

1 **Time varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale**

2 Parsa Gooya¹, Neil C. Swart^{2,1}, Roberta C. Hamme¹

3 ¹School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada

4 ²Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC,
5 V8W 2P2, Canada

6 *Correspondence to:* Parsa Gooya (parsa.g76@gmail.com)

7 **Abstract.** As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the
8 atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global
9 and regional scale, are key to understanding the future evolution of the climate. Here we report on the changes and
10 uncertainties in the historical and future ocean carbon sink using output from the Coupled Model Intercomparison
11 Project Phase 6 (CMIP6) multimodel ensemble and compare to ~~mean~~ observation based product. We show that
12 future changes of the ocean carbon sink ~~is are~~ concentrated in highly active regions - 70 percent of the total sink
13 occurs in less than 40 percent of the global ocean. High pattern correlations between the historical uptake and
14 projected future changes in the carbon sink indicate that future uptake will largely continue to occur in historically
15 important regions. We conduct a detailed breakdown of the sources of uncertainty in the future carbon sink by
16 region. Consistent with CMIP5 models, scenario uncertainty dominates at the global scale, followed by model
17 uncertainty, and then internal variability. We demonstrate how the importance of internal variability increases
18 moving to smaller spatial scales and go on to show how the breakdown between scenario, model, and internal
19 variability changes between different ocean regions, governed by different processes. Using the CanESM5 large
20 ensemble we show that internal variability changes with time based on the scenario, breaking the widely employed
21 assumption of stationarity. As with the mean sink, we show that uncertainty in the future ocean carbon sink is also
22 concentrated in the known regions of historical uptake. Patterns in the signal-to-noise ratio have implications for
23 observational detectability and time of emergence, which we show to vary both in space and with scenario. We
24 show that the largest variations in emergence time across scenarios ~~eeursoccur~~ in regions where ~~the~~ ocean sink is
25 less sensitive to forcing - outside of the highly active regions. In agreement with CMIP5 studies, our results suggest
26 that to ~~detectfor a better chance of early detection of~~ changes in the ocean carbon sink-~~as early as possible~~, and to
27 efficiently reduce uncertainty in future carbon uptake, ~~modelling and observational efforts should be focused in the~~

28 knownhighly active regions of high historical uptake, including the Northwest Atlantic and the Southern Ocean,
29 should receive additional focus for modelling and observational efforts.

30 **1. Introduction**

31 Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised
32 Earth's average temperature. Carbon dioxide (CO₂) is the primary driver of global warming in the industrial period
33 (Masson-Delmotte et al., 2021). The concentration of atmospheric CO₂ has increased from approximately 277 parts
34 per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019. However,
35 less than half of the CO₂ emitted by anthropogenic activity has remained in the atmosphere. The remaining CO₂ was
36 taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. Specifically, the global ocean
37 absorbed ~26% of the total CO₂ emissions during 2011-2020 (Friedlingstein et al., 2021).

38
39 The ocean's capacity to absorb anthropogenic CO₂ is not uniformly distributed (McKinley et al., 2016, Sarmiento
40 et al., 1998). Despite increasing atmospheric CO₂ concentrations, the projected air-sea CO₂ ~~flux does fluxes do~~ not
41 change much in the middle of the subtropical gyres over the decade starting in 1990. The regions where ocean
42 carbon uptake notably increases are those with strong exchange between the surface and the deep ocean (Ridge and
43 McKinley, 2021; Frölicher et al., 2015; McKinley et al., 2016). ThisThe response of the ocean carbon sink to
44 increasing atmospheric CO₂ levels consists of changes in both the anthropogenic and a direct absorption response
45 as well as climate change induced perturbations to the natural background carbon sinkfluxes (Crisp et al. 2022,
46 McKinley et al. 2020, Hauk et al., 2020, Gruber et al. 2019, Frölicher et al., 2015). Even within regions there are
47 large variations in the dominant mechanisms and possibly the direction of the carbon sink- (or source). In the
48 Southern Ocean, for instance, the spatial superposition of natural and anthropogenic CO₂ fluxes leads to a relatively
49 strong uptake band between approximately 55°S and 35°S (Gruber et al., 2019). However, south of the Polar Front
50 (55°S), the different estimates agree less well (Gruber et al., 2019, Landschützer et al., 2016, Gruber et al., 2009,
51 Takahashi et al., 2009). Supported by measurements ~~based~~ on biogeochemical floats (Bushinsky et al., 2019; Gray
52 et al., 2018; Williams et al., 2018), Gruber et al. (2019) argue that the region was most likely a small source ~~in~~
53 2019at the time.

55 Earth System Models (ESMs) are the primary tool for projecting the future evolution of carbon in the climate
56 system. However, quantitative projections from ESMs are subject to considerable uncertainty, particularly at
57 regional and local scales (Friedrich et al., 2012; Frölicher et al., 2014; Hauck et al., 2015; Roy et al., 2011; Tjiputra
58 et al., 2014; Terhaar et al., 2021) where less averaging is done and different individual mechanisms dominate
59 different regions. Projection uncertainty varies with lead time, spatial averaging scale, and from region to region
60 (Lovenduski et al., 2016; Schlunegger et al., 2020). For example, Lovenduski et al. (2016) showed a spatially
61 heterogeneous pattern of projection uncertainty in CO₂ flux projections over 17 ocean regions for CMIP5 models.
62 Furthermore, by comparing uncertainty at the global scale to the scale of the California Current System, they show
63 that uncertainty is higher at smaller scales. Schlunegger et al. (2020) further ~~shows different~~ show partitioning
64 of uncertainty for 10 ocean basins at the year 2050. All said, if ESMs are to be used to quantify future changes
65 in ocean carbon uptake, especially across shorter timescales and at regional spatial scales, and to inform
66 observational campaign planning, their uncertainties must be well known and well understood (Lovenduski et al.,
67 2016).

68
69 A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model
70 Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over
71 a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). There are three main
72 types of uncertainty in climate model projections, as described by Hawkins and Sutton (2009) (hereafter HS09):
73

74 **Uncertainty due to internal variability:** Internal variability is the unforced natural climate variability resulting
75 from the internal processes in the climate system. Modes such as the El Niño–Southern Oscillation, North Atlantic
76 Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM)
77 contribute to this internal variability. Internal variability also includes variability that acts on shorter time and
78 spatial scales, such as submesoscale and mesoscale ocean features (Frölicher et al., 2016). The real world follows
79 only one of an infinite possible number of *realizations* of internal variability, and due to its chaotic nature, the
80 future evolution of internal variability is not predictable beyond short timescales ([Lorenz, 1969](#); Somerville, 1987;
81 [Lorenz, 1969](#)). Climate model simulations do not attempt to reproduce the exact observed evolution of internal
82 variability, but produce their own, unique realizations that aim to capture the ~~correct~~ statistics of ~~this~~-variability.
83 Hence, our analysis must account for internal variability, both when comparing historical model simulations to
84 observations, and when considering uncertainties in the future ocean carbon sink. In HS09, a fourth-order
85 polynomial fit to simulated global and regional temperature timeseries represented the forced response, while the

86 residual from this fit represented the internal variability. There is thus, an assumption of stationarity (constant in
87 time) in their method. Moreover, this approach could possibly conflate internal variability with the forced response
88 in cases where low-frequency (decadal-to-multidecadal) internal variability exists, or when the forced signal is
89 weak, which makes the statistical fit a poor estimate of the forced response (Kumar and Ganguly, 2018). In this
90 study, we instead use a Single-Model Initial-condition Large Ensemble (SMILE) to robustly quantify the internal
91 variability across time and scenarios using ensemble statistics (Lehner et al., 2020). A SMILE is an ensemble of
92 model realizations that each starts from different initial conditions but uses the same model and forcing, and
93 provides representations of the climate system that are equivalent except for internal variability.

94 **Uncertainty due to model structure:** Models differ in their resolution, structure, numerics, and parameterization
95 of processes. These differences cause models to respond differently to the same forcing. For example, the CMIP5
96 model simulations run under Representative Concentration Pathway 8.5 (RCP8.5) project a wide range of
97 cumulative anthropogenic carbon storage by 2100 (320–635 Pg-C) (Ciais and Sabine, 2013) due to both internal
98 variability and model uncertainty (Lovenduski et al., 2016).

99 **Uncertainty due to emission scenario:** The future of the climate system depends on human activity and our
100 emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our
101 inability to project the complex changes in society and technology upon which they depend. As a result, future
102 simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations)
103 will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally
104 coordinated experiments organized by the Coupled Model Intercomparison Project. [\(O'Neill et al., 2016\)](#). Since
105 the future emission trajectory is unknown, these future simulations are referred to as projections, rather than
106 predictions. Projections of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission
107 scenario (Lovenduski et al., 2016). For example, cumulative ocean carbon uptake from 1850 is projected to saturate
108 at approximately 290 ± 30 GtC under ssp126, and to reach 520 ± 40 GtC by 2100 under ssp585 for CMIP6 models
109 (Canadell et al., 2021).

110 Together with the patterns of changes in the sink, the patterns of internal variability allow for an assessment of the
111 required timescales for detection of changes in the ocean carbon sink. Detection means that we can robustly separate
112 the forced signal from internal variability (McKinley et al., 2016). Detectability can be assessed using Time of
113 Emergence (TOE; Hawkins and Sutton, 2012; Lovenduski et al., 2016; McKinley et al., 2016; Rodgers et al., 2015;
114 Schlunegger et al., 2020 ~~&~~ 2019). For example, McKinley et al. (2016) and Schlunegger et al. (2019) showed that

115 the forced signal of increasing ocean carbon uptake is not detectable in ~~the Ekman convergence~~ regions of
116 convergent Ekman transport (centre of the subtropical gyres-~~).~~ Schlunegger et al. (2020) builds on that using four
117 large ensembles of CMIP5 ESM simulations with two forcing scenarios to show that air-sea CO₂ flux TOEs show
118 strong agreement between the large-ensembles not just for global and regional scales but also locally and spatially.
119 Their use of only four models and two scenarios however, potentially underestimates the contribution of model and
120 scenario uncertainty.

121

122 Here, we build on previous work using CMIP6 models. We make use of an ensemble of 13 models to better capture
123 model uncertainty in the response to different forcing (scenarios) and three scenarios to represent a wider range of
124 future possibilities including a strong mitigation scenario. We start by analysing the regional patterns of historical
125 ocean carbon uptake and how they are projected to change in the future (Sect. 3.1). We estimate internal variability
126 from a comprehensive SMILE, avoiding the stationarity assumption common in previous work, which we show is
127 violated. Then, we examine the partitioning among different sources of uncertainty (Sect. 3.2) and provide a novel
128 analysis of how the three sources of variability change across the full continuum of scales (Sect. 3.3). Having
129 ~~Shownshown~~ how the uncertainty and distribution among sources differ based on scale of integration and region
130 of interest, we ~~analyseanalyze~~ local patterns of uncertainty by ~~the~~ source (Sect. 3.4). The final section explores the
131 detectability of the model projected signal given the uncertainty imposed by internal variability. We report on the
132 scenario-dependent Time of Emergence, using a scenario specific measure of internal variability in order to make
133 useful suggestions for future observations.

