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Abstract. As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the 7 

atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global 8 

and regional scale, are key to understanding the future evolution of the climate. Here we report on the changes and 9 

uncertainties in the historical and future ocean carbon sink using output from the Coupled Model Intercomparison 10 

Project Phase 6 (CMIP6) multimodel ensemble and compare to onean observation based product. We show that 11 

future changes of the ocean carbon sink isare concentrated in highly active regions - 70 percent of the total sink 12 

occurs in less than 40 percent of the global ocean. High pattern correlations between the historical uptake and 13 

projected future changes in the carbon sink indicate that future uptake will largely continue to occur in historically 14 

important regions. We conduct a detailed breakdown of the sources of uncertainty in the future carbon sink by 15 

region. Consistent with CMIP5 models, scenario uncertainty dominates at the global scale, followed by model 16 

uncertainty, and then internal variability. We demonstrate how the importance of internal variability increases 17 

moving to smaller spatial scales and go on to show how the breakdown between scenario, model, and internal 18 

variability changes between different ocean regions, governed by different processes. Using the CanESM5 large 19 

ensemble we show that internal variability changes with time based on the scenario, breaking the widely employed 20 

assumption of stationarity. As with the mean sink, we show that uncertainty in the future ocean carbon sink is also 21 

concentrated in the known regions of historical uptake. Patterns in the signal-to-noise ratio have implications for 22 

observational detectability and time of emergence, which we show to vary both in space and with scenario. We 23 

show that the largest variations in emergence time across scenarios occursoccur in regions where the ocean sink is 24 

less sensitive to forcing - outside of the highly active regions. In agreement with CMIP5 studies, our results suggest 25 

that to detectfor a better chance of early detection of changes in the ocean carbon sink as early as possible, and to 26 

efficiently reduce uncertainty in future carbon uptake, modelling and observational efforts should be focused in the 27 
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knownhighly active regions of high historical uptake, including the Northwest Atlantic and the Southern Ocean, 28 

should receive additional focus for modelling and observational efforts. 29 

1. Introduction 30 

Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised 31 

Earth's average temperature. Carbon dioxide (CO2) is the primary driver of eglobal warming in the industrial period 32 

(Masson-Delmotte et al., 2021). The concentration of atmospheric CO2 has increased from approximately 277 parts 33 

per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019. However, 34 

less than half of the CO2 emitted by anthropogenic activity has remained in the atmosphere. The remaining CO2 was 35 

taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. Specifically, the global ocean 36 

absorbed ∼26% of the total CO2 emissions during 2011-2020 (Friedlingstein et al., 2021).  37 

 38 

The ocean’s capacity to absorb anthropogenic CO2 is not uniformly distributed (McKinley et al., 2016, Sarmiento 39 

et al., 1998). Despite increasing atmospheric CO2 concentrations, theprojected air-sea CO2 flux doesfluxes do not 40 

change much in the middle of the subtropical gyres over the decade starting in 1990. The regions where ocean 41 

carbon uptake notably increases are those with strong exchange between the surface and the deep ocean (Ridge and 42 

McKinley, 2021; Frölicher et al., 2015; McKinley et al., 2016). ThisThe response of the ocean carbon sink to 43 

increasing atmospheric CO2 levels consists of changes in both the anthropogenic anda direct absorption response 44 

as well as climate change induced perturbations to the natural background carbon sinkfluxes (Crisp et al. 2022, 45 

McKinley et al. 2020, Hauk et al., 2020, Gruber et al. 2019, Frolicher at al, 2015). Even within regions there are 46 

large variations in the dominant mechanisms and possibly the direction of the carbon sink. (or source). In the 47 

Southern Ocean, for instance, the spatial superposition of natural and anthropogenic CO2 fluxes leads to a relatively 48 

strong uptake band between approximately 55°S and 35°S (Gruber et al., 2019). However, south of the Polar Front 49 

(55°S), the different estimates agree less well (Gruber et al., 2019., Landschützer et al., 2016, Gruber et al., 2009, 50 

Takahashi et al., 2009). Supported by measurements based on biogeochemical floats (Bushinsky et al., 2019; Gray 51 

et al., 2018; Williams et al., 2018), Gruber et al. (2019) argue that the region was most likely a small source in 52 

2019at the time.  53 

 54 
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 Earth System Models (ESMs) are the primary tool for projecting the future evolution of carbon in the climate 55 

system. However, quantitative projections from ESMs are subject to considerable uncertainty, particularly at 56 

regional and local scales (Friedrich et al., 2012; Frölicher et al., 2014; Hauck et al., 2015; Roy et al., 2011; Tjiputra 57 

et al., 2014; Terhaar et al., 2021) where less averaging is done and different individual mechanisms dominate 58 

different regions. Projection uncertainty varies with lead time, spatial averaging scale, and from region to region 59 

(Lovenduski et al., 2016; Schlunegger et al., 2020). For example, Lovenduski et al. (2016) showed a spatially 60 

heterogeneous pattern of projection uncertainty in CO2 flux projections over 17 ocean regions for CMIP5 models. 61 

Furthermore, by comparing uncertainty at the global scale to the scale of the California Current System, they show 62 

that uncertainty is higher at smaller scales. Schlunegger et al. (2020) further shows differentshow partitioning 63 

of uncertainty for 10 ocean basins at the year 2050. All said, if ESMs are to be used to quantify future changes 64 

in ocean carbon uptake, especially across shorter timescales and at regional spatial scales, and to inform 65 

observational campaign planning, their uncertainties must be well known and well understood (Lovenduski et al., 66 

2016).  67 

 68 

A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model 69 

Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over 70 

a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). There are three main 71 

types of uncertainty in climate model projections, as described by Hawkins and Sutton (2009) (hereafter HS09): 72 

 73 

Uncertainty due to internal variability: Internal variability is the unforced natural climate variability resulting 74 

from the internal processes in the climate system. Modes such as the El Niño–Southern Oscillation, North Atlantic 75 

Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM) 76 

contribute to this internal variability. Internal variability also includes variability that acts on shorter time and 77 

spatial scales, such as submesoscale and mesoscale ocean features (Frolicher et al., 2016). The real world follows 78 

only one of an infinite possible number of realizations of internal variability, and due to its chaotic nature, the 79 

future evolution of internal variability is not predictable beyond short timescales (Lorenz, 1969; Somerville, 1987; 80 

Lorenz, 1969). Climate model simulations do not attempt to reproduce the exact observed evolution of internal 81 

variability, but produce their own, unique realizations that aim to capture the correct statistics of this variability. 82 

