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Abstract. As a major sink for anthropogenic carbon, the oceans slow the increase of carbon dioxide in the 8 

atmosphere and regulate climate change. Future changes in the ocean carbon sink, and its uncertainty at a global 9 

and regional scale, are key to understanding the future evolution of the climate. Here, we conduct a multimodel 10 

analysis ofreport on the changes and uncertainties in the historical and future ocean carbon sink using output data 11 

from the latest phase of the Coupled Model Intercomparison Project:  Phase 6 (CMIP6,) multimodel ensemble and 12 

observationscompare to one observation based product. We show that the ocean carbon sink is concentrated in 13 

highly active regions - 70 percent of the total sink occurs in less than 40 percent of the global ocean. High pattern 14 

correlations between the historical and projected future carbon sink indicate that future uptake will largely continue 15 

to occur in historically important regions. We conduct a detailed breakdown of the sources of uncertainty in the 16 

future carbon sink by region. ScenarioConsistent with CMIP5 models, scenario uncertainty dominates at the global 17 

scale, followed by model uncertainty, and then internal variability. We demonstrate how the importance of internal 18 

variability increases moving to smaller spatial scales and go on to show how the breakdown between scenario, 19 

model, and internal variability changes between different ocean basinsregions, governed by different processes. 20 

Moreover,Using the CanESM5 large ensemble we show that internal variability changes with time based on the 21 

scenario, breaking the widely employed assumption of stationarity. As with the mean sink, we show that uncertainty 22 

in the future ocean carbon sink is also concentrated in the known regions of historical uptake. The resulting 23 

patternsPatterns in the signal-to-noise ratio have strong implications for observational detectability and time of 24 

emergence, which varieswe show to vary both in space and with scenario. OurWe show that the largest variations 25 

in emergence time across scenarios occurs in regions where ocean sink is less sensitive to forcing - outside of the 26 

highly active regions. In agreement with CMIP5 studies, our results suggest that to detect human influence 27 

onchanges in the ocean carbon sink as early as possible, and to efficiently reduce uncertainty in future carbon 28 
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uptake, modelling and observational efforts should be focused in the known regions of high historical uptake, 29 

including the Northwest Atlantic and the Southern Ocean. 30 

1. Introduction 31 

Recent increases in greenhouse gases have trapped additional heat relative to the pre-industrial era and raised 32 

Earth's average temperature. Carbon dioxide (CO2) is the primary driver of the global warming in the industrial 33 

period (Masson-Delmotte et al., 2021). The concentration of atmospheric CO2 has increased from approximately 34 

277 parts per million (ppm) in 1750 (Joos et al., 2008), the beginning of the Industrial Era, to 409 ppm in 2019. 35 

However, less than half of the CO2 emitted by anthropogenic CO2 activity has remained in the atmosphere; the. 36 

The remaining CO2 has beenwas taken up by the natural carbon sinks of the ocean and the terrestrial biosphere. 37 

Specifically, the global ocean absorbed ∼26% of the total CO2 emissions during 2011-2020 (Friedlingstein et al., 38 

2021).  39 

 40 

The ocean’s capacity to absorb increasing amounts of anthropogenic CO2 is not uniformly distributed (McKinley 41 

et al., 2016, Sarmiento et al., 1998). Despite increasing atmospheric CO2 concentrations, the air-sea CO2 flux does 42 

not change much in the subtropical gyres. The regions where ocean carbon uptake notably increases are those with 43 

strong exchange between the surface and the deep ocean (Ridge and McKinley, 2021; Frölicher et al., 2015; 44 

McKinley et al., 2016). This response of the ocean carbon sink to increasing atmospheric CO2 levels consists 45 

of changes in both the anthropogenic and the natural carbon sink (Crisp et al. 2022, McKinley et al. 2020, 46 

Hauk et al., 2020, Gruber et al. 2019, Frolicher at al, 2015). Even within regions there are large variations in the 47 

sink. The Northeast Pacific, for instance, is a net sink for atmospheric CO2. However, the region includes diverse 48 

oceanographic areas such as open ocean, continental margins, and fjords, leading to large spatial variability 49 

indominant mechanisms and the direction of the CO2 sea-air flux (Sutton et al., 2017; Takahashi et al., 2006).carbon 50 

sink. In the Southern Ocean, for instance, the spatial superposition of natural and anthropogenic CO2 fluxes leads 51 

to a relatively strong uptake band between approximately 55°S and 35°S (Gruber et al., 2019). However, south of 52 

the Polar Front (55°S), the different estimates agree less well (Gruber et al., 2019). Supported by measurements 53 

based on biogeochemical floats (Bushinsky et al., 2019; Gray et al., 2018; Williams et al., 2018), Gruber et al. 54 

(2019) arguesargue that the region was most likely a small source in 2019.  55 

 56 
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 Earth System Models (ESMs) are the primary tool for projecting the future evolution of ocean carbon uptake on 57 

subannual to centennial timescalesin the climate system. However, quantitative projections from ESMs across these 58 

timescales are subject to considerable uncertainty, particularly at regional and local scales (Friedrich et 59 

al., 2012; Frölicher et al., 2014; Hauck et al., 2015; Laufkötter et al., 2015; Roy et al., 2011; Tjiputra et al., 2014; 60 

Terhaar et al., 2021) where less averaging is done and more diversedifferent individual mechanisms dominate. 61 

different regions. Projection uncertainty varies with lead time, spatial averaging scale, and from region to region. 62 

(Lovenduski et al., 2016; Schlunegger et al., 2020). For example, Lovenduski et al. (2016) showed a spatially 63 

heterogeneous pattern of projection uncertainty in CO2 flux projections over 17 ocean regions;  for CMIP5 models. 64 

Furthermore, by comparing uncertainty at the global scale to the scale of the California Current System, they show 65 

that uncertainty was relativelyis higher compared to the global scale.  Ifat smaller scales. Schlunegger et al. (2020) 66 

further shows different partitioning of uncertainty for 10 ocean basins at the year 2050. All said, if ESMs are 67 

to be used to quantify future changes in ocean carbon uptake, especially across shorter timescales and at regional 68 

spatial scales, and to inform observational campaign planning, their uncertainties must be well known and well 69 

understood (Lovenduski et al., 2016).  70 

 71 

A systematic characterization of projection uncertainty has become possible with the advent of the Coupled Model 72 

Intercomparison Project (CMIP), as a number of climate models of similar complexity provided simulations over 73 

a consistent time period and with the same set of emissions scenarios (Lehner et al., 2020). We considerThere are 74 

three main types of projection uncertainty in climate model projections, as described by Hawkins and Sutton (2009) 75 

(hereafter HS09): 76 

 77 

Uncertainty due to internal variability: Internal variability is the unforced natural climate variability resulting 78 

from the internal processes in the climate system. Modes such as the El Niño–Southern Oscillation, North Atlantic 79 

Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode (SAM) 80 

contribute, along with others, to this internal variability. Internal variability also includes variability that acts on 81 

shorter time and spatial scales, such as submesoscale and mesoscale ocean features (Frolicher et al., 2016). The 82 

real world follows only one of an infinite possible number of realizations of internal variability, and due to its 83 

chaotic nature, the future evolution of internal variability is not predictable beyond short timescales. (Somerville, 84 

1987; Lorenz, 1969). Climate model simulations do not attempt to reproduce the exact observed evolution of 85 

internal variability, but produce their own, unique realizations that aim to capture the correct statistics of this 86 

variability. Hence, our analysis must account for internal variability, both when comparing historical model 87 
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simulations to observations, and when considering uncertainties in the future ocean carbon sink. In HS09, a fourth-88 

order polynomial fit to simulated global and regional temperature timeseries represented the forced response, while 89 

the residual from this fit represented the internal variability. HoweverThere is thus, an assumption of stationarity 90 

