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Abstract. As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the
atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global
and regional scale, are key to understanding the future evolution of the climate. Here, we conduct a multimodel
analysis of the changes and uncertainties in the historical and future ocean carbon sink using output data from the
latest phase of the Coupled Model Intercomparison Project: CMIP6, and observations. We show that the ocean
carbon sink is concentrated in highly active regions - 70 percent of the total sink occurs in less than 40 percent of
the global ocean. High pattern correlations between the historical and projected future carbon sink indicate that
future uptake will largely continue to occur in historically important regions. We conduct a detailed breakdown of
the sources of uncertainty in the future carbon sink by region. Scenario uncertainty dominates at the global scale,
followed by model uncertainty, and then internal variability. We demonstrate how the importance of internal
variability increases moving to smaller spatial scales and go on to show how the breakdown between scenario,
model, and internal variability changes between different ocean basins, governed by different processes. Moreover,
we show that internal variability changes with time based on the scenario. As with the mean sink, we show that
uncertainty in the future ocean carbon sink is also concentrated in the known regions of historical uptake. The
resulting patterns in the signal-to-noise ratio have strong implications for observational detectability and time of
emergence, which varies both in space and with scenario. Our results suggest that to detect human influence on the
ocean carbon sink as early as possible, and to efficiently reduce uncertainty in future carbon uptake, modelling and
observational efforts should be focused in the known regions of high historical uptake, including the Northwest

Atlantic and the Southern Ocean.
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1. Introduction

Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised
Earth's average temperature. Carbon dioxide (COy) is the primary driver of the global warming in the industrial
period (Masson-Delmotte et al., 2021). The concentration of atmospheric CO- has increased from approximately
277 parts per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019.
However, less than half of the anthropogenic CO- has remained in the atmosphere; the remaining CO> has been
taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. Specifically, the global ocean

absorbed ~26% of the total CO; emissions during 2011-2020 (Friedlingstein et al., 2021).

The ocean’s capacity to absorb increasing amounts of anthropogenic CO; is not uniformly distributed (McKinley
et al., 2016). Despite increasing atmospheric CO; concentrations, the air-sea CO; flux does not change much in the
subtropical gyres. The regions where ocean carbon uptake notably increases are those with strong exchange
between the surface and the deep ocean (McKinley et al., 2016). Even within regions there are large variations in
the sink. The Northeast Pacific, for instance, is a net sink for atmospheric CO,. However, the region includes
diverse oceanographic areas such as open ocean, continental margins, and fjords, leading to large spatial variability
in the direction of the CO; sea-air flux (Sutton et al., 2017; Takahashi et al., 2006). In the Southern Ocean, the
spatial superposition of natural and anthropogenic CO- fluxes leads to a relatively strong uptake band between
approximately 55°S and 35°S (Gruber et al., 2019). However, south of the Polar Front (55°S), the different
estimates agree less well (Gruber et al., 2019). Supported by measurements based on biogeochemical floats (Gray
et al., 2018; Williams et al., 2018), Gruber et al. (2019) argues that the region was most likely a small source in
2019.

Earth System Models (ESMs) are the primary tool for projecting the future evolution of ocean carbon uptake on
subannual to centennial timescales. However, quantitative projections from ESMs across these timescales are
subject to considerable uncertainty, particularly at regional and local scales (Friedrich et al., 2012; Frolicher et
al., 2014; Hauck et al., 2015; Laufkotter et al., 2015; Roy et al., 2011; Tjiputra et al., 2014) where less averaging
is done and more diverse mechanisms dominate. Projection uncertainty varies with lead time, spatial averaging
scale, and from region to region. For example, Lovenduski et al. (2016) showed a spatially heterogeneous pattern
of projection uncertainty in CO, flux projections over 17 regions; at the scale of the California Current System,

uncertainty was relatively higher compared to the global scale. If ESMs are to be used to quantify future changes
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in ocean carbon uptake, especially across shorter timescales and at regional spatial scales, and to inform
observational campaign planning, their uncertainties must be well known and well understood (Lovenduski et al.,

2016).