Hence, our analysis must account for internal variability, both when comparing historical model simulations to 83 

observations, and when considering uncertainties in the future ocean carbon sink. In HS09, a fourth-order 84 

polynomial fit to simulated global and regional temperature timeseries represented the forced response, while the 85 
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residual from this fit represented the internal variability. There is thus, an assumption of stationarity (constant in 86 

time) in their method.  Moreover, this approach could possibly conflate internal variability with the forced response 87 

in cases where low-frequency (decadal-to-multidecadal) internal variability exists, or when the forced signal is 88 

weak, which makes the statistical fit a poor estimate of the forced response (Kumar and Ganguly, 2018). In this 89 

study, we instead use a Single-Model Initial-condition Large Ensemble (SMILE) to robustly quantify the internal 90 

variability across time and scenarios using ensemble statistics (Lehner et al., 2020). A SMILE is an ensemble of 91 

model realizations that each starts from different initial conditions but uses the same model and forcing, and 92 

provides representations of the climate system that are equivalent except for internal variability.  93 

Uncertainty due to model structure: Models differ in their resolution, structure, numerics, and parameterization 94 

of processes. These differences cause models to respond differently to the same forcing. For example, the CMIP5 95 

model simulations run under Representative Concentration Pathway 8.5 (RCP8.5) project a wide range of 96 

cumulative anthropogenic carbon storage by 2100 (320–635 Pg-C) (Ciais and Sabine, 2013) due to both internal 97 

variability and model uncertainty (Lovenduski et al., 2016).  98 

Uncertainty due to emission scenario: The future of the climate system depends on human activity and our 99 

emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our 100 

inability to project the complex changes in society and technology upon which they depend. As a result, future 101 

simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations) 102 

will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally 103 

coordinated experiments organized by the Coupled Model Intercomparison Project. (O'Neill et al., 2016). Since 104 

the future emission trajectory is unknown, these future simulations are referred to as projections, rather than 105 

predictions. Projections of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission 106 

scenario (Lovenduski et al., 2016). For example, cumulative ocean carbon uptake from 1850 is projected to saturate 107 

at approximately 290 ± 30 GtC under ssp126, and to reach 520 ± 40 GtC by 2100 under ssp585 for CMIP6 models 108 

(Canadell et al., 2021). 109 

Together with the patterns of changes in the sink, the patterns of internal variability allow for an assessment of the 110 

required timescales for detection of changes in the ocean carbon sink. Detection means that we can robustly separate 111 

the forced signal from internal variability (McKinley et al., 2016). Detectability can be assessed using Time of 112 

Emergence (TOE; Hawkins and Sutton, 2012; Lovenduski et al., 2016; McKinley et al., 2016; Rodgers et al., 2015; 113 

Schlunegger et al., 2020 &; 2019). For example, McKinley et al. (2016) and Schlunegger et al. (2019) showed that 114 
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the forced signal of increasing ocean carbon uptake is not detectable in the Ekman convergence regions of 115 

convergent Ekman transport (centre of the subtropical gyres.). Schlunegger et al. (2020) builds on that using four 116 

large ensembles of CMIP5 ESM simulations with two forcing scenarios to show that air-sea CO2 flux TOEs show 117 

strong agreement between the large-ensembles not just for global and regional scales but also locally and spatially. 118 

Their use of only four models and two scenarios however, potentially underestimates the contribution of model and 119 

scenario uncertainty. 120 

 121 

Here, we build on previous work using CMIP6 models. We make use of an ensemble of 13 models to better capture 122 

model uncertainty in the response to different forcing (scenarios) and three scenarios to represent a wider range of 123 

future possibilities including a strong mitigation scenario.  We start by analysing the regional patterns of historical 124 

ocean carbon uptake and how they are projected to change in the future (Sect. 3.1). We estimate internal variability 125 

from a comprehensive SMILE, avoiding the stationarity assumption common in previous work, which we show is 126 

violated. Then, we examine the partitioning among different sources of uncertainty (Sect. 3.2) and provide a novel 127 

analysis of how the three sources of variability change across the full continuum of scales (Sect. 3.3).  Having 128 

Shownshown how the uncertainty and distribution among sources differ based on scale of integration and region 129 

of interest, we analyseanalyze local patterns of uncertainty by the source (Sect. 3.4).  The final section explores the 130 

detectability of the model projected signal given the uncertainty imposed by internal variability. We report on the 131 

scenario-dependent Time of Emergence, using a scenario specific measure of internal variability in order to make 132 

useful suggestions for future observations.  133 

 134 
 135 

2. Data and Methods   136 

2.1 Model Data Selection 137 

Here we use results from models selected from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring 138 

et al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation 139 

for air-sea CO2 flux (fgco2) for the CO2 concentration driven experiments of interest. One realization of each 140 

model over the historical period and three scenarios that represent the low (ssp126), mid (ssp245), and high 141 

(ssp585) ranges of future atmospheric CO2 concentrations are analysed. A total of 16 models met these criteria, 142 

out of which 3 were excluded as outliers (see section S1 in the Supplements). To maintain equal sampling, only 143 
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one realization of each model was selected, except when specifically using the large ensembles to assess internal 144 

variability. Finally, since the ocean component of the models may be on different grids, all model data were 145 

remapped to a regular one-by-one-degree grid and a 10 year running mean filter was applied to the time-series. 146 

We did not account for potential drift in the models. However, the drift is known to be small in the models 147 

compared to the historical trends for CMIP5 models (Hauck et al, 2020). For 11 of our CMIP6 models for which 148 

piControl runs are available, on average, the drift is more than one order of magnitude smaller than the change in 149 

the model scenario with the smallest trend over the 21st century, on the global scale. 150 

 151 

2.2 Sources of uncertainty 152 

Total uncertainty is composed of internal, model, and scenario uncertainty in equation 1, which assumes that each 153 

of these sources is independent. Here, each source of uncertainty is considered as a function of time (t) and location 154 

(l) (Lovenduski et al., 2016): 155 

 156 

UT 2 (t, l) = UI 2 (t, l) + UM 2 (t, l) + Us 2 (t, l) 157 

 158 

where UT
 (t, l) is total uncertainty, UI (t, l) is internal variability, UM (t, l) is model uncertainty, and US (t, l) is 159 

scenario uncertainty. The fractional uncertainties for each source are calculated as 
௎಺

మ

௎೅
మ, 

௎ಾ
మ

௎೅
మ , and 

௎ೄ
మ

௎೅
మ (Lovenduski et 160 

al., 2016). 161 

 162 

HS09 assume UI (t, l) to be constant in time (stationary) and use a 4th degree polynomial fit to measure internal 163 

variability as the spread over time and scenario of the residuals for each model’s signal relative to the fitted signal. 164 

We show in the Supplements (see section S2) that internal variability depends on time and scenario, violating the 165 

commonly used assumption of stationarity. Using a SMILE allows us to account for these variations without having 166 

to make any assumptions about distribution or stationarity of variability (Frolicher et al., 2015; Schlunegger et al., 167 

2020).  Here we estimate internal variability as two times the standard deviation of the annual carbon sink across 168 