(constant in time) in their method.  Moreover, this approach could possibly conflate internal variability with the 91 

forced response in cases where low-frequency (decadal-to-multidecadal) internal variability exists, or when the 92 

forced signal is weak, which makes the statistical fit a poor estimate of the forced response (Kumar and Ganguly, 93 

2018). In this study, we instead use a Single-Model Initial-condition Large Ensemble (SMILE) to robustly quantify 94 

the simulated forced response and internal variability across time and scenarios using ensemble statistics (Lehner 95 

et al., 2020). A SMILE is an ensemble of model realizations that each starts from different initial conditions but 96 

uses the same model and forcing, and provides representations of the climate system that are equivalent except for 97 

internal variability.  98 

Uncertainty due to model structure: Each model has a specific way of representing the physical world. Models 99 

differ in their resolution, structure, numerics, and parameterization of processes. These differences cause models 100 

to respond differently to the same forcing. For example, the CMIP5 model simulations run under Representative 101 

Concentration Pathway 8.5 (RCP8.5) project a wide range of cumulative anthropogenic carbon storage by 2100 102 

(320–635 Pg-C) (Ciais and Sabine, 2013) due to both internal variability and model uncertainty (Lovenduski et al., 103 

2016).  104 

Uncertainty due to emission scenario: The future of the climate system depends on human activity and our 105 

emission of climate active gases that change radiative forcing. Future emissions are highly uncertain, given our 106 

inability to project the complex changes in society and technology upon which they depend. As a result, future 107 

simulations are run with a range of possible “scenarios” for how future emissions (or atmospheric concentrations) 108 

will evolve under different socioeconomic storylines. These scenarios are prescribed via the internationally 109 

coordinated experiments organized by the Coupled Model Intercomparison Project. Since the future emission 110 

trajectory is unknown, these future simulations are referred to as projections, rather than predictions. Projections 111 

of future ocean carbon uptake from ESMs are greatly influenced by the choice of emission scenario (Lovenduski 112 

et al., 2016). For example, cumulative ocean carbon uptake from 1850 is projected to saturate at approximately 290 113 

± 30 GtC under ssp126, and to reach 520 ± 40 GtC by 2100 under ssp585 for CMIP6 models (Canadell et al., 114 

2021).the cumulative oceanic storage of anthropogenic carbon in CMIP5 models by 2100 ranges from 110–220 Pg-115 

C under RCP2.6 to 320–635 Pg-C under RCP8.5 (Ciais and Sabine, 2013). 116 
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In this paper weTogether with the patterns of changes in the sink, the patterns of internal variability allow for an 117 

assessment of the required timescales for detection of changes in the ocean carbon sink. Detection means that we 118 

can robustly separate the forced signal from internal variability (McKinley et al., 2016). Detectability can be 119 

assessed using Time of Emergence (TOE; Hawkins and Sutton, 2012; Lovenduski et al., 2016; McKinley et al., 120 

2016; Rodgers et al., 2015; Schlunegger et al., 2020 & 2019). For example, McKinley et al. (2016) and Schlunegger 121 

et al. (2019) showed that the forced signal of increasing ocean carbon uptake is not detectable in the Ekman 122 

convergence regions of the subtropical gyres. Schlunegger et al. (2020) builds on that using four large ensembles 123 

of CMIP5 ESM simulations with two forcing scenarios to show that air-sea CO2 flux TOEs show strong agreement 124 

between the large-ensembles not just for global and regional scales but also locally and spatially. Their use of only 125 

four models and two scenarios however, potentially underestimates the contribution of model and scenario 126 

uncertainty. 127 

 128 

Here, we build on previous work using CMIP6 models. We make use of an ensemble of 13 models to better capture 129 

model uncertainty in the response to different forcing (scenarios) and three scenarios to represent a wider range of 130 

future possibilities including a strong mitigation scenario.  We start by analysing the regional patterns of historical 131 

ocean carbon uptake and how they are projected to change in the future (Sect. 3.1). We estimate internal variability 132 

from a comprehensive SMILE, avoiding the stationarity assumption common in previous work, which we show is 133 

violated. Then, we examine the partitioning among different sources of uncertainty (Sect. 3.2) and the scale 134 

dependence of this partitioningprovide a novel analysis of how the three sources of variability change across the 135 

full continuum of scales (Sect. 3.3) to understand).  Having Shown how the uncertainty and distribution among 136 

sources differ based on scale of integration and region of interest, we analyse local patterns of uncertainty by the 137 

source (Sect. 3.4).  The final section explores the detectability of the model projected signal given the uncertainty 138 

imposed by internal variability,. We report on the scenario-dependent Time of Emergence, using a scenario specific 139 

measure of internal variability in order to make useful suggestions for future observations.  140 

 141 
 142 
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2. Data and Methods   143 

2.1 Model Data Selection 144 

Here we use results from models selected from the 6th Coupled Model Intercomparison Project (CMIP6; Eyring 145 

et al., 2016). Models are chosen based on availability, meaning all models that provided at least one realisation 146 

for air-sea CO2 flux (fgco2) for the CO2 concentration driven experiments of interest. One realization of each 147 

model over the historical period and three scenarios that represent the low (ssp126), mid (ssp245), and high 148 

(ssp585) ranges of future atmospheric CO2 concentrations are analysed. A total of 16 models met these criteria, 149 

out of which 3 were excluded as outliers (see section S1 in the Supplements). To maintain equal sampling, only 150 

one realization of each model iswas selected, except when specifically using the large ensembles to assess 151 

internal variability. Finally, since the ocean component of the models may be on different grids, all model data 152 

are remapped to a regular one-by-one-degree grid. were remapped to a regular one-by-one-degree grid and a 10 153 

year running mean filter was applied to the time-series. We did not account for potential drift in the models. 154 

However, the drift is known to be small in the models compared to the historical trends for CMIP5 models 155 

(Hauck et al, 2020). For 11 of our CMIP6 models for which piControl runs are available, on average, the drift is 156 

more than one order of magnitude smaller than the change in the model scenario with the smallest trend over the 157 

21st century, on the global scale. 158 

 159 

2.2 Sources of uncertainty 160 

Three sources of uncertainty are considered following the approach of HS09.  Total uncertainty is composed of 161 

internal, model, and scenario uncertainty in equation 1, which assumes that each of these sources is independent. 162 

Here, each source of uncertainty is considered as a function of time (t) and location (l) (Lovenduski et al., 2016): 163 

 164 

UT 2 (t, l) = UI 2 (t, l) + UM 2 (t, l) + Us 2 (t, l) 165 

 166 

where UT
 (t, l) is total uncertainty, UI (t, l) is internal variability, UM (t, l) is model uncertainty, and US (t, l) is 167 

scenario uncertainty. The fractional uncertainties for each source are calculated as 


మ


మ, 

ಾ
మ


మ , and 

ೄ
మ


మ (Lovenduski et 168 

al., 2016). 169 

 170 

 (1) 
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HS09 assume UI (t, l) to be constant in time (stationary) and use a 4th degree polynomial fit to measure internal 171 

variability as the spread over time and scenario of the residuals for each modelsmodel’s signal relative to the fitted 172 

signal. We show in the Supplements (see section S2) that internal variability depends on time and scenario, so a 173 

better estimateviolating the commonly used assumption of internal variability shouldstationarity. Using a SMILE 174 

allows us to account for these variations. without having to make any assumptions about distribution or stationarity 175 

of variability (Frolicher et al., 2015; Schlunegger et al., 2020).  Here, we quantifyestimate internal variability as 176 

two times the standard deviation of the annual carbon sink across many50 realizations from a Single Model Initial 177 

Condition Large-ensemble based on CanESM5: (Eq. 2): 178 

 179 

 180 

𝑈ூ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
 Var (CanESM5 Large Ensemble