134

135

136

2. Data and Methods

137

2.1 Model Data Selection

138

139 Here we use results from models selected from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring
140 et al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation
141 for air-sea CO₂ flux (fgco2) for the CO₂ concentration driven experiments of interest. One realization of each
142 model over the historical period and three scenarios that represent the low (ssp126), mid (ssp245), and high
143 (ssp585) ranges of future atmospheric CO₂ concentrations are analysed. A total of 16 models met these criteria,
out of which 3 were excluded as outliers (see section S1 in the Supplements). To maintain equal sampling, only

144 one realization of each model was selected, except when specifically using the large ensembles to assess internal
145 variability. Finally, since the ocean component of the models may be on different grids, all model data were
146 remapped to a regular one-by-one-degree grid and a 10 year running mean filter was applied to the time-series.
147 We did not account for potential drift in the models. However, the drift is known to be small in the models
148 compared to the historical trends for CMIP5 models (Hauck et al, 2020). For 11 of our CMIP6 models for which
149 piControl runs are available, on average, the drift is more than one order of magnitude smaller than the change in
150 the model scenario with the smallest trend over the 21st century, on the global scale.

151

152 2.2 Sources of uncertainty

153 Total uncertainty is composed of internal, model, and scenario uncertainty in equation 1, which assumes that each
154 of these sources is independent. Here, each source of uncertainty is considered as a function of time (t) and location
155 (l) (Lovenduski et al., 2016):

156

$$157 U_T^2(t, l) = U_I^2(t, l) + U_M^2(t, l) + U_s^2(t, l) \quad (1)$$

158

159 where $U_T(t, l)$ is total uncertainty, $U_I(t, l)$ is internal variability, $U_M(t, l)$ is model uncertainty, and $U_s(t, l)$ is
160 scenario uncertainty. The fractional uncertainties for each source are calculated as $\frac{U_I^2}{U_T^2}$, $\frac{U_M^2}{U_T^2}$, and $\frac{U_s^2}{U_T^2}$ (Lovenduski et
161 al., 2016).

162

163 HS09 assume $U_I(t, l)$ to be constant in time (stationary) and use a 4th degree polynomial fit to measure internal
164 variability as the spread over time and scenario of the residuals for each model's signal relative to the fitted signal.
165 We show in the Supplements (see section S2) that internal variability depends on time and scenario, violating the
166 commonly used assumption of stationarity. Using a SMILE allows us to account for these variations without having
167 to make ~~any~~ assumptions about distribution or stationarity of variability (Frolicher et al., 2015; Schlunegger et al.,
168 2020). Here we estimate internal variability as two times the standard deviation of the annual carbon sink across
169 50 realizations from a [Single Model Initial Condition Large ensemble SMILE](#) based on CanESM5 (Eq. 2):

170

171

$$172 \quad U_I(t, l) = 2 \sqrt{\frac{1}{N_S} \sum_{s=1}^{N_S} \text{Var}(\text{CanESM5 Large Ensemble})}$$

173

174 where s indicates each scenario (N_S is the number of scenarios) and Var indicates the variance over the large
 175 ensemble of CanESM5. In the CanESM5 SMILE, each realization starts from different initial conditions which
 176 are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations
 177 gives a robust estimate of the internal variability, including sampling over longer term ocean variability.

178

179 Previous studies have also used SMILEs to estimate variability (Frolicher et al., 2015; Schlunegger et al., 2020),
 180 although they used either a limited ensemble size or single scenario. We show in the Supplements (Fig. S2), that a
 181 sufficiently large ensemble size is needed to capture internal variability, and that internal variability depends on the
 182 scenario. In the ideal case, if every CMIP model provided sufficiently large SMILEs for each scenario, an ensemble
 183 mean estimate of the variability could be obtained and would represent a best estimate (but still possibly biased
 184 compared to the real world). However, only a handful of CMIP6 models produced multiple ensemble members.
 185 We selected the CanESM5 SMILE as it is the only model that has a large enough ensemble over the entire timeline
 186 and set of experiments to ~~make~~ estimate internal variability robustly ~~and~~ across scenarios.

187

188 The use of a single model to estimate the scale of internal variability leads to some uncertainty in our estimates, as
 189 models do not agree perfectly with each other on the variability. Nonetheless, over the historical period, variability
 190 ~~between~~ among large ensembles from three models that have enough ensemble members is within 10%, on the
 191 global scale (Fig S3). Differences will be larger at smaller scales; however, the general patterns of the magnitude
 192 of internal variability (see Fig. S4) are in good agreement across models and are consistent with known regions of
 193 high variability in the observed ocean, validating our use of the CanESM5 SMILE

194

195 Model uncertainty is calculated by taking the variance across the forced signal of all available models for each
 196 scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).

$$197 \quad U_M(t, l) = 2 \sqrt{\frac{1}{N_S} \sum_{s=1}^{N_S} \text{Var}_m(F(m, s, t, l))} \quad (3)$$

198 where Var_m means the variance taken across different models (*m*) for individual times and scenarios, ~~m indicates~~
199 ~~each model, and t stands for time. (s)~~. $F(m, s, t, l)$ is the forced signal and can be related to each realization as
200 follows:

201

$$T(m, s, t, l) = F(m, s, t, l) + R(m, s, t, l) \quad (4)$$

202 Where, $T(m, s, t, l)$ represents the reported output, i.e. each realization, but must be corrected for internal
203 variability. $R(m, s, t, l)$ is the residual from the forced signal caused by internal variability. Here, the variance in
204 the forced signal across all models is calculated by correcting the total variance across all models' one realization
205 for the variance caused by internal variability. The corrections are done by subtracting the variance across the same
206 number of CanESM5 ensemble members as the multi-model ensemble (13 members) from the variance across the
207 one realization of ~~all~~~~each~~ of the 13 models. For this correction only, the sample sizes (13) are kept the same so that
208 the internal variability removed from the variance across the models' first realizations is not overestimated by a
209 well sampled 50-member ensemble (see section S3 in the Supplements).

210

211 $U_s(t, l)$ is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root
212 of variance) across scenarios of the multi-model mean signal (Eq. 5).

213

$$U_s(t, l) = 2 \sqrt{\text{Var}_m \left(\frac{1}{N_m} \sum_{m=1}^{N_m} T(m, s, t, l) \right)} \quad (5)$$

214 where N_m is the number of models. The multi-model mean across the first realizations of the 13 models ~~gives~~~~is an~~
215 ~~estimate of~~ the multi-model forced response and does not require correction for internal variability as done for
216 model uncertainty~~before~~.

217 We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When
218 regional and global analysis is done, the dependence on location is taken away by averaging over that region or the
219 whole global ocean.

225 2.3 Time of Emergence (TOE)

226 In order to know when the forced response is distinguishable from internal variability, TOE is calculated ~~following~~
227 ~~the approach of McKinley et al. (2016).~~ The time of emergence is the first year when the multi-model mean
228 anomaly is larger than internal variability – approximated by two times the standard deviation across the 50 member
229 CanESM5 ensemble - for five consecutive years (the first year of this five-year period is reported as the time of
230 emergence). The result is reported at each grid point for the 10-year running mean smoothed anomaly relative to
231 the 1995-2015 mean (detection of a change relative to the current state of the ocean).

232
233 2.4 Scale Dependence

234 Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal
235 variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving
236 a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until
237 all scales from $<100 \text{ km}^2$ to the whole Earth are considered. For each source of uncertainty and averaging scale,
238 the average for all rectangles across the globe is reported, where each rectangle contains the same ocean area.

239
240 **3. Results and Discussion**

241 3.1 Global Analysis

242 The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-
243 2015 matches that of the Landschützer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN)
244 observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the
245 multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the
246 response of any single model (Tebaldi & Knutti, 2007). Unlike in ESMs, the observation-based product only
247 represents the one realization of the real world, which includes internal ~~variation~~variability, and is therefore not
248 directly equivalent to the forced signal. However, the comparison to the 20 year mean multi-model mean still
249 informs us about the degree of agreement between the two products. When compared to the observation-based data
250 product, the CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North ~~and~~
251 /North-West Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data
252 product shows a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble.

254 While most of the global ocean shows a net sink relative to the pre-industrial era, the largest ~~changeacceleration of~~
255 ~~that sink~~ takes place in some highly active regions such as the subpolar North Atlantic, Southern Ocean, Eastern
256 Equatorial Pacific, and western boundary currents of the mid-latitude gyre systems in the Pacific and Atlantic
257 Oceans (Fig. 1c). These regions of largest change in the carbon sink (~~anthropogeniedirect response to higher~~
258 ~~atmospheric CO₂~~ plus changes in the natural carbon sink) are the regions where there is a surface-depth connectivity
259 ~~through ocean circulation~~ as the air-sea flux of anthropogenic carbon is fundamentally limited by the rate of
260 surface-to-depth transport (Graven et al., 2012; Ridge and McKinley 2021). These results for CMIP6 models are
261 consistent with those ~~for CMIP5 models shown byfrom~~ McKinley et al. (2016) ~~based on CESM-LE under CMIP5~~
262 ~~protocols,~~ and earlier studies such as Sarmiento et al. (1998). Here, we provide a new ~~metrie criterion~~ for
263 ~~quantifyingidentifying~~ these highly active regions. ~~based on comparing the integrated global sink anomaly within~~
264 ~~grid cells above a certain threshold to the percentage of ocean area they occupy (see Supplement S5).~~ We find that
265 for all three scenarios and both mid-21st century (2040-2060 mean) and late--21st century (2080-2100 mean) time
266 periods (with the exception of ssp126 late-century where strong mitigation of anthropogenic CO₂ emissions results
267 in broad patterns of negative anomalies), approximately 70% of the changes in the sink relative to the preindustrial
268 ~~area takesera take~~ place in less than 40% of the global ocean (see Supplement Fig. S6 and section S5). The
269 ~~diagnosed highly active regions based on this analysis (Fig. S7) are consistent with the regions of large uptake~~
270 ~~change (trends) from previous studies (Rodgers et al., 2020; McKinley et al., 2016; Frölicher et al., 2015)~~
271

272 The regions of largest future carbon uptake, relative to the 1995-2015 mean, are within the same highly active
273 regions responsible for most of the uptake over the historical period. The correlation coefficients at the top of each
274 panel in Fig. 1 (except 1b) represent the pattern correlation between future absolute anomalies, relative to 1995-
275 2015, and anomalies in 1995-2015, relative to the pre-industrial era. The high correlations indicate that regions that
276 have been most active in ~~increasing their~~ carbon sequestration ~~since the pre-industrial era~~ are the same regions that
277 will continue to ~~change mostincrease further~~ into the future, particularly with larger increases in atmospheric CO₂
278 (ssp585). Our results support the findings of Wang et al. (2016) who showed that projected future air-sea CO₂
279 fluxes are strongly associated with simulated historical air-sea CO₂ fluxes. This confirms that the historical state is
280 a good predictor for the future state (Wang et al., 2016) not only in terms of magnitudes of the sink, but also in the
281 spatial pattern.