50 realizations from a Single Model Initial Condition Large-ensembleSMILE based on CanESM5 (Eq. 2): 169 

 170 

 171 

 (1) 

 (2) 
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𝑈ூ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
෍ Var (CanESM5 Large Ensemble

ேೞ

௦ୀଵ

) 172 

 173 

where s indicates each scenario (Ns is the number of scenarios) and Var indicates the variance over the large 174 

ensemble of CanESM5.  In the CanESM5 SMILE, each realization starts from different initial conditions which 175 

are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations 176 

gives a robust estimate of the internal variability, including sampling over longer term ocean variability.  177 

 178 

Previous studies have also used SMILEs to estimate variability (Frolicher et al., 2015; Schlunegger et al., 2020), 179 

although they used either a limited ensemble size or single scenario. We show in the Supplements (Fig. S2), that a 180 

sufficiently large ensemble size is needed to capture internal variability, and that internal variability depends on the 181 

scenario. In the ideal case, if every CMIP model provided sufficiently large SMILEs for each scenario, an ensemble 182 

mean estimate of the variability could be obtained and would represent a best estimate (but still possibly biased 183 

compared to the real world). However, only a handful of CMIP6 models produced multiple ensemble members. 184 

We selected the CanESM5 SMILE as it is the only model that has a large enough ensemble over the entire timeline 185 

and set of experiments to make estimate internal variability robustly and across scenarios. 186 

 187 

The use of a single model to estimate the scale of internal variability leads to some uncertainty in our estimates, as 188 

models do not agree perfectly with each other on the variability. Nonetheless, over the historical period, variability 189 

betweenamong large ensembles from three models that have enough ensemble members is within 10%, on the 190 

global scale (Fig S3). Differences will be larger at smaller scales; however, the general patterns of the magnitude 191 

of internal variability (see Fig. S4) are in good agreement across models and are consistent with known regions of 192 

high variability in the observed ocean, validating our use of the CanESM5 SMILE 193 

 194 

Model uncertainty is calculated by taking the variance across the forced signal of all available models for each 195 

scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).  196 

𝑈ெ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
෍ Var௠൫𝐹(𝑚, 𝑠, 𝑡, 𝑙)൯

ேೞ

௦ୀଵ

 197  (3) 
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where Varm means the variance taken across different models (m) for individual times and scenarios, m indicates 198 

each model, and t stands for time. (s).  𝐹(𝑚, 𝑠, 𝑡, 𝑙) is the forced signal and can be related to each realization as 199 

follows: 200 

 201 

𝑇(𝑚, 𝑠, 𝑡, 𝑙) = 𝐹(𝑚, 𝑠, 𝑡, 𝑙) + 𝑅(𝑚, 𝑠, 𝑡, 𝑙) 202 

 203 

Where, 𝑇(𝑚, 𝑠, 𝑡, 𝑙) represents the reported output, i.e. each realization, but must be corrected for internal 204 

variability. 𝑅(𝑚, 𝑠, 𝑡, 𝑙) is the residual from the forced signal caused by internal variability. Here, the variance in 205 

the forced signal across all models is calculated by correcting the total variance across all models’ one realization 206 

for the variance caused by internal variability. The corrections are done by subtracting the variance across the same 207 

number of CanESM5 ensemble members as the multi-model ensemble (13 members) from the variance across the 208 

one realization of alleach of the 13 models. For this correction only, the sample sizes (13) are kept the same so that 209 

the internal variability removed from the variance across the models’ first realizations is not overestimated by a 210 

well sampled 50-member ensemble (see section S3 in the Supplements).  211 

 212 

Us (t, l) is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root 213 

of variance) across scenarios of the multi-model mean signal (Eq. 5).  214 

 215 

𝑈ௌ(𝑡, 𝑙) = 2ඩVar௠(
1

𝑁௠
෍ 𝑇 (𝑚, 𝑠, 𝑡, 𝑙 )

ே೘

௠ୀଵ

) 216 

where 𝑁௠   is the number of models. The multi-model mean across the first realizations of the 13 models givesis an 217 

estimate of the multi-model forced response and does not require correction for internal variability as done for 218 

model uncertainty before.  219 

 220 

We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When 221 

regional and global analysis is done, the dependence on location is taken away by averaging over that region or the 222 

whole global ocean.  223 

 224 

 (5) 

(4) 
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2.3 Time of Emergence (TOE)  225 

In order to know when the forced response is distinguishable from internal variability, TOE is calculated following 226 

the approach of McKinley et al. (2016).. The time of emergence is the first year when the multi-model mean 227 

anomaly is larger than internal variability – approximated by two times the standard deviation across the 50 member 228 

CanESM5 ensemble - for five consecutive years (the first year of this five-year period is reported as the time of 229 

emergence). The result is reported at each grid point for the 10-year running mean smoothed anomaly relative to 230 

the 1995-2015 mean (detection of a change relative to the current state of the ocean). 231 

 232 

2.4 Scale Dependence 233 

Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal 234 

variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving 235 

a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until 236 

all scales from <100 km2 to the whole Earth are considered. For each source of uncertainty and averaging scale, 237 

the average for all rectangles across the globe is reported, where each rectangle contains the same ocean area. 238 

 239 

3. Results and Discussion 240 

3.1 Global Analysis 241 

The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-242 

2015 matches that of the Landschützer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN) 243 

observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the 244 

multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the 245 

response of any single model (Tebaldi & Knutti, 2007). Unlike in ESMs, the observation-based product only 246 

represents the one realization of the real world, which includes internal variationvariability, and is therefore not 247 

directly equivalent to the forced signal. However, the comparison to the 20 year mean multi-model mean still 248 

informs us about the degree of agreement between the two products. When compared to the observation-based data 249 

product, the CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North and 250 

/North-West Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data 251 

product shows a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble. 252 

 253 
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While most of the global ocean shows a net sink relative to the pre-industrial era, the largest changeacceleration of 254 

that sink takes place in some highly active regions such as the subpolar North Atlantic, Southern Ocean, Eastern 255 

Equatorial Pacific, and western boundary currents of the mid-latitude gyre systems in the Pacific and Atlantic 256 