ேೞ

௦ୀଵ

) 181 

 182 

where s indicates each scenario (Ns is the number of scenarios) and Var indicates the variance over the large 183 

ensemble of CanESM5.  In the CanESM5 SMILE, each realization starts from different initial conditions which 184 

are drawn from points separated by 50 years in the piControl simulation. Thus, the spread across the realizations 185 

gives a robust estimate of the internal variability, including sampling over longer term ocean variability. Internal 186 

variability is an important component of the uncertainty that is not reducible and results from the chaotic nature of 187 

the climate system. Further details regarding the estimation of internal variability are explained in the Supplements 188 

(see section S2). CanESM5 189 

 190 

Previous studies have also used SMILEs to estimate variability (Frolicher et al., 2015; Schlunegger et al., 2020), 191 

although they used either a limited ensemble size or single scenario. We show in the Supplements (Fig. S2), that a 192 

sufficiently large ensemble size is needed to capture internal variability, and that internal variability depends on the 193 

scenario. In the ideal case, if every CMIP model provided sufficiently large SMILEs for each scenario, an ensemble 194 

mean estimate of the variability could be obtained and would represent a best estimate (but still possibly biased 195 

compared to the real world). However, only a handful of CMIP6 models produced multiple ensemble members. 196 

We selected the CanESM5 SMILE as it is the only model that has a large enough ensemble over the entire timeline 197 

and set of experiments to make this estimate internal variability robustly and across scenarios. 198 

 (2) 
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 199 

 200 

The use of a single model to estimate the scale of internal variability leads to some uncertainty in our estimates, as 201 

models do not agree perfectly with each other on the variability. Nonetheless, over the historical period, variability 202 

between large ensembles from three models that have enough ensemble members is within 10%, on the global scale 203 

(Fig S3). Differences will be larger at smaller scales; however, the general patterns of the magnitude of internal 204 

variability (see Fig. S4) are in good agreement across models and are consistent with known regions of high 205 

variability in the observed ocean, validating our use of the CanESM5 SMILE 206 

 207 

Model uncertainty is calculated by taking the variance across the forced signal of all available models for each 208 

scenario, averaging over the three scenarios, and then reporting twice the square root of the result (Eq. 3).  209 

𝑈ெ(𝑡, 𝑙) =  2ඩ
1

𝑁𝑠
 Var൫𝐹(𝑚, 𝑠, 𝑡, 𝑙)൯

ேೞ

௦ୀଵ

 210 

where Varm means the variance taken across different models for individual times and scenarios, m indicates each 211 

model, and t stands for time.  𝐹(𝑚, 𝑠, 𝑡, 𝑙) is the forced signal and can be related to each realization as follows: 212 

 213 

𝑇(𝑚, 𝑠, 𝑡, 𝑙) = 𝐹(𝑚, 𝑠, 𝑡, 𝑙) + 𝑅(𝑚, 𝑠, 𝑡, 𝑙) 214 

 215 

Where, 𝑇(𝑚, 𝑠, 𝑡, 𝑙) represents the reported output, i.e. each realization, but must be corrected for internal 216 

variability. 𝑅(𝑚, 𝑠, 𝑡, 𝑙) is the residual from the forced signal caused by internal variability. Here, the variance in 217 

the forced signal across all models is calculated by correcting the total variance across each modelall models’ one 218 

realization for the variance caused by internal variability. The corrections are done by subtracting the variance 219 

across the same number of CanESM5 ensemble members as the multi-model ensemble (13 members) from the 220 

spreadvariance across the one realization of eachall of the 13 models. For this correction only, the sample sizes 221 

(13) are kept the same so that the internal variability removed from the variance across the models’ first realizations 222 

is not overestimated by a well sampled 50-member ensemble (see section S3 in the Supplements).  223 

 224 

Us (t, l) is the scenario uncertainty. Scenario uncertainty is measured as twice the standard deviation (square root 225 

of variance) across scenarios of the multi-model mean signal (Eq. 5).  226 

 (3) 

(4) 
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 227 

𝑈ௌ(𝑡, 𝑙) = 2ඩVar(
1

𝑁
 𝑇 (𝑚, 𝑠, 𝑡, 𝑙 )

ே

ୀଵ

) 228 

where 𝑁   is the number of models. The multi-model mean across the first realizations of the 13 models gives the 229 

multi-model forced response and does not require correction for internal variability as done for model uncertainty 230 

before.  231 

 232 

We conduct analysis on three different scales: single grid point (one-degree resolution), regional, and global. When 233 

regional and global analysis is done, the dependence on location is taken away by integrating and averaging over 234 

that region or the whole global ocean.  235 

 236 

2.3 Time of Emergence (TOE)  237 

In order to know when the forced response is distinguishable from internal variability, time of emergenceTOE is 238 

calculated following the approach of McKinley et al. (2016). The time of emergence is the first year when the 239 

multi-model mean anomaly is larger than internal variability – approximated by two times the standard deviation 240 

across the 50 member CanESM5 ensemble - for five consecutive years (the first year of this five-year period is 241 

reported as the time of emergence). The result is reported at each grid point for the 10-year running mean smoothed 242 

anomaly relative to the 1995-2015 mean (detection of a change relative to the current state of the ocean). 243 

 244 

 245 

2.4 Scale Dependence 246 

Finally, the scale dependence of the sources of uncertainty is measured at year 2050 using ssp245 for internal 247 

variability and model uncertainty, and using all scenarios for scenario uncertainty. The analysis is done by moving 248 

a sliding sample window of a given area across the earth, and then repeating with a larger and larger window until 249 

all scales from <100 km2 to the whole Earth are considered. The For each source of uncertainty and averaging 250 

scale, the average for all rectangles ofacross the globe is reported, where each rectangle contains the same ocean 251 

area across the global ocean for each source of uncertainty is reported. 252 

 253 

 (5) 
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3. Results and Discussion 254 

3.1 Global Analysis 255 

The pattern of the carbon sink in the CMIP6 multi-model ensemble mean from the historical experiment over 1995-256 

2015 matches that of the Landschützer (2016) Self Organizing Map - Feed Forward Neural Network (SOM-FFN) 257 

observation-based data product estimate (correlation coefficient of 0.84, compare Figs. 1a and 1b). We use the 258 

multi-model mean response to external forcing as a more robust estimate of the forced climate signal than the 259 

response of any single model (Tebaldi & Knutti, 2007). Unlike in ESMs, the observation-based product only 260 

represents the one realization of the real world, which includes internal variation, and is therefore not directly 261 

equivalent to the forced signal. However, the comparison to the 20 year mean multi-model mean still informs us 262 

about the degree of agreement between the two products. When compared to the observation-based data product, 263 

the CMIP6 multi-model mean shows a larger sink (positive flux) in the North Atlantic and North and North-West 264 

Pacific but a smaller sink in the Southern Ocean (Fig 1a, b). Additionally, the observation-based data product shows 265 

a larger source in the Equatorial Pacific and Indian Ocean than the CMIP6 multi-model ensemble. 266 

 267 

While most of the global ocean shows a net sink relative to the pre-industrial era, the largest change takes place in 268 

some highly active regions such as the subpolar North Atlantic, Southern Ocean, Eastern Equatorial Pacific, and 269 

western boundary currents of the mid-latitude gyre systems in the Pacific and Atlantic Oceans (Fig. 1c). These 270 

regions of largest change in the carbon sink (anthropogenic plus changes in the natural carbon sink seem to be) are 271 

the regions where there is a surface-depth connectivity. We refer to these regions as “hotspots” from here on.the 272 

air–sea flux of anthropogenic carbon is fundamentally limited by the rate of surface-to-depth transport (Graven et 273 

al., 2012; Ridge and McKinley 2021). These results for CMIP6 models are consistent with those for CMIP5 models 274 

shown by McKinley et al. (2016). ) and earlier studies such as Sarmiento et al. (1998). Here, we provide a new 275 

metric for quantifying these highly active regions. We find that for all three scenarios and both mid-21st century 276 

