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Abstract. As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the 8 

atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global 9 

and regional scale, are key to understanding the future evolution of the climate. Here, we conduct a multimodel 10 

analysis of the changes and uncertainties in the historical and future ocean carbon sink using output data from the 11 

latest phase of the Coupled Model Intercomparison Project: CMIP6, and observations. We show that the ocean 12 

carbon sink is concentrated in highly active regions - 70 percent of the total sink occurs in less than 40 percent of 13 

the global ocean. High pattern correlations between the historical and projected future carbon sink indicate that 14 

future uptake will largely continue to occur in historically important regions. We conduct a detailed breakdown of 15 

the sources of uncertainty in the future carbon sink by region. Scenario uncertainty dominates at the global scale, 16 

followed by model uncertainty, and then internal variability. We demonstrate how the importance of internal 17 

variability increases moving to smaller spatial scales and go on to show how the breakdown between scenario, 18 

model, and internal variability changes between different ocean basins, governed by different processes. Moreover, 19 

we show that internal variability changes with time based on the scenario. As with the mean sink, we show that 20 

uncertainty in the future ocean carbon sink is also concentrated in the known regions of historical uptake. The 21 

resulting patterns in the signal-to-noise ratio have strong implications for observational detectability and time of 22 

emergence, which varies both in space and with scenario. Our results suggest that to detect human influence on the 23 

ocean carbon sink as early as possible, and to efficiently reduce uncertainty in future carbon uptake, modelling and 24 

observational efforts should be focused in the known regions of high historical uptake, including the Northwest 25 

Atlantic and the Southern Ocean. 26 
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1. Introduction 27 

Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised 28 

Earth's average temperature. Carbon dioxide (CO2) is the primary driver of the global warming in the industrial 29 

period (Masson-Delmotte et al., 2021). The concentration of atmospheric CO2 has increased from approximately 30 

277 parts per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019. 31 

However, less than half of the anthropogenic CO2 has remained in the atmosphere; the remaining CO2 has been 32 

taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. Specifically, the global ocean 33 

absorbed ∼26% of the total CO2 emissions during 2011-2020 (Friedlingstein et al., 2021).  34 

 35 

The ocean’s capacity to absorb increasing amounts of anthropogenic CO2 is not uniformly distributed (McKinley 36 

et al., 2016). Despite increasing atmospheric CO2 concentrations, the air-sea CO2 flux does not change much in the 37 

subtropical gyres. The regions where ocean carbon uptake notably increases are those with strong exchange 38 

between the surface and the deep ocean (McKinley et al., 2016). Even within regions there are large variations in 39 

the sink. The Northeast Pacific, for instance, is a net sink for atmospheric CO2. However, the region includes 40 

diverse oceanographic areas such as open ocean, continental margins, and fjords, leading to large spatial variability 41 

in the direction of the CO2 sea-air flux (Sutton et al., 2017; Takahashi et al., 2006). In the Southern Ocean, the 42 

spatial superposition of natural and anthropogenic CO2 fluxes leads to a relatively strong uptake band between 43 

approximately 55°S and 35°S (Gruber et al., 2019). However, south of the Polar Front (55°S), the different 44 

estimates agree less well (Gruber et al., 2019). Supported by measurements based on biogeochemical floats (Gray 45 

et al., 2018; Williams et al., 2018), Gruber et al. (2019) argues that the region was most likely a small source in 46 

2019. 47 

 48 

 Earth System Models (ESMs) are the primary tool for projecting the future evolution of ocean carbon uptake on 49 

subannual to centennial timescales. However, quantitative projections from ESMs across these timescales are 50 

subject to considerable uncertainty, particularly at regional and local scales (Friedrich et al., 2012; Frölicher et 51 

al., 2014; Hauck et al., 2015; Laufkötter et al., 2015; Roy et al., 2011; Tjiputra et al., 2014) where less averaging 52 

is done and more diverse mechanisms dominate. Projection uncertainty varies with lead time, spatial averaging 53 

scale, and from region to region. For example, Lovenduski et al. (2016) showed a spatially heterogeneous pattern 54 

of projection uncertainty in CO2 flux projections over 17 regions; at the scale of the California Current System, 55 

uncertainty was relatively higher compared to the global scale.  If ESMs are to be used to quantify future changes 56 
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in ocean carbon uptake, especially across shorter timescales and at regional spatial scales, and to inform 57 

observational campaign planning, their uncertainties must be well known and well understood (Lovenduski et al., 58 

2016).  59 

 60 

A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model 61 

Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over 62 

a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). We consider three main 63 

types of projection uncertainty, as described by Hawkins and Sutton (2009) (hereafter HS09): 64 

