate the mixing from other processes that accompanied

ocean waves such as wave breaking. This is of fundamental importance for understanding of mixing and accurate calibration
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and verification of numerical models. The problem is that, in addition to progressive laboratory waves, the moving wavemaker
represented by the kinematic wavemaker boundary condition, enforces the return current that affects transport processes and
wave-induced mixing.

It is the idea behind the present study, which employ a numerical wave flume model, to thoroughly analyse wave-induced
mixing effects using the derived numerical approach and assist further works on experimental fluid mechanics aiming at better
understanding of transport processes in the open ocean. To the best of the authors knowledge, the derived wave-induced mixing
model-approach is the only available numerical solution that, in addition to nonlinear free-surface boundary conditions, also
satisfies the kinematic wavemaker boundary condition. Accordingly, the derived-model-admits-wavemaker model admits a
return current and may be applied to quantify and separate the effects of the return flow on wave-induced mixing processes.
Mereever;-the-The presented results should hopefully improve simple models basing on the Stokes drift applicable to random
ocean waves (Myrhaug et al., 2018). As it was previously mentioned, the derived modelling framework may be modified
to cover open ocean conditions for the periodic domains and quasi-random sea states using other forms of wave excitation

(Paprota, 2019).

4 Conclusions

The applicability of the wave-induced mixing model for waves generated in a wave flume is validated based on the solution
admitting higher-order nonlinearities. In the range of wave conditions covering transitional and shallow waters, the weakly-
nonlinear results are in a reasonable agreement with the more accurate pseudo-spectral solution in the case of waves of low to
moderate steepness. The general discrepancy grows with increasing the wave height and the wavelength. Centrary-to-Unlike
the weakly-nonlinear approach, the higher-order model is able to predict enhanced subsurface streaming affecting the evolution
of the surface temperature for more severe sea states. It is due to the fact that the time-independent velocity field predicted by
both methods differs especially in the subsurface and near-bottom tayer-layers of the oscillating water body.

General ocean circulation models admitting wave-induced vertical mixing but relying on simplified assumptions cannot
predict input from mixing with sufficient accuracy. It is necessary to apply at least a weakly-nonlinear correction to obtain
reasonable approximation. For improved predictions, advanced highly-nonlinear models are preferred, which is confirmed by
the present study. Moreover, the derived model-allows-method allows a return current to be correctly quantified in experimental
investigations on wave-induced vertical mixing for better interpretation of laboratory results giving more information for further

improvements to parametrization schemes.

Data availability. Datasets for this research are available in these in-text data citation reference: Wave-induced mixing in a numerical wave

flume submitted with DOI https://doi.org/10.5061/dryad.80gb5Smkqw by Maciej Paprota.
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