(2040-2060 mean) and late- 21st century (2080-2100 mean) time periods (with the exception of ssp126 late-century 277 

where strong mitigation of anthropogenic CO2 emissions results in broad patterns of negative anomalies), 278 

approximately 70% of the changes in the sink relative to the preindustrial area takes place in less than 40% of the 279 

global ocean (see Supplement Fig. S7 and section S5). 280 

 281 

The regions of largest future carbon uptake, relative to the 1995-2015 mean, are within the same highly active 282 

regions responsible for most of the uptake over the historical period. The correlation coefficients onat the top of 283 
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each panel in Fig. 1 (except 1b) represent the pattern correlation between future absolute anomalies, relative to 284 

1995-2015, and anomalies in 1995-2015, relative to the pre-industrial era. The high correlations indicate that 285 

regions that have been most active in carbon sequestration since the pre-industrial era are the same regions that will 286 

continue to change most into the future, particularly with larger increases in atmospheric CO2 (ssp585).  Our results 287 

support the findings of Wang et al. (2016) who showed that projected future air-sea CO2 fluxes are strongly 288 

associated with simulated historical air-sea CO2 fluxes. This confirms that the historical state is a good predictor 289 

for the future state (Wang et al., 2016) not only in terms of magnitudes of the sink, but also in the spatial pattern.  290 

 291 

 292 

 293 

 294 

Figure 1- CMIP6 multi-model mean maps of carbon sink and sink anomalies using one realization of each model. Columns 295 

represent different time periods, being the recent time (1995-2015 mean), mid-century (2040-2060 mean), and late-century 296 

(2080-2100 mean). Note: the sink is positive into the ocean.  The first column shows (a) the carbon sinkCMIP6 ensemble 297 

mean air-sea CO2 flux over 1995-2015, (b) Landschützer et al. (2016) SOM- FFN product, and (c) the CMIP6 ensemble 298 
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mean flux anomaly relative to the 1850-1900 mean. Other panels are anomalies relative to the 1995-2015 multi-model mean 299 

(panel a). Panels d through i show different scenarios. Numbers above each map are correlation coefficients between the 300 

absolute value of the change relative to 1995-2015 with the 1995-2015 anomaly map relative to the pre-industrial era in 301 

panel c, except the red number at the top of panel b that is the correlation coefficient with this panel and panel a. 302 

   303 

The multi-model mean sink anomalies for two future periods, 2040-2060 and 2080-2100, show how the sink is 304 

projected to evolve, relative to 1995-2015, according to time and choice of emission scenario (Fig. 1d-i). The 305 

regional patterns show mostly positive anomalies at mid-century. with largest changes in the higher emission 306 

scenarios (ssp585). Towards the end of the century, however, broader patterns of negative anomalies are expected 307 

in ssp126, as emissions turn negative in the late-century in this scenario. The largest absolute values of anomalies 308 

are still within the same highly active regions discussed before with surface-depth connectivity regardless of it 309 

being positive or negative. The late-century anomalies are predominantly positive in ssp585 which corresponds to 310 

the highest emission scenario, (continuing to grow larger compared to the mid-century), while ssp245 is somewhere 311 

in between, with regions of positive and negative anomalies. Under ssp245, as CO2 emissions decrease and 312 

atmospheric CO2 start to level off, the intensity of uptake decreases in the midlatitude western boundary currents 313 

and subpolar North Atlantic in the late-century, and anomalies in the Eastern Equatorial Pacific also decrease, 314 

compared to the mid-century. The globally integrated ocean carbon uptake rates are summarized in Table 1. 315 

 316 

 317 

 318 
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 319 

Figure 2- (a) Thick lines are multi-model means of the global mean ocean carbon sink anomaly timeseries relative to 1995-320 

2015. Individual models averaged for the means are plotted as thin grey lines in the background. The black dashed line 321 

shows the Landschützer et al. (2016) SOM-FFN product. Both models and SOM-FFN timeseries are smoothed with a 10-322 

year running mean. The blue dashed lines show internal variability for ssp245. (b) Timeseries showing the breakdown of 323 

uncertainty to different sources with time for the global ocean carbon sink anomaly. The internal and model uncertainty are 324 

averaged for different scenarios. 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 
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 Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 

 
0.00 

(-0.06 – 0.06) 
 

 
 

0.13  
(0.05 – 0.21) 

 
0.17  

(0.08 – 0.24) 
 

0.22 
 (0.11 - 0.30) 

 
 

 
 
 

0.07  
(-0.02 – 0.16) 

 
0.25  

(0.11 – 0.36) 
 

0.49  
(0.29 – 0.62) 

 
 
 

 
 
 
 

-0.08  
( -0.14 - -0.01) 

 
0.23  

(0.09 – 0.33) 
 

0.71  
(0.45 – 0.90) 

 
 

 
 

 
 
 
 

-0.24  
(-0.3 - -0.12) 

 
0.13  

(0.02 – 0.21) 
 

0.80 
 (0.54 –  1.00) 

 
 
 
 

 
 

 
ssp126 

 
ssp245 

 
ssp585 

 

 
Average 

 
 

 
 
 

0.032 (0.08) 
 

 

 
 
 

0.032 (0.08) 

 

 

 
0.033 (0.11) 

 
0.032 (0.11) 

 
0.033 (0.13) 

 
 

0.033 (0.12) 

 

 

 
0.034 (0.11) 

 
 0.034 (0.14) 

 
0.037 (0.2) 

 
 

0.035 (0.16) 

 
 

 
0.035 (0.10) 

 
0.037 (0.14) 

 
0.045 (0.26) 

 
 

0.039 (0.18) 

 
 
 

0.036 (0.11) 
 

0.036 (0.12) 
 

0.043 (0.27) 
 
 

0.038 (0.18) 
 

 341 

Table 1- CMIP6 multi-model mean globally averaged carbon sink anomalies (with ranges within the 20-yr period in 342 

parentheses) relative to the 1995-2015 mean (in mol-C m-2 yr-1) and Internalinternal variability from CanESM5 (with model 343 

uncertainty in parentheses) for the globally averaged ocean carbon sink anomalies for the three scenarios and the average 344 

values across scenarios. 345 

 346 

 347 

The trends in the global mean ocean carbon sink anomalies over 1995-2015 are statistically consistent between the 348 

CMIP6 multi-model ensemble mean and the Landschützer et al. (2016) observation-based data product (Fig. 2-a), 349 

based on the test from Santer et al. (2008).; see Supplements section S5). However, the SOM-FFN based time-350 

series shows a larger multi-decadal variability (variations in the 10-year running mean timeseries on top of the 351 

trend) than seen in individual model realizations, and is larger than the range of internal variability estimated from 352 

the CanESM5 SMILE. The difference could be due to either overestimation of internal variability by the SOM-353 

FFN method, or underestimation of the internal variability infrom the modelsESMs. Given that on regional scales 354 

the SOM-FFN data is within the range of internal variability projected by the CMIP6 large-ensemble of CanESM5 355 

Internal 
 (model) 

Uncertainty 

Anomaly 

(range) 
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(see Sect. 3.3), and that there are significant gaps in the spatial and temporal sampling that underlies the 356 

Landschützer et al. (2016) estimate, it seems plausible that the discrepancy is largely due to overestimation of 357 

internal variability on the global scale by the SOM-FFN technique. This is consistent with the findings of Gloege 358 

et al. (2021), which showed that, globally, the magnitude of decadal variability is overestimated by 21% by the 359 