 65 

Uncertainty due to internal variability: Internal variability is the unforced natural climate variability resulting 66 

from the internal processes in the climate system. Modes such as the El Niño–Southern Oscillation, North Atlantic 67 

Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM) 68 

contribute, along with others, to this internal variability. The real world follows only one of an infinite possible 69 

number of realizations of internal variability, and the future evolution of internal variability is not predictable 70 

beyond short timescales. Climate model simulations do not attempt to reproduce the exact observed evolution of 71 

internal variability, but produce their own, unique realizations that aim to capture the correct statistics of this 72 

variability. Hence, our analysis must account for internal variability, both when comparing historical model 73 

simulations to observations, and when considering uncertainties in the future ocean carbon sink. In HS09, a fourth-74 

order polynomial fit to simulated global and regional temperature timeseries represented the forced response, while 75 

the residual from this fit represented the internal variability. However, this approach could possibly conflate internal 76 

variability with the forced response in cases where low-frequency (decadal-to-multidecadal) internal variability 77 

exists, or when the forced signal is weak, which makes the statistical fit a poor estimate of the forced response 78 

(Kumar and Ganguly, 2018). In this study, we instead use a Single-Model Initial-condition Large 79 

Ensemble (SMILE) to robustly quantify the simulated forced response and internal variability using ensemble 80 

statistics (Lehner et al., 2020). A SMILE is an ensemble of model realizations that each starts from different initial 81 

conditions but uses the same model and forcing, and provides representations of the climate system that are 82 

equivalent except for internal variability.  83 

Uncertainty due to model structure: Each model has a specific way of representing the physical world. Models 84 

differ in their resolution, structure, numerics, and parameterization of processes. These differences cause models 85 

to respond differently to the same forcing. For example, the CMIP5 model simulations run under Representative 86 
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Concentration Pathway 8.5 (RCP8.5) project a wide range of cumulative anthropogenic carbon storage by 2100 87 

(320–635 Pg-C) (Ciais and Sabine, 2013) due to both internal variability and model uncertainty (Lovenduski et al., 88 

2016).  89 

Uncertainty due to emission scenario: The future of the climate system depends on human activity and our 90 

emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our 91 

inability to project the complex changes in society and technology upon which they depend. As a result, future 92 

simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations) 93 

will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally 94 

coordinated experiments organized by the Coupled Model Intercomparison Project. Since the future emission 95 

trajectory is unknown, these future simulations are referred to as projections, rather than predictions. Projections 96 

of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission scenario (Lovenduski 97 

et al., 2016). For example, the cumulative oceanic storage of anthropogenic carbon in CMIP5 models by 2100 98 

ranges from 110–220 Pg-C under RCP2.6 to 320–635 Pg-C under RCP8.5 (Ciais and Sabine, 2013). 99 

In this paper we start by analysing the regional patterns of historical ocean carbon uptake and how they are projected 100 

to change in the future (Sect. 3.1). Then, we examine the partitioning among different sources of uncertainty (Sect. 101 

3.2) and the scale dependence of this partitioning analysis (Sect. 3.3) to understand how the uncertainty and 102 

distribution among sources differ based on scale of integration and region of interest (Sect. 3.4). The final section 103 

explores the detectability of the model projected signal given the uncertainty imposed by internal variability, in 104 

order to make useful suggestions for future observations. 105 

2. Data and Methods   106 

2.1 Model Data Selection 107 

Here we use results from models selected from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et 108 

al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation for 109 

air-sea CO2 flux (fgco2) for the experiments of interest. One realization of each model over the historical period 110 

and three scenarios that represent the low (ssp126), mid (ssp245), and high (ssp585) ranges of future atmospheric 111 

CO2 concentrations are analysed. A total of 16 models met these criteria, out of which 3 were excluded as outliers 112 

(see section S1 in the Supplements). To maintain equal sampling, only one realization of each model is selected, 113 
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except when specifically using the large ensembles to assess internal variability. Finally, since the ocean component 114 

of the models may be on different grids, all model data are remapped to a regular one-by-one-degree grid.  115 

 116 

2.2 Sources of uncertainty 117 

Three sources of uncertainty are considered following the approach of HS09.  Total uncertainty is composed of 118 

internal, model, and scenario uncertainty in equation 1, which assumes that each of these sources is independent. 119 

Here, each source of uncertainty is considered as a function of time (t) and location (l) (Lovenduski et al., 2016): 120 

 121 

UT 2 (t, l) = UI 2 (t, l) + UM 2 (t, l) + Us 2 (t, l) 122 

 123 

where UT
 (t, l) is total uncertainty, UI (t, l) is internal variability, UM (t, l) is model uncertainty, and US (t, l) is 124 

scenario uncertainty. The fractional uncertainties for each source are calculated as 
!!
"

!#"
, !$
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!#"
, and 

!%
"