Oceans (Fig. 1c). These regions of largest change in the carbon sink (anthropogenicdirect response to higher 257 

atmospheric CO2 plus changes in the natural carbon sink) are the regions where there is a surface-depth connectivity 258 

through ocean circulation as the air–sea flux of anthropogenic carbon is fundamentally limited by the rate of 259 

surface-to-depth transport (Graven et al., 2012; Ridge and McKinley 2021). These results for CMIP6 models are 260 

consistent with those for CMIP5 models shown byfrom McKinley et al. (2016) based on CESM-LE under CMIP5 261 

protocols, and earlier studies such as Sarmiento et al. (1998). Here, we provide a new metriccriterion for 262 

quantifyingidentifying these highly active regions. based on comparing the integrated global sink anomaly within 263 

grid cells above a certain threshold to the percentage of ocean area they occupy (see Supplement S5). We find that 264 

for all three scenarios and both mid-21st century (2040-2060 mean) and late- 21st century (2080-2100 mean) time 265 

periods (with the exception of ssp126 late-century where strong mitigation of anthropogenic CO2 emissions results 266 

in broad patterns of negative anomalies), approximately 70% of the changes in the sink relative to the preindustrial 267 

area takesera take place in less than 40% of the global ocean (see Supplement Fig. SS6 and section S5).S7). The 268 

diagnosed highly active regions based on this analysis (Fig. S7) are consistent with the regions of large uptake 269 

change (trends) from previous studies (Rodgers et al., 2020; McKinley et al., 2016; Frölicher et al., 2015)  270 

 271 

The regions of largest future carbon uptake, relative to the 1995-2015 mean, are within the same highly active 272 

regions responsible for most of the uptake over the historical period. The correlation coefficients at the top of each 273 

panel in Fig. 1 (except 1b) represent the pattern correlation between future absolute anomalies, relative to 1995-274 

2015, and anomalies in 1995-2015, relative to the pre-industrial era. The high correlations indicate that regions that 275 

have been most active in increasing their carbon sequestration since the pre-industrial era are the same regions that 276 

will continue to change mostincrease further into the future, particularly with larger increases in atmospheric CO2 277 

(ssp585).  Our results support the findings of Wang et al. (2016) who showed that projected future air-sea CO2 278 

fluxes are strongly associated with simulated historical air-sea CO2 fluxes. This confirms that the historical state is 279 

a good predictor for the future state (Wang et al., 2016) not only in terms of magnitudes of the sink, but also in the 280 

spatial pattern.  281 

 282 

 283 

 284 
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 285 

Figure 1- CMIP6 multi-model mean maps of carbon sink and sink anomalies using one realization of each model. Columns 286 

represent different time periods, being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century 287 

(2080-2100 mean). Note: the sink is positive into the ocean.  The first column shows (a) the CMIP6 ensemble mean air-sea 288 

CO2 flux over 1995-2015, (b) Landschützer et al. (2016) SOM- FFN product, and (c) the CMIP6 ensemble mean flux 289 

anomaly over 1995-2015 relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015 multi-model 290 

mean (panel a). Panels d through i show different scenarios. Numbers above each map are correlation coefficients between 291 

the absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the pre-industrial era in 292 

panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and panel a. 293 

   294 

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is 295 

projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The 296 

regional patterns show mostly positive anomalies at mid-century with largest changes in the higher emission 297 

scenarios (ssp585). Towards the end of the century, however, broader patternsgreater areas of negative anomalies 298 

are expected in ssp126, as emissions turn negative in the late- 21st century in this scenario. The largest absolute 299 

values of anomalies are still within the same highly active regions discussed before with surface-depth connectivity 300 
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regardless of it being positive or negative. The late-century anomalies are predominantly positive in ssp585 which 301 

corresponds to the highest emission scenario (continuing to grow larger compared to the mid-century), while ssp245 302 

is somewhere in between, with regions of positive and negative anomalies. Under ssp245, as CO2 emissions 303 

decrease and atmospheric CO2 start to level off, the intensity of uptake decreases in the midlatitude western 304 

boundary currents and subpolar North Atlantic in the late-century, and anomalies in the Eastern Equatorial Pacific 305 

also decrease, compared to the mid-century. The globally integrated ocean carbon uptake anomaly rates are 306 

summarized in Table 1. 307 

 308 

 309 

Figure 2- (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-310 

2015. Individual models are plotted as thin grey lines in the background. The black dashed line shows the Landschützer et 311 

al. (2016) SOM-FFN product. Both models and SOM-FFN timeseries are smoothed with a 10-year running mean. The blue 312 

dashed lines show internal variability for ssp245. (b) Timeseries showing the breakdown of uncertainty to different sources 313 

with time for the global ocean carbon sink anomaly. The internal and model uncertainty are averaged for different scenarios. 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 
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 323 

 324 

 Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 

 
0.00 

(-0.06 – 0.06) 
 

 
 

0.13  
(0.05 – 0.21) 

 
0.17  

(0.08 – 0.24) 
 

0.22 
 (0.11 - 0.30) 

 
 

 
 
 

0.07  
(-0.02 – 0.16) 

 
0.25  

(0.11 – 0.36) 
 

0.49  
(0.29 – 0.62) 

 
 
 

 
 
 
 

-0.08  
( -0.14 - -0.01) 

 
0.23  

(0.09 – 0.33) 
 

0.71  
(0.45 – 0.90) 

 
 

 
 

 
 
 
 

-0.24  
(-0.3 - -0.12) 

 
0.13  

(0.02 – 0.21) 
 

0.80 
 (0.54 –  1.00) 

 
 
 
 

 
 

 
ssp126 

 
ssp245 

 
ssp585 

 

 
Average 

 
 

 
 
 

0.032 (0.08) 
 

 

 
 
 

0.032 (0.08) 

 

 

 
0.033 (0.11) 

 
0.032 (0.11) 

 
0.033 (0.13) 

 
 

0.033 (0.12) 

 

 

 
0.034 (0.11) 

 
 0.034 (0.14) 

 
0.037 (0.2) 

 
 

0.035 (0.16) 

 
 

 
0.035 (0.10) 

 
0.037 (0.14) 

 
0.045 (0.26) 

 
 

0.039 (0.18) 

 
 
 

0.036 (0.11) 
 

0.036 (0.12) 
 

0.043 (0.27) 
 
 

0.038 (0.18) 
 

 325 

Table 1- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in 326 

parentheses) relative to the 1995-2015 mean (in mol-C m-2 yr-1) and internal variability from CanESM5 (with model 327 

uncertainty in parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average 328 

values across scenarios. 329 

 330 

The trends in the global mean ocean carbon sink anomalies over 1995-2015 are statistically consistent between the 331 

CMIP6 multi-model ensemble mean and the Landschützer et al. (2016) observation-based data product (Fig. 2-a), 332 

based on the test from Santer et al. (2008; see Supplements section S5). However, the SOM-FFN based time-series 333 

shows a larger multi-decadal variability (variations in the 10-year running mean timeseries on top of the trend) than 334 

seen in individual model realizations, and is larger than the range of internal variability estimated from the 335 

CanESM5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-FFN 336 

method, or underestimation of the internal variability fromby the ESMs. Given that on regional scales the SOM-337 

Internal 
 (model) 

Uncertainty 

Anomaly 

(range) 
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FFN data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESM5 (see Sect. 338 

3.3), and that there are significant gaps in the spatial and temporal sampling that underlies the Landschützer et al. 339 