SOM-FFN technique, attributed to the amount of data filling.   360 

 361 

On the global scale, model uncertainty is the dominant source of uncertainty in the historical period, but scenario 362 

uncertainty comes to dominate later (Fig. 2b).  Over the 1995-2020 period, model uncertainty explains around 85% 363 

of the total uncertainty. Scenario uncertainty becomes the dominant source after 2040, explaining almost 40% of 364 

the total uncertainty at that time and more than 90% by the end of the century. Internal variability explains 15% at 365 

the start of the century but only around 1% by the end. It is worth mentioning that the decreased sharesshare of 366 

uncertainty associated with model and internal variability do not mean that model or internal variability decrease 367 

in an absolute sense; rather, their importance relative to scenario uncertainty declines. InternalThese results 368 

regarding the importance of model and scenario uncertainties for multidecadal projections, and dominance of 369 

scenario uncertainty with time agree with previous studies using CMIP5 models (Lovenduski et al., 2016; 370 

Schlunegger et al., 2020).  371 

 372 

Absolute internal and model uncertainty of the global carbon sink change with time, based on the scenario (Table 373 

2); high, Fig. S3). High emission scenarios such as ssp585 show a larger change for both internal and model 374 

uncertainty. where the forcing is stronger (Fig. S3). When averaged for the three scenarios, a constant absolute 375 

increase in the magnitudes of both model and internal variability is seen through the century until 2080-2100 when 376 

the values either do not change or decrease slightly (Table 1).  Model uncertainty more than doubles towards the 377 

end of the century compared to 1995-2015 on average for different scenarios. This is consistent with Lovenduski 378 

et al. (2016) who argues that the increase is due to difference in climate sensitivities between models that manifest 379 

more strongly with time (and hence cumulative emissions). Additionally, the dependence of internal variability on 380 

the scenario is an interesting result. Future SMILEs from multiple models will allow evaluation of the degree of 381 

dependence and the driving mechanisms of such changes with time based on the forcing (scenario). Our result of 382 

internal variability dependence on scenario implies that the time of emergence of a signal out of internal variability 383 

will be affected by changes in the internal variability under different future forcing scenarios – which we return to 384 

in Section 3.4. 385 

 386 
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 387 

3.2 Dependence of the sources of uncertainty on spatial scale 388 

It is generally accepted that uncertainty and, most importantly, internal variability grow larger as the averaging 389 

(integration) scale gets finer, because on larger scales the variability is averaged out. Lovenduski et al. (2016) 390 

showed this scale dependence by comparing an area covering the California Current System with the global ocean. 391 

Here, we provide aHere, we provide a novel and continuous view of change in variability across scales from the 392 

global to grid scale, by measuring how variability changes relative to scale on average (Fig. 3). At the global scale, 393 

the dominant source of uncertainty is scenario uncertainty, followed by model and internal variability respectively, 394 

consistent with Fig. 2b. However, as the averaging (integration) scale gets finer, model and internal variability 395 

grow rapidly, while scenario uncertainty only grows slightly on average (over all regions of this size). At an 396 

averaging (integration) scale with an area finer than 75 million km2 (on average around the globe), model 397 

uncertainty becomes the dominant source of uncertainty, and at a scale finer than 3 million km2, internal variability 398 

becomes larger than scenario uncertainty. However, while this holds true on average over the globe, scale 399 

dependence can vary in its nature depending on the particular region being sampled.The idea of scale dependence 400 

of these uncertainties was tested in Lovenduski et al. (2016) by comparing an area covering the California Current 401 

System with the global ocean. Here, we provide a novel analysis on a continuum of scales covering global to 402 

regional to local scales. While the results here hold true on average over the globe, scale dependence is partially 403 

controlled by the particular region being sampled. Finally, while our estimates of the magnitudes of sources of 404 

uncertainty and the cross over points at which the dominance of internal variability over model uncertainty and 405 

model uncertainty over scenario uncertainty takes place, depend on the choice of ESMs and the method for 406 

calculation of internal variability, the general patterns are unlikely to be model dependent.  407 

 408 

 409 
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 410 

Figure 3- Sources of uncertainty versus area of averaging. Internal variability is based on ssp245 year 2050 of all CanESM5 411 

members. Scenario uncertainty is based on all scenarios of the 13 models at year 2050 and model uncertainty is the corrected 412 

standard deviation of our 13 models at year 2050 of ssp245. The values of uncertainties are averaged over all different 413 

rectangular areas of each size that can scan the globe. Dashed lines indicate the size of the averaging window and not a 414 

specific location. 415 

 416 

 417 

3.3 Regional Analysis  418 

The We further expand on the findings of our analysis of the globally averaged scale dependence analysis were 419 

testedof uncertainty averaged over the globe by repeating the uncertainty breakdown for two specific regions: one 420 

between 2040°- 60° N in the North EastNortheast Pacific (NE Pacific) between 130°- 160° W and one in the North 421 

WestNorthwest Atlantic (NW Atlantic) between 40°- 70° W at the same latitude.  We chose these regions, first, to 422 

be of the similar size, and second to represent very different carbon dynamics. The NW Atlantic region represents 423 

a hotspot highly active region while the NE Pacific region is more typical of quiescent ocean regions. By quiescent 424 

ocean regions we refer to regions, where strong stratification limits the vertical transport of carbon by isolating the 425 

surfacethe flux anomalies are relatively small.  426 

 427 
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The variation across scenarios is at all times smaller than internal variability in the NE Pacific (Fig. 4a). This 428 

suggests both that it will be difficult to robustly detect any human induced changes in observations of the NEP 429 

carbon sink, and that potential future differences relating to choice of mitigation scenarios will not be readily 430 

apparent in the NE Pacific carbon flux. This is true even for the high emission scenarios, because the anomalies 431 

are small regardless of scenario (Table 2). We speculate that in the absence of mechanisms providing a pathway 432 

to the depth where significant CO2 accumulation occurs, the surface pCO2 trend will follow that of the 433 

atmosphere closely, causing pCO2 and therefore air-sea carbon flux to remain fairly constant for all scenarios. In 434 

the NW Atlantic however, the deviation across scenarios becomes larger than the internal variability in the early 435 

2060s (Fig. 4c). The response of the region to climate change is dependent on the scenario (Table 2), or, in other 436 

words, the amount of carbon dioxide in the atmosphere. This is because the NW Atlantic is a hotspothighly active 437 

region where the air-sea flux actively responds to the atmospheric CO2 concentration. The connection to depth 438 

allows for surface water to be replaced with water masses whose pCO2 trend lags behind that of atmosphere. The 439 

trend of the CMIP6 multi-model time-series over the historical period is statistically consistent (Santer et al., 440 

2008See Supplements section S5) with that of the observation-based SOM-FFN product, and the multi-decadal 441 

variability is within the range of internal variability measured by the CanESM5 large-ensemble in both regions. 442 

We note that both of these regions are relatively well sampled, which may lead to more robust estimates of multi-443 

decadal variability in the Landschützer et al. (2016) dataset, and better agreement with the models than seen at 444 

the global scale. 445 

 446 

Fractional estimates of each source of uncertainty vary with time and have different patterns for these two regions.  447 

Internal variability and model uncertainty in the NE Pacific and NW Atlantic are larger by an order of magnitude 448 

than at the global scale (Table 2). A lesser importance for scenario uncertainty and greater importance for internal 449 

and model uncertainty is apparent in both regions compared to the global scale, in agreement with Schlunegger et 450 

al. (2020). Over the period 1995-2020, model uncertainty is the dominant source of uncertainty in both the NE 451 

Pacific and NW Atlantic (80-90%), while the remainder is internal variability (Fig. 4bd). Internal variability 452 

explains around 25-30% of the total uncertainty in the NE Pacific throughout the century. In the NW Atlantic 453 

however, its share drops to 15% by the end of the century. The share attributable to internal variability is much 454 

larger during the 21st century in both regions compared to the global scale. Internal variability is larger in the NW 455 