!#"
 (Lovenduski et 125 

al., 2016). 126 

 127 

HS09 assume UI (t, l) to be constant in time and use a 4th degree polynomial fit to measure internal variability as 128 

the spread over time and scenario of the residuals for each models signal relative to the fitted signal. We show in 129 

the Supplements (see section S2) that internal variability depends on time and scenario, so a better estimate of 130 

internal variability should account for these variations. Here, we quantify internal variability as two times the 131 

standard deviation of the annual carbon sink across many realizations from a Single Model Initial Condition Large-132 

ensemble based on CanESM5: 133 

 134 

 135 

𝑈&(𝑡, 𝑙) = 	2+
1
𝑁𝑠

/Var	(CanESM5	Large	Ensemble
'!

()*

)	136 

 137 

where s indicates each scenario (Ns is the number of scenarios) and Var indicates the variance over the large 138 

ensemble of CanESM5.  In the CanESM5 SMILE, each realization starts from different initial conditions which 139 

are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations 140 

 (1) 

 (2) 
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gives a robust estimate of the internal variability, including sampling over longer term ocean variability. Internal 141 

variability is an important component of the uncertainty that is not reducible and results from the chaotic nature of 142 

the climate system. Further details regarding the estimation of internal variability are explained in the Supplements 143 

(see section S2). CanESM5 is the only model that has a large enough ensemble over the entire timeline and set of 144 

experiments to make this estimate. 145 

 146 

 147 

Model uncertainty is calculated by taking the variance across the forced signal of all available models for each 148 

scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).  149 

𝑈+(𝑡, 𝑙) = 	2+
1
𝑁𝑠

/Var,@𝐹(𝑚, 𝑠, 𝑡, 𝑙)C
'!

()*

	150 

where Varm means the variance taken across different models for individual times and scenarios, m indicates each 151 

model, and t stands for time.  𝐹(𝑚, 𝑠, 𝑡, 𝑙) is the forced signal and can be related to each realization as follows: 152 

 153 

𝑇(𝑚, 𝑠, 𝑡, 𝑙) = 𝐹(𝑚, 𝑠, 𝑡, 𝑙) + 𝑅(𝑚, 𝑠, 𝑡, 𝑙)	154 

 155 

Where, 𝑇(𝑚, 𝑠, 𝑡, 𝑙) represents the reported output, i.e. each realization, but must be corrected for internal 156 

variability. 𝑅(𝑚, 𝑠, 𝑡, 𝑙) is the residual from the forced signal caused by internal variability. Here, the variance in 157 

the forced signal across all models is calculated by correcting the total variance across each model realization for 158 

the variance caused by internal variability. The corrections are done by subtracting the variance across the same 159 

number of CanESM5 ensemble members as the multi-model ensemble (13 members) from the spread across one 160 

realization of each of the 13 models. For this correction only, the sample sizes (13) are kept the same so that the 161 

internal variability removed from the variance across the models’ first realizations is not overestimated by a well 162 

sampled 50-member ensemble (see section S3 in the Supplements).  163 

 164 

Us (t, l) is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root 165 

of variance) across scenarios of the multi-model mean signal (Eq. 5).  166 

 167 

 (3) 

(4) 
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𝑈-(𝑡, 𝑙) = 2+Var,(
1
𝑁,

/ 𝑇	(𝑚, 𝑠, 𝑡, 𝑙	)
'"

,)*

)	168 

where 𝑁,   is the number of models. The multi-model mean across the first realizations of the 13 models gives the 169 

multi-model forced response and does not require correction for internal variability as done for model uncertainty 170 

before.  171 

 172 

We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When 173 

regional and global analysis is done, the dependence on location is taken away by integrating and averaging over 174 

that region or the whole global ocean.  175 

 176 

2.3 Time of Emergence  177 

In order to know when the forced response is distinguishable from internal variability, time of emergence is 178 

calculated following the approach of McKinley et al. (2016). The time of emergence is the first year when the 179 

multi-model mean anomaly is larger than internal variability – two times the standard deviation across the 50 180 

member CanESM5 ensemble - for five consecutive years (the first year of this five-year period is reported as the 181 

time of emergence). The result is reported at each grid point for the 10-year running mean smoothed anomaly 182 

relative to the 1995-2015 mean (detection of a change relative to the current state of the ocean). 183 

 184 

 185 

2.4 Scale Dependence 186 

Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal 187 

variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving 188 

a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until 189 

all scales from <100 km2 to the whole Earth are considered. The average for all rectangles of the same ocean area 190 

across the global ocean for each source of uncertainty is reported. 191 

 192 

 (5) 
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3. Results and Discussion 193 