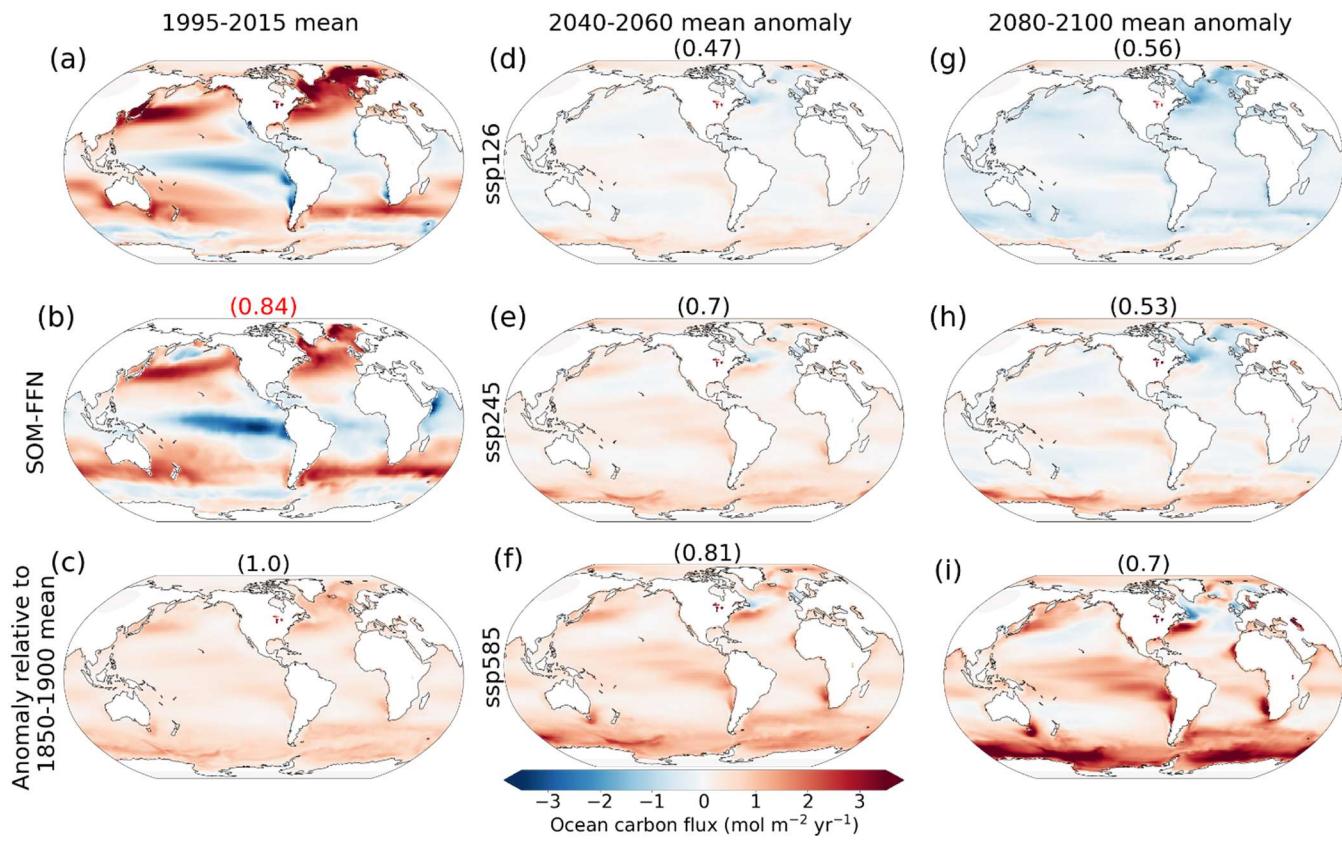
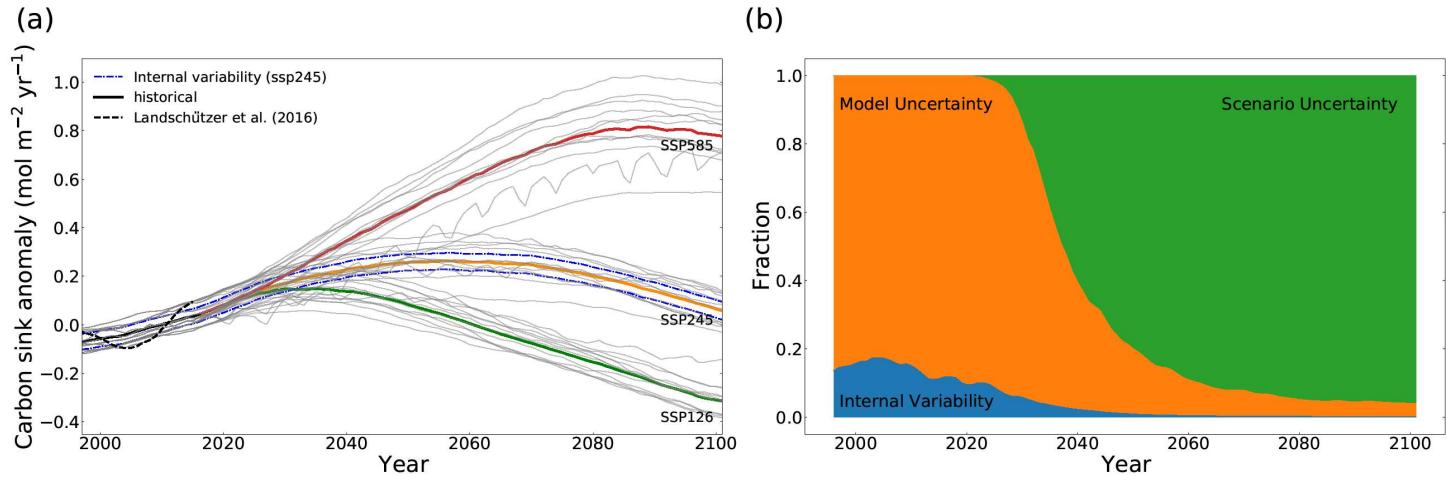


Figure 1- CMIP6 multi-model mean maps of carbon sink and sink anomalies using one realization of each model. Columns represent different time periods, being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century (2080-2100 mean). Note: the sink is positive into the ocean. The first column shows (a) the CMIP6 ensemble mean air-sea CO₂ flux over 1995-2015, (b) Landschützer et al. (2016) SOM- FFN product, and (c) the CMIP6 ensemble mean flux anomaly over 1995-2015 relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015 multi-model mean (panel a). Panels d through i show different scenarios. Numbers above each map are correlation coefficients between the absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the pre-industrial era in panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and panel a.

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The regional patterns show mostly positive anomalies at mid-century with largest changes in the higher emission scenarios (ssp585). Towards the end of the century, however, broader patterns greater areas of negative anomalies are expected in ssp126, as emissions turn negative in the late-21st century in this scenario. The largest absolute values of anomalies are still within the same highly active regions discussed before with surface-depth connectivity

301 regardless of it being positive or negative. The late-century anomalies are predominantly positive in ssp585 which
 302 corresponds to the highest emission scenario (continuing to grow larger compared to the mid-century), while ssp245
 303 is somewhere in between, with regions of positive and negative anomalies. Under ssp245, as CO₂ emissions
 304 decrease and atmospheric CO₂ start to level off, the intensity of uptake decreases in the midlatitude western
 305 boundary currents and subpolar North Atlantic in the late-century, and anomalies in the Eastern Equatorial Pacific
 306 also decrease, compared to the mid-century. The globally integrated ocean carbon uptake anomaly rates are
 307 summarized in Table 1.

308



309

310 **Figure 2-** (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-
 311 2015. Individual models are plotted as thin grey lines in the background. The black dashed line shows the Landschützer et
 312 al. (2016) SOM-FFN product. Both models and SOM-FFN timeseries are smoothed with a 10-year running mean. The blue
 313 dashed lines show internal variability for ssp245. (b) Timeseries showing the breakdown of uncertainty to different sources
 314 with time for the global ocean carbon sink anomaly. The internal and model uncertainty are averaged for different scenarios.

315

316

317

318

319

320

321

322

323

324

	Scenario	1995-2020	2020-2040	2040-2060	2060-2080	2080-2100
Anomaly (range)	ssp126		0.13 (0.05 – 0.21)	0.07 (-0.02 – 0.16)	-0.08 (-0.14 - -0.01)	-0.24 (-0.3 - -0.12)
	ssp245	0.00 (-0.06 – 0.06)	0.17 (0.08 – 0.24)	0.25 (0.11 – 0.36)	0.23 (0.09 – 0.33)	0.13 (0.02 – 0.21)
	ssp585		0.22 (0.11 - 0.30)	0.49 (0.29 – 0.62)	0.71 (0.45 – 0.90)	0.80 (0.54 – 1.00)
Internal (model) Uncertainty	ssp126		0.033 (0.11)	0.034 (0.11)	0.035 (0.10)	0.036 (0.11)
	ssp245	0.032 (0.08)	0.032 (0.11)	0.034 (0.14)	0.037 (0.14)	0.036 (0.12)
	ssp585		0.033 (0.13)	0.037 (0.2)	0.045 (0.26)	0.043 (0.27)
	Average	0.032 (0.08)	0.033 (0.12)	0.035 (0.16)	0.039 (0.18)	0.038 (0.18)

325

326 **Table 1**- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in
 327 parentheses) relative to the 1995-2015 mean (in mol-C m⁻² yr⁻¹) and internal variability from CanESM5 (with model
 328 uncertainty in parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average
 329 values across scenarios.

330

331 The trends in the global mean ocean carbon sink anomalies over 1995-2015 are statistically consistent between the
 332 CMIP6 multi-model ensemble mean and the Landschützer et al. (2016) observation-based data product (Fig. 2-a),
 333 based on the test from Santer et al. (2008; see Supplements section S5). However, the SOM-FFN based time-series
 334 shows a larger multi-decadal variability (variations in the 10-year running mean timeseries on top of the trend) than
 335 seen in individual model realizations, and is larger than the range of internal variability estimated from the
 336 CanESM5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-FFN
 337 method, or underestimation of the internal variability **from** **by** the ESMs. Given that on regional scales the SOM-

338 FFN data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESM5 (see Sect.
339 3.3), and that there are significant gaps in the spatial and temporal sampling that underlies the Landschützer et al.
340 (2016) estimate, it seems plausible that the discrepancy is largely due to overestimation of internal variability on
341 the global scale by the SOM-FFN technique. This is consistent with the findings of Gloege et al. (2021), which
342 showed that, globally, the magnitude of decadal variability is overestimated by 21% by the SOM-FFN technique,
343 attributed to the amount of data filling.

344

345 On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario
346 uncertainty comes to dominate later (Fig. 2b). Over the 1995-2020 period, model uncertainty explains around 85%
347 of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of
348 the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at
349 the start of the century but only around 1% by the end. It is worth mentioning that the decreased share of uncertainty
350 associated with model and internal variability do not mean that model or internal variability decrease in an absolute
351 sense; rather, their importance relative to scenario uncertainty declines. These results regarding the importance of
352 model and scenario uncertainties for multidecadal projections, and dominance of scenario uncertainty with time
353 agree with previous studies using CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020).

354

355 Absolute internal and model uncertainty of the global carbon sink change with time, based on the scenario (Table
356 2, Fig. S3). High emission scenarios such as ssp585 show a larger change for both internal and model uncertainty
357 where the forcing is stronger (Fig. S3). When averaged for the three scenarios, a constant increase in the magnitudes
358 of both model and internal variability is seen through the century until 2080-2100 when the values either do not
359 change or decrease slightly (Table 1). Model uncertainty more than doubles towards the end of the century
360 compared to 1995-2015 on average for different scenarios. This is consistent with Lovenduski et al. (2016) who
361 ~~argues~~argue that the increase is due to ~~differences~~differences in climate ~~sensitivities~~sensitivities ~~between~~among
362 models that manifest more strongly with time (and hence cumulative emissions). Additionally, the dependence of
363 internal variability on the scenario is an interesting result. Future SMILEs from multiple models will allow
364 evaluation of the degree of dependence and the driving mechanisms of such changes with time based on the forcing
365 (scenario). Our result of internal variability dependence on scenario implies that the time of emergence of a signal
366 out of internal variability will be affected by changes in the internal variability under different future forcing
367 scenarios – which we return to in Section 3.4.