Atlantic in an absolute sense (Table 2), but its share of the total uncertainty is larger in NE Pacific (Fig. 4b). The 456 

large share of internal variability in NW Pacific indicates the need for sustained observations in the region. Overall, 457 

internal variability averaged over the scenarios shows a small increase, but no clear trend in time in both regions 458 
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until the 2080-2100 period where it decreases, consistent with the global estimates. The dependence of internal 459 

variability on the scenario is an interesting result which requires further evaluations to understand the degree of 460 

dependence and the driving mechanisms of such changes with time based on scenario. (Table 2). We showed earlier 461 

that in the NE Pacific scenarios do not differ much asbecause the region is not a hotspotahighly active region(Fig. 462 

S7) -  scenario uncertainty explains less than 20% of the total uncertainty at the end of the century in the NE Pacific. 463 

In the NW Atlantic, scenario uncertainty grows larger with time, becoming 45-50% of total uncertainty by the end 464 

of the century.  In both regions, model uncertainty is the dominant source of uncertainty in all years.  465 

 466 

Our regional analysis confirms that while uncertainty and its distribution among sources depends on the spatial 467 

scale of integration, the specific location also matters (Lovenduski et al, 2016; Schlunegger et al., 2020). 468 

Schlunegger et al., (2020) tested this idea for 10 ocean basins but with different sizes (see their Figure 9). We 469 

focused on keeping the sizes similar and analyse a highly active region versus a more quiescent ocean region.  The 470 

key message here that there is an association with the importance as well as the magnitude of sources of uncertainty 471 

with how active the region is in regards to the carbon sink is not sensitive to the use of CanESM5 for estimation of 472 

internal variability. Local patterns of uncertainty broken down by source are thus needed to clarify changes based 473 

on location. 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

  488 
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 491 

Figure 4- (a), (c) Thick lines are multi-model mean timeseries of anomalies relative to the 1995-2015 mean. All model time-492 

series averaged for the means are plotted in grey lines in the background. The black dashed line shows the Landschützer et 493 

al. (2016) SOM-FFN product.  The blue dashed line shows the internal variability measured as two times the standard 494 

deviation across all 50 members of CanESM5 only for ssp245 here. (b), (d) time-series showing the breakdown of 495 

uncertainty to different sources with time. The internal and model uncertainty are averaged for different scenarios. (a), (b) 496 

NE Pacific (40-60 °N, 130 -160 °W). (c), (d) NW Atlantic (40 - 60 °N, 40 -70 °W) 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 
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  Scenario 1995-2020 2020-2040 2040-2060 2060-2080 2080-2100 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 
 
 
 
 
 

0.00  
(-0.98 – 0.76) 

 
 

0.05  
(-0.91 – 0.86) 

 
0.06 

 (-0.86 – 0.83) 
 

0.11  
(-0.73 - 0.79)  

 

 
 
 

0.03  
(-0.86 – 0.62) 

 
0.09  

(-0.74 – 0.81)  
 

0.21  
(-0.61 – 0.86) 

 
 

 
 
 
 

-0.13  
( -1.1 – 0.58) 

 
0.03 

(-0.65 – 0.60) 
 

0.29 
(0.22 – 0.94) 

 
 
 

 
 
 
 

-0.21 
 (-1.18 - 0.60) 

 
0.06 

 (-0.70 – 0.53) 
 

0.2  
(-0.25 –  0.98) 

 
 
 

  
 
 

ssp126 
 

ssp245 
 

ssp585 
 

 

Average 

 
 

 

 
0.39 (0.90) 

 
 

 

 
0.39 (0.90) 

 

 
0.47 (0.87) 

 
0.46 (0.87) 

 
0.45 (0.81) 

 
 

0.46 (0.86) 

 

 
0.43 (0.74) 

 
0.47 (0.81) 

 
0.47 (0.745) 

 
 

0.46 (0.77) 

 

 
0.40 (0.81) 

 
0.48 (0.64) 

 
0.58 (0.55) 

 
 

0.47 (0.70) 

 
 

0.39 (0.83) 
 

0.45 (0.53) 
 

0.44 (0.57) 
 
 

0.43(0.67) 
   

 
 

ssp126 
 
 

ssp245 
 
 

ssp585 

 
 

 
 
 

0.00  
(-0.97 – 1.31) 

 

 
0.13 

 (-0.77 – 1.21) 
 

0.18  
(-0.78 – 1.23) 

 
0.23 

 (-0.70 – 1.20)  
 

 

 
-0.20 

(-1.03 – 0.56) 
 

0.10  
(-0.68 – 0.80) 

 
0.38 

 (-0.41 – 1.12) 
 

 
 

-0.66 
( -1.45 – -0.11) 

 
-0.20 

(-0.97 – 0.50) 
 

0.41 
(-0.27 – 1.29) 

 
 
 

-1.00  
(-1.80 - -0.56) 

 
-0.54  

(-1.22 – 0.07) 
 

0.10  
(-0.70 –  0.96) 

  
 

ssp126 
 

ssp245 
 

ssp585 
 
Average 

 
 
 
 

0.43 (1.02) 
 
 
 

0.43 (1.02) 

 
0.47 (0.91) 

 
0.47 (0.96) 

 
0.50 (0.90) 

 
0.48 (0.93) 

 
0.47 (0.79) 

 
0.49 (0.82) 

 
0.51 (0.94) 

 
0.49 (0.87) 

 
0.46 (0.78) 

 
0.49 (0.80) 

 
0.52 (1.00) 

 
0.49 (0.88) 

 
0.42 (0.80) 

 
0.47 (0.79) 

 
0.53 (1.00) 

 
0.48 (0.88) 

 505 

Internal 
(model) 

Uncertainty 

Internal 
(model) 

Uncertainty 

Anomaly 

(range) 

NE 

Pacific 

Anomaly 

(range) 

NW 

Atlantic 
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Table 2- CMIP6 multi-model mean sink anomalies (with ranges in parentheses) relative to 1995-2015 mean (in mol-C m-2 506 

yr-1) and internal variability (with model uncertainty in parentheses) for the three scenarios and their average values in NE 507 

Pacific and NW Atlantic. 508 

 509 

The regional analysis shows that while uncertainty and its distribution among sources depends on the spatial scale 510 

of integration, the specific location also matters. Regional patterns of uncertainty broken down by the source are 511 

needed to clarify changes based on location. Consistent with the sink anomaly maps (Fig. 1), the regions that show 512 

highest uncertainty for any of the sources in the future, are the same regions that show the largest uncertainties in 513 

the historical period (Fig. 5). More importantly, the regions of largest future uptake uncertainty are highly correlated 514 

with the historical regions of largest uptake, as shown by the pattern correlation coefficients above each panel. This 515 

is a highly significant finding, because it suggests that knowledge of the regions of modern day surface carbon flux 516 

anomaly provides us with information about regions of future uptake uncertainty. 517 

 518 

The regions of high internalInternal variability (from CanESM5 is most dominant in mid-latitude eastern 519 

boundary upwelling regions, and their extensions, in the North Atlantic, in the western boundary currents of the 520 

Gulf Stream and Kuroshio, and their extensions, and in the Southern Ocean)  (Fig. 5). There is wide agreement 521 

between different models and estimation methods in regions of largest internal variability (Fig. S4). The regions 522 

of large internal variability are mostly within hotspots but are not confined to them and do not include all of 523 

them. This lack of correspondence explains why thecorrelated with the same highly active regions for the sink 524 

anomalies discussed earlier (Fig 1c). However, correlation coefficients are not high for between internal 525 

variability and historical uptake are lower than those seen for scenario and model uncertainty. An increase in 526 

internal variability with time is seen mostly in regions such as the Southern Ocean, the Arctic Ocean, and 527 

boundaries of the gyre systems, while the rest of the ocean does not show a clear change. The maps in Figure 5 528 

are averaged over the three scenarios, which masks the changes to some extent. However, we show in the 529 