A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model
Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over
a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). We consider three main

types of projection uncertainty, as described by Hawkins and Sutton (2009) (hereafter HS09):

Uncertainty due to internal variability: Internal variability is the unforced natural climate variability resulting
from the internal processes in the climate system. Modes such as the El Nifio—Southern Oscillation, North Atlantic
Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM)
contribute, along with others, to this internal variability. The real world follows only one of an infinite possible
number of realizations of internal variability, and the future evolution of internal variability is not predictable
beyond short timescales. Climate model simulations do not attempt to reproduce the exact observed evolution of
internal variability, but produce their own, unique realizations that aim to capture the correct statistics of this
variability. Hence, our analysis must account for internal variability, both when comparing historical model
simulations to observations, and when considering uncertainties in the future ocean carbon sink. In HS09, a fourth-
order polynomial fit to simulated global and regional temperature timeseries represented the forced response, while
the residual from this fit represented the internal variability. However, this approach could possibly conflate internal
variability with the forced response in cases where low-frequency (decadal-to-multidecadal) internal variability
exists, or when the forced signal is weak, which makes the statistical fit a poor estimate of the forced response
(Kumar and Ganguly, 2018). In this study, we instead use a Single-Model Initial-condition Large
Ensemble (SMILE) to robustly quantify the simulated forced response and internal variability using ensemble
statistics (Lehner et al., 2020). A SMILE is an ensemble of model realizations that each starts from different initial
conditions but uses the same model and forcing, and provides representations of the climate system that are

equivalent except for internal variability.

Uncertainty due to model structure: Each model has a specific way of representing the physical world. Models
differ in their resolution, structure, numerics, and parameterization of processes. These differences cause models

to respond differently to the same forcing. For example, the CMIP5 model simulations run under Representative
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Concentration Pathway 8.5 (RCP8.5) project a wide range of cumulative anthropogenic carbon storage by 2100
(320635 Pg-C) (Ciais and Sabine, 2013) due to both internal variability and model uncertainty (Lovenduski et al.,
2016).

Uncertainty due to emission scenario: The future of the climate system depends on human activity and our
emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our
inability to project the complex changes in society and technology upon which they depend. As a result, future
simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations)
will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally
coordinated experiments organized by the Coupled Model Intercomparison Project. Since the future emission
trajectory is unknown, these future simulations are referred to as projections, rather than predictions. Projections
of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission scenario (Lovenduski
et al., 2016). For example, the cumulative oceanic storage of anthropogenic carbon in CMIP5 models by 2100

ranges from 110-220 Pg-C under RCP2.6 to 320—635 Pg-C under RCP8.5 (Ciais and Sabine, 2013).

In this paper we start by analysing the regional patterns of historical ocean carbon uptake and how they are projected
to change in the future (Sect. 3.1). Then, we examine the partitioning among different sources of uncertainty (Sect.
3.2) and the scale dependence of this partitioning analysis (Sect. 3.3) to understand how the uncertainty and
distribution among sources differ based on scale of integration and region of interest (Sect. 3.4). The final section
explores the detectability of the model projected signal given the uncertainty imposed by internal variability, in

order to make useful suggestions for future observations.

2.Data and Methods

2.1 Model Data Selection

Here we use results from models selected from the 6™ Coupled Model Intercomparison Project (CMIP6; Eyring et
al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation for
air-sea CO» flux (fgco2) for the experiments of interest. One realization of each model over the historical period
and three scenarios that represent the low (ssp126), mid (ssp245), and high (ssp585) ranges of future atmospheric
CO; concentrations are analysed. A total of 16 models met these criteria, out of which 3 were excluded as outliers

(see section S1 in the Supplements). To maintain equal sampling, only one realization of each model is selected,
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except when specifically using the large ensembles to assess internal variability. Finally, since the ocean component

of the models may be on different grids, all model data are remapped to a regular one-by-one-degree grid.

2.2 Sources of uncertainty

Three sources of uncertainty are considered following the approach of HS09. Total uncertainty is composed of
internal, model, and scenario uncertainty in equation 1, which assumes that each of these sources is independent.