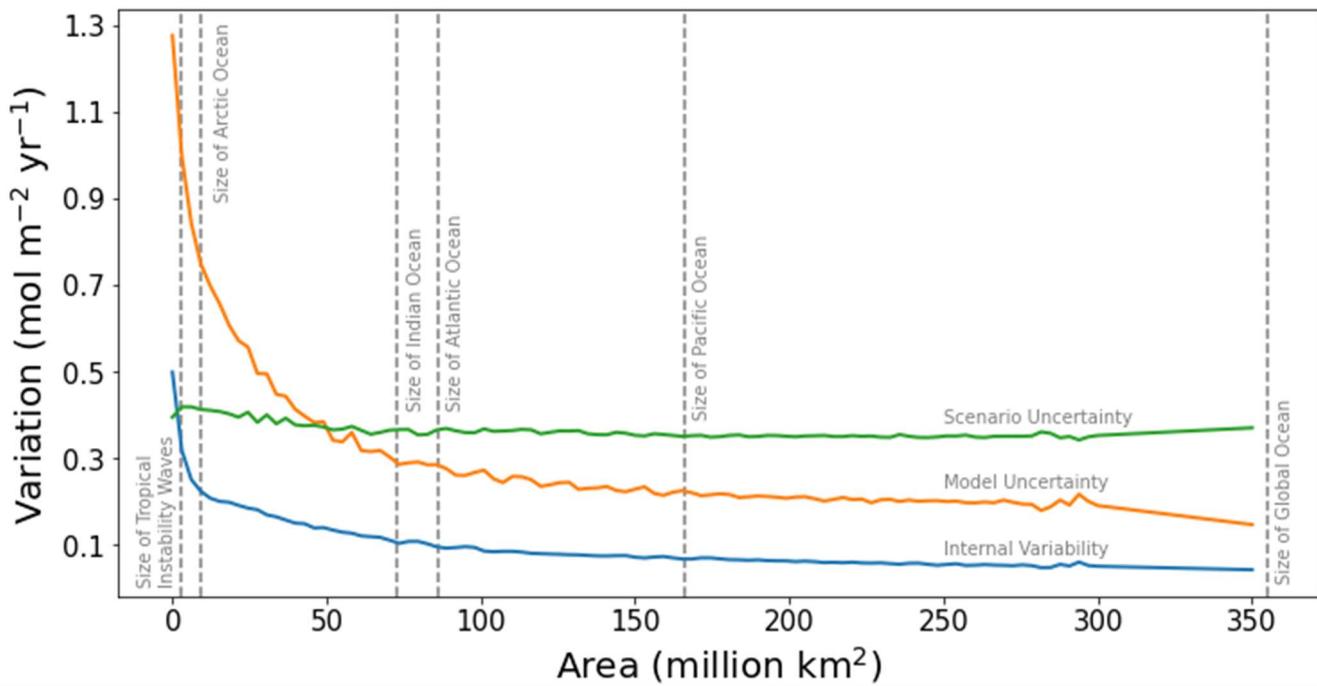
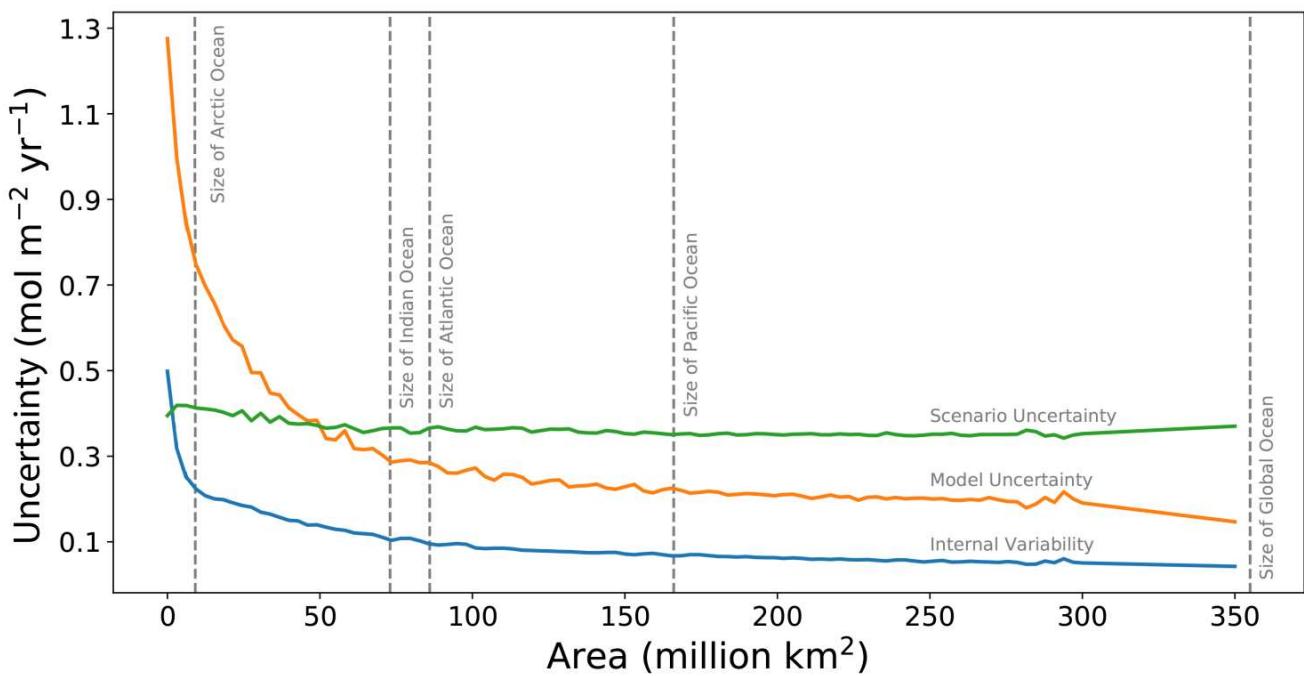
368

369 3.2 Dependence of the sources of uncertainty on spatial scale

370 It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging
371 (integration) scale gets finer, because on larger scales the variability is averaged out. Here, we provide a novel and
372 continuous view of change in variability across scales from the global to grid scale, by measuring how variability
373 changes relative to scale on average (Fig. 3). At the global scale, the dominant source of uncertainty is scenario
374 uncertainty, followed by model and internal variability respectively, consistent with Fig. 2b. However, as the
375 averaging (integration) scale gets finer, model and internal variability grow rapidly, while scenario uncertainty only
376 grows slightly on average (over all regions of this size). At an averaging (integration) scale with an area finer than
377 75 million km² (on average ~~around the globe~~), model uncertainty becomes the dominant source of uncertainty, and
378 at a scale finer than 3 million km², internal variability becomes larger than scenario uncertainty. The idea of scale
379 dependence of these uncertainties was tested in Lovenduski et al. (2016) by comparing an area covering the
380 California Current System with the global ocean. Here, we provide a novel analysis on a continuum of scales
381 covering global to regional to local scales. While the results here hold true on average over the ~~globe~~global ocean,
382 scale dependence is partially controlled by the particular region being sampled. Finally, while our estimates of the
383 magnitudes of sources of uncertainty and the cross over points (at which the dominance of internal variability over
384 model uncertainty and model uncertainty over scenario uncertainty takes place~~s~~), depend on the choice of ESMs
385 and the method for calculation of internal variability, the general patterns are unlikely to be model dependent.

386

387



390 **Figure 3**- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5
 391 members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected

392 standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different
393 rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a
394 specific location.

395

396

397 3.3 Regional Analysis

398 We further expand on the findings of our analysis of the scale dependence of uncertainty averaged over the globe
399 by repeating the uncertainty breakdown for two specific regions: one ~~between 40°-60° N~~ in the Northeast Pacific
400 (NE Pacific) between 130°- 160° W and 40°- 60° N, and one in the Northwest Atlantic (NW Atlantic) between
401 40°- 70° W at the same latitude. We chose these regions, first, to be of ~~the~~ similar size, and second to represent
402 very different carbon ~~dynamiesprocesses~~. The NW Atlantic region represents a highly active region while the NE
403 Pacific region is more typical of quiescent ocean regions, where the flux anomalies are relatively small.

404

405 The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This
406 suggests both that it will be difficult to robustly detect any human induced changes in observations of the NEPNE
407 Pacific carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be
408 readily apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the
409 anomalies are small regardless of scenario (Table 2). We speculate that in the absence of mechanisms providing a
410 pathway to the depth where significant CO₂ accumulation occurs, the surface pCO₂ trend will follow that of the
411 atmosphere closely, causing ΔpCO₂ and therefore air-sea carbon flux to remain fairly constant for all scenarios. In
412 the NW Atlantic however, the ~~deviationvariation~~ across scenarios becomes larger than the internal variability in
413 the early 2060s (Fig. 4c). The response of the region to climate change is dependent on the scenario (Table 2), or,
414 in other words, the amount of carbon dioxide in the atmosphere. This is because the NW Atlantic is a highly
415 active region where the air-sea flux actively responds to the atmospheric CO₂ concentration. The connection to
416 depth allows for surface water to be replaced with water masses whose pCO₂ trend lags behind that of
417 atmosphere. The trend of the CMIP6 multi-model time-series over the historical period is statistically consistent
418 (See Supplements section S5) with that of the observation-based SOM-FFN product, and the multi-decadal
419 variability is within the range of internal variability measured by the CanESM5 large-ensemble in both regions.
420 We note that both of these regions are relatively well sampled, which may lead to more robust estimates of multi-
421 decadal variability in the Landschützer et al. (2016) dataset, and better agreement with the models than seen at
422 the global scale.

423

424 Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions.
 425 Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude
 426 than at the global scale (Table 2). A lesser importance for scenario uncertainty and greater importance for internal
 427 and model uncertainty is apparent in both regions compared to the global scale, in agreement with Schlunegger et
 428 al. (2020). Over the period 1995-2020, model uncertainty is the dominant source of uncertainty in both the NE
 429 Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd). Internal variability
 430 explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the NW Atlantic
 431 however, its share drops to 15% by the end of the century. The share attributable to internal variability is much
 432 larger during the 21st century in both regions compared to the global scale. Internal variability is larger in the NW
 433 Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in the NE Pacific (Fig. 4b).
 434 The large share of internal variability in NWNE Pacific indicates the need for sustained observations in the region.
 435 Overall, internal variability averaged over the scenarios shows a small increase, but no clear trend in time in both
 436 regions until the 2080-2100 period where it decreases, consistent with the global estimates (Table 2). We showed
 437 earlier that in the NE Pacific scenarios do not differ because the region is not a highly active region (Fig. S7) -
 438 scenario uncertainty explains less than 20% of the total uncertainty at the end of the century in the NE Pacific. In
 439 the NW Atlantic, scenario uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end of
 440 the century. In both regions, model uncertainty is the dominant source of uncertainty in all years.

441

442 Our regional analysis confirms that while uncertainty and its distribution among sources depends on the spatial
 443 scale of integration, the specific location also matters (Lovenduski et al, 2016; Schlunegger et al., 2020).
 444 Schlunegger et al., (2020) tested this idea for 10 ocean basins but with different sizes of variable size (see their
 445 Figure 9). We focused on keeping the sizes similar and analyse a highly active region versus a more quiescent
 446 ocean region. The key message here that there is an association with the importance as well as the magnitude of
 447 sources of uncertainty with how active the region is in regards to the carbon sink is not sensitive to the use of
 448 CanESM5 for estimation of internal variability. Local patterns of uncertainty broken down by source are thus
 449 needed to clarify changes based on location.