(2016) estimate, it seems plausible that the discrepancy is largely due to overestimation of internal variability on 340 

the global scale by the SOM-FFN technique. This is consistent with the findings of Gloege et al. (2021), which 341 

showed that, globally, the magnitude of decadal variability is overestimated by 21% by the SOM-FFN technique, 342 

attributed to the amount of data filling.   343 

 344 

On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario 345 

uncertainty comes to dominate later (Fig. 2b).  Over the 1995-2020 period, model uncertainty explains around 85% 346 

of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of 347 

the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at 348 

the start of the century but only around 1% by the end. It is worth mentioning that the decreased share of uncertainty 349 

associated with model and internal variability do not mean that model or internal variability decrease in an absolute 350 

sense; rather, their importance relative to scenario uncertainty declines. These results regarding the importance of 351 

model and scenario uncertainties for multidecadal projections, and dominance of scenario uncertainty with time 352 

agree with previous studies using CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020).  353 

 354 

Absolute internal and model uncertainty of the global carbon sink change with time, based on the scenario (Table 355 

2, Fig. S3). High emission scenarios such as ssp585 show a larger change for both internal and model uncertainty 356 

where the forcing is stronger (Fig. S3). When averaged for the three scenarios, a constant increase in the magnitudes 357 

of both model and internal variability is seen through the century until 2080-2100 when the values either do not 358 

change or decrease slightly (Table 1).  Model uncertainty more than doubles towards the end of the century 359 

compared to 1995-2015 on average for different scenarios. This is consistent with Lovenduski et al. (2016) who 360 

arguesargue that the increase is due to differencedifferences in climate sensitivities betweensensitivity among 361 

models that manifest more strongly with time (and hence cumulative emissions). Additionally, the dependence of 362 

internal variability on the scenario is an interesting result. Future SMILEs from multiple models will allow 363 

evaluation of the degree of dependence and the driving mechanisms of such changes with time based on the forcing 364 

(scenario). Our result of internal variability dependence on scenario implies that the time of emergence of a signal 365 

out of internal variability will be affected by changes in the internal variability under different future forcing 366 

scenarios – which we return to in Section 3.4. 367 

 368 
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3.2 Dependence of the sources of uncertainty on spatial scale 369 

It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging 370 

(integration) scale gets finer, because on larger scales the variability is averaged out. Here, we provide a novel and 371 

continuous view of change in variability across scales from the global to grid scale, by measuring how variability 372 

changes relative to scale on average (Fig. 3). At the global scale, the dominant source of uncertainty is scenario 373 

uncertainty, followed by model and internal variability respectively, consistent with Fig. 2b. However, as the 374 

averaging (integration) scale gets finer, model and internal variability grow rapidly, while scenario uncertainty only 375 

grows slightly on average (over all regions of this size). At an averaging (integration) scale with an area finer than 376 

75 million km2 (on average around the globe), model uncertainty becomes the dominant source of uncertainty, and 377 

at a scale finer than 3 million km2, internal variability becomes larger than scenario uncertainty. The idea of scale 378 

dependence of these uncertainties was tested in Lovenduski et al. (2016) by comparing an area covering the 379 

California Current System with the global ocean. Here, we provide a novel analysis on a continuum of scales 380 

covering global to regional to local scales. While the results here hold true on average over the globeglobal ocean, 381 

scale dependence is partially controlled by the particular region being sampled. Finally, while our estimates of the 382 

magnitudes of sources of uncertainty and the cross over points (at which the dominance of internal variability over 383 

model uncertainty and model uncertainty over scenario uncertainty takes place,), depend on the choice of ESMs 384 

and the method for calculation of internal variability, the general patterns are unlikely to be model dependent.  385 

 386 

 387 
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 388 

 389 

Figure 3- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5 390 

members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected 391 
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standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different 392 

rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a 393 

specific location. 394 

 395 

 396 

3.3 Regional Analysis  397 

We further expand on the findings of our analysis of the scale dependence of uncertainty averaged over the globe 398 

by repeating the uncertainty breakdown for two specific regions: one between 40°- 60° N in the Northeast Pacific 399 

(NE Pacific) between 130°- 160° W and 40°- 60° N, and one in the Northwest Atlantic (NW Atlantic) between 400 

40°- 70° W at the same latitude.  We chose these regions, first, to be of the similar size, and second to represent 401 

very different carbon dynamicsprocesses. The NW Atlantic region represents a highly active region while the NE 402 

Pacific region is more typical of quiescent ocean regions, where the flux anomalies are relatively small.  403 

 404 

The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This 405 

suggests both that it will be difficult to robustly detect any human induced changes in observations of the NEPNE 406 

Pacific carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be 407 

readily apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the 408 

anomalies are small regardless of scenario (Table 2). We speculate that in the absence of mechanisms providing a 409 

pathway to the depth where significant CO2 accumulation occurs, the surface pCO2 trend will follow that of the 410 

atmosphere closely, causing pCO2 and therefore air-sea carbon flux to remain fairly constant for all scenarios. In 411 

the NW Atlantic however, the deviationvariation across scenarios becomes larger than the internal variability in 412 

the early 2060s (Fig. 4c). The response of the region to climate change is dependent on the scenario (Table 2), or, 413 

in other words, the amount of carbon dioxide in the atmosphere. This is because the NW Atlantic is a highly 414 

active region where the air-sea flux actively responds to the atmospheric CO2 concentration. The connection to 415 

depth allows for surface water to be replaced with water masses whose pCO2 trend lags behind that of 416 

atmosphere. The trend of the CMIP6 multi-model time-series over the historical period is statistically consistent 417 

(See Supplements section S5) with that of the observation-based SOM-FFN product, and the multi-decadal 418 

variability is within the range of internal variability measured by the CanESM5 large-ensemble in both regions. 419 

We note that both of these regions are relatively well sampled, which may lead to more robust estimates of multi-420 

decadal variability in the Landschützer et al. (2016) dataset, and better agreement with the models than seen at 421 

the global scale. 422 
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 423 

Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions. 424 

Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude 425 

than at the global scale (Table 2). A lesser importance for scenario uncertainty and greater importance for internal 426 

and model uncertainty is apparent in both regions compared to the global scale, in agreement with Schlunegger et 427 

al. (2020). Over the period 1995-2020, model uncertainty is the dominant source of uncertainty in both the NE 428 

Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd). Internal variability 429 

explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the NW Atlantic 430 

however, its share drops to 15% by the end of the century. The share attributable to internal variability is much 431 

larger during the 21st century in both regions compared to the global scale. Internal variability is larger in the NW 432 

Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in the NE Pacific (Fig. 4b). 433 

The large share of internal variability in NWNE Pacific indicates the need for sustained observations in the region. 434 