Supplements (see section S2) that changes in the globally averaged internal variability with time are different for 530 

different scenarios.  531 

Model uncertainty is consistently highest in the hotspothighly active regions, (Figure S7), leading to 532 

strongerstrong correlation with the anomaly maps of Fig. 1c.1c. In these regions, ocean  circulation impacts 533 

surface pCO2 through advection and water mass transformation regionally (Bopp et al., 2015; Toyama et al., 534 
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2017) and models have substantial differences in ocean circulation. Ridge and McKinley (2021) suggest that 535 

while global surface carbon fluxes and carbon storage are largely similar across ESMs over the historical period, 536 

consistent with the external forcing from atmospheric pCO2 growth being the main driver of the historical sink 537 

(McKinley et al., 2020), uncertainties in ocean circulation may become important in the future under a changing 538 

trajectory of atmospheric boundary conditions. The model uncertainty is largest in the Southern Ocean, where 539 

consistent with CMIP5 models (Frölicher et al., 2015). Here, mode and intermediate waters are formed, and the 540 

complex time-evolving nature of the sink varies on all time- scales (Gruber et al. 2019). Frölicher et al. (2015) 541 

note the largest disagreement in ocean carbon uptake between models is in the Southern Ocean because the exact 542 

processes governing heat and carbon uptake remain poorly understood. The importance of model uncertainty in 543 

the Southern Ocean provides a clear focal point for modelling centrescenters to concentrate their efforts in 544 

reducing projection uncertainty. Atmospheric teleconnections might play an important role in generating the 545 

highly variable Southern Ocean carbon sink on decadal scales, and these are poorly constrained and represented 546 

by models (Gruber et al. 2019).  547 

 548 

Scenario uncertainty exhibits the largest change with time. This is by construction, meaning that as the scenarios 549 

are designed to deviate from each other aswith time goes forward.to represent a range of pathways for future 550 

socio-economic possibilities in order to assess the long-term impacts of short-term decisions (Riahi et al., 2017). 551 

Importantly, the correlation coefficients are highest between scenario uncertainty and the current sink regions, 552 

indicating that the hotspotsame highly active regions are the regions that show the largest divergence among 553 

scenarios, and that the sink in most other regions does not respond as strongly to scenario differences. We 554 

showed an example of this earlier, where the timeseries of the multi-model signals for the three scenarios did not 555 

emerge out of internal variability in the NE Pacific by 2100, whereas they did for the hotspot highly actrive 556 

region of the NW Atlantic. This shows that, with pCO2 differences across the air-sea interface being the main 557 

driver of the sink (Fay & McKinley, 2013; Landschützer et al., 2015; Lovenduski et al., 2007; Mckinley et al, 558 

2020; McKinley et al., 2017), the sink in these active hotspot regions, the sink evolves according to atmosphereas 559 

the atmospheric CO2 concentration viachanges because ocean processes thatassociated with surface-depth 560 

connectivity constantly keep the surface ocean CO2pCO2 out of equilibrium with the atmosphere. In other words, 561 

the surface water in these regions are constantly renewed, mostly through advection and water mass formation, 562 

with water masses whose pCO2 has not increased at the same rate as the atmosphere. Elsewhere, these conditions 563 

do not hold true and water at the surface equilibrates with the atmosphere on shorter time scales, decreasing the 564 
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sensitivity to the projection scenario. These uncertainties are central to the ability to detect human induced trends 565 

in observations of the surface ocean carbon flux as well as to assess mitigations or make societal decisions, to 566 

which we now turn.  567 

 568 

 569 

Figure 5- Sources of uncertainty averaged over the 20 year mean periods. The rows represent different sources as 570 

explained in the methods section at each grid cell. Columns represent different times: the recent (1995-2015), mid-571 

century (2040-2060), and late-century (2080-2100) anomalies relative to the 1995-2015 mean. The numbers are 572 

correlation coefficients of each map with the 1995-2015 mean anomaly relative to the 1850-1900 mean (Fig. 1c).  573 

 574 

3.4 Detectability  575 

Detectability refers to the ability to robustly identify a forced signal, above and beyond the noise induced by internal 576 

climate variability. UnderstandingPrevious studies have largely presented a single time of emergence (Lovenduski 577 

et al. 2016, Schlunegger et al., 2019, McKinley et al., 2016). However, understanding the regional differences, 578 
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timescales, and scenario dependence in the detectability of human induced trends in the ocean surface carbon flux 579 

is important for informing observational strategies that aim to measure these changes.  580 

 581 

We measure the detectability of the CMIP6 multi-model ensemble mean ocean surface carbon flux anomaly using 582 

the time of emergence at each grid point. We use this finest scale as it is the most applicable to observational 583 

communities for sampling. The time of emergence is defined as the point at which the forced signal, given by the 584 

multi-model ensemble mean flux anomaly, relative to 1995-2015, emerges from internal variability, given by the 585 

CanESM5 SMILE.  586 

 587 

The signal in human induced surface ocean carbon flux emerges beyond the internal variability earlier in the 588 

hotspothighly active regions than anywhere else. This is evident in the Equatorial Pacific, Southern Ocean, the 589 

western boundary currents of the gyre systems, and their extensions (Fig. 6). The fixed inactiveOcean regions, such 590 

as the centres of the mid-latitude gyre systems and the NE Pacific, show late emergence times and, in some cases, 591 

no detectability of the signal in any of the scenarios by 2100. Convergent large-scale circulation and strong 592 

stratification in these regions isolates the surface from the deep ocean reducing their capacity to hold large amounts 593 

of carbon (McKinley et al., 2016). An absence of mechanisms constantly drawing surface ocean CO2 out of 594 

equilibrium with atmospheric CO2 lets the surface water equilibrate with and adjust to the atmosphere on short time 595 

scales. Significant changes thus do not take place in the sink as the atmospheric CO2 levels change and scenario 596 

uncertainty is lowest in the same regions (see Fig. 4). This is consistent with the results from Sect. 3.3, in which 597 

we showed that internal variability is a significant source throughout the century in the NE Pacific, with scenarios 598 

never emerging out of the range of internal variability (Fig. 4a,b). This result argues for focusing observational 599 

efforts on the hotspot4a, b). Our results for the broad patterns in the multi-model mean TOE are largely consistent 600 

with previous studies, suggesting they are robust and insensitive to for the method of estimating internal variability.  601 

These include studies from CMIP5 models such as McKinley et al., (2016) that assumed time/scenario independent 602 

internal variability, and Schlunegger et al., (2020) that used only high emission scenario internal variability from 603 

four large ensembles to show there is strong agreement between LEs TOE both locally and spatially. Our results 604 

argue for focusing observational efforts on the highly active regions in order to detect human influence on the ocean 605 

carbon sink. Meanwhile, they imply that observational timeseries in quiescent regions, such as Ocean Station Papa 606 

in the NE Pacific, need to interpret any observed trends with care, since internal variability tends to dominate over 607 

human induced trends. 608 

 609 
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 610 

 611 

 612 

Figure 6- Time of emergence of the multi-model mean anomaly under different scenarios. White regions indicate 613 

where the anthropogenic signal cannot be detected even towards the end of the century. 614 

 615 

Previous studies have largely presented a single time of emergence; however, the time of emergence strongly 616 

depends on the future scenario. The time of emergenceTime of emergence strongly depends on the future scenario. 617 

Schlunegger et al. (2020) show for two scenarios that modest (~10 yr) TOE differences between different ESMs 618 

under strong anthropogenic forcing can evolve into pronounced (60+ yr) TOE differences with moderate 619 

mitigation. Here, we make use of three scenarios including a strong-mitigation scenario and account for scenario 620 

dependence of internal variability in our approximation using CanESM5. On average, scenarios with smaller forced 621 

trends emerge later as the size of the forced trend is critical to the time of emergence (Fig. 2-a). The TOE is 622 

earliest on average over the global ocean in ssp585, while it is later in ssp245, and later still in ssp126. The earlier 623 

times of emergence are largely due to the stronger signal in ssp585, and weaker in ssp245 and ssp126 (Fig. 2-a),, 624 

consistent with the imposed changes in atmospheric CO2 concentration.  The exceptions are quiescent regions that 625 

show earlier detectability for ssp126 compared to other scenarios; these exceptions are associated with larger (but 626 

negative) anomalies in the latter half of the century under ssp126 which has negative emissions (compare panels 627 

d-f, and g-i on Fig. 1). Internal variability does evolve somewhat differently for each scenario, but this is secondary 628 

(Fig. B2).S2). Schlunegger et al. (2020) argues that variables such as air-sea CO2 flux which are sufficiently 629 

sensitive to emissions emerge early, prior to significant divergence among future scenarios. Consistent with this 630 

result, our results indicate that there is broad agreement between scenarios in the TOE patterns, when considering 631 

the highly active regions. Interestingly, our scenario-specific TOE shows that differences between scenario TOEs 632 

is associated with how sensitive different regions are to emission scenarios. More specifically, comparison to the 633 

maps of scenario uncertainty (Fig. 5) shows that TOE differs more across scenarios in regions where scenario 634 
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uncertainty is small, such as the aforementioned subtropics Ekman convergence regions. Elsewhere, the emergence 635 

happens before scenarios diverge significantly. Our results suggest that under the rapidly rising atmospheric CO2 636 

concentrations seen in ssp585, the human signal in the ocean carbon sink will be detectable across much of the 637 

global ocean over the coming few decades. However, under strong mitigation scenarios, such as ssp126, early 638 

emergence (earlier than 2030) will only occur in isolated regions. while counter-intuitively, less percentage of the 639 

global ocean remains non-emergent by 2100.  640 

4. Conclusions 641 

Ocean carbon uptake as a result of the increasing atmospheric CO2 concentration occurs mostlyin the 21st century 642 

is concentrated in a few hotspotactive regions with 70 percent of the total sink occurring in less than 40 percent of 643 

the global ocean. We analyze the results from the CMIP6 multi-model mean for the current state of the ocean 644 

(1995-2015), and the middle (2040-2060) and late (2080-2100) 21st century relative to the current state for three 645 

scenarios. We show that future changes in the sink are projected to mostly take place within the same historical 646 

hotspothighly active regions. This result implies that known regions of high historical uptake, including the North 647 

Atlantic and Southern Ocean, are the same regions to prioritize for observing the future evolution of the sink. Our 648 

results extend the argument of Wang et al. (2016) that the historical state is a good predictor of the future state to 649 

spatial patterns of change.  650 

 651 

We show that the CMIP6 multi-model mean provides a consistent estimate of the spatial patterns of the sink, and 652 

the trend in the sink (globally), compared to the observation-based data product dataset of Landschützer et al. 653 

(2016). These results suggest the CMIP6 models are valid tools for understanding the past and future evolution of 654 

the ocean carbon sink, particularly at broad spatial scales. A notable area of disagreement is that the Landschützer 655 

et al. (2016) data shows larger decadal variability at the global scale than seen in any CMIP6 model. We argue and 656 

the overestimationrange of internal variability by this dataset is a plausible explanation, since at the regional scale, 657 

there is no such disagreement. This is in agreement withfrom CanESM5 large ensemble.  Gloege et al. (2021) who 658 

showedshows that the SOM-FFN method overestimates the magnitude of decadal variability by 21% on the global 659 

scale due to the amount of gap filling.   660 

 661 

We have shown that the magnitude of uncertainty and its partitioning among different sources differs with scale 662 

and location. On the global scale, scenario uncertainty is the largest source of uncertainty followed by model 663 
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uncertainty and internal variability. However, as for CMIP6 models. These results are in agreement with previous 664 

studies form CMIP5 models (Lovenduski et al., 2016; Schlunegger et al., 2020). As the scales of integration 665 

(averaging) get finer, model and internal variability become the dominant sources, respectively. Testing the results 666 

on two ocean basinsregions of about the same size, one in the NE Pacific and one in the NW Atlantic shows that - 667 

while consistent with the results of the scale dependence analysis - the relative importance of the sources of 668 

uncertainty also differs with location. Notably, in hotspotOur test here extends the analysis Schlunegger et al. 669 

(2020) with a focus on the association of the location dependence with whether the regions have highly active 670 

carbon sinks. Notably, in highly active regions, such as the NW Atlantic, scenario uncertainty is large, whereas in 671 

more quiescent regions, such as the NE Pacific, internal variability is more significant. The dependence of internal 672 

variability on the scenario with time is another interesting finding that could be the subject of future studies for a 673 

better understanding of the driving mechanism and the degree of dependence on the future emissions and/or 674 

concentrations.  675 

 676 

The patterns of high future CO2 uptake uncertainty are highly correlated with the patterns of historical uptake. The 677 

correlation coefficients are highest for scenario uncertainty, indicating that the hotspothighly active regions have 678 

the potential for the sink to evolve according to the atmospheric CO2 concentration, while the rest of the ocean 679 

basins do not respond strongly to changes in atmospheric CO2 represented by the different scenarios. This finding 680 

has implications for assessment of the mitigations and effects of socioeconomic decisions. Our results here are 681 

significant in that they show that regions of future uncertainty are largely associated with known regions of 682 

significant historical uptake.  683 

 684 

Patterns seen in the time-of-emergence have implications for planning observational campaigns for detection of a 685 

signal.  (Schlunegger et al. 2019 & 2020). Furthermore, there is reverse association between how sensitive a region 686 

is to scenario differences (apparent in the scenario uncertainty patterns) and how sensitive the TOE is to scenarios. 687 

Our results show that therecaution should be caution taken in interpreting the observed changes in regions such as 688 

NE Pacific (where active sampling is being done) associated with the latewith late time of emergence of the signal 689 

from the decadal (internal) variations. On the other hand, regions such as the Equatorial Pacific, the Gulf Stream 690 

and Kuroshio and their extensions, and the Southern Ocean, should be the focus of consistent and expanded 691 

sampling for detection of the forced signal. Additionally, the patterns in sources of uncertainty show that model 692 

uncertainty is largest in the Southern Ocean, consistent with previous studies.Frölicher et al., 2015. The sink in the 693 

Southern Ocean is driven by complex mechanisms involving coupled ocean-atmosphere-ice interactions that 694 
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require better representation in ocean biogeochemical models. If we wish to constrain and reduce futureSignificant 695 

progress in reducing uncertainties in the ocean carbon sink, ourcan be expected from new methods of bringing 696 

together models and observations (Frolicher et al. 2016). Our results provide a motivation to focus modelling as 697 

well as observational efforts on the known hotspothighly active regions of historical uptake. 698 

 699 

Finally, we have shown that internal variability shows clear changes in time and depends on the scenario. The 700 

emergence of Large Ensembles (LEs) allows for quantification of these variations if enough ensemble members 701 

are available to fully capture internal variability using realizations that start from different initial conditions. Our 702 

use of the CanESM5 LE allows for us to account for the nonstationary of internal variability in time, like in 703 

Schlunegger et al. (2020) but with the advantage of also accounting for scenario dependence. Model 704 

intercomparison indicates that ESMs show differences in natural variability (Schlunegger et al. 2020). Nonetheless, 705 

our analysis of the global scale, of scale dependence, and of the patterns seen in Time of Emergence are consistent 706 

with previous studies, despite the potential sensitivity to the use of CanESM5 LE. Our methodology to correct for 707 

internal variability from model spread, without filtering or having a large ensemble for each ESM (which would 708 

limit the number of ESMs that can be included and, consequently, underestimate model uncertainty) lays the 709 

foundation for future studies when LEs are available from more ESMs and advocates for more modelling groups 710 

to provide such LEs in order to achieve an even more robust estimate of internal variability as the mean across 711 

different ESMs.  712 
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