3.1 Global Analysis 194 

The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-195 

2015 matches that of the Landschützer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN) 196 

observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the 197 

multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the 198 

response of any single model (Tebaldi & Knutti, 2007). When compared to the observation-based data product, the 199 

CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North and North-West 200 

Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data product shows 201 

a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble. 202 

 203 

While most of the global ocean shows a net sink relative to the pre-industrial era, the largest change takes place in 204 

regions such as the North Atlantic, Southern Ocean, Equatorial Pacific, and western boundary currents of the mid-205 

latitude gyre systems in the Pacific and Atlantic Oceans (Fig. 1c). These regions of largest changes in the carbon 206 

sink seem to be the regions where there is a surface-depth connectivity. We refer to these regions as “hotspots” 207 

from here on. These results for CMIP6 are consistent with those for CMIP5 shown by McKinley et al. (2016).  208 

 209 

The regions of largest future carbon uptake, relative to the 1995-2015 mean, are the same regions responsible for 210 

most of the uptake over the historical period. The correlation coefficients on top of each panel in Fig. 1 (except 1b) 211 

represent the correlation between future absolute anomalies, relative to 1995-2015, and anomalies in 1995-2015, 212 

relative to the pre-industrial era. The high correlations indicate that regions that have been most active in carbon 213 

sequestration since the pre-industrial era are the same regions that will continue to change most into the future, 214 

particularly with larger increases in atmospheric CO2 (ssp585).   215 

 216 

 217 

 218 
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 219 
Figure 1- CMIP6 multi-model mean maps using one realization of each model. Columns represent different time periods, 220 

being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century (2080-2100 mean). Note: the sink 221 

is positive into the ocean.  The first column shows (a) the carbon sink over 1995-2015, (b) Landschützer et al. (2016) SOM- 222 

FFN product, and (c) the anomaly relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015 223 

multi-model mean (panel a). Panels d through i show different scenarios. Numbers above each map are correlation 224 

coefficients between the absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the 225 

pre-industrial era in panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and 226 

panel a. 227 

   228 

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is 229 

projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The 230 

regional patterns show mostly positive anomalies at mid-century. Towards the end of the century, however, 231 

negative anomalies are expected in ssp126, as emissions turn negative in the late-century in this scenario. The late-232 

century anomalies are predominantly positive in ssp585 which corresponds to the highest emission scenario, while 233 
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ssp245 is somewhere in between, with regions of positive and negative anomalies. The globally integrated ocean 234 

carbon uptake rates are summarized in Table 1. 235 

 236 

 237 

 238 
Figure 2- (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-239 

2015. Individual models averaged for the means are plotted as thin grey lines in the background. The black dashed line 240 

shows the Landschützer et al. (2016) SOM-FFN product.  The blue dashed lines show internal variability for ssp245. (b) 241 

Timeseries showing the breakdown of uncertainty to different sources with time for the global ocean carbon sink anomaly. 242 

The internal and model uncertainty are averaged for different scenarios. 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

https://doi.org/10.5194/esd-2022-19
Preprint. Discussion started: 18 May 2022
c© Author(s) 2022. CC BY 4.0 License.



11 
 

 256 

 Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 

ssp245 
 

ssp585 

 
 
 
 
 
 

0.00 
(-0.06 – 0.06) 

 

 
 

0.13  
(0.05 – 0.21) 

0.17  
(0.08 – 0.24) 

0.22 
 (0.11 - 0.30) 

 
 

 
 
 

0.07  
(-0.02 – 0.16) 

0.25  
(0.11 – 0.36) 

0.49  
(0.29 – 0.62) 

 
 
 

 
 
 
 

-0.08  
( -0.14 - -0.01) 

0.23  
(0.09 – 0.33) 

0.71  
(0.45 – 0.90) 

 
 

 
 

 
 
 
 

-0.24  
(-0.3 - -0.12) 

0.13  
(0.02 – 0.21) 

0.80 
 (0.54 –  1.00) 

 
 
 
 

 
 

 
ssp126 
ssp245 
ssp585 

 

 
Average 

 
 

 
0.032 (0.08) 

 
 
 

0.032 (0.08) 

 

 
 

0.033 (0.11) 
0.032 (0.11) 
0.033 (0.13) 

 
 

0.033 (0.12) 

 

 
 

0.034 (0.11) 
 0.034 (0.14) 
0.037 (0.2) 

 
 

0.035 (0.16) 

 
 

 
0.035 (0.10) 
0.037 (0.14) 
0.045 (0.26) 

 
 

0.039 (0.18) 

 
 
 

0.036 (0.11) 
0.036 (0.12) 
0.043 (0.27) 

 
 

0.038 (0.18) 
 