450

451

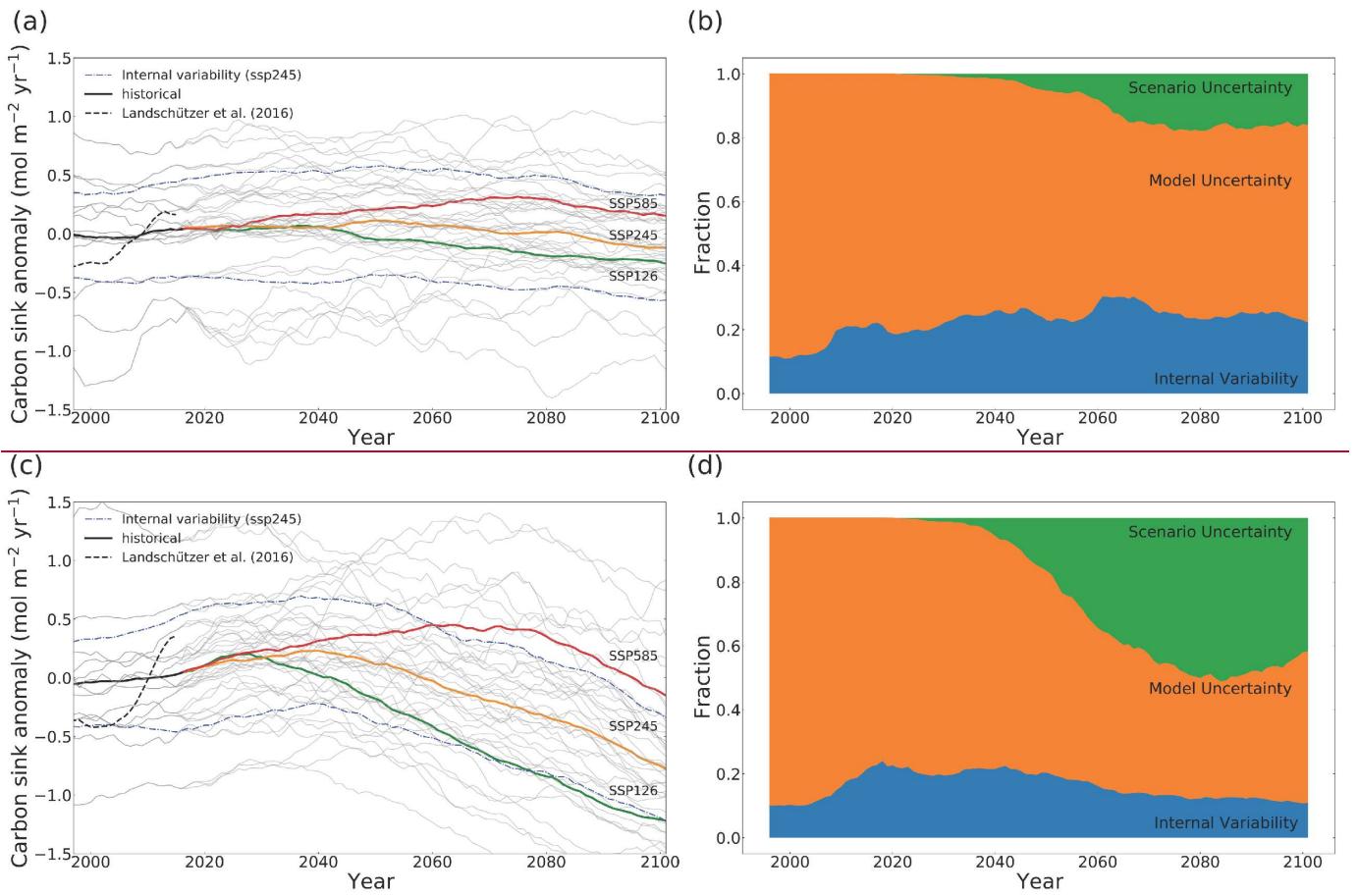
452

453

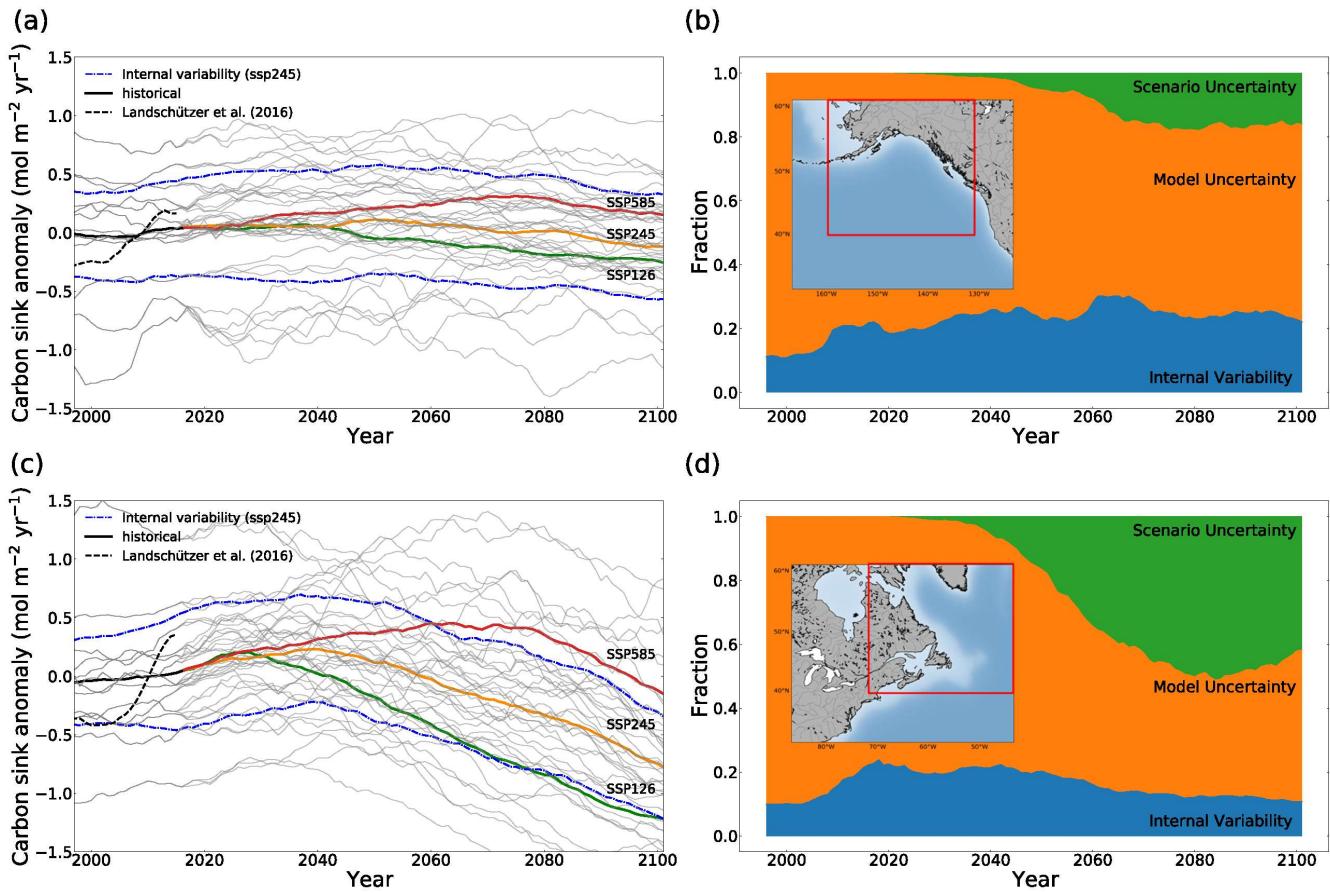
454

455

456



457



458 **Figure 4-** (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-
 459 series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschützer et
 460 al. (2016) SOM-FFN product. The blue dashed line shows the internal variability measured as two times the standard
 461 deviation across all 50 members of [the CanESM5 SMILE](#) only for ssp245 here. (b), (d) time-series showing the breakdown
 462 of uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b)
 463 NE Pacific (40-60 °N, 130-160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W)

		Scenario	1995-2020	2020-2040	2040-2060	2060-2080	2080-2100
			ssp126	0.05 (-0.91 – 0.86)	0.03 (-0.86 – 0.62)	-0.13 (-1.1 – 0.58)	-0.21 (-1.18 - 0.60)
NE Pacific	Anomaly (range)	ssp245	0.00 (-0.98 – 0.76)	0.06 (-0.86 – 0.83)	0.09 (-0.74 – 0.81)	0.03 (-0.65 – 0.60)	0.06 (-0.70 – 0.53)
		ssp585		0.11 (-0.73 - 0.79)	0.21 (-0.61 – 0.86)	0.29 (0.22 – 0.94)	0.2 (-0.25 – 0.98)
		Average					
NW Atlantic	Internal (model) Uncertainty	ssp126		0.47 (0.87)	0.43 (0.74)	0.40 (0.81)	0.39 (0.83)
		ssp245	0.39 (0.90)	0.46 (0.87)	0.47 (0.81)	0.48 (0.64)	0.45 (0.53)
		ssp585		0.45 (0.81)	0.47 (0.745)	0.58 (0.55)	0.44 (0.57)
		Average	0.39 (0.90)	0.46 (0.86)	0.46 (0.77)	0.47 (0.70)	0.43(0.67)
NE Pacific	Anomaly (range)	ssp126		0.13 (-0.77 – 1.21)	-0.20 (-1.03 – 0.56)	-0.66 (-1.45 – -0.11)	-1.00 (-1.80 - -0.56)
		ssp245	0.00 (-0.97 – 1.31)	0.18 (-0.78 – 1.23)	0.10 (-0.68 – 0.80)	-0.20 (-0.97 – 0.50)	-0.54 (-1.22 – 0.07)
		ssp585		0.23 (-0.70 – 1.20)	0.38 (-0.41 – 1.12)	0.41 (-0.27 – 1.29)	0.10 (-0.70 – 0.96)
NW Atlantic	Internal (model) Uncertainty	ssp126		0.47 (0.91)	0.47 (0.79)	0.46 (0.78)	0.42 (0.80)
		ssp245	0.43 (1.02)	0.47 (0.96)	0.49 (0.82)	0.49 (0.80)	0.47 (0.79)
		ssp585		0.50 (0.90)	0.51 (0.94)	0.52 (1.00)	0.53 (1.00)
		Average	0.43 (1.02)	0.48 (0.93)	0.49 (0.87)	0.49 (0.88)	0.48 (0.88)

473 **Table 2-** CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m⁻²
474 yr⁻¹) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE
475 Pacific and NW Atlantic.

476

477 Consistent with the sink anomaly maps (Fig. 1), the regions that show highest uncertainty for any of the sources in
478 the future, are the same regions that show the largest uncertainties in the historical period (Fig. 5). More
479 importantly, the regions of largest future uptake uncertainty are highly correlated with the historical regions of
480 largest uptake, [\(relative to the pre-industrial ocean\)](#), as shown by the pattern correlation coefficients above each
481 panel. This is [a highly significant](#) [important](#) finding, because it suggests that knowledge of the regions of modern
482 day surface carbon flux anomaly provides us with information about regions of future uptake uncertainty.