Overall, internal variability averaged over the scenarios shows a small increase, but no clear trend in time in both 435 

regions until the 2080-2100 period where it decreases, consistent with the global estimates (Table 2). We showed 436 

earlier that in the NE Pacific scenarios do not differ because the region is not a highly active region (Fig. S7) -  437 

scenario uncertainty explains less than 20% of the total uncertainty at the end of the century in the NE Pacific. In 438 

the NW Atlantic, scenario uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end of 439 

the century.  In both regions, model uncertainty is the dominant source of uncertainty in all years.  440 

 441 

Our regional analysis confirms that while uncertainty and its distribution among sources depends on the spatial 442 

scale of integration, the specific location also matters (Lovenduski et al, 2016; Schlunegger et al., 2020). 443 

Schlunegger et al., (2020) tested this idea for 10 ocean basins but with different sizesof variable size (see their 444 

Figure 9). We focused on keeping the sizes similar and analyse a highly active region versus a more quiescent 445 

ocean region.  The key message here that there is an association with the importance as well as the magnitude of 446 

sources of uncertainty with how active the region is in regards to the carbon sink is not sensitive to the use of 447 

CanESM5 for estimation of internal variability. Local patterns of uncertainty broken down by source are thus 448 

needed to clarify changes based on location. 449 

 450 

 451 

 452 

 453 
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 454 

 455 

 456 

 457 
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 458 

Figure 4- (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-459 

series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschützer et 460 

al. (2016) SOM-FFN product.  The blue dashed line shows the internal variability measured as two times the standard 461 

deviation across all 50 members of the CanESM5 SMILE only for ssp245 here. (b), (d) time-series showing the breakdown 462 

of uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b) 463 

NE Pacific (40-60 °N, 130 -160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W) 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 
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  Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 
 

0.00  
(-0.98 – 0.76) 

 
 

0.05  
(-0.91 – 0.86) 

 
0.06 

 (-0.86 – 0.83) 
 

0.11  
(-0.73 - 0.79)  

 

 
 
 

0.03  
(-0.86 – 0.62) 

 
0.09  

(-0.74 – 0.81)  
 

0.21  
(-0.61 – 0.86) 

 
 

 
 
 
 

-0.13  
( -1.1 – 0.58) 

 
0.03 

(-0.65 – 0.60) 
 

0.29 
(0.22 – 0.94) 

 
 
 

 
 
 
 

-0.21 
 (-1.18 - 0.60) 

 
0.06 

 (-0.70 – 0.53) 
 

0.2  
(-0.25 –  0.98) 

 
 
 

  
 
 

ssp126 
 

ssp245 
 

ssp585 
 

 

Average 

 
 

 

 
0.39 (0.90) 

 
 

 

 
0.39 (0.90) 

 

 
0.47 (0.87) 

 
0.46 (0.87) 

 
0.45 (0.81) 

 
 

0.46 (0.86) 

 

 
0.43 (0.74) 

 
0.47 (0.81) 

 
0.47 (0.745) 

 
 

0.46 (0.77) 

 

 
0.40 (0.81) 

 
0.48 (0.64) 

 
0.58 (0.55) 

 
 

0.47 (0.70) 

 
 

0.39 (0.83) 
 

0.45 (0.53) 
 

0.44 (0.57) 
 
 

0.43(0.67) 
   

 
 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 

 
 
 

0.00  
(-0.97 – 1.31) 

 

 
0.13 

 (-0.77 – 1.21) 
 

0.18  
(-0.78 – 1.23) 

 
0.23 

 (-0.70 – 1.20)  
 

 

 
-0.20 

(-1.03 – 0.56) 
 

0.10  
(-0.68 – 0.80) 

 
0.38 

 (-0.41 – 1.12) 
 

 
 

-0.66 
( -1.45 – -0.11) 

 
-0.20 

(-0.97 – 0.50) 
 

0.41 
(-0.27 – 1.29) 

 
 
 

-1.00  
(-1.80 - -0.56) 

 
-0.54  

(-1.22 – 0.07) 
 

0.10  
(-0.70 –  0.96) 

  
 

ssp126 
 

ssp245 
 

ssp585 
 
Average 

 
 
 
 

0.43 (1.02) 
 
 
 

0.43 (1.02) 

 
0.47 (0.91) 

 
0.47 (0.96) 

 
0.50 (0.90) 

 
0.48 (0.93) 

 
0.47 (0.79) 

 
0.49 (0.82) 

 
0.51 (0.94) 

 
0.49 (0.87) 

 
0.46 (0.78) 

 
0.49 (0.80) 

 
0.52 (1.00) 

 
0.49 (0.88) 

 
0.42 (0.80) 

 
0.47 (0.79) 

 
0.53 (1.00) 

 
0.48 (0.88) 

 472 

Internal 
(model) 

Uncertainty 

Internal 
(model) 

Uncertainty 

Anomaly 

(range) 

NE 

Pacific 

Anomaly 

(range) 

NW 

Atlantic 
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Table 2- CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m-2 473 

yr-1) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE 474 

Pacific and NW Atlantic. 475 

 476 

Consistent with the sink anomaly maps (Fig. 1), the regions that show highest uncertainty for any of the sources in 477 

the future, are the same regions that show the largest uncertainties in the historical period (Fig. 5). More 478 

importantly, the regions of largest future uptake uncertainty are highly correlated with the historical regions of 479 

largest uptake, (relative to the pre-industrial ocean), as shown by the pattern correlation coefficients above each 480 

panel. This is a highly significantan important finding, because it suggests that knowledge of the regions of modern 481 

day surface carbon flux anomaly provides us with information about regions of future uptake uncertainty. 482 

Internal variability from CanESM5 is most dominant in mid-latitude eastern boundary upwelling regions and 483 

their extensions, in the North Atlantic, in the western boundary currents of the Gulf Stream and Kuroshio and 484 

their extensions, and in the Southern Ocean (Fig. 5). There is wide agreement between different models and 485 

estimation methods inon regions of largest internal variability (Fig. S4). The regions of large internal variability 486 

are correlated with the same highly active regions for the sink anomalies discussed earlier (Fig 1c). This is 487 

consistent with McKinley et al. (2017) who argue that modeling and observational studies show that the primary 488 

driver of variability in the ocean carbon uptake is ocean circulation and ventilation of the deep ocean. However, 489 

correlation coefficients between internal variability and historical uptake are lower than those seen for scenario 490 

and model uncertainty. An increase in internal variability with time is seen mostly in the Southern Ocean, the 491 