 257 
Table 1- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in 258 

parentheses) relative to the 1995-2015 mean (in mol-C m-2 yr-1) and Internal variability (with model uncertainty in 259 

parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average values across 260 

scenarios. 261 

 262 

 263 

The trends in ocean carbon sink anomalies over 1995-2015 are statistically consistent between the CMIP6 multi-264 

model ensemble mean and the Landschützer et al. (2016) observation-based data product (Fig. 2-a), based on the 265 

test from Santer et al. (2008). However, the SOM-FFN based time-series shows a larger multi-decadal variability 266 

than seen in individual model realizations, and is larger than the range of internal variability estimated from the 267 

CanESM5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-FFN 268 

method, or underestimation of the internal variability in the models. Given that on regional scales the SOM-FFN 269 

data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESM5 (see Sect. 3.3), 270 

and that there are significant gaps in the spatial and temporal sampling that underlies the Landschützer et al. (2016) 271 

estimate, it seems plausible that the discrepancy is largely due to overestimation of internal variability on the global 272 

Anomaly 

(range) 

Internal (model) 
Uncertainty 
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scale by the SOM-FFN technique. This is consistent with the findings of Gloege et al. (2021), which showed that, 273 

globally, the magnitude of decadal variability is overestimated by 21% by the SOM-FFN technique, attributed to 274 

the amount of data filling.   275 

 276 

On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario 277 

uncertainty comes to dominate later (Fig. 2b).  Over the 1995-2020 period, model uncertainty explains around 85% 278 

of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of 279 

the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at 280 

the start of the century but only around 1% by the end. It is worth mentioning that the decreased shares associated 281 

with model and internal variability do not mean that model or internal variability decrease in an absolute sense; 282 

rather, their importance relative to scenario uncertainty declines. Internal and model uncertainty of the global 283 

carbon sink change with time, based on the scenario (Table 2); high emission scenarios such as ssp585 show a 284 

larger change for both internal and model uncertainty. When averaged for the three scenarios, a constant absolute 285 

increase in both model and internal variability is seen through the century until 2080-2100 when the values either 286 

do not change or decrease slightly (Table 1).   287 

 288 

 289 

3.2 Dependence of the sources of uncertainty on spatial scale 290 

It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging 291 

(integration) scale gets finer, because on larger scales the variability is averaged out. Lovenduski et al. (2016) 292 

showed this scale dependence by comparing an area covering the California Current System with the global ocean. 293 

Here, we provide a continuous view of change in variability across scales from the global to grid scale, by 294 

measuring how variability changes relative to scale on average (Fig. 3). At the global scale, the dominant source 295 

of uncertainty is scenario uncertainty, followed by model and internal variability respectively, consistent with Fig. 296 

2b. However, as the averaging (integration) scale gets finer, model and internal variability grow rapidly, while 297 

scenario uncertainty only grows slightly on average (over all regions of this size). At an averaging (integration) 298 

scale with an area finer than 75 million km2 (on average around the globe), model uncertainty becomes the dominant 299 

source of uncertainty, and at a scale finer than 3 million km2, internal variability becomes larger than scenario 300 

uncertainty. However, while this holds true on average over the globe, scale dependence can vary in its nature 301 

depending on the particular region being sampled. 302 

 303 
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 304 

 305 
Figure 3- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5 306 

members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected 307 

standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different 308 

rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a 309 

specific location. 310 

 311 

3.3 Regional Analysis  312 

The findings of the globally averaged scale dependence analysis were tested by repeating the uncertainty 313 

breakdown for two specific regions: one between 20°- 60° N in the North East Pacific (NE Pacific) between 130°- 314 

160° W and one in the North West Atlantic (NW Atlantic) between 40°- 70° W at the same latitude. The NW 315 

Atlantic region represents a hotspot while the NE Pacific region is more typical of quiescent ocean regions. By 316 

quiescent ocean regions we refer to regions where strong stratification limits the vertical transport of carbon by 317 

isolating the surface.  318 

 319 

The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This 320 

suggests both that it will be difficult to robustly detect any human induced changes in observations of the NEP 321 
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carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be readily 322 

apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the anomalies 323 

are small regardless of scenario (Table 2). In the NW Atlantic however, the deviation across scenarios becomes 324 

larger than the internal variability in the early 2060s (Fig. 4c). The response of the region to climate change is 325 

dependent on the scenario (Table 2), or, in other words, the amount of carbon dioxide in the atmosphere. This is 326 

because the NW Atlantic is a hotspot where the air-sea flux actively responds to the atmospheric CO2 concentration. 327 

The trend of the CMIP6 multi-model time-series over the historical period is statistically consistent (Santer et al., 328 

2008) with that of the observation-based SOM-FFN product, and the multi-decadal variability is within the range 329 

of internal variability measured by the CanESM5 large-ensemble in both regions. We note that both of these regions 330 

are relatively well sampled, which may lead to more robust estimates of multi-decadal variability in the 331 