Here, each source of uncertainty is considered as a function of time (¢) and location (/) (Lovenduski et al., 2016):
Ur* (6 ) =Us> (6 D)+ Un> (6 )+ U (1, D) )

where Ur (¢, [) is total uncertainty, U; (¢, [) is internal variability, Uy (¢, /) is model uncertainty, and Us (¢, [) is

2

: . . o ut uy .U :
scenario uncertainty. The fractional uncertainties for each source are calculated as Ulz R Ulg’ and Ug (Lovenduski et
T UT T

al., 2016).

HS09 assume U (¢, [) to be constant in time and use a 4™ degree polynomial fit to measure internal variability as
the spread over time and scenario of the residuals for each models signal relative to the fitted signal. We show in
the Supplements (see section S2) that internal variability depends on time and scenario, so a better estimate of
internal variability should account for these variations. Here, we quantify internal variability as two times the
standard deviation of the annual carbon sink across many realizations from a Single Model Initial Condition Large-

ensemble based on CanESMS5:

Ny

1
uit,h)= 2 MZ Var (CanESM5 Large Ensemble) )
s=1

where s indicates each scenario (Ns is the number of scenarios) and Var indicates the variance over the large
ensemble of CanESMS. In the CanESMS5 SMILE, each realization starts from different initial conditions which

are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations



41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

https://doi.org/10.5194/esd-2022-19 Earth System
Preprint. Discussion started: 18 May 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License.

Discussions

gives a robust estimate of the internal variability, including sampling over longer term ocean variability. Internal
variability is an important component of the uncertainty that is not reducible and results from the chaotic nature of
the climate system. Further details regarding the estimation of internal variability are explained in the Supplements
(see section S2). CanESMS is the only model that has a large enough ensemble over the entire timeline and set of

experiments to make this estimate.

Model uncertainty is calculated by taking the variance across the forced signal of all available models for each

scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).

N
1
Uy, ) =2 mz Varm(F(m, s, t, l)) (3)

where Var,, means the variance taken across different models for individual times and scenarios, m indicates each

model, and ¢ stands for time. F(m, s, t, 1) is the forced signal and can be related to each realization as follows:
T(m,s,t, 1) = F(m,s,t,1) + R(m,s,t,1) 4)

Where, T(m,s,t,1) represents the reported output, i.e. each realization, but must be corrected for internal
variability. R(m, s, t, 1) is the residual from the forced signal caused by internal variability. Here, the variance in
the forced signal across all models is calculated by correcting the total variance across each model realization for
the variance caused by internal variability. The corrections are done by subtracting the variance across the same
number of CanESMS5 ensemble members as the multi-model ensemble (13 members) from the spread across one
realization of each of the 13 models. For this correction only, the sample sizes (13) are kept the same so that the
internal variability removed from the variance across the models’ first realizations is not overestimated by a well

sampled 50-member ensemble (see section S3 in the Supplements).

Us (¢, 1) is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root

of variance) across scenarios of the multi-model mean signal (Eq. 5).
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Us(t,1) = 2 |Var,, (— 2 T (m,s,t,1)) )
Nin m=1

where Ny, is the number of models. The multi-model mean across the first realizations of the 13 models gives the
multi-model forced response and does not require correction for internal variability as done for model uncertainty

before.
We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When

regional and global analysis is done, the dependence on location is taken away by integrating and averaging over

that region or the whole global ocean.

2.3 Time of Emergence

In order to know when the forced response is distinguishable from internal variability, time of emergence is
calculated following the approach of McKinley et al. (2016). The time of emergence is the first year when the
multi-model mean anomaly is larger than internal variability — two times the standard deviation across the 50
member CanESMS ensemble - for five consecutive years (the first year of this five-year period is reported as the
time of emergence). The result is reported at each grid point for the 10-year running mean smoothed anomaly

relative to the 1995-2015 mean (detection of a change relative to the current state of the ocean).

2.4 Scale Dependence

Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal
variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving
a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until
all scales from <100 km? to the whole Earth are considered. The average for all rectangles of the same ocean area

across the global ocean for each source of uncertainty is reported.
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3. Results and Discussion

3.1 Global Analysis

The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-
2015 matches that of the Landschiitzer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN)
observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the
multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the
response of any single model (Tebaldi & Knutti, 2007). When compared to the observation-based data product, the
CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North and North-West
Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data product shows

a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble.

While most of the global ocean shows a net sink relative to the pre-industrial era, the largest change takes place in
regions such as the North Atlantic, Southern Ocean, Equatorial Pacific, and western boundary currents of the mid-
latitude gyre systems in the Pacific and Atlantic Oceans (Fig. 1¢). These regions of largest changes in the carbon
sink seem to be the regions where there is a surface-depth connectivity. We refer to these regions as “hotspots”

from here on. These results for CMIP6 are consistent with those for CMIP5 shown by McKinley et al. (2016).

The regions of largest future carbon uptake, relative to the 1995-2015 mean, are the same regions responsible for
most of the uptake over the historical period. The correlation coefficients on top of each panel in Fig. 1 (except 1b)
represent the correlation between future absolute anomalies, relative to 1995-2015, and anomalies in 1995-2015,
relative to the pre-industrial era. The high correlations indicate that regions that have been most active in carbon
sequestration since the pre-industrial era are the same regions that will continue to change most into the future,

particularly with larger increases in atmospheric CO; (ssp585).
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1995-2015 mean 2040-2060 mean anomaly 2080-2100 mean anomaly

SOM-FFN

1850-1900 mean__,

Anomaly relative to

-3 -2 -1 0 1 2 3
Ocean carbon flux (mol m=2 yr=1)

Figure 1- CMIP6 multi-model mean maps using one realization of each model. Columns represent different time periods,
being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century (2080-2100 mean). Note: the sink
is positive into the ocean. The first column shows (a) the carbon sink over 1995-2015, (b) Landschiitzer et al. (2016) SOM-
FFN product, and (c) the anomaly relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015
multi-model mean (panel a). Panels d through i show different scenarios. Numbers above each map are correlation
coefficients between the absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the
pre-industrial era in panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and

panel a.

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is
projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The
regional patterns show mostly positive anomalies at mid-century. Towards the end of the century, however,
negative anomalies are expected in ssp126, as emissions turn negative in the late-century in this scenario. The late-

century anomalies are predominantly positive in ssp585 which corresponds to the highest emission scenario, while
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ssp245 is somewhere in between, with regions of positive and negative anomalies. The globally integrated ocean

carbon uptake rates are summarized in Table 1.
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Figure 2- (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-

2015. Individual models averaged for the means are plotted as thin grey lines in the background. The black dashed line
shows the Landschiitzer et al. (2016) SOM-FFN product. The blue dashed lines show internal variability for ssp245. (b)

Timeseries showing the breakdown of uncertainty to different sources with time for the global ocean carbon sink anomaly.

The internal and model uncertainty are averaged for different scenarios.
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Scenario | 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100
ssp126 0.13 0.07 -0.08 -0.24
(0.05-0.21) (-0.02 - 0.16) (-0.14--0.01) (0.3 --0.12)
Anomal 0.00 0.17 0.25 0.23 0.13
Y ssp245
(cange) (-0.06 — 0.06) (0.08 — 0.24) (0.11-0.36) (0.09—0.33) (0.02-0.21)
0.22 0.49 0.71 0.80
ssp585 (0.11 - 0.30) (0.29 - 0.62) (0.45 —0.90) (0.54 — 1.00)
sspl126 0.033 (0.11) 0.034 (0.11) 0.035 (0.10) 0.036 (0.11)
Intemal (modef)| ~ ssp245 | 0.032(0.08) 0.032 (0.11) 0.034 (0.14) 0.037 (0.14) 0.036 (0.12)
Uncertainty ssp585 0.033 (0.13) 0.037 (0.2) 0.045 (0.26) 0.043 (0.27)
Average | 0,032 (0.08) 0.033 (0.12) 0.035 (0.16) 0.039 (0.18) 0.038 (0.18)

Table 1- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in
parentheses) relative to the 1995-2015 mean (in mol-C m™ yr!) and Internal variability (with model uncertainty in
parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average values across

scenarios.

The trends in ocean carbon sink anomalies over 1995-2015 are statistically consistent between the CMIP6 multi-
model ensemble mean and the Landschiitzer et al. (2016) observation-based data product (Fig. 2-a), based on the
test from Santer et al. (2008). However, the SOM-FFN based time-series shows a larger multi-decadal variability
than seen in individual model realizations, and is larger than the range of internal variability estimated from the
CanESMS5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-FFN
method, or underestimation of the internal variability in the models. Given that on regional scales the SOM-FFN
data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESMS5 (see Sect. 3.3),
and that there are significant gaps in the spatial and temporal sampling that underlies the Landschiitzer et al. (2016)

estimate, it seems plausible that the discrepancy is largely due to overestimation of internal variability on the global

11
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scale by the SOM-FFN technique. This is consistent with the findings of Gloege et al. (2021), which showed that,
globally, the magnitude of decadal variability is overestimated by 21% by the SOM-FFN technique, attributed to

the amount of data filling.

On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario
uncertainty comes to dominate later (Fig. 2b). Over the 1995-2020 period, model uncertainty explains around 85%
of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of
the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at
the start of the century but only around 1% by the end. It is worth mentioning that the decreased shares associated
with model and internal variability do not mean that model or internal variability decrease in an absolute sense;
rather, their importance relative to scenario uncertainty declines. Internal and model uncertainty of the global
carbon sink change with time, based on the scenario (Table 2); high emission scenarios such as ssp585 show a
larger change for both internal and model uncertainty. When averaged for the three scenarios, a constant absolute
increase in both model and internal variability is seen through the century until 2080-2100 when the values either

do not change or decrease slightly (Table 1).

3.2 Dependence of the sources of uncertainty on spatial scale

It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging
(integration) scale gets finer, because on larger scales the variability is averaged out. Lovenduski et al. (2016)
showed this scale dependence by comparing an area covering the California Current System with the global ocean.
Here, we provide a continuous view of change in variability across scales from the global to grid scale, by
measuring how variability changes relative to scale on average (Fig. 3). At the global scale, the dominant source
of uncertainty is scenario uncertainty, followed by model and internal variability respectively, consistent with Fig.
2b. However, as the averaging (integration) scale gets finer, model and internal variability grow rapidly, while
scenario uncertainty only grows slightly on average (over all regions of this size). At an averaging (integration)
scale with an area finer than 75 million km? (on average around the globe), model uncertainty becomes the dominant
source of uncertainty, and at a scale finer than 3 million km?, internal variability becomes larger than scenario
uncertainty. However, while this holds true on average over the globe, scale dependence can vary in its nature

depending on the particular region being sampled.

12
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Figure 3- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5
members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected
standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different
rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a

specific location.

3.3 Regional Analysis

The findings of the globally averaged scale dependence analysis were tested by repeating the uncertainty
breakdown for two specific regions: one between 20°- 60° N in the North East Pacific (NE Pacific) between 130°-
160° W and one in the North West Atlantic (NW Atlantic) between 40°- 70° W at the same latitude. The NW
Atlantic region represents a hotspot while the NE Pacific region is more typical of quiescent ocean regions. By
quiescent ocean regions we refer to regions where strong stratification limits the vertical transport of carbon by

isolating the surface.

The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This

suggests both that it will be difficult to robustly detect any human induced changes in observations of the NEP
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carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be readily
apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the anomalies
are small regardless of scenario (Table 2). In the NW Atlantic however, the deviation across scenarios becomes
larger than the internal variability in the early 2060s (Fig. 4c). The response of the region to climate change is
dependent on the scenario (Table 2), or, in other words, the amount of carbon dioxide in the atmosphere. This is
because the NW Atlantic is a hotspot where the air-sea flux actively responds to the atmospheric CO; concentration.
The trend of the CMIP6 multi-model time-series over the historical period is statistically consistent (Santer et al.,
2008) with that of the observation-based SOM-FFN product, and the multi-decadal variability is within the range
of internal variability measured by the CanESM5 large-ensemble in both regions. We note that both of these regions
are relatively well sampled, which may lead to more robust estimates of multi-decadal variability in the

Landschiitzer et al. (2016) dataset, and better agreement with the models than seen at the global scale.

Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions.
Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude
than at the global scale (Table 2). Over the period 1995-2020, model uncertainty is the dominant source of
uncertainty in both the NE Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd).
Internal variability explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the
NW Atlantic however, its share drops to 15% by the end of the century. The share attributable to internal variability
is much larger during the 21* century in both regions compared to the global scale. Internal variability is larger in
the NW Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in NE Pacific (Fig.
4b). Overall, internal variability averaged over the scenarios shows a small increase, but no clear trend in time in
both regions until the 2080-2100 period where it decreases, consistent with the global estimates. The dependence
of internal variability on the scenario is an interesting result which requires further evaluations to understand the
degree of dependence and the driving mechanisms of such changes with time based on scenario. We showed earlier
that the NE Pacific scenarios do not differ much as the region is not a hotspot region - scenario uncertainty explains
less than 20% of the total uncertainty at the end of the century in the NE Pacific. In the NW Atlantic, scenario
uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end of the century. In both

regions, model uncertainty is the dominant source of uncertainty in all years.
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Figure 4- (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-
series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschiitzer et
al. (2016) SOM-FFN product. The blue dashed line shows the internal variability measured as two times the standard
deviation across all 50 members of CanESMS5 only for ssp245 here. (b), (d) time-series showing the breakdown of
uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b)

NE Pacific (40-60 °N, 130-160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W)
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Scenario | 19952020 2020-2040 2040-2060 2060-2080 2080-2100
ssp126 0.05 0.03 -0.13 -0.21
, (-0.91 — 0.86) (-0.86-0.62) | (-1.1-0.58) | (-1.18-0.60)
Anomaly | sp245 0.00 0.06 0.09 0.03 0.06
(range) (-0.98-0.76) | (-0.86—0.83) | (-0.74—0.81) | (-0.65—0.60) | (-0.70—0.53)
ssp585 0.11 0.21 0.29 0.2
(-0.73 - 0.79) (-0.61 — 0.86) (022-0.94) | (-0.25— 0.98)
North
East
Pacific
0.47 (0.87) 0.43 (0.74) 0.40 (0.81) 0.39 (0.83)
nternal (model)|  SSP120 0.46 (0.87) 0.47 (0.81) 0.48 (0.64) 0.45 (0.53)
Uncertainty | $p245 | 0.39 (0.90) 0.45 (0.81) 0.47 (0.745) 0.58 (0.55) 0.44 (0.57)
ssp585
Average | 039 (0.90) 0.46 (0.86) 0.46 (0.77) 0.47 (0.70) 0.43(0.67)
0.13 -0.20 -0.66
sspl126 -1.00
P (-0.77-121) | (-1.03-0.56) | (-145—-0.11) | (] g0--0.56)
Anomaly 245 0.00 0.18 0.10 -0.20 -0.54
(range) | P (097 -131) | (0.78-123) | (-0.68-0.80) | (-0.97-050) | (122_0,07)
25585 0.23 0.38 0.41 0.10
(-0.70 — 1.20) (-041-1.12) | (:027-129) | (o70- 0.96)
North
West
Atlantic
ssp126 0.47 (0.91) 0.47 (0.79) 0.46 (0.78) 0.42 (0.80)
el (nodel) SSP?:? 0.43 (1.02) 0.47 (0.96) 0.49 (0.82) 0.49 (0.80) 0.47 (0.79)
SSp 0.50 (0.90) 0.51 (0.94) 0.52 (1.00) 0.53 (1.00)
Average | 043 (1.02) | 45 (0.93) 0.49 (0.87) 0.49 (0.88) 0.48 (0.88)

Table 2- CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m

2

yr'!) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE

Pacific and NW Atlantic.
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The regional analysis shows that while uncertainty and its distribution among sources depends on the spatial scale
of integration, the specific location also matters. Regional patterns of uncertainty broken down by the source are
needed to clarify changes based on location. Consistent with the sink anomaly maps (Fig. 1), the regions that show
highest uncertainty for any of the sources in the future, are the same regions that show the largest uncertainties in
the historical period (Fig. 5). More importantly, the regions of largest future uptake uncertainty are highly correlated
with the historical regions of largest uptake, as shown by the pattern correlation coefficients above each panel. This
is a highly significant finding, because it suggests that knowledge of the modern day surface carbon flux anomaly

provides us with information about future uptake uncertainty.

The regions of high internal variability (eastern boundary upwelling regions, western boundary currents of the Gulf
Stream and Kuroshio, their extensions, and the Southern Ocean) are mostly within hotspots but are not confined to
them and do not include all of them. This lack of correspondence explains why the correlation coefficients are not
high for internal variability. An increase in internal variability with time is seen mostly in regions such as the
Southern Ocean, the Arctic Ocean, and boundaries of the gyre systems, while the rest of the ocean does not show
a clear change. The maps in Figure 5 are averaged over the three scenarios, which masks the changes to some
extent. However, we show in the Supplements (see section S2) that changes in the globally averaged internal
variability with time are different for different scenarios. Model uncertainty is consistently highest in the hotspot
regions, leading to stronger correlation with the anomaly maps of Fig. 1c. The model uncertainty is largest in the
Southern Ocean, where the complex time-evolving nature of the sink varies on all time-scales. The importance of
model uncertainty in the Southern Ocean provides a clear focal point for modelling centres to concentrate their
efforts in reducing projection uncertainty. Atmospheric teleconnections might play an important role in generating
the highly variable Southern Ocean carbon sink on decadal scales, and these are poorly constrained and represented

by models (Gruber et al. 2019).

Scenario uncertainty exhibits the largest change with time. This is by construction, meaning that scenarios are
designed to deviate from each other as time goes forward. Importantly, the correlation coefficients are highest
between scenario uncertainty and the current sink regions, indicating that the hotspot regions are the regions that
show the largest divergence among scenarios, and that the sink in most other regions does respond as strongly to
scenario differences. We showed an example of this earlier, where the timeseries of the multi-model signals for the

three scenarios did not emerge out of internal variability in the NE Pacific by 2100, whereas they did for the hotspot

17



01
02
03
04
05

06
07
08
09
10
11

12
13
14

https://doi.org/10.5194/esd-2022-19 Earth System
Preprint. Discussion started: 18 May 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License.

Discussions

region of the NW Atlantic. This shows that, in these active hotspot regions, the sink evolves according to
atmosphere CO; concentration via ocean processes that keep the surface ocean CO; out of equilibrium with the
atmosphere. These uncertainties are central to the ability to detect human induced trends in observations of the

surface ocean carbon flux, to which we now turn.

2080-2100 mean anomaly
1995-2015 mean anomaly 2040-2060 mean anomaly (0.35)
(0.34) (0.29)

Internal Uncertainty

Model Uncertainty

Uncertainty (mol m=2 yr~1)

Scenario Uncertainty

Figure 5- Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as
explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-
century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are
correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).

3.4 Detectability

Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal

climate variability. Understanding the regional differences, timescales, and scenario dependence in the detectability
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of human induced trends in the ocean surface carbon flux is important for informing observational strategies that

aim to measure these changes.

We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using
the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational
communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the
multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the

CanESMS5 SMILE.

The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the hotspot
regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the western boundary
currents of the gyre systems, and their extensions (Fig. 6). The fixed inactive regions, such as the centres of the
mid-latitude gyre systems and the NE Pacific, show late emergence times and, in some cases, no detectability of
the signal in any of the scenarios by 2100. This is consistent with the results from Sect. 3.3, in which we showed
that internal variability is a significant source throughout the century in the NE Pacific, with scenarios never
emerging out of the range of internal variability (Fig. 4a,b). This result argues for focusing observational efforts on
the hotspot regions in order to detect human influence on the ocean carbon sink. Meanwhile, they imply that
observational timeseries in quiescent regions, such as Ocean Station Papa in the NE Pacific, need to interpret any

observed trends with care, since internal variability tends to dominate over human induced trends.