Arctic Ocean, and boundaries of the gyre systems, while the rest of the ocean does not show a clear change. The 492 

maps in Figure 5 are averaged over the three scenarios, which masks the changes to some extent. However, we 493 

show in the Supplements (see section S2) that changes in the globally averaged internal variability with time are 494 

different for different scenarios.  495 

Model uncertainty is consistently highest in the highly active regions (Figure S7), leading to strong correlation 496 

with the anomaly maps of Fig. 1c. In these regions, ocean circulation impacts surface pCO2 through advection 497 

and water mass transformation regionally (Bopp et al., 2015; Toyama et al., 2017) and models have substantial 498 

differences in ocean circulation. Ridge and McKinley (2021) suggest that while global surface carbon fluxes and 499 

carbon storage are largely similar across ESMs over the historical period, consistent with the external forcing 500 

from atmospheric pCO2 growth being the main driver of the historical sink (McKinley et al., 2020), uncertainties 501 
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in ocean circulation may become important in the future under a changing trajectory of atmospheric boundary 502 

conditions. The model uncertainty is largest in the Southern Ocean consistent with CMIP5 models (Frölicher et 503 

al., 2015). Here, mode and intermediate waters are formed, and the complex nature of processes governing the 504 

sinksinks varies on all time scales (Gruber et al. 2019). Frölicher et al. (2015) note the largest disagreement in 505 

ocean carbon uptake between models is in the Southern Ocean because the exact processes governing heat and 506 

carbon uptake remain poorly understood. The importance of model uncertainty in the Southern Ocean provides a 507 

clear focal point for modelling centers to concentrate their efforts in reducing projection uncertainty.  508 

Scenario uncertainty exhibits the largest change with time. This is by construction as the scenarios deviate from 509 

each other with time to represent a range of pathways for future socio-economic possibilities in order to assess 510 

the long-term impacts of short-term decisions (Riahi et al., 2017). Importantly, the correlation coefficients are 511 

highest between scenario uncertainty and the current sink regions of large sink anomaly, indicating that the same 512 

highly active regions are the regions that show the largest divergence among scenarios, and that the sink in most 513 

other regions does not respond as strongly to scenario differences. We showed an example of this earlier, (Fig. 4), 514 

where the timeseries of the multi-model signals for the three scenarios did not emerge out of internal variability 515 

in the NE Pacific by 2100, whereas they did for the highly actriveactive region of the NW Atlantic. This shows 516 

that with pCO2 differences across the air-sea interface being the main driver of the sink (Fay & McKinley, 2013; 517 

Landschützer et al., 2015; Lovenduski et al., 2007; Mckinley et al, 2020; McKinley et al.,  2017; 2020), the sink 518 

in these active regions evolves as the atmospheric CO2 concentration changes because ocean processes associated 519 

with surface-depth connectivity constantly keepdampen the surface ocean pCO2 out of equilibriumtrend 520 

compared with that of the atmosphere. In other words, the surface water in these regions are constantly renewed, 521 

mostly through advection and water mass formation, with water masses whose pCO2 has not increased at the 522 

same rate as the atmosphere. Elsewhere, these conditions do not hold true and water at the surface equilibrates 523 

withwater trends match that of the atmosphere on shorter time scales, decreasing the sensitivity of the sink 524 

anomaly to the projection scenario. These uncertainties are central to the ability to detect human induced trends in 525 

observations of the surface ocean carbon flux as well as to assess mitigations or make societal decisions, to which 526 

we now turn.  527 

 528 
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 529 

Figure 5- Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as 530 

explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-531 

century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are 532 

correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).  533 

 534 

3.4 Detectability  535 

Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal 536 

climate variability. Previous studies have largely presented a single time of emergence (Lovenduski et al. 2016, 537 

Schlunegger et al., 2019, McKinley et al., 2016). However, understanding the regional differences, timescales, and 538 

scenario dependence in the detectability of human induced trends in the ocean surface carbon flux is important for 539 

informing observational strategies that aim to measure these changes.  540 

 541 
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We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using 542 

the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational 543 

communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the 544 

multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the 545 

CanESM5 SMILE.  546 

 547 

The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the highly 548 

active regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the western boundary 549 

currents of the gyre systems, and their extensions (Fig. 6). Ocean regions such as the centres of the mid-latitude 550 

gyre systems and the NE Pacific show late emergence times and, in some cases, no detectability of the signal in 551 

any of the scenarios by 2100. Convergent large-scale circulation and strong stratification in these regions isolates 552 

the surface from the deep ocean reducinglimiting their capacity to hold large amountsaccelerate their uptake of 553 

anthropogenic carbon (McKinley et al., 2016). An absence of mechanisms constantly drawing surface ocean CO2 554 

trends out of equilibrium with atmospheric CO2 lets the surface water equilibrate with and adjust to the 555 

atmosphereatmospheric trend on short time scales. Significant changes thus do not take place in the sink as the 556 

atmospheric CO2 levels change and scenario uncertainty is lowest in the same regions (see Fig. 4). This is consistent 557 

with the results from Sect. 3.3, in which we showed that internal variability is a significant source of uncertainty 558 

throughout the century in the NE Pacific, with scenarios never emerging out of the range of internal variability 559 

(Fig. 4a, b). Our results for the broad patterns in the multi-model mean TOE are largely consistent with previous 560 

studies, suggesting they are robust and insensitive to for the method of estimating internal variability.  These include 561 

studies from CMIP5 modelswith single model large ensembles such as McKinley et al., (2016) that assumed 562 

time/scenario independent internal variability, and CMIP5 models such as Schlunegger et al., (2020) that used only 563 

high emission scenario internal variability from four large ensembles to show there is strong agreement between 564 

LEs TOE both locally and spatially. Our results argue for focusingthat observational efforts on therecords inside 565 

highly active regions in orderare likely sufficient to detect human influence on the ocean carbon sink in the coming 566 

years/decades (2030-2050) if not earlier. Meanwhile, they imply that observational timeseries in quiescent regions, 567 

such as Ocean Station Papa in the NE Pacific, need to interpret any observed trends with care, since internal 568 

variability tends to dominate over human induced trends. 569 

 570 

 571 

 572 



 

26 
 

 573 

Figure 6- Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate 574 

where the anthropogenic signal cannot be detected even towards the end of the century. 575 

 576 

Time of emergence strongly depends on the future scenario. Schlunegger et al. (2020) show for two scenarios that 577 

modest (~10 yr) TOE differences between different ESMs under strong anthropogenic forcing can evolve into 578 

pronounced (60+ yr) TOE differences with moderate mitigation. Here, we make use of three scenarios including a 579 

strong-mitigation scenario and account for scenario dependence of internal variability in our approximation using 580 

CanESM5. On average, scenarios with smaller forced trends emerge later as the size of the forced trend is critical 581 

to the time of emergence (Fig. 2-a). The TOE is earliest on average over the global ocean in ssp585, while it is later 582 

in ssp245, and later still in ssp126, consistent with the imposed changes in atmospheric CO2 concentration. The 583 

exceptions are quiescent regions that show earlier detectability for ssp126 compared to other scenarios; these 584 

exceptions are associated with larger (but negative) anomalies in the latter half of the century under ssp126 which 585 

has negative emissions (compare panels d-f, and g-i on Fig. 1). Internal variability does evolve somewhat 586 

differently for each scenario, but this is secondary (Fig. S2). Schlunegger et al. (2020) argues that variables such 587 

as air-sea CO2 flux which are sufficiently sensitive to emissions emerge early, prior to significant divergence among 588 

future scenarios. Consistent with this result, our results indicate that there is broad agreement between scenarios in 589 

the TOE patterns, when considering the highly active regions. Interestingly, our scenario-specific TOE shows that 590 

differences between scenario TOEs is associated with how sensitive different regions are to emission scenarios. 591 