Landschützer et al. (2016) dataset, and better agreement with the models than seen at the global scale. 332 

 333 

Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions.  334 

Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude 335 

than at the global scale (Table 2). Over the period 1995-2020, model uncertainty is the dominant source of 336 

uncertainty in both the NE Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd). 337 

Internal variability explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the 338 

NW Atlantic however, its share drops to 15% by the end of the century. The share attributable to internal variability 339 

is much larger during the 21st century in both regions compared to the global scale. Internal variability is larger in 340 

the NW Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in NE Pacific (Fig. 341 

4b). Overall, internal variability averaged over the scenarios shows a small increase, but no clear trend in time in 342 

both regions until the 2080-2100 period where it decreases, consistent with the global estimates. The dependence 343 

of internal variability on the scenario is an interesting result which requires further evaluations to understand the 344 

degree of dependence and the driving mechanisms of such changes with time based on scenario. We showed earlier 345 

that the NE Pacific scenarios do not differ much as the region is not a hotspot region -  scenario uncertainty explains 346 

less than 20% of the total uncertainty at the end of the century in the NE Pacific. In the NW Atlantic, scenario 347 

uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end of the century.  In both 348 

regions, model uncertainty is the dominant source of uncertainty in all years. 349 

 350 
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 351 

 352 
Figure 4- (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-353 

series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschützer et 354 

al. (2016) SOM-FFN product.  The blue dashed line shows the internal variability measured as two times the standard 355 

deviation across all 50 members of CanESM5 only for ssp245 here. (b), (d) time-series showing the breakdown of 356 

uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b) 357 

NE Pacific (40-60 °N, 130 -160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W) 358 

 359 

 360 

 361 

 362 

 363 

 364 
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 365 

  Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 

ssp245 
 

ssp585 

 
 
 
 
 
 

0.00  
(-0.98 – 0.76) 

 
 

0.05  
(-0.91 – 0.86) 

0.06 
 (-0.86 – 0.83) 

0.11  
(-0.73 - 0.79)  

 

 
 
 

0.03  
(-0.86 – 0.62) 

0.09  
(-0.74 – 0.81) 

0.21  
(-0.61 – 0.86) 

 
 

 
 
 
 

-0.13  
( -1.1 – 0.58) 

0.03 
(-0.65 – 0.60) 

0.29 
(0.22 – 0.94) 

 
 
 

 
 
 
 

-0.21 
 (-1.18 - 0.60) 

0.06 
 (-0.70 – 0.53) 

0.2  
(-0.25 –  0.98) 

 
 
 

  
 
 

ssp126 
ssp245 
ssp585 

 
 
Average 

 
 

 
 

0.39 (0.90) 
 

 

 
0.39 (0.90) 

 
 

0.47 (0.87) 
0.46 (0.87) 
0.45 (0.81) 

 
 

0.46 (0.86) 

 
 

0.43 (0.74) 
0.47 (0.81) 
0.47 (0.745) 

 
 

0.46 (0.77) 

 
 

0.40 (0.81) 
0.48 (0.64) 
0.58 (0.55) 

 
 

0.47 (0.70) 

 
 

0.39 (0.83) 
0.45 (0.53) 
0.44 (0.57) 

 
 

0.43(0.67) 
   

 
 

ssp126 
 

ssp245 
 

ssp585 

 
 

 
 

0.00  
(-0.97 – 1.31) 

 
 

0.13 
 (-0.77 – 1.21) 

0.18  
(-0.78 – 1.23) 

0.23 
 (-0.70 – 1.20)  

 

 
 

-0.20 
(-1.03 – 0.56) 

0.10  
(-0.68 – 0.80) 

0.38 
 (-0.41 – 1.12) 

 

 
 

-0.66 
( -1.45 – -0.11) 

-0.20 
(-0.97 – 0.50) 

0.41 
(-0.27 – 1.29) 

 
 
 

-1.00  
(-1.80 - -0.56) 

-0.54  
(-1.22 – 0.07) 

0.10  
(-0.70 –  0.96) 

  
 
 

ssp126 
ssp245 
ssp585 

 
Average 

 
 

 
 

0.43 (1.02) 
 
 

0.43 (1.02) 

 
 

0.47 (0.91) 
0.47 (0.96) 
0.50 (0.90) 

 
0.48 (0.93) 

 
 

0.47 (0.79) 
0.49 (0.82) 
0.51 (0.94) 

 
0.49 (0.87) 

 
 

0.46 (0.78) 
0.49 (0.80) 
0.52 (1.00) 

 
0.49 (0.88) 

 
 

0.42 (0.80) 
0.47 (0.79) 
0.53 (1.00) 