2000 2025 2050 2075
Year

Figure 6- Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate

where the anthropogenic signal cannot be detected even towards the end of the century.
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Previous studies have largely presented a single time of emergence; however, the time of emergence strongly
depends on the future scenario. The time of emergence is earliest on average over the global ocean in ssp585, while
it is later in ssp245, and later still in ssp126. The earlier times of emergence are largely due to the stronger signal
in ssp585, and weaker in ssp245 and ssp126 (Fig. 2-a), consistent with the imposed changes in atmospheric CO»
concentration. The exceptions are quiescent regions that show earlier detectability for ssp126 compared to other
scenarios; these exceptions are associated with larger (but negative) anomalies in the latter half of the century under
ssp126 which has negative emissions (compare panels d-f, and g-i on Fig. 1). Internal variability does evolve
somewhat differently for each scenario, but this is secondary (Fig. B2). Our results suggest that under the rapidly
rising atmospheric CO; concentrations seen in ssp585, the human signal in the ocean carbon sink will be detectable
across much of the global ocean over the coming few decades. However, under strong mitigation scenarios, such

as ssp126, early emergence will only occur in isolated regions.

4. Conclusions

Ocean carbon uptake as a result of increasing atmospheric CO, concentration occurs mostly in a few hotspot
regions. We analyze the results from the CMIP6 multi-model mean for the current state of the ocean (1995-2015),
and the middle (2040-2060) and late (2080-2100) 21* century relative to the current state for three scenarios. We
show that future changes in the sink mostly take place within the same historical hotspot regions. This result implies
that known regions of high historical uptake, including the North Atlantic and Southern Ocean, are the same regions

to prioritize for observing the future evolution of the sink.

We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and
the trend in the sink (globally), compared to the observation-based data product dataset of Landschiitzer et al.
(2016). These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of
the ocean carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschiitzer
et al. (2016) data shows larger decadal variability at the global scale than seen in any CMIP6 model. We argue the
overestimation of internal variability by this dataset is a plausible explanation, since at the regional scale, there is
no such disagreement. This is in agreement with Gloege et al. (2021) who showed that the SOM-FFN method

overestimates the magnitude of decadal variability by 21% on the global scale.
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We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale
and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model
uncertainty and internal variability. However, as the scales of integration (averaging) get finer, model and internal
variability become the dominant sources, respectively. Testing the results on two ocean basins of about the same
size, one in the NE Pacific and one in the NW Atlantic shows that - while consistent with the results of the scale
dependence analysis - the relative importance of the sources of uncertainty also differs with location. Notably, in
hotspot regions, such as the NW Atlantic, scenario uncertainty is large, whereas in more quiescent regions, such as
the NE Pacific, internal variability is more significant. The dependence of internal variability on the scenario with
time is another interesting finding that could be the subject of future studies for a better understanding of the driving

mechanism and the degree of dependence on the future emissions and/or concentrations.

The patterns of high future CO- uptake uncertainty are highly correlated with the patterns of historical uptake. The
correlation coefficients are highest for scenario uncertainty, indicating that the hotspot regions have the potential
for the sink to evolve according to the atmospheric CO; concentration, while the rest of the ocean basins do not
respond strongly to changes in atmospheric CO represented by the different scenarios. Our results here are
significant in that they show that regions of future uncertainty are largely associated with known regions of

significant historical uptake.

Patterns seen in the time-of-emergence have implications for planning observational campaigns for detection of a
signal. Our results show that there should be caution taken in interpreting the observed changes in regions such as
NE Pacific (where active sampling is being done) associated with the late time of emergence of the signal from the
decadal (internal) variations. On the other hand, regions such as the Equatorial Pacific, the Gulf Stream and
Kuroshio and their extensions, and the Southern Ocean, should be the focus of consistent and expanded sampling
for detection of the forced signal. Additionally, the patterns in sources of uncertainty show that model uncertainty
is largest in the Southern Ocean, consistent with previous studies. The sink in the Southern Ocean is driven by
complex mechanisms involving coupled ocean-atmosphere-ice interactions that require better representation in
ocean biogeochemical models. If we wish to constrain and reduce future uncertainties in the ocean carbon sink, our
results provide a motivation to focus modelling as well as observational efforts on the known hotspot regions of

historical uptake.
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