More specifically, comparison to the maps of scenario uncertainty (Fig. 5) shows that TOE differs more across 592 

scenarios in regions where scenario uncertainty is small, such as the aforementioned subtropicssubtropical Ekman 593 

convergence regions. Elsewhere, the emergence happens before scenarios diverge significantly. Our results suggest 594 

that under the rapidly rising atmospheric CO2 concentrations seen in ssp585, the human signal in the ocean carbon 595 

sink will likely be detectable across much of the global ocean over the coming few decades. However, under strong 596 

mitigation scenarios, such as ssp126, early emergence (e.g., earlier than 2030) will onlyis not expected to occur 597 
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except in isolated regions while counter-intuitively, lessa lower percentage of the global ocean area remains non-598 

emergent by 2100.  599 

4. Conclusions 600 

Ocean uptake of the increasing atmospheric CO2 in the 21st century is concentrated in a few active regions with 70 601 

percent of the total changes in the sink occurring in less than 40 percent of the global ocean. We analyze the results 602 

from the CMIP6 multi-model mean for the current state of the ocean (1995-2015), and the middle (2040-2060) and 603 

late (2080-2100) 21st century relative to the current state for three scenarios. We show that future changes in the 604 

sink are projected to mostly take place within the same historicalhistorically highly active regions. This result 605 

implies that known regions of high historical uptake, including the North Atlantic and Southern Ocean, are the 606 

same regions to prioritize for observing the future evolution of the sink. Our results extend the argument of Wang 607 

et al. (2016) that the historical state is a good predictor of the future state to spatial patterns of change.  608 

 609 

We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and 610 

the trend in the sink (globally), compared to the observation-based data product dataset of Landschützer et al. 611 

(2016). These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of 612 

the ocean carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschützer 613 

et al. (2016) data shows larger decadal variability at the global scale than seen in any CMIP6 model andor the range 614 

of internal variability from the CanESM5 large ensemble.  Gloege et al. (2021) shows that the SOM-FFN method 615 

overestimates the magnitude of decadal variability on the global scale due to the amount of gap filling.   616 

 617 

We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale 618 

and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model 619 

uncertainty and internal variability for CMIP6 models. These results are in agreement with previous studies form 620 

the CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020). As the scales of integration (averaging) get 621 

finer, model and internal variability become the dominant sources, respectively. Testing the results on two ocean 622 

regions of about the same size, one in the NE Pacific and one in the NW Atlantic shows that - while consistent with 623 

the results of the scale dependence analysis - the relative importance of the sources of uncertainty also differs with 624 

location. Our test here extends the analysis Schlunegger et al. (2020) with a focus on the association of the location 625 

dependence with whether the regions have highly active carbon sinks. Notably, in highly active regions, such as 626 
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the NW Atlantic, scenario uncertainty is large, whereas in more quiescent regions, such as the NE Pacific, internal 627 

variability is more significantimportant. The time- and scenario- dependence of internal variability on the scenario 628 

with time is another interesting finding that could be the subject of future studies forto achieve a better 629 

understanding of the driving mechanism and the degree of dependence on the future emissions and/or 630 

concentrations.  631 

 632 

The patterns of high future CO2 uptake uncertainty are highly correlated with the patterns of historical uptake. The 633 

correlation coefficients are highest for scenario uncertainty, indicating that the highly active regions have the 634 

potential for the sink to evolve according to the atmospheric CO2 concentration, while the rest of the ocean basins 635 

do not respond strongly to changes in atmospheric CO2 represented by the different scenarios. This finding has 636 

implications for assessment of the mitigationsmitigation and effects of socioeconomic decisions. Our results here 637 

are significant in that they show that regions of future uncertainty are largelystrongly associated with known regions 638 

of significantlarge historical uptake.  639 

 640 

Patterns seen in the time-of-emergence have implications for planning observational campaigns for detection of a 641 

signal (Schlunegger et al. 2019 &; 2020). Furthermore, thereThere is a reverse association between how sensitive 642 

a region is to scenario differences (apparent in the scenario uncertainty patterns) and how sensitive the TOE is to 643 

scenarios. Our results show that caution should be taken in interpreting the observed changes in regions such as the 644 

NE Pacific associated with late time of emergence of the signal from the decadal (internal) variationsvariability. 645 

On the other hand, consistent observations in regions such as the Equatorial Pacific, the Gulf Stream and Kuroshio 646 

and their extensions, and the Southern Ocean, should beare likely to detect the focus of consistent and expanded 647 

sampling for detectionemergence of the forced signal out of internal variability earlier in time. Additionally, the 648 

patterns in sources of uncertainty show that model uncertainty is largest in the Southern Ocean, consistent with 649 

Frölicher et al., 2015. The sink in the Southern Ocean is driven by complex mechanisms involving coupled ocean-650 

atmosphere-ice interactions that require better representation in ocean biogeochemical models. Significant progress 651 

in reducing uncertainties can be expected from new methods of bringing together models and observations 652 

(FrolicherFrölicher et al. 2016). Our results provide a motivation to focus modelling as well as observational efforts 653 

on the known highly active regions of historical uptake. 654 

 655 

Finally, we have shown that internal variability shows clear changes in time and depends on the scenario. The 656 

emergence of Large Ensembles (LEs) allows for quantification of these variations if enough ensemble members 657 
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are available to fully capture internal variability using realizations that start from different initial conditions. Our 658 

use of the CanESM5 LE allows for us to account for the nonstationary of internal variability in time, like in 659 

Schlunegger et al. (2020)), but with the advantage of also accounting for scenario dependence. Model 660 

intercomparison indicates that ESMs show differences in natural variability (Schlunegger et al. 2020). Nonetheless, 661 

our analysis of the global scale, of scale dependence, and of the patterns seen in Time of Emergence are consistent 662 

with previous studies, despite the potential sensitivity to the use of CanESM5 LE. Our methodology to correct for 663 

internal variability from model spread, without filtering or having a large ensemble for each ESM (which would 664 

limit the number of ESMs that can be included and, consequently, underestimate model uncertainty) lays the 665 

foundation for future studies when LEs are available from more ESMs and advocatessuggests a need for more 666 

modelling groups to provide such LEs in order to achieve an evena more robust estimate of internal variability as 667 

the mean across different ESMs.  668 
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