 
0.48 (0.88) 

 
 366 

Table 2- CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m-2 367 

yr-1) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE 368 

Pacific and NW Atlantic. 369 

Internal (model) 
Uncertainty 

Internal (model) 
Uncertainty 

Anomaly 

(range) 

North 

East 

Pacific 

Anomaly 

(range) 

North  

West 

Atlantic 
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 370 

The regional analysis shows that while uncertainty and its distribution among sources depends on the spatial scale 371 

of integration, the specific location also matters. Regional patterns of uncertainty broken down by the source are 372 

needed to clarify changes based on location. Consistent with the sink anomaly maps (Fig. 1), the regions that show 373 

highest uncertainty for any of the sources in the future, are the same regions that show the largest uncertainties in 374 

the historical period (Fig. 5). More importantly, the regions of largest future uptake uncertainty are highly correlated 375 

with the historical regions of largest uptake, as shown by the pattern correlation coefficients above each panel. This 376 

is a highly significant finding, because it suggests that knowledge of the modern day surface carbon flux anomaly 377 

provides us with information about future uptake uncertainty. 378 

 379 

The regions of high internal variability (eastern boundary upwelling regions, western boundary currents of the Gulf 380 

Stream and Kuroshio, their extensions, and the Southern Ocean) are mostly within hotspots but are not confined to 381 

them and do not include all of them. This lack of correspondence explains why the correlation coefficients are not 382 

high for internal variability. An increase in internal variability with time is seen mostly in regions such as the 383 

Southern Ocean, the Arctic Ocean, and boundaries of the gyre systems, while the rest of the ocean does not show 384 

a clear change. The maps in Figure 5 are averaged over the three scenarios, which masks the changes to some 385 

extent. However, we show in the Supplements (see section S2) that changes in the globally averaged internal 386 

variability with time are different for different scenarios. Model uncertainty is consistently highest in the hotspot 387 

regions, leading to stronger correlation with the anomaly maps of Fig. 1c. The model uncertainty is largest in the 388 

Southern Ocean, where the complex time-evolving nature of the sink varies on all time-scales. The importance of 389 

model uncertainty in the Southern Ocean provides a clear focal point for modelling centres to concentrate their 390 

efforts in reducing projection uncertainty. Atmospheric teleconnections might play an important role in generating 391 

the highly variable Southern Ocean carbon sink on decadal scales, and these are poorly constrained and represented 392 

by models (Gruber et al. 2019).  393 

 394 

Scenario uncertainty exhibits the largest change with time. This is by construction, meaning that scenarios are 395 

designed to deviate from each other as time goes forward. Importantly, the correlation coefficients are highest 396 

between scenario uncertainty and the current sink regions, indicating that the hotspot regions are the regions that 397 

show the largest divergence among scenarios, and that the sink in most other regions does respond as strongly to 398 

scenario differences. We showed an example of this earlier, where the timeseries of the multi-model signals for the 399 

three scenarios did not emerge out of internal variability in the NE Pacific by 2100, whereas they did for the hotspot 400 
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region of the NW Atlantic. This shows that, in these active hotspot regions, the sink evolves according to 401 

atmosphere CO2 concentration via ocean processes that keep the surface ocean CO2 out of equilibrium with the 402 

atmosphere. These uncertainties are central to the ability to detect human induced trends in observations of the 403 

surface ocean carbon flux, to which we now turn.  404 

 405 

 406 

Figure 5- Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as 407 

explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-408 

century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are 409 

correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).  410 

 411 

3.4 Detectability  412 

Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal 413 

climate variability. Understanding the regional differences, timescales, and scenario dependence in the detectability 414 
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of human induced trends in the ocean surface carbon flux is important for informing observational strategies that 415 

aim to measure these changes. 416 

 417 

We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using 418 

the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational 419 

communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the 420 

multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the 421 

CanESM5 SMILE.  422 

 423 

The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the hotspot 424 

regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the western boundary 425 

currents of the gyre systems, and their extensions (Fig. 6). The fixed inactive regions, such as the centres of the 426 

mid-latitude gyre systems and the NE Pacific, show late emergence times and, in some cases, no detectability of 427 

the signal in any of the scenarios by 2100. This is consistent with the results from Sect. 3.3, in which we showed 428 

that internal variability is a significant source throughout the century in the NE Pacific, with scenarios never 429 

emerging out of the range of internal variability (Fig. 4a,b). This result argues for focusing observational efforts on 430 

the hotspot regions in order to detect human influence on the ocean carbon sink. Meanwhile, they imply that 431 

observational timeseries in quiescent regions, such as Ocean Station Papa in the NE Pacific, need to interpret any 432 

observed trends with care, since internal variability tends to dominate over human induced trends. 433 

 434 

 435 

 436 

 437 

Figure 6- Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate 438 

where the anthropogenic signal cannot be detected even towards the end of the century. 439 
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 440 

Previous studies have largely presented a single time of emergence; however, the time of emergence strongly 441 

depends on the future scenario. The time of emergence is earliest on average over the global ocean in ssp585, while 442 

it is later in ssp245, and later still in ssp126. The earlier times of emergence are largely due to the stronger signal 443 

in ssp585, and weaker in ssp245 and ssp126 (Fig. 2-a), consistent with the imposed changes in atmospheric CO2 444 

concentration.  The exceptions are quiescent regions that show earlier detectability for ssp126 compared to other 445 

scenarios; these exceptions are associated with larger (but negative) anomalies in the latter half of the century under 446 

ssp126 which has negative emissions (compare panels d-f, and g-i on Fig. 1). Internal variability does evolve 447 

somewhat differently for each scenario, but this is secondary (Fig. B2). Our results suggest that under the rapidly 448 

rising atmospheric CO2 concentrations seen in ssp585, the human signal in the ocean carbon sink will be detectable 449 

across much of the global ocean over the coming few decades. However, under strong mitigation scenarios, such 450 

as ssp126, early emergence will only occur in isolated regions. 451 

4. Conclusions 452 

Ocean carbon uptake as a result of increasing atmospheric CO2 concentration occurs mostly in a few hotspot 453 

regions. We analyze the results from the CMIP6 multi-model mean for the current state of the ocean (1995-2015), 454 

and the middle (2040-2060) and late (2080-2100) 21st century relative to the current state for three scenarios. We 455 

show that future changes in the sink mostly take place within the same historical hotspot regions. This result implies 456 

that known regions of high historical uptake, including the North Atlantic and Southern Ocean, are the same regions 457 

to prioritize for observing the future evolution of the sink. 458 

 459 

We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and 460 

the trend in the sink (globally), compared to the observation-based data product dataset of Landschützer et al. 461 

(2016). These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of 462 

the ocean carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschützer 463 

et al. (2016) data shows larger decadal variability at the global scale than seen in any CMIP6 model. We argue the 464 

overestimation of internal variability by this dataset is a plausible explanation, since at the regional scale, there is 465 

no such disagreement. This is in agreement with Gloege et al. (2021) who showed that the SOM-FFN method 466 

overestimates the magnitude of decadal variability by 21% on the global scale.   467 

 468 
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We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale 469 

and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model 470 

uncertainty and internal variability. However, as the scales of integration (averaging) get finer, model and internal 471 

variability become the dominant sources, respectively. Testing the results on two ocean basins of about the same 472 

size, one in the NE Pacific and one in the NW Atlantic shows that - while consistent with the results of the scale 473 

dependence analysis - the relative importance of the sources of uncertainty also differs with location. Notably, in 474 

hotspot regions, such as the NW Atlantic, scenario uncertainty is large, whereas in more quiescent regions, such as 475 

the NE Pacific, internal variability is more significant. The dependence of internal variability on the scenario with 476 

time is another interesting finding that could be the subject of future studies for a better understanding of the driving 477 

mechanism and the degree of dependence on the future emissions and/or concentrations.  478 

 479 

The patterns of high future CO2 uptake uncertainty are highly correlated with the patterns of historical uptake. The 480 

correlation coefficients are highest for scenario uncertainty, indicating that the hotspot regions have the potential 481 

for the sink to evolve according to the atmospheric CO2 concentration, while the rest of the ocean basins do not 482 

respond strongly to changes in atmospheric CO2 represented by the different scenarios. Our results here are 483 

significant in that they show that regions of future uncertainty are largely associated with known regions of 484 

significant historical uptake.  485 

 486 

Patterns seen in the time-of-emergence have implications for planning observational campaigns for detection of a 487 

signal.  Our results show that there should be caution taken in interpreting the observed changes in regions such as 488 

NE Pacific (where active sampling is being done) associated with the late time of emergence of the signal from the 489 

decadal (internal) variations. On the other hand, regions such as the Equatorial Pacific, the Gulf Stream and 490 

Kuroshio and their extensions, and the Southern Ocean, should be the focus of consistent and expanded sampling 491 

for detection of the forced signal. Additionally, the patterns in sources of uncertainty show that model uncertainty 492 

is largest in the Southern Ocean, consistent with previous studies. The sink in the Southern Ocean is driven by 493 

complex mechanisms involving coupled ocean-atmosphere-ice interactions that require better representation in 494 

ocean biogeochemical models. If we wish to constrain and reduce future uncertainties in the ocean carbon sink, our 495 

results provide a motivation to focus modelling as well as observational efforts on the known hotspot regions of 496 

historical uptake. 497 

 498 
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