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Abstract. Given the increasing use of climate projections and multi-model ensemble weighting for a diverse array of
applications, this project assesses the sensitivities of climate model weighting strategies, and their resulting ensemble means,
to multiple components, such as the weighting schemes, climate variables, or spatial domains of interest. The analysis makes
use of global climate models from the Coupled Model Intercomparison Project Phase 5 (CMIPS5), and their statistically
downscaled counterparts created with the Localized Canonical Analogs (LOCA) method. This work focuses on historical
and projected future mean precipitation and daily high temperatures of the south-central United States. Results suggest that
the model weights and the corresponding weighted model means can be sensitive to the weighting strategy that is applied.
For instance, when estimating model weights based on Louisiana precipitation, the weighted projections show a wetter and
cooler south-central domain in the future compared to other weighting strategies. Alternatively, for example, when
estimating model weights based on New Mexico temperature, the weighted projections show a drier and warmer south-
central domain in the future. However, when considering the entire south-central domain in estimating the model weights,
the weighted future projections show a compromise in the precipitation and temperature estimates. As for uncertainty, our
matrix of results provided a more certain picture of future climate compared to the spread in the original model ensemble. If
future impact assessments utilize weighting strategies, then our findings suggest that how the specