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Abstract. As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the 7 

atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global 8 

and regional scale, are key to understanding the future evolution of the climate. Here we report on the changes and 9 

uncertainties in the historical and future ocean carbon sink using output from the Coupled Model Intercomparison 10 

Project Phase 6 (CMIP6) multimodel ensemble and compare to an observation based product. We show that future 11 

changes of the ocean carbon sink are concentrated in highly active regions - 70 percent of the total sink occurs in 12 

less than 40 percent of the global ocean. High pattern correlations between the historical uptake and projected 13 

future changes in the carbon sink indicate that future uptake will largely continue to occur in historically important 14 

regions. We conduct a detailed breakdown of the sources of uncertainty in the future carbon sink by region. 15 

Consistent with CMIP5 models, scenario uncertainty dominates at the global scale, followed by model uncertainty, 16 

and then internal variability. We demonstrate how the importance of internal variability increases moving to smaller 17 

spatial scales and go on to show how the breakdown between scenario, model, and internal variability changes 18 

between different ocean regions, governed by different processes. Using the CanESM5 large ensemble we show 19 

that internal variability changes with time based on the scenario, breaking the widely employed assumption of 20 

stationarity. As with the mean sink, we show that uncertainty in the future ocean carbon sink is also concentrated 21 

in the known regions of historical uptake. Patterns in the signal-to-noise ratio have implications for observational 22 

detectability and time of emergence, which we show to vary both in space and with scenario. We show that the 23 

largest variations in emergence time across scenarios occur in regions where the ocean sink is less sensitive to 24 

forcing - outside of the highly active regions. In agreement with CMIP5 studies, our results suggest that to for a 25 

better chance of early detection of changes in the ocean carbon sink, and to efficiently reduce uncertainty in future 26 

carbon uptake, highly active regions, including the Northwest Atlantic and the Southern Ocean, should receive 27 

additional focus for modelling and observational efforts. 28 
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1. Introduction 29 

Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised 30 

Earth's average temperature. Carbon dioxide (CO2) is the primary driver of eglobal warming in the industrial period 31 

(Masson-Delmotte et al., 2021). The concentration of atmospheric CO2 has increased from approximately 277 parts 32 

per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019. However, 33 

less than half of the CO2 emitted by anthropogenic activity has remained in the atmosphere. The remaining CO2 was 34 

taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. Specifically, the global ocean 35 

absorbed ∼26% of the total CO2 emissions during 2011-2020 (Friedlingstein et al., 2021).  36 

 37 

The ocean’s capacity to absorb anthropogenic CO2 is not uniformly distributed (McKinley et al., 2016, Sarmiento 38 

et al., 1998). Despite increasing atmospheric CO2 concentrations, projected air-sea CO2 fluxes do not change much 39 

in the middle of the subtropical gyres over the decade starting in 1990. The regions where ocean carbon uptake 40 

notably increases are those with strong exchange between the surface and the deep ocean (Ridge and McKinley, 41 

2021; Frölicher et al., 2015; McKinley et al., 2016). The response of the ocean carbon sink to increasing 42 

atmospheric CO2 levels consists of a direct absorption response as well as climate change induced perturbations to 43 

the natural background carbon fluxes (Crisp et al. 2022, McKinley et al. 2020, Hauk et al., 2020, Gruber et al. 2019, 44 

Frolicher at al, 2015). Even within regions there are large variations in the dominant mechanisms and possibly the 45 

direction of the carbon sink (or source). In the Southern Ocean, for instance, the spatial superposition of natural 46 

and anthropogenic CO2 fluxes leads to a relatively strong uptake band between approximately 55°S and 35°S 47 

(Gruber et al., 2019). However, south of the Polar Front (55°S), the different estimates agree less well (Gruber et 48 

al., 2019, Landschützer et al., 2016, Gruber et al., 2009, Takahashi et al., 2009). Supported by measurements on 49 

biogeochemical floats (Bushinsky et al., 2019; Gray et al., 2018; Williams et al., 2018), Gruber et al. (2019) argue 50 

that the region was most likely a small source at the time.  51 

 52 

 Earth System Models (ESMs) are the primary tool for projecting the future evolution of carbon in the climate 53 

system. However, quantitative projections from ESMs are subject to considerable uncertainty, particularly at 54 

regional and local scales (Friedrich et al., 2012; Frölicher et al., 2014; Hauck et al., 2015; Roy et al., 2011; Tjiputra 55 

et al., 2014; Terhaar et al., 2021) where less averaging is done and different individual mechanisms dominate 56 

different regions. Projection uncertainty varies with lead time, spatial averaging scale, and from region to region 57 

(Lovenduski et al., 2016; Schlunegger et al., 2020). For example, Lovenduski et al. (2016) showed a spatially 58 
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heterogeneous pattern of projection uncertainty in CO2 flux projections over 17 ocean regions for CMIP5 models. 59 

Furthermore, by comparing uncertainty at the global scale to the scale of the California Current System, they show 60 

that uncertainty is higher at smaller scales. Schlunegger et al. (2020) further show partitioning of uncertainty 61 

for 10 ocean basins at the year 2050. All said, if ESMs are to be used to quantify future changes in ocean carbon 62 

uptake, especially across shorter timescales and at regional spatial scales, and to inform observational campaign 63 

planning, their uncertainties must be well known and well understood (Lovenduski et al., 2016).  64 

 65 

A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model 66 

Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over 67 

a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). There are three main 68 

types of uncertainty in climate model projections, as described by Hawkins and Sutton (2009) (hereafter HS09): 69 

 70 

Uncertainty due to internal variability: Internal variability is the unforced natural climate variability resulting 71 

from the internal processes in the climate system. Modes such as the El Niño–Southern Oscillation, North Atlantic 72 

Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM) 73 

contribute to this internal variability. Internal variability also includes variability that acts on shorter time and 74 

spatial scales, such as submesoscale and mesoscale ocean features (Frolicher et al., 2016). The real world follows 75 

only one of an infinite possible number of realizations of internal variability, and due to its chaotic nature, the 76 

future evolution of internal variability is not predictable beyond short timescales (Lorenz, 1969; Somerville, 1987). 77 

Climate model simulations do not attempt to reproduce the exact observed evolution of internal variability, but 78 

produce their own, unique realizations that aim to capture the statistics of variability. Hence, our analysis must 79 

account for internal variability, both when comparing historical model simulations to observations, and when 80 

considering uncertainties in the future ocean carbon sink. In HS09, a fourth-order polynomial fit to simulated global 81 

and regional temperature timeseries represented the forced response, while the residual from this fit represented 82 

the internal variability. There is thus, an assumption of stationarity (constant in time) in their method.  Moreover, 83 

this approach could possibly conflate internal variability with the forced response in cases where low-frequency 84 

(decadal-to-multidecadal) internal variability exists, or when the forced signal is weak, which makes the statistical 85 

fit a poor estimate of the forced response (Kumar and Ganguly, 2018). In this study, we instead use a Single-Model 86 

Initial-condition Large Ensemble (SMILE) to robustly quantify the internal variability across time and scenarios 87 

using ensemble statistics (Lehner et al., 2020). A SMILE is an ensemble of model realizations that each starts from 88 
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different initial conditions but uses the same model and forcing, and provides representations of the climate system 89 

that are equivalent except for internal variability.  90 

Uncertainty due to model structure: Models differ in their resolution, structure, numerics, and parameterization 91 

of processes. These differences cause models to respond differently to the same forcing. For example, the CMIP5 92 

model simulations run under Representative Concentration Pathway 8.5 (RCP8.5) project a wide range of 93 

cumulative anthropogenic carbon storage by 2100 (320–635 Pg-C) (Ciais and Sabine, 2013) due to both internal 94 

variability and model uncertainty (Lovenduski et al., 2016).  95 

Uncertainty due to emission scenario: The future of the climate system depends on human activity and our 96 

emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our 97 

inability to project the complex changes in society and technology upon which they depend. As a result, future 98 

simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations) 99 

will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally 100 

coordinated experiments organized by the Coupled Model Intercomparison Project (O'Neill et al., 2016). Since the 101 

future emission trajectory is unknown, these future simulations are referred to as projections, rather than 102 

predictions. Projections of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission 103 

scenario (Lovenduski et al., 2016). For example, cumulative ocean carbon uptake from 1850 is projected to saturate 104 

at approximately 290 ± 30 GtC under ssp126, and to reach 520 ± 40 GtC by 2100 under ssp585 for CMIP6 models 105 

(Canadell et al., 2021). 106 

Together with the patterns of changes in the sink, the patterns of internal variability allow for an assessment of the 107 

required timescales for detection of changes in the ocean carbon sink. Detection means that we can robustly separate 108 

the forced signal from internal variability (McKinley et al., 2016). Detectability can be assessed using Time of 109 

Emergence (TOE; Hawkins and Sutton, 2012; Lovenduski et al., 2016; McKinley et al., 2016; Rodgers et al., 2015; 110 

Schlunegger et al., 2020; 2019). For example, McKinley et al. (2016) and Schlunegger et al. (2019) showed that 111 

the forced signal of increasing ocean carbon uptake is not detectable in regions of convergent Ekman transport 112 

(centre of the subtropical gyres). Schlunegger et al. (2020) builds on that using four large ensembles of CMIP5 113 

ESM simulations with two forcing scenarios to show that air-sea CO2 flux TOEs show strong agreement between 114 

the large-ensembles not just for global and regional scales but also locally and spatially. Their use of only four 115 

models and two scenarios however, potentially underestimates the contribution of model and scenario uncertainty. 116 

 117 
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Here, we build on previous work using CMIP6 models. We make use of an ensemble of 13 models to better capture 118 

model uncertainty in the response to different forcing (scenarios) and three scenarios to represent a wider range of 119 

future possibilities including a strong mitigation scenario.  We start by analysing the regional patterns of historical 120 

ocean carbon uptake and how they are projected to change in the future (Sect. 3.1). We estimate internal variability 121 

from a comprehensive SMILE, avoiding the stationarity assumption common in previous work, which we show is 122 

violated. Then, we examine the partitioning among different sources of uncertainty (Sect. 3.2) and provide a novel 123 

analysis of how the three sources of variability change across the full continuum of scales (Sect. 3.3).  Having 124 

shown how the uncertainty and distribution among sources differ based on scale of integration and region of 125 

interest, we analyze local patterns of uncertainty by source (Sect. 3.4).  The final section explores the detectability 126 

of the model projected signal given the uncertainty imposed by internal variability. We report on the scenario-127 

dependent Time of Emergence, using a scenario specific measure of internal variability in order to make useful 128 

suggestions for future observations.  129 

 130 
 131 

2. Data and Methods   132 

2.1 Model Data Selection 133 

Here we use results from models selected from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring 134 

et al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation 135 

for air-sea CO2 flux (fgco2) for the CO2 concentration driven experiments of interest. One realization of each 136 

model over the historical period and three scenarios that represent the low (ssp126), mid (ssp245), and high 137 

(ssp585) ranges of future atmospheric CO2 concentrations are analysed. A total of 16 models met these criteria, 138 

out of which 3 were excluded as outliers (see section S1 in the Supplements). To maintain equal sampling, only 139 

one realization of each model was selected, except when specifically using the large ensembles to assess internal 140 

variability. Finally, since the ocean component of the models may be on different grids, all model data were 141 

remapped to a regular one-by-one-degree grid and a 10 year running mean filter was applied to the time-series. 142 

We did not account for potential drift in the models. However, the drift is known to be small in the models 143 

compared to the historical trends for CMIP5 models (Hauck et al, 2020). For 11 of our CMIP6 models for which 144 

piControl runs are available, on average, the drift is more than one order of magnitude smaller than the change in 145 

the model scenario with the smallest trend over the 21st century, on the global scale. 146 
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 147 

2.2 Sources of uncertainty 148 

Total uncertainty is composed of internal, model, and scenario uncertainty in equation 1, which assumes that each 149 

of these sources is independent. Here, each source of uncertainty is considered as a function of time (t) and location 150 

(l) (Lovenduski et al., 2016): 151 

 152 

UT 2 (t, l) = UI 2 (t, l) + UM 2 (t, l) + Us 2 (t, l) 153 

 154 

where UT
 (t, l) is total uncertainty, UI (t, l) is internal variability, UM (t, l) is model uncertainty, and US (t, l) is 155 

scenario uncertainty. The fractional uncertainties for each source are calculated as 
௎಺

మ

௎೅
మ, 

௎ಾ
మ

௎೅
మ , and 

௎ೄ
మ

௎೅
మ (Lovenduski et 156 

al., 2016). 157 

 158 

HS09 assume UI (t, l) to be constant in time (stationary) and use a 4th degree polynomial fit to measure internal 159 

variability as the spread over time and scenario of the residuals for each model’s signal relative to the fitted signal. 160 

We show in the Supplements (see section S2) that internal variability depends on time and scenario, violating the 161 

commonly used assumption of stationarity. Using a SMILE allows us to account for these variations without having 162 

to make assumptions about distribution or stationarity of variability (Frolicher et al., 2015; Schlunegger et al., 163 

2020).  Here we estimate internal variability as two times the standard deviation of the annual carbon sink across 164 

50 realizations from a SMILE based on CanESM5 (Eq. 2): 165 

 166 

 167 

𝑈ூ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
෍ Var (CanESM5 Large Ensemble

ேೞ

௦ୀଵ

) 168 

 169 

where s indicates each scenario (Ns is the number of scenarios) and Var indicates the variance over the large 170 

ensemble of CanESM5.  In the CanESM5 SMILE, each realization starts from different initial conditions which 171 

are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations 172 

gives a robust estimate of the internal variability, including sampling over longer term ocean variability.  173 

 (1) 

 (2) 
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 174 

Previous studies have also used SMILEs to estimate variability (Frolicher et al., 2015; Schlunegger et al., 2020), 175 

although they used either a limited ensemble size or single scenario. We show in the Supplements (Fig. S2), that a 176 

sufficiently large ensemble size is needed to capture internal variability, and that internal variability depends on the 177 

scenario. In the ideal case, if every CMIP model provided sufficiently large SMILEs for each scenario, an ensemble 178 

mean estimate of the variability could be obtained and would represent a best estimate (but still possibly biased 179 

compared to the real world). However, only a handful of CMIP6 models produced multiple ensemble members. 180 

We selected the CanESM5 SMILE as it is the only model that has a large enough ensemble over the entire timeline 181 

and set of experiments to estimate internal variability robustly across scenarios. 182 

 183 

The use of a single model to estimate the scale of internal variability leads to some uncertainty in our estimates, as 184 

models do not agree perfectly with each other on the variability. Nonetheless, over the historical period, variability 185 

among large ensembles from three models that have enough ensemble members is within 10%, on the global scale 186 

(Fig S3). Differences will be larger at smaller scales; however, the general patterns of the magnitude of internal 187 

variability (see Fig. S4) are in good agreement across models and are consistent with known regions of high 188 

variability in the observed ocean, validating our use of the CanESM5 SMILE 189 

 190 

Model uncertainty is calculated by taking the variance across the forced signal of all available models for each 191 

scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).  192 

𝑈ெ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
෍ Var௠൫𝐹(𝑚, 𝑠, 𝑡, 𝑙)൯

ேೞ

௦ୀଵ

 193 

where Varm means the variance taken across different models (m) for individual times and scenarios (s).  194 

𝐹(𝑚, 𝑠, 𝑡, 𝑙) is the forced signal and can be related to each realization as follows: 195 

 196 

𝑇(𝑚, 𝑠, 𝑡, 𝑙) = 𝐹(𝑚, 𝑠, 𝑡, 𝑙) + 𝑅(𝑚, 𝑠, 𝑡, 𝑙) 197 

 198 

Where, 𝑇(𝑚, 𝑠, 𝑡, 𝑙) represents the reported output, i.e. each realization, but must be corrected for internal 199 

variability. 𝑅(𝑚, 𝑠, 𝑡, 𝑙) is the residual from the forced signal caused by internal variability. Here, the variance in 200 

the forced signal across all models is calculated by correcting the total variance across all models’ one realization 201 

 (3) 

(4) 
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for the variance caused by internal variability. The corrections are done by subtracting the variance across the same 202 

number of CanESM5 ensemble members as the multi-model ensemble (13 members) from the variance across the 203 

one realization of each of the 13 models. For this correction only, the sample sizes (13) are kept the same so that 204 

the internal variability removed from the variance across the models’ first realizations is not overestimated by a 205 

well sampled 50-member ensemble (see section S3 in the Supplements).  206 

 207 

Us (t, l) is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root 208 

of variance) across scenarios of the multi-model mean signal (Eq. 5).  209 

 210 

𝑈ௌ(𝑡, 𝑙) = 2ඩVar௠(
1

𝑁௠
෍ 𝑇 (𝑚, 𝑠, 𝑡, 𝑙 )

ே೘

௠ୀଵ

) 211 

where 𝑁௠   is the number of models. The multi-model mean across the first realizations of the 13 models is an 212 

estimate of the multi-model forced response and does not require correction for internal variability as done for 213 

model uncertainty.  214 

 215 

We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When 216 

regional and global analysis is done, the dependence on location is taken away by averaging over that region or the 217 

whole global ocean.  218 

 219 

2.3 Time of Emergence (TOE)  220 

In order to know when the forced response is distinguishable from internal variability, TOE is calculated. The time 221 

of emergence is the first year when the multi-model mean anomaly is larger than internal variability – approximated 222 

by two times the standard deviation across the 50 member CanESM5 ensemble - for five consecutive years (the 223 

first year of this five-year period is reported as the time of emergence). The result is reported at each grid point for 224 

the 10-year running mean smoothed anomaly relative to the 1995-2015 mean (detection of a change relative to the 225 

current state of the ocean). 226 

 227 

 (5) 
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2.4 Scale Dependence 228 

Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal 229 

variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving 230 

a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until 231 

all scales from <100 km2 to the whole Earth are considered. For each source of uncertainty and averaging scale, 232 

the average for all rectangles across the globe is reported, where each rectangle contains the same ocean area. 233 

 234 

3. Results and Discussion 235 

3.1 Global Analysis 236 

The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-237 

2015 matches that of the Landschützer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN) 238 

observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the 239 

multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the 240 

response of any single model (Tebaldi & Knutti, 2007). Unlike in ESMs, the observation-based product only 241 

represents the one realization of the real world, which includes internal variability, and is therefore not directly 242 

equivalent to the forced signal. However, the comparison to the 20 year mean multi-model mean still informs us 243 

about the degree of agreement between the two products. When compared to the observation-based data product, 244 

the CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North/North-West 245 

Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data product shows 246 

a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble. 247 

 248 

While most of the global ocean shows a net sink relative to the pre-industrial era, the largest acceleration of that 249 

sink takes place in some highly active regions such as the subpolar North Atlantic, Southern Ocean, Eastern 250 

Equatorial Pacific, and western boundary currents of the mid-latitude gyre systems in the Pacific and Atlantic 251 

Oceans (Fig. 1c). These regions of largest change in the carbon sink (direct response to higher atmospheric CO2 252 

plus changes in the natural carbon sink) are the regions where there is a surface-depth connectivity through ocean 253 

circulation as the air–sea flux of anthropogenic carbon is fundamentally limited by the rate of surface-to-depth 254 

transport (Graven et al., 2012; Ridge and McKinley 2021). These results for CMIP6 models are consistent with 255 

those from McKinley et al. (2016) based on CESM-LE under CMIP5 protocols, and earlier studies such as 256 
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Sarmiento et al. (1998). Here, we provide a new criterion for identifying these highly active regions based on 257 

comparing the integrated global sink anomaly within grid cells above a certain threshold to the percentage of ocean 258 

area they occupy (see Supplement S5). We find that for all three scenarios and both mid-21st century (2040-2060 259 

mean) and late-21st century (2080-2100 mean) time periods (with the exception of ssp126 late-century where strong 260 

mitigation of anthropogenic CO2 emissions results in broad patterns of negative anomalies), approximately 70% of 261 

the changes in the sink relative to the preindustrial era take place in less than 40% of the global ocean (see 262 

Supplement Fig. S6 and S7). The diagnosed highly active regions based on this analysis (Fig. S7) are consistent 263 

with the regions of large uptake change (trends) from previous studies (Rodgers et al., 2020; McKinley et al., 2016; 264 

Frölicher et al., 2015)  265 

 266 

The regions of largest future carbon uptake, relative to the 1995-2015 mean, are within the same highly active 267 

regions responsible for most of the uptake over the historical period. The correlation coefficients at the top of each 268 

panel in Fig. 1 (except 1b) represent the pattern correlation between future absolute anomalies, relative to 1995-269 

2015, and anomalies in 1995-2015, relative to the pre-industrial era. The high correlations indicate that regions that 270 

have been most active in increasing their carbon sequestration are the same regions that will continue to increase 271 

further into the future, particularly with larger increases in atmospheric CO2 (ssp585).  Our results support the 272 

findings of Wang et al. (2016) who showed that projected future air-sea CO2 fluxes are strongly associated with 273 

simulated historical air-sea CO2 fluxes. This confirms that the historical state is a good predictor for the future state 274 

(Wang et al., 2016) not only in terms of magnitudes of the sink, but also in the spatial pattern.  275 

 276 

 277 

 278 



11 
 

 279 

Figure 1- CMIP6 multi-model mean maps of carbon sink and sink anomalies using one realization of each model. Columns 280 

represent different time periods, being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century 281 

(2080-2100 mean). Note: the sink is positive into the ocean.  The first column shows (a) the CMIP6 ensemble mean air-sea 282 

CO2 flux over 1995-2015, (b) Landschützer et al. (2016) SOM- FFN product, and (c) the CMIP6 ensemble mean flux 283 

anomaly over 1995-2015 relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015 multi-model 284 

mean (panel a). Panels d through i show different scenarios. Numbers above each map are correlation coefficients between 285 

the absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the pre-industrial era in 286 

panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and panel a. 287 

   288 

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is 289 

projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The 290 

regional patterns show mostly positive anomalies at mid-century with largest changes in the higher emission 291 

scenarios (ssp585). Towards the end of the century, however, greater areas of negative anomalies are expected in 292 

ssp126, as emissions turn negative in the late 21st century in this scenario. The largest absolute values of anomalies 293 

are still within the same highly active regions discussed before with surface-depth connectivity regardless of it 294 
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being positive or negative. The late-century anomalies are predominantly positive in ssp585 which corresponds to 295 

the highest emission scenario (continuing to grow larger compared to the mid-century), while ssp245 is somewhere 296 

in between, with regions of positive and negative anomalies. Under ssp245, as CO2 emissions decrease and 297 

atmospheric CO2 start to level off, the intensity of uptake decreases in the midlatitude western boundary currents 298 

and subpolar North Atlantic in the late-century, and anomalies in the Eastern Equatorial Pacific also decrease, 299 

compared to the mid-century. The globally integrated ocean carbon uptake anomaly rates are summarized in Table 300 

1. 301 

 302 

 303 

Figure 2- (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-304 

2015. Individual models are plotted as thin grey lines in the background. The black dashed line shows the Landschützer et 305 

al. (2016) SOM-FFN product. Both models and SOM-FFN timeseries are smoothed with a 10-year running mean. The blue 306 

dashed lines show internal variability for ssp245. (b) Timeseries showing the breakdown of uncertainty to different sources 307 

with time for the global ocean carbon sink anomaly. The internal and model uncertainty are averaged for different scenarios. 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 
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 317 

 318 

 Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 

 
0.00 

(-0.06 – 0.06) 
 

 
 

0.13  
(0.05 – 0.21) 

 
0.17  

(0.08 – 0.24) 
 

0.22 
 (0.11 - 0.30) 

 
 

 
 
 

0.07  
(-0.02 – 0.16) 

 
0.25  

(0.11 – 0.36) 
 

0.49  
(0.29 – 0.62) 

 
 
 

 
 
 
 

-0.08  
( -0.14 - -0.01) 

 
0.23  

(0.09 – 0.33) 
 

0.71  
(0.45 – 0.90) 

 
 

 
 

 
 
 
 

-0.24  
(-0.3 - -0.12) 

 
0.13  

(0.02 – 0.21) 
 

0.80 
 (0.54 –  1.00) 

 
 
 
 

 
 

 
ssp126 

 
ssp245 

 
ssp585 

 

 
Average 

 
 

 
 
 

0.032 (0.08) 
 

 

 
 
 

0.032 (0.08) 

 

 

 
0.033 (0.11) 

 
0.032 (0.11) 

 
0.033 (0.13) 

 
 

0.033 (0.12) 

 

 

 
0.034 (0.11) 

 
 0.034 (0.14) 

 
0.037 (0.2) 

 
 

0.035 (0.16) 

 
 

 
0.035 (0.10) 

 
0.037 (0.14) 

 
0.045 (0.26) 

 
 

0.039 (0.18) 

 
 
 

0.036 (0.11) 
 

0.036 (0.12) 
 

0.043 (0.27) 
 
 

0.038 (0.18) 
 

 319 

Table 1- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in 320 

parentheses) relative to the 1995-2015 mean (in mol-C m-2 yr-1) and internal variability from CanESM5 (with model 321 

uncertainty in parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average 322 

values across scenarios. 323 

 324 

The trends in the global mean ocean carbon sink anomalies over 1995-2015 are statistically consistent between the 325 

CMIP6 multi-model ensemble mean and the Landschützer et al. (2016) observation-based data product (Fig. 2-a), 326 

based on the test from Santer et al. (2008; see Supplements section S5). However, the SOM-FFN based time-series 327 

shows a larger multi-decadal variability (variations in the 10-year running mean timeseries on top of the trend) than 328 

seen in individual model realizations, and is larger than the range of internal variability estimated from the 329 

CanESM5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-FFN 330 

method, or underestimation of the internal variability by the ESMs. Given that on regional scales the SOM-FFN 331 

Internal 
 (model) 

Uncertainty 

Anomaly 

(range) 
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data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESM5 (see Sect. 3.3), 332 

and that there are significant gaps in the spatial and temporal sampling that underlies the Landschützer et al. (2016) 333 

estimate, it seems plausible that the discrepancy is largely due to overestimation of internal variability on the global 334 

scale by the SOM-FFN technique. This is consistent with the findings of Gloege et al. (2021), which showed that, 335 

globally, the magnitude of decadal variability is overestimated by 21% by the SOM-FFN technique, attributed to 336 

the amount of data filling.   337 

 338 

On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario 339 

uncertainty comes to dominate later (Fig. 2b).  Over the 1995-2020 period, model uncertainty explains around 85% 340 

of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of 341 

the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at 342 

the start of the century but only around 1% by the end. It is worth mentioning that the decreased share of uncertainty 343 

associated with model and internal variability do not mean that model or internal variability decrease in an absolute 344 

sense; rather, their importance relative to scenario uncertainty declines. These results regarding the importance of 345 

model and scenario uncertainties for multidecadal projections, and dominance of scenario uncertainty with time 346 

agree with previous studies using CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020).  347 

 348 

Absolute internal and model uncertainty of the global carbon sink change with time, based on the scenario (Table 349 

2, Fig. S3). High emission scenarios such as ssp585 show a larger change for both internal and model uncertainty 350 

where the forcing is stronger (Fig. S3). When averaged for the three scenarios, a constant increase in the magnitudes 351 

of both model and internal variability is seen through the century until 2080-2100 when the values either do not 352 

change or decrease slightly (Table 1).  Model uncertainty more than doubles towards the end of the century 353 

compared to 1995-2015 on average for different scenarios. This is consistent with Lovenduski et al. (2016) who 354 

argue that the increase is due to differences in climate sensitivity among models that manifest more strongly with 355 

time (and hence cumulative emissions). Additionally, the dependence of internal variability on the scenario is an 356 

interesting result. Future SMILEs from multiple models will allow evaluation of the degree of dependence and the 357 

driving mechanisms of such changes with time based on the forcing (scenario). Our result of internal variability 358 

dependence on scenario implies that the time of emergence of a signal out of internal variability will be affected 359 

by changes in the internal variability under different future forcing scenarios – which we return to in Section 3.4. 360 

 361 
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3.2 Dependence of the sources of uncertainty on spatial scale 362 

It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging 363 

(integration) scale gets finer, because on larger scales the variability is averaged out. Here, we provide a novel and 364 

continuous view of change in variability across scales from the global to grid scale, by measuring how variability 365 

changes relative to scale on average (Fig. 3). At the global scale, the dominant source of uncertainty is scenario 366 

uncertainty, followed by model and internal variability respectively, consistent with Fig. 2b. However, as the 367 

averaging (integration) scale gets finer, model and internal variability grow rapidly, while scenario uncertainty only 368 

grows slightly on average (over all regions of this size). At an averaging (integration) scale with an area finer than 369 

75 million km2 (on average), model uncertainty becomes the dominant source of uncertainty, and at a scale finer 370 

than 3 million km2, internal variability becomes larger than scenario uncertainty. The idea of scale dependence of 371 

these uncertainties was tested in Lovenduski et al. (2016) by comparing an area covering the California Current 372 

System with the global ocean. Here, we provide a novel analysis on a continuum of scales covering global to 373 

regional to local scales. While the results here hold true on average over the global ocean, scale dependence is 374 

partially controlled by the particular region being sampled. Finally, while our estimates of the magnitudes of 375 

sources of uncertainty and the cross over points (at which the dominance of internal variability over model 376 

uncertainty and model uncertainty over scenario uncertainty takes place), depend on the choice of ESMs and the 377 

method for calculation of internal variability, the general patterns are unlikely to be model dependent.  378 

 379 

 380 
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 381 

Figure 3- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5 382 

members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected 383 

standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different 384 

rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a 385 

specific location. 386 

 387 

 388 

3.3 Regional Analysis  389 

We further expand on the findings of our analysis of the scale dependence of uncertainty averaged over the globe 390 

by repeating the uncertainty breakdown for two specific regions: one in the Northeast Pacific (NE Pacific) between 391 

130°- 160° W and 40°- 60° N, and one in the Northwest Atlantic (NW Atlantic) between 40°- 70° W at the same 392 

latitude.  We chose these regions, first, to be of similar size, and second to represent very different carbon processes. 393 

The NW Atlantic region represents a highly active region while the NE Pacific region is more typical of quiescent 394 

ocean regions, where the flux anomalies are relatively small.  395 

 396 

The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This 397 

suggests both that it will be difficult to robustly detect any human induced changes in observations of the NE 398 
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Pacific carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be 399 

readily apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the 400 

anomalies are small regardless of scenario (Table 2). We speculate that in the absence of mechanisms providing a 401 

pathway to the depth where significant CO2 accumulation occurs, the surface pCO2 trend will follow that of the 402 

atmosphere closely, causing pCO2 and therefore air-sea carbon flux to remain fairly constant for all scenarios. In 403 

the NW Atlantic however, the variation across scenarios becomes larger than the internal variability in the early 404 

2060s (Fig. 4c). The response of the region to climate change is dependent on the scenario (Table 2), or, in other 405 

words, the amount of carbon dioxide in the atmosphere. This is because the NW Atlantic is a highly active region 406 

where the air-sea flux actively responds to the atmospheric CO2 concentration. The connection to depth allows 407 

for surface water to be replaced with water masses whose pCO2 trend lags behind that of atmosphere. The trend 408 

of the CMIP6 multi-model time-series over the historical period is statistically consistent (See Supplements 409 

section S5) with that of the observation-based SOM-FFN product, and the multi-decadal variability is within the 410 

range of internal variability measured by the CanESM5 large-ensemble in both regions. We note that both of 411 

these regions are relatively well sampled, which may lead to more robust estimates of multi-decadal variability in 412 

the Landschützer et al. (2016) dataset, and better agreement with the models than seen at the global scale. 413 

 414 

Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions. 415 

Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude 416 

than at the global scale (Table 2). A lesser importance for scenario uncertainty and greater importance for internal 417 

and model uncertainty is apparent in both regions compared to the global scale, in agreement with Schlunegger et 418 

al. (2020). Over the period 1995-2020, model uncertainty is the dominant source of uncertainty in both the NE 419 

Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd). Internal variability 420 

explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the NW Atlantic 421 

however, its share drops to 15% by the end of the century. The share attributable to internal variability is much 422 

larger during the 21st century in both regions compared to the global scale. Internal variability is larger in the NW 423 

Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in the NE Pacific (Fig. 4b). 424 

The large share of internal variability in NE Pacific indicates the need for sustained observations in the region. 425 

Overall, internal variability averaged over the scenarios shows a small increase, but no clear trend in time in both 426 

regions until the 2080-2100 period where it decreases, consistent with the global estimates (Table 2). We showed 427 

earlier that in the NE Pacific scenarios do not differ because the region is not a highly active region (Fig. S7) -  428 

scenario uncertainty explains less than 20% of the total uncertainty at the end of the century in the NE Pacific. In 429 
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the NW Atlantic, scenario uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end of 430 

the century.  In both regions, model uncertainty is the dominant source of uncertainty in all years.  431 

 432 

Our regional analysis confirms that while uncertainty and its distribution among sources depends on the spatial 433 

scale of integration, the specific location also matters (Lovenduski et al, 2016; Schlunegger et al., 2020). 434 

Schlunegger et al., (2020) tested this idea for 10 ocean basins of variable size (see their Figure 9). We focused on 435 

keeping the sizes similar and analyse a highly active region versus a more quiescent ocean region.  The key message 436 

here that there is an association with the importance as well as the magnitude of sources of uncertainty with how 437 

active the region is in regards to the carbon sink is not sensitive to the use of CanESM5 for estimation of internal 438 

variability. Local patterns of uncertainty broken down by source are thus needed to clarify changes based on 439 

location. 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 
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 448 

Figure 4- (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-449 

series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschützer et 450 

al. (2016) SOM-FFN product.  The blue dashed line shows the internal variability measured as two times the standard 451 

deviation across all 50 members of the CanESM5 SMILE only for ssp245 here. (b), (d) time-series showing the breakdown 452 

of uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b) 453 

NE Pacific (40-60 °N, 130 -160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W) 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 
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  Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 
 

0.00  
(-0.98 – 0.76) 

 
 

0.05  
(-0.91 – 0.86) 

 
0.06 

 (-0.86 – 0.83) 
 

0.11  
(-0.73 - 0.79)  

 

 
 
 

0.03  
(-0.86 – 0.62) 

 
0.09  

(-0.74 – 0.81)  
 

0.21  
(-0.61 – 0.86) 

 
 

 
 
 
 

-0.13  
( -1.1 – 0.58) 

 
0.03 

(-0.65 – 0.60) 
 

0.29 
(0.22 – 0.94) 

 
 
 

 
 
 
 

-0.21 
 (-1.18 - 0.60) 

 
0.06 

 (-0.70 – 0.53) 
 

0.2  
(-0.25 –  0.98) 

 
 
 

  
 
 

ssp126 
 

ssp245 
 

ssp585 
 

 

Average 

 
 

 

 
0.39 (0.90) 

 
 

 

 
0.39 (0.90) 

 

 
0.47 (0.87) 

 
0.46 (0.87) 

 
0.45 (0.81) 

 
 

0.46 (0.86) 

 

 
0.43 (0.74) 

 
0.47 (0.81) 

 
0.47 (0.745) 

 
 

0.46 (0.77) 

 

 
0.40 (0.81) 

 
0.48 (0.64) 

 
0.58 (0.55) 

 
 

0.47 (0.70) 

 
 

0.39 (0.83) 
 

0.45 (0.53) 
 

0.44 (0.57) 
 
 

0.43(0.67) 
   

 
 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 

 
 
 

0.00  
(-0.97 – 1.31) 

 

 
0.13 

 (-0.77 – 1.21) 
 

0.18  
(-0.78 – 1.23) 

 
0.23 

 (-0.70 – 1.20)  
 

 

 
-0.20 

(-1.03 – 0.56) 
 

0.10  
(-0.68 – 0.80) 

 
0.38 

 (-0.41 – 1.12) 
 

 
 

-0.66 
( -1.45 – -0.11) 

 
-0.20 

(-0.97 – 0.50) 
 

0.41 
(-0.27 – 1.29) 

 
 
 

-1.00  
(-1.80 - -0.56) 

 
-0.54  

(-1.22 – 0.07) 
 

0.10  
(-0.70 –  0.96) 

  
 

ssp126 
 

ssp245 
 

ssp585 
 
Average 

 
 
 
 

0.43 (1.02) 
 
 
 

0.43 (1.02) 

 
0.47 (0.91) 

 
0.47 (0.96) 

 
0.50 (0.90) 

 
0.48 (0.93) 

 
0.47 (0.79) 

 
0.49 (0.82) 

 
0.51 (0.94) 

 
0.49 (0.87) 

 
0.46 (0.78) 

 
0.49 (0.80) 

 
0.52 (1.00) 

 
0.49 (0.88) 

 
0.42 (0.80) 

 
0.47 (0.79) 

 
0.53 (1.00) 

 
0.48 (0.88) 

 462 

Internal 
(model) 

Uncertainty 

Internal 
(model) 

Uncertainty 

Anomaly 

(range) 

NE 

Pacific 

Anomaly 

(range) 

NW 

Atlantic 
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Table 2- CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m-2 463 

yr-1) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE 464 

Pacific and NW Atlantic. 465 

 466 

Consistent with the sink anomaly maps (Fig. 1), the regions that show highest uncertainty for any of the sources in 467 

the future, are the same regions that show the largest uncertainties in the historical period (Fig. 5). More 468 

importantly, the regions of largest future uptake uncertainty are highly correlated with the historical regions of 469 

largest uptake (relative to the pre-industrial ocean), as shown by the pattern correlation coefficients above each 470 

panel. This is an important finding, because it suggests that knowledge of the regions of modern day surface carbon 471 

flux anomaly provides us with information about regions of future uptake uncertainty. 472 

Internal variability from CanESM5 is most dominant in mid-latitude eastern boundary upwelling regions and 473 

their extensions, in the North Atlantic, in the western boundary currents of the Gulf Stream and Kuroshio and 474 

their extensions, and in the Southern Ocean (Fig. 5). There is wide agreement between different models and 475 

estimation methods on regions of largest internal variability (Fig. S4). The regions of large internal variability are 476 

correlated with the same highly active regions for the sink anomalies discussed earlier (Fig 1c). This is consistent 477 

with McKinley et al. (2017) who argue that modeling and observational studies show that the primary driver of 478 

variability in the ocean carbon uptake is ocean circulation and ventilation of the deep ocean. However, correlation 479 

coefficients between internal variability and historical uptake are lower than those seen for scenario and model 480 

uncertainty. An increase in internal variability with time is seen mostly in the Southern Ocean, the Arctic Ocean, 481 

and boundaries of the gyre systems, while the rest of the ocean does not show a clear change. The maps in Figure 482 

5 are averaged over the three scenarios, which masks the changes to some extent. However, we show in the 483 