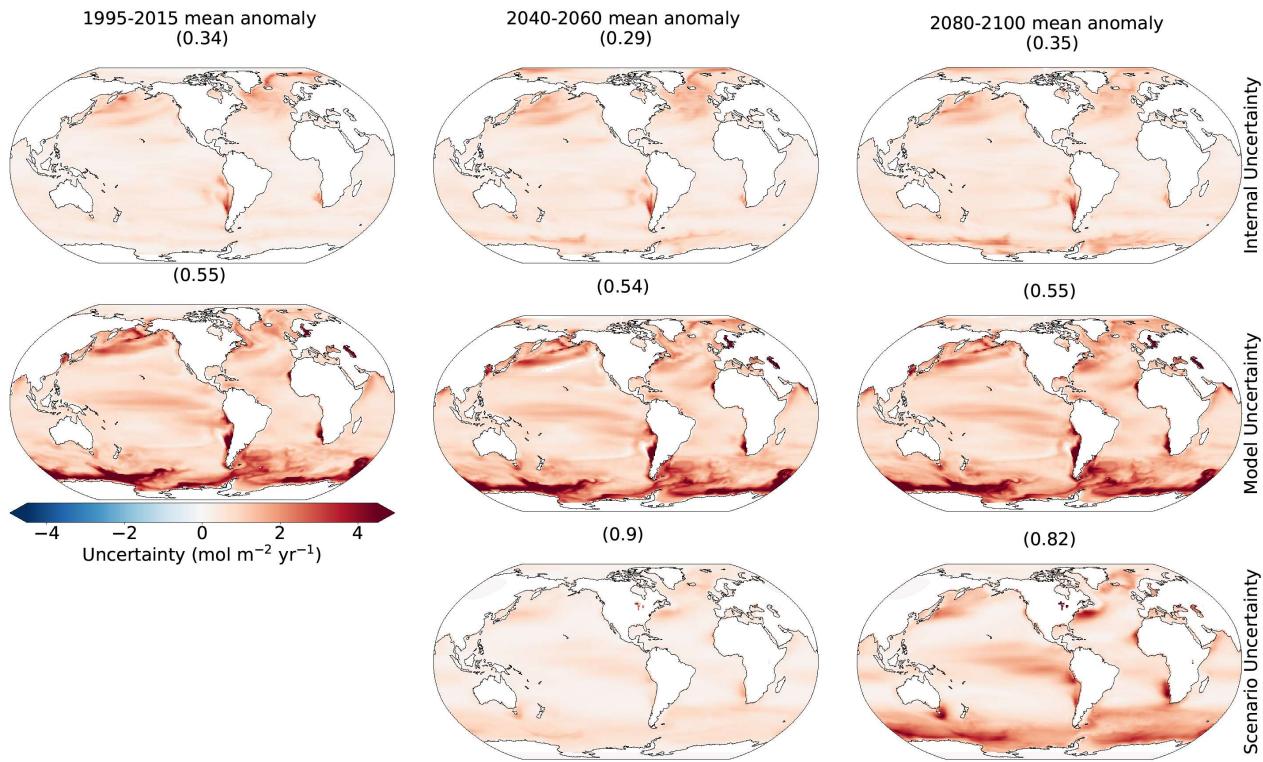
483 Internal variability from CanESM5 is most dominant in mid-latitude eastern boundary upwelling regions and
484 their extensions, in the North Atlantic, in the western boundary currents of the Gulf Stream and Kuroshio and
485 their extensions, and in the Southern Ocean (Fig. 5). There is wide agreement between different models and
486 estimation methods [in](#) [on](#) regions of largest internal variability (Fig. S4). The regions of large internal variability
487 are correlated with the same highly active regions for the sink anomalies discussed earlier (Fig 1c). [This is](#)
488 [consistent with McKinley et al. \(2017\) who argue that modeling and observational studies show that the primary](#)
489 [driver of variability in the ocean carbon uptake is ocean circulation and ventilation of the deep ocean.](#) However,
490 correlation coefficients between internal variability and historical uptake are lower than those seen for scenario
491 and model uncertainty. An increase in internal variability with time is seen mostly in the Southern Ocean, the
492 Arctic Ocean, and boundaries of the gyre systems, while the rest of the ocean does not show a clear change. The
493 maps in Figure 5 are averaged over the three scenarios, which masks the changes to some extent. However, we
494 show in the Supplements (see section S2) that changes in the globally averaged internal variability with time are
495 different for different scenarios.

496 Model uncertainty is consistently highest in the highly active regions (Figure S7), leading to strong correlation
497 with the anomaly maps of Fig. 1c. In these regions, ocean circulation impacts surface pCO₂ through advection
498 and water mass transformation regionally (Bopp et al., 2015; Toyama et al., 2017) and models have substantial
499 differences in ocean circulation. Ridge and McKinley (2021) suggest that while global surface carbon fluxes and
500 carbon storage are largely similar across ESMs over the historical period, consistent with the external forcing
501 from atmospheric pCO₂ growth being the main driver of the historical sink (McKinley et al., 2020), uncertainties

502 in ocean circulation may become important in the future under a changing trajectory of atmospheric boundary
503 conditions. The model uncertainty is largest in the Southern Ocean consistent with CMIP5 models (Frölicher et
504 al., 2015). Here, mode and intermediate waters are formed, and the complex nature of processes governing the
505 sinks varies on all time scales (Gruber et al. 2019). Frölicher et al. (2015) note the largest disagreement in
506 ocean carbon uptake between models is in the Southern Ocean because the exact processes governing heat and
507 carbon uptake remain poorly understood. The importance of model uncertainty in the Southern Ocean provides a
508 clear focal point for modelling centers to concentrate their efforts in reducing projection uncertainty.

509 Scenario uncertainty exhibits the largest change with time. This is by construction as the scenarios deviate from
510 each other with time to represent a range of pathways for future socio-economic possibilities in order to assess
511 the long-term impacts of short-term decisions (Riahi et al., 2017). Importantly, the correlation coefficients are
512 highest between scenario uncertainty and the current sink-regions of large sink anomaly, indicating that the same
513 highly active regions are the regions that show the largest divergence among scenarios, and that the sink in most
514 other regions does not respond as strongly to scenario differences. We showed an example of this earlier, (Fig. 4),
515 where the timeseries of the multi-model signals for the three scenarios did not emerge out of internal variability
516 in the NE Pacific by 2100, whereas they did for the highly active region of the NW Atlantic. This shows
517 that with pCO₂ differences across the air-sea interface being the main driver of the sink (Fay & McKinley, 2013;
518 Landschützer et al., 2015; Lovenduski et al., 2007; McKinley et al., 2020; McKinley et al., 2017; 2020), the sink
519 in these active regions evolves as the atmospheric CO₂ concentration changes because ocean processes associated
520 with surface-depth connectivity constantly keep dampen the surface ocean pCO₂ out of equilibrium trend
521 compared with that of the atmosphere. In other words, the surface water in these regions are constantly renewed,
522 mostly through advection and water mass formation, with water masses whose pCO₂ has not increased at the
523 same rate as the atmosphere. Elsewhere, these conditions do not hold true and water at the surface equilibrates
524 with water trends match that of the atmosphere on shorter time scales, decreasing the sensitivity of the sink
525 anomaly to the projection scenario. These uncertainties are central to the ability to detect human induced trends in
526 observations of the surface ocean carbon flux as well as to assess mitigations or make societal decisions, to which
527 we now turn.

528



529

530 **Figure 5-** Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as
 531 explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-
 532 century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are
 533 correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).

534

535 3.4 Detectability

536 Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal
 537 climate variability. Previous studies have largely presented a single time of emergence (Lovenduski et al. 2016,
 538 Schlunegger et al., 2019, McKinley et al., 2016). However, understanding the regional differences, timescales, and
 539 scenario dependence in the detectability of human induced trends in the ocean surface carbon flux is important for
 540 informing observational strategies that aim to measure these changes.

541

542 We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using
543 the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational
544 communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the
545 multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the
546 CanESM5 SMILE.

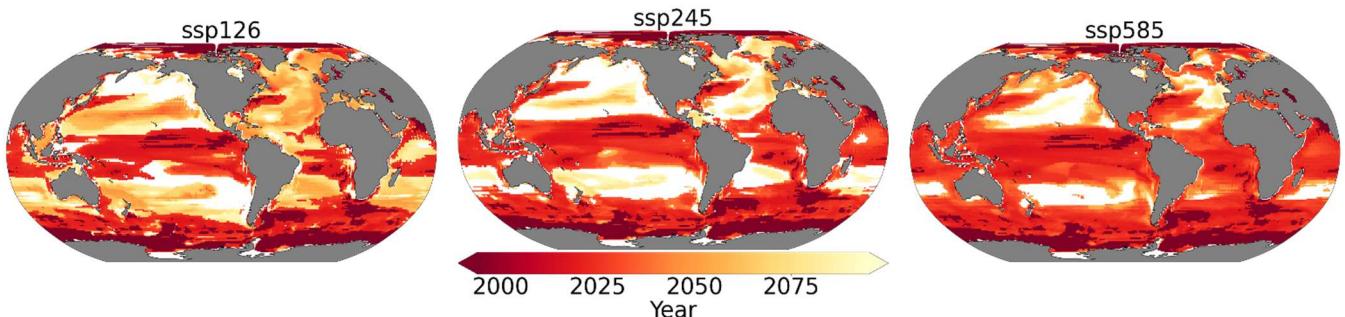
547

548 The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the highly
549 active regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the western boundary
550 currents of the gyre systems, and their extensions (Fig. 6). Ocean regions such as the centres of the mid-latitude
551 gyre systems and the NE Pacific show late emergence times and, in some cases, no detectability of the signal in
552 any of the scenarios by 2100. Convergent large-scale circulation and strong stratification in these regions isolates
553 the surface from the deep ocean ~~reducing limiting~~ their capacity to ~~hold large amounts accelerate their uptake~~ of
554 anthropogenic carbon (McKinley et al., 2016). An absence of mechanisms constantly drawing surface ocean CO₂
555 trends out of equilibrium with atmospheric CO₂ lets the surface water ~~equilibrate with and~~ adjust to the
556 ~~atmosphere atmospheric trend~~ on short time scales. Significant changes thus do not take place in the sink as the
557 atmospheric CO₂ levels change and scenario uncertainty is lowest in the same regions (see Fig. 4). This is consistent
558 with the results from Sect. 3.3, in which we showed that internal variability is a significant source of uncertainty
559 throughout the century in the NE Pacific, with scenarios never emerging out of the range of internal variability
560 (Fig. 4a, b). Our results for the broad patterns in the multi-model mean TOE are largely consistent with previous
561 studies, suggesting they are robust and insensitive to ~~for~~ the method of estimating internal variability. These include
562 studies ~~from CMIP5 models with single model large ensembles~~ such as McKinley et al., (2016) that assumed
563 time/scenario independent internal variability, and CMIP5 models such as Schlunegger et al., (2020) that used only
564 high emission scenario internal variability from four large ensembles to show there is strong agreement between
565 LEs TOE both locally and spatially. Our results argue ~~for focusing that~~ observational ~~efforts on the records inside~~
566 ~~highly active regions in order are likely sufficient~~ to detect human influence on the ocean carbon sink ~~in the coming~~
567 ~~years/decades (2030-2050) if not earlier~~. Meanwhile, they imply that observational timeseries in quiescent regions,
568 such as Ocean Station Papa in the NE Pacific, need to interpret any observed trends with care, since internal
569 variability tends to dominate over human induced trends.

570

571

572



573

574 **Figure 6-** Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate
 575 where the anthropogenic signal cannot be detected even towards the end of the century.

576

577 Time of emergence strongly depends on the future scenario. Schlunegger et al. (2020) show for two scenarios that
 578 modest (~10 yr) TOE differences between different ESMs under strong anthropogenic forcing can evolve into
 579 pronounced (60+ yr) TOE differences with moderate mitigation. Here, we make use of three scenarios including a
 580 strong-mitigation scenario and account for scenario dependence of internal variability in our approximation using
 581 CanESM5. On average, scenarios with smaller forced trends emerge later as the size of the forced trend is critical
 582 to the time of emergence (Fig. 2-a). The TOE is earliest on average over the global ocean in ssp585, while it is later
 583 in ssp245, and later still in ssp126, consistent with the imposed changes in atmospheric CO₂ concentration. The
 584 exceptions are quiescent regions that show earlier detectability for ssp126 compared to other scenarios; these
 585 exceptions are associated with larger (but negative) anomalies in the latter half of the century under ssp126 which
 586 has negative emissions (compare panels d-f, and g-i on Fig. 1). Internal variability does evolve somewhat
 587 differently for each scenario, but this is secondary (Fig. S2). Schlunegger et al. (2020) argues that variables such
 588 as air-sea CO₂ flux which are sufficiently sensitive to emissions emerge early, prior to significant divergence among
 589 future scenarios. Consistent with this result, our results indicate that there is broad agreement between scenarios in
 590 the TOE patterns, when considering the highly active regions. Interestingly, our scenario-specific TOE shows that
 591 differences between scenario TOEs is associated with how sensitive different regions are to emission scenarios.
 592 More specifically, comparison to the maps of scenario uncertainty (Fig. 5) shows that TOE differs more across
 593 scenarios in regions where scenario uncertainty is small, such as the aforementioned **subtropics** Ekman
 594 convergence regions. Elsewhere, the emergence happens before scenarios diverge significantly. Our results suggest
 595 that under the rapidly rising atmospheric CO₂ concentrations seen in ssp585, the human signal in the ocean carbon
 596 sink will **likely** be detectable across much of the global ocean over the coming few decades. However, under strong
 597 mitigation scenarios, such as ssp126, early emergence (**e.g.**, earlier than 2030) **will only is not expected to** occur

598 except in isolated regions while counter-intuitively, lessa lower percentage of the global ocean area remains non-
599 emergent by 2100.

600 **4. Conclusions**

601 Ocean uptake of the increasing atmospheric CO₂ in the 21st century is concentrated in a few active regions with 70
602 percent of the total changes in the sink occurring in less than 40 percent of the global ocean. We analyze the results
603 from the CMIP6 multi-model mean for the current state of the ocean (1995-2015), and the middle (2040-2060) and
604 late (2080-2100) 21st century relative to the current state for three scenarios. We show that future changes in the
605 sink are projected to mostly take place within the same historicalhistorically highly active regions. ~~This result~~
606 ~~implies that known regions of high historical uptake~~, including the North Atlantic and Southern Ocean, ~~are the~~
607 ~~same regions to prioritize for observing the future evolution of the sink~~. Our results extend the argument of Wang
608 et al. (2016) that the historical state is a good predictor of the future state to spatial patterns of change.

609
610 We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and
611 the trend in the sink (globally), compared to the observation-based data product dataset of Landschützer et al.
612 (2016). These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of
613 the ocean carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschützer
614 et al. (2016) data shows larger decadal variability at the global scale than seen in any CMIP6 model andor the range
615 of internal variability from the CanESM5 large ensemble. Gloege et al. (2021) shows that the SOM-FFN method
616 overestimates the magnitude of decadal variability on the global scale due to the amount of gap filling.

617
618 We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale
619 and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model
620 uncertainty and internal variability for CMIP6 models. These results are in agreement with previous studies from
621 the CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020). As the scales of integration (averaging) get
622 finer, model and internal variability become the dominant sources, respectively. Testing the results on two ocean
623 regions of about the same size, one in the NE Pacific and one in the NW Atlantic shows that - while consistent with
624 the results of the scale dependence analysis - the relative importance of the sources of uncertainty also differs with
625 location. Our test here extends the analysis Schlunegger et al. (2020) with a focus on the association of the location
626 dependence with whether the regions have highly active carbon sinks. Notably, in highly active regions, such as

627 the NW Atlantic, scenario uncertainty is large, whereas in more quiescent regions, such as the NE Pacific, internal
628 variability is more significantimportant. The time- and scenario- dependence of internal variability on the scenario
629 with time is another interesting finding that could be the subject of future studies for to achieve a better
630 understanding of the driving mechanism and the degree of dependence on the future emissions and/or
631 concentrations.

632
633 The patterns of high future CO₂ uptake uncertainty are highly correlated with the patterns of historical uptake. The
634 correlation coefficients are highest for scenario uncertainty, indicating that the highly active regions have the
635 potential for the sink to evolve according to the atmospheric CO₂ concentration, while the rest of the ocean basins
636 do not respond strongly to changes in atmospheric CO₂ represented by the different scenarios. This finding has
637 implications for assessment of the mitigationsmitigation and effects of socioeconomic decisions. Our results here
638 are significant in that they show that regions of future uncertainty are largelystrongly associated with known regions
639 of significantlarge historical uptake.

640
641 Patterns seen in the time-of-emergence have implications for planning observational campaigns for detection of a
642 signal (Schlunegger et al. 2019 & 2020). Furthermore, thereThere is a reverse association between how sensitive
643 a region is to scenario differences (apparent in the scenario uncertainty patterns) and how sensitive the TOE is to
644 scenarios. Our results show that caution should be taken in interpreting the observed changes in regions such as the
645 NE Pacific associated with late time of emergence of the signal from the decadal (internal) variationsvariability.
646 On the other hand, consistent observations in regions such as the Equatorial Pacific, the Gulf Stream and Kuroshio
647 and their extensions, and the Southern Ocean, should beare likely to detect the focus ofconsistent and expanded
648 sampling for detectionemergence of the forced signal out of internal variability earlier in time. Additionally, the
649 patterns in sources of uncertainty show that model uncertainty is largest in the Southern Ocean, consistent with
650 Frölicher et al., 2015. The sink in the Southern Ocean is driven by complex mechanisms involving coupled ocean-
651 atmosphere-ice interactions that require better representation in ocean biogeochemical models. Significant progress
652 in reducing uncertainties can be expected from new methods of bringing together models and observations
653 (FrolicherFrölicher et al. 2016). Our results provide a motivation to focus modelling as well as observational efforts
654 on the known highly active regions of historical uptake.

655
656 Finally, we have shown that internal variability shows clear changes in time and depends on the scenario. The
657 emergence of Large Ensembles (LEs) allows for quantification of these variations if enough ensemble members

658 are available to fully capture internal variability using realizations that start from different initial conditions. Our
659 use of the CanESM5 LE allows for us to account for the nonstationary of internal variability in time, like in
660 Schlunegger et al. (2020), but with the advantage of also accounting for scenario dependence. Model
661 intercomparison indicates that ESMs show differences in natural variability (Schlunegger et al. 2020). Nonetheless,
662 our analysis of the global scale, of scale dependence, and of the patterns seen in Time of Emergence are consistent
663 with previous studies, despite the potential sensitivity to the use of CanESM5 LE. Our methodology to correct for
664 internal variability from model spread, without filtering or having a large ensemble for each ESM (which would
665 limit the number of ESMs that can be included and, consequently, underestimate model uncertainty) lays the
666 foundation for future studies when LEs are available from more ESMs and ~~advocates suggests a need~~ for more
667 modelling groups to provide such LEs in order to achieve ~~an even a~~ more robust estimate of internal variability ~~as~~
668 ~~the mean~~ across different ESMs.

669

670 **Data Availability**

671 The data used in this study is part of the World Climate Research Programme's (WCRP) 6th Coupled Model
672 Intercomparison Project (CMIP6) open access data. For details on accessibility see section S1 in the Supplements.
673 The SOM-FFN data (Landschützer et al., 2017) from Landschützer (2016) can be accessed through the [National](#)
674 [Oceanographic Data Center](#) (NODC, <https://www.nodc.noaa.gov/archive/arc0105/0160558/3.3/data/0-data/>)
675 operated by the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce.

676 **Author Contribution**

677 Parsa Gooya conducted the formal analysis, visualization, and original draft preparation. Conceptualization, and
678 methodology development and validation were a collaboration of the three authors, mainly developed by Parsa
679 Gooya with contributions from Neil Swart in development, validation, and revision and Roberta Hamme in
680 validation and revision. Neil Swart and Roberta Hamme provided supervision and reviewing and editing of the
681 manuscript and methodology. Funding acquisition was carried out by Roberta Hamme.

682 **Competing of interest**

683 The authors declare that they have no conflict of interest.

684 **Acknowledgments**

685 This work was supported by the Marine Carbon Sink project, funded by the Natural Sciences and Engineering
686 Research Council of Canada through the Advancing Climate Change Science in Canada program. We thank Jim
687 Christian for helpful suggestions on a draft of the manuscript.

688

689 **References**

690 Bopp, L., Lévy, M., Resplandy, L., and Sallée, J. B.: Pathways of anthropogenic carbon subduction in the global
691 ocean, *Geophys. Res. Lett.*, 42, 6416– 6423, doi:10.1002/2015GL065073, 2015.

692

693 Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K.
694 S., and Sarmiento, J. L.: Reassessing Southern Ocean air-sea CO₂ flux estimates with the addition of biogeochemical
695 float observations. *Global Biogeochemical Cycles*, 33, 1370– 1388. <https://doi.org/10.1029/2019GB006176>, 2019.

696

697 Canadell, J., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M.,
698 Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and Feedbacks. In *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816, doi:10.1017/9781009157896.007, (2021).

705

706 Caias, P. and Sabine, C.: Carbon and other biogeochemical cycles, in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge Univ. Press, 2013.

707

708 Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., Sitch, S., Eggleston, S., and Aich.V.: How
709 well do we understand the land-ocean-atmosphere carbon cycle?, *Reviews of Geophysics*, 60,
710 e2021RG000736. <https://doi.org/10.1029/2021RG000736>, 2022.