Supplements (see section S2) that changes in the globally averaged internal variability with time are different for 484 

different scenarios.  485 

Model uncertainty is consistently highest in the highly active regions (Figure S7), leading to strong correlation 486 

with the anomaly maps of Fig. 1c. In these regions, ocean circulation impacts surface pCO2 through advection 487 

and water mass transformation regionally (Bopp et al., 2015; Toyama et al., 2017) and models have substantial 488 

differences in ocean circulation. Ridge and McKinley (2021) suggest that while global surface carbon fluxes and 489 

carbon storage are largely similar across ESMs over the historical period, consistent with the external forcing 490 

from atmospheric pCO2 growth being the main driver of the historical sink (McKinley et al., 2020), uncertainties 491 
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in ocean circulation may become important in the future under a changing trajectory of atmospheric boundary 492 

conditions. The model uncertainty is largest in the Southern Ocean consistent with CMIP5 models (Frölicher et 493 

al., 2015). Here, mode and intermediate waters are formed, and the complex nature of processes governing the 494 

sinks varies on all time scales (Gruber et al. 2019). Frölicher et al. (2015) note the largest disagreement in ocean 495 

carbon uptake between models is in the Southern Ocean because the exact processes governing heat and carbon 496 

uptake remain poorly understood. The importance of model uncertainty in the Southern Ocean provides a clear 497 

focal point for modelling centers to concentrate their efforts in reducing projection uncertainty.  498 

Scenario uncertainty exhibits the largest change with time. This is by construction as the scenarios deviate from 499 

each other with time to represent a range of pathways for future socio-economic possibilities in order to assess 500 

the long-term impacts of short-term decisions (Riahi et al., 2017). Importantly, the correlation coefficients are 501 

highest between scenario uncertainty and the current regions of large sink anomaly, indicating that the same 502 

highly active regions are the regions that show the largest divergence among scenarios, and that the sink in most 503 

other regions does not respond as strongly to scenario differences. We showed an example of this earlier (Fig. 4), 504 

where the timeseries of the multi-model signals for the three scenarios did not emerge out of internal variability 505 

in the NE Pacific by 2100, whereas they did for the highly active region of the NW Atlantic. This shows that with 506 

pCO2 differences across the air-sea interface being the main driver of the sink (Fay & McKinley, 2013; 507 

Landschützer et al., 2015; Lovenduski et al., 2007; McKinley et al., 2017; 2020), the sink in these active regions 508 

evolves as the atmospheric CO2 concentration changes because ocean processes associated with surface-depth 509 

connectivity constantly dampen the surface ocean pCO2 trend compared with that of the atmosphere. In other 510 

words, the surface water in these regions are constantly renewed, mostly through advection and water mass 511 

formation, with water masses whose pCO2 has not increased at the same rate as the atmosphere. Elsewhere, these 512 

conditions do not hold true and surface water trends match that of the atmosphere, decreasing the sensitivity of 513 

the sink anomaly to the projection scenario. These uncertainties are central to the ability to detect human induced 514 

trends in observations of the surface ocean carbon flux as well as to assess mitigations or make societal decisions, 515 

to which we now turn.  516 

 517 
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 518 

Figure 5- Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as 519 

explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-520 

century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are 521 

correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).  522 

 523 

3.4 Detectability  524 

Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal 525 

climate variability. Previous studies have largely presented a single time of emergence (Lovenduski et al. 2016, 526 

Schlunegger et al., 2019, McKinley et al., 2016). However, understanding the regional differences, timescales, and 527 

scenario dependence in the detectability of human induced trends in the ocean surface carbon flux is important for 528 

informing observational strategies that aim to measure these changes.  529 

 530 
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We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using 531 

the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational 532 

communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the 533 

multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the 534 

CanESM5 SMILE.  535 

 536 

The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the highly 537 

active regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the western boundary 538 

currents of the gyre systems, and their extensions (Fig. 6). Ocean regions such as the centres of the mid-latitude 539 

gyre systems and the NE Pacific show late emergence times and, in some cases, no detectability of the signal in 540 

any of the scenarios by 2100. Convergent large-scale circulation and strong stratification in these regions isolates 541 

the surface from the deep ocean limiting their capacity to accelerate their uptake of anthropogenic carbon 542 

(McKinley et al., 2016). An absence of mechanisms constantly drawing surface ocean CO2 trends out of 543 

equilibrium with atmospheric CO2 lets the surface water adjust to the atmospheric trend on short time scales. 544 

Significant changes thus do not take place in the sink as the atmospheric CO2 levels change and scenario uncertainty 545 

is lowest in the same regions (see Fig. 4). This is consistent with the results from Sect. 3.3, in which we showed 546 

that internal variability is a significant source of uncertainty throughout the century in the NE Pacific, with scenarios 547 

never emerging out of the range of internal variability (Fig. 4a, b). Our results for the broad patterns in the multi-548 

model mean TOE are largely consistent with previous studies, suggesting they are robust and insensitive to the 549 

method of estimating internal variability.  These include studies with single model large ensembles such as 550 

McKinley et al., (2016) that assumed time/scenario independent internal variability, and CMIP5 models such as 551 

Schlunegger et al., (2020) that used only high emission scenario internal variability from four large ensembles to 552 

show there is strong agreement between LEs TOE both locally and spatially. Our results argue that observational 553 

records inside highly active regions are likely sufficient to detect human influence on the ocean carbon sink in the 554 

coming years/decades (2030-2050) if not earlier. Meanwhile, they imply that observational timeseries in quiescent 555 

regions, such as Ocean Station Papa in the NE Pacific, need to interpret any observed trends with care, since internal 556 

variability tends to dominate over human induced trends. 557 

 558 

 559 

 560 
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 561 

Figure 6- Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate 562 

where the anthropogenic signal cannot be detected even towards the end of the century. 563 

 564 

Time of emergence strongly depends on the future scenario. Schlunegger et al. (2020) show for two scenarios that 565 

modest (~10 yr) TOE differences between different ESMs under strong anthropogenic forcing can evolve into 566 

pronounced (60+ yr) TOE differences with moderate mitigation. Here, we make use of three scenarios including a 567 

strong-mitigation scenario and account for scenario dependence of internal variability in our approximation using 568 

CanESM5. On average, scenarios with smaller forced trends emerge later as the size of the forced trend is critical 569 

to the time of emergence (Fig. 2-a). The TOE is earliest on average over the global ocean in ssp585, while it is later 570 

in ssp245, and later still in ssp126, consistent with the imposed changes in atmospheric CO2 concentration. The 571 

exceptions are quiescent regions that show earlier detectability for ssp126 compared to other scenarios; these 572 

exceptions are associated with larger (but negative) anomalies in the latter half of the century under ssp126 which 573 

has negative emissions (compare panels d-f, and g-i on Fig. 1). Internal variability does evolve somewhat 574 

differently for each scenario, but this is secondary (Fig. S2). Schlunegger et al. (2020) argues that variables such 575 

as air-sea CO2 flux which are sufficiently sensitive to emissions emerge early, prior to significant divergence among 576 

future scenarios. Consistent with this result, our results indicate that there is broad agreement between scenarios in 577 

the TOE patterns, when considering the highly active regions. Interestingly, our scenario-specific TOE shows that 578 

differences between scenario TOEs is associated with how sensitive different regions are to emission scenarios. 579 

More specifically, comparison to the maps of scenario uncertainty (Fig. 5) shows that TOE differs more across 580 

scenarios in regions where scenario uncertainty is small, such as the aforementioned subtropical Ekman 581 

convergence regions. Elsewhere, the emergence happens before scenarios diverge significantly. Our results suggest 582 

that under the rapidly rising atmospheric CO2 concentrations seen in ssp585, the human signal in the ocean carbon 583 

sink will likely be detectable across much of the global ocean over the coming few decades. However, under strong 584 

mitigation scenarios, such as ssp126, early emergence (e.g., earlier than 2030) is not expected to occur except in 585 
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isolated regions while counter-intuitively, a lower percentage of the global ocean area remains non-emergent by 586 

2100.  587 

4. Conclusions 588 

Ocean uptake of the increasing atmospheric CO2 in the 21st century is concentrated in a few active regions with 70 589 

percent of the total changes in the sink occurring in less than 40 percent of the global ocean. We analyze the results 590 

from the CMIP6 multi-model mean for the current state of the ocean (1995-2015), and the middle (2040-2060) and 591 

late (2080-2100) 21st century relative to the current state for three scenarios. We show that future changes in the 592 

sink are projected to mostly take place within the same historically highly active regions, including the North 593 

Atlantic and Southern Ocean. Our results extend the argument of Wang et al. (2016) that the historical state is a 594 

good predictor of the future state to spatial patterns of change.  595 

 596 

We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and 597 

the trend in the sink (globally), compared to the observation-based data product of Landschützer et al. (2016). 598 

These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of the ocean 599 

carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschützer et al. (2016) 600 

data shows larger decadal variability at the global scale than seen in any CMIP6 model or the range of internal 601 

variability from the CanESM5 large ensemble.  Gloege et al. (2021) shows that the SOM-FFN method 602 

overestimates the magnitude of decadal variability on the global scale due to the amount of gap filling.   603 

 604 

We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale 605 

and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model 606 

uncertainty and internal variability for CMIP6 models. These results are in agreement with previous studies form 607 

the CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020). As the scales of integration (averaging) get 608 

finer, model and internal variability become the dominant sources, respectively. Testing the results on two ocean 609 

regions of about the same size, one in the NE Pacific and one in the NW Atlantic shows that - while consistent with 610 

the results of the scale dependence analysis - the relative importance of the sources of uncertainty also differs with 611 

location. Our test here extends the analysis Schlunegger et al. (2020) with a focus on the association of the location 612 

dependence with whether the regions have highly active carbon sinks. Notably, in highly active regions, such as 613 

the NW Atlantic, scenario uncertainty is large, whereas in more quiescent regions, such as the NE Pacific, internal 614 
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variability is more important. The time- and scenario- dependence of internal is another interesting finding that 615 

could be the subject of future studies to achieve a better understanding of the driving mechanism and the degree of 616 

dependence on future emissions and/or concentrations.  617 

 618 

The patterns of high future CO2 uptake uncertainty are highly correlated with the patterns of historical uptake. The 619 

correlation coefficients are highest for scenario uncertainty, indicating that the highly active regions have the 620 

potential for the sink to evolve according to the atmospheric CO2 concentration, while the rest of the ocean basins 621 

do not respond strongly to changes in atmospheric CO2 represented by the different scenarios. This finding has 622 

implications for assessment of mitigation and effects of socioeconomic decisions. Our results here are significant 623 

in that they show that regions of future uncertainty are strongly associated with known regions of large historical 624 

uptake.  625 

 626 

Patterns seen in the time-of-emergence have implications for observational campaigns for detection of a signal 627 

(Schlunegger et al. 2019; 2020).There is a reverse association between how sensitive a region is to scenario 628 

differences (apparent in the scenario uncertainty patterns) and how sensitive the TOE is to scenarios. Our results 629 

show that caution should be taken in interpreting the observed changes in regions such as the NE Pacific associated 630 

with late emergence of the signal from the decadal (internal) variability. On the other hand, consistent observations 631 

in regions such as the Equatorial Pacific, the Gulf Stream and Kuroshio and their extensions, and the Southern 632 

Ocean, are likely to detect the emergence of the forced signal out of internal variability earlier in time. Additionally, 633 

the patterns in sources of uncertainty show that model uncertainty is largest in the Southern Ocean, consistent with 634 

Frölicher et al., 2015. The sink in the Southern Ocean is driven by complex mechanisms involving coupled ocean-635 

atmosphere-ice interactions that require better representation in ocean biogeochemical models. Significant progress 636 

in reducing uncertainties can be expected from new methods of bringing together models and observations 637 

(Frölicher et al. 2016). Our results provide a motivation to focus modelling as well as observational efforts on the 638 

known highly active regions of historical uptake. 639 

 640 

Finally, we have shown that internal variability shows clear changes in time and depends on the scenario. The 641 

emergence of Large Ensembles (LEs) allows for quantification of these variations if enough ensemble members 642 

are available to fully capture internal variability using realizations that start from different initial conditions. Our 643 

use of the CanESM5 LE allows for us to account for the nonstationary of internal variability in time, like in 644 

Schlunegger et al. (2020), but with the advantage of also accounting for scenario dependence. Model 645 



28 
 

intercomparison indicates that ESMs show differences in natural variability (Schlunegger et al. 2020). Nonetheless, 646 

our analysis of the global scale, of scale dependence, and of the patterns seen in Time of Emergence are consistent 647 

with previous studies, despite the potential sensitivity to the use of CanESM5 LE. Our methodology to correct for 648 

internal variability from model spread, without filtering or having a large ensemble for each ESM (which would 649 

limit the number of ESMs that can be included and, consequently, underestimate model uncertainty) lays the 650 

foundation for future studies when LEs are available from more ESMs and suggests a need for more modelling 651 

groups to provide such LEs in order to achieve a more robust estimate of internal variability across different ESMs.  652 
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