711

712 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the
713 Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, *Geosci. Model Dev.*,
714 9, 1937–1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

715

716 Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO₂ from in situ data. *Global Biogeochemical Cycles*,
717 27(2), 541-557, <https://doi.org/10.1002/gbc.20051>, 2013.
718

719
720 Friedrich, T., Timmermann, A., Abe-Ouchi, A., Bates, N. R., Chikamoto, M. O., and Church, M. J.: Detecting regional
721 anthropogenic trends in ocean acidification against natural variability. *Nat. Clim. Change*, 2, 167–171. doi:
722 10.1038/nclimate1372, 2012.
723

724 Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P.,
725 Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M.,
726 Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L.,
727 M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N.,
728 Gürses, Ö., Harris, I., Houghton, R. A., Hurt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., K., Jones, S. D., Kato, E.,
729 Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Kötzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N.,
730 Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y.,
731 Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J.,
732 Schwingshakl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van
733 der Werf, G., R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue,
734 X., Zaelke, S., and Zeng, J.: Global Carbon Budget 2021, *Earth Syst. Sci. Data Discuss.* [\[preprint\]](#), 14, 1917–2005,
735 <https://doi.org/10.5194/essd-2021-386>, [in review](#), 2021–2022, 2022.
736
737

738 Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M.: Dominance of the
739 Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models, *J. Clim.*, 28(2), 862–886, 2015.
740

741 Frölicher, T. L., Rodgers, K. B., Stock, C. A., and Cheung, W. W. L.: Sources of uncertainties in 21st century projections
742 of potential ocean ecosystem stressors, *Global Biogeochem. Cycles*, 30, 1224–1243, doi:10.1002/2015GB005338,
743 2016.
744

745 Graven, H. D., Gruber, N., Key, R., Khatiwala, S., and Giraud, X.: Changing controls on oceanic radiocarbon: New
746 insights on shallow-to-deep ocean exchange and anthropogenic CO₂ uptake, *J. Geophys. Res.-Oceans*, 117,
747 C10005, <https://doi.org/10.1029/2012JC008074>, 2012.
748

749 Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R., Frölicher, T. L., Fyfe, J. C., et al.: Quantifying errors in
750 observationally based estimates of ocean carbon sink variability. *Global Biogeochemical Cycles*, 35,
751 doi:10.1029/2020GB006788, 2021.
752

753 Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Wanninkhof, R., Williams, N. L., and
754 Sarmiento, J. L.: Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude
755 Southern Ocean, *Geophys. Res. Lett.*, 45, 9049–57, 2018.
756

757 Gruber, N., Landschützer, P., and Lovenduski, N. S.: The Variable Southern Ocean Carbon Sink, *Annual Review of
758 Marine Science*, 11:1, 159–186, 2019.
759

760 Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney,
761 S. C., Dunne, J., Gruber, N., Hashioka, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Séférian, R., Totterdell, I.: On

762 the Southern Ocean CO₂ uptake and the role of the biological carbon pump in the 21st century. *Global Biogeochem. Cycles*, 29, 1451– 1470, doi:10.1002/2015GB005140, 2015.

763

764

765 Hauck J., Zeising M., Le Quéré C., Gruber N., Bakker D. C. E., Bopp L., Chau T. T. T., Gürses Ö., Ilyina T.,
766 Landschützer P., Lenton A., Resplandy L., Rödenbeck C., Schwinger J. and Séférian R.: Consistency and Challenges in
767 the Ocean Carbon Sink Estimate for the Global Carbon Budget. *Front. Mar. Sci.* 7:571720. doi:
768 10.3389/fmars.2020.571720, 2020.

769

770 Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions. *Bull. Am. Meteorol. Soc.*, 90:1095, 2009.

771

772

773 Hawkins, E. and Sutton, R. Time of emergence of climate signals. *Geophys. Res. Lett.* 39, L01702, 2012.

774

775

776 Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.
777 *Proceedings of the National Academy of Sciences of the United States of America*, 105, 1425-30, 2008.

778

779

780 Kumar, D. and Ganguly, A. R.: Intercomparison of model response and internal variability across climate model
781 ensembles, *Clim. Dynam.*, 51, 207–219, <https://doi.org/10.1007/s00382-017-3914-4>, 2018.

782

783 Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C., Van Heuven, S., Hoppema M., Metzl N.,
784 Sweeney C., Takahashi T., Tilbrook B., Wanninkhof R.: The reinvigoration of the Southern Ocean carbon sink. *Science*,
785 349(6253), 1221–1224, 2015.

786

787

788 Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations and trends of the global ocean carbon sink, *Global
789 Biogeochem. Cycles*, 30, 1396– 1417, doi:10.1002/2015GB005359, 2016.

790

791

792 Landschützer, P., Gruber N., and Bakker, D.C.E.: An updated observation-based global monthly gridded sea surface
793 pCO₂ and air-sea CO₂ flux product from 1982 through 2015 and its monthly climatology (NCEI Accession 0160558),
794 Version 2.2, NOAA National Centers for Environmental Information, Dataset, 2017.

795

796

797 Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J.,
798 Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M.,
799 and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models,
800 *Biogeosciences*, 12, 6955–6984, <https://doi.org/10.5194/bg-12-6955-2015>, 2015.

801

802 Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning
803 climate projection uncertainty with multiple large ensembles and CMIP5/6, *Earth Syst. Dynam.*, 11, 491–508,
804 <https://doi.org/10.5194/esd-11-491-2020>, 2020.

805

806 Lorenz E. N.: The predictability of a flow which possesses many scales of motion., *Tellus*, ;21:19, 1969.

807

808 Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO₂ outgassing in the Southern Ocean from a
809 positive phase of the Southern Annular Mode. *Global Biogeochemical Cycles*, 21(2).
810 <https://doi.org/10.1029/2006GB002900>, 2007.

811
812

813 Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., and Long, M. C.: Partitioning uncertainty in ocean carbon
814 uptake projections: Internal variability, emission scenario, and model structure, *Global Biogeochem. Cycles*, 30, 1276– 1287, 2016.

815
816

817 Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis,
818 M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou
819 (eds.): IPCC, 2021: Summary for Policymakers. In: *Climate Change 2021, The Physical Science Basis. Contribution of*
820 *Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.* In Press.

821
822

823 McKinley G. A., Pilcher D. J., Fay A. R., Lindsay K., Long M. C., and Lovenduski N. S.: Timescales for detection of
824 trends in the ocean carbon sink. *Nature*, 530(7591), 469-72. doi: 10.1038/nature16958. PMID: 26911782, 2016.

825
826

827 McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D.: Natural variability and anthropogenic trends in the
828 ocean carbon sink. *Annual Review of Marine Science*, 9(1), 125–150. <https://doi.org/10.1146/annurev-marine-010816-060529>, 2017.

829
830

831 McKinley, G. A., Fay, A. R., Eddebar, Y. A., Gloege, L., and Lovenduski, N. S.: External forcing explains recent
832 decadal variability of the ocean carbon sink. *AGU Advances*, 1, e2019AV000149. <https://doi.org/10.1029/2019AV000149>, 2020.

833
834

835 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque,
836 J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project
837 (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, <https://doi.org/10.5194/gmd-9-3461-2016>, 2016.

838
839

840 Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R.,
841 Fricko, O., Lutz, W., Popp, A., Cuartera, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi,
842 K., Hasegawa, T., Havlik, P., Humpenöder, F., Aleluia Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat,
843 D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L.,
844 Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni,
845 M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An
846 overview, *Global Environmental Change*, Volume 42, 153-168, ISSN 0959-3780,
847 <https://doi.org/10.1016/j.gloenvcha.2016.05.009>, 2017.

848
849

850 Ridge, S. M. and McKinley, G. A.: Ocean carbon uptake under aggressive emission mitigation, *Biogeosciences*, 18,
851 2711–2725, <https://doi.org/10.5194/bg-18-2711-2021>, 2021.

852
853 Rodgers, K. B., Lin, J. and Frolicher, T. L.: Emergence of multiple ocean ecosystem drivers in a large ensemble suite
854 with an Earth system model. *Biogeosciences*, 12, 3301–3320, 2015.

855 Rodgers, K. B., Schlunegger, S., Slater, R. D., Ishii, M., Frölicher, T. L., Toyama, K., et al: Reemergence of
856 anthropogenic carbon into the ocean's mixed layer strongly amplifies transient climate sensitivity. *Geophysical Research*
857 Letters

858 Letters, 47, e2020GL089275. <https://doi.org/10.1029/2020GL089275>, 2020.

859 Roy, T., L. Bopp, M. Gehlen, B. Schneider, P. Cadule, T. L. Frölicher, J. Segschneider, J. Tjiputra, C. Heinze, and F.
860 Joos: Regional impacts of climate change and atmospheric CO₂ on future ocean carbon uptake: A multimodel linear
861 feedback analysis, *J. Clim.*, 24(9), 2300– 2318, 2011.

862 Santer, B.D., P.W. Thorne, L. Haimberger, K.E. Taylor, T.M.L. Wigley, J.R. Lanzante, S. Solomon, M. Free, P.J.
863 Gleckler, P.D. Jones, T.R. Karl, S.A. Klein, C. Mears, D. Nychka, G.A. Schmidt, S.C. Sherwood, and F.J. Wentz:
864 Consistency of modelled and observed temperature trends in the tropical troposphere. *Int. J. Climatol.*, 28, 1703-1722,
865 doi:10.1002/joc.1756, 2008.

866 Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.: Simulated response of the ocean carbon cycle to
867 anthropogenic climate warming. *Nature*, 393(6682), 245–249. <https://doi.org/10.1038/30455>, 1998.

870 Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Frölicher, T. L., Dunne, J. P., Ishii, M., and Slater, R.: Emergence of
871 anthropogenic signals in the ocean carbon cycle. *Nature Climate Change*, 9(9), 719–725.
872 <https://doi.org/10.1038/s41558-019-0553-2>, 2019.

873 Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Ilyina, T., Dunne, J. P., Takano, Y., Christian, J. R., Long, M. C.,
874 Frölicher, T. L., Slater, R., and Lehner, F.: Time of Emergence and Large Ensemble Intercomparison for Ocean
875 Biogeochemical Trends. *Global Biogeochemical Cycles*, 34(8), e2019GB006453.
876 <https://doi.org/https://doi.org/10.1029/2019GB006453>, 2020.

877 Somerville, R.C.J.: The predictability of weather and climate. *Climatic Change* 11, 239–246,
878 <https://doi.org/10.1007/BF00138802>, 1987.

879 Sutton AJ, Wanninkhof R, Sabine CL, Feely RA, Cronin MF, Weller RA. [2017..](#) Variability and trends in surface
880 seawater pCO₂ and CO₂ flux in the Pacific Ocean. *Geophys Res Lett*, 44(11): 5627–5636. doi:
881 10.1002/2017GL073814. [2017.](#)

882

883 Takahashi T., Sutherland S. C., Feely R.A., Wanninkhof R.: Decadal change of the surface water pCO₂ in the North
884 Pacific: A synthesis of 35 years of observations. *J Geophys Res*, 111(C7): C07S05. doi: 10.1029/2005JC003074, 2006.

885

886 Tebaldi C. and Knutti R.: The use of the multimodel ensemble in probabilistic climate projections. *Phil. Trans. R. Soc.*
887 A., 365, 2053–2075, 2007.

888

889 Terhaar, J., Frölicher, T. L., and Joos, F.: Southern Ocean anthropogenic carbon sink constrained by sea surface
890 salinity. *Science Advances*, 7(18), eabd5964. <https://doi.org/10.1126/sciadv.abd5964>, 2021.

891

892 Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T., Segschneider, J., Totterdell, I., and Heinze, C.: Long-
893 term surface pCO₂ trends from observations and models, *Tellus B.*, 66, 23083, 2014.

894

895 Toyama, K., Rodgers, K. B., Blanke, B., Iudicone, D., Ishii, M., Aumont, O., and Sarmiento, J. L.: Large Reemergence
896 of Anthropogenic Carbon into the Ocean's Surface Mixed Layer Sustained by the Ocean's Overturning Circulation, *J.*
897 *Climate*, 30, 8615–8631, <https://doi.org/10.1175/JCLI-D-16-0725.1>, 2017.

898

899

900 Wang, L., Huang, J., Luo, Y., and Zhao, Z.: Narrowing the spread in CMIP5 model projections of air-sea CO₂
901 fluxes. *Scientific Reports*, 6(1), 37548. <https://doi.org/10.1038/srep37548>, 2016.

902

903 Williams, N. L., Juranek, L. W., Feely, R. A., Russell, J. L., Johnson, K. S., and Hales, B.: Assessment of the carbonate
904 chemistry seasonal cycles in the Southern Ocean from persistent observational platforms. *J. Geophys. Res. Oceans*,
905 123, 4833–52, 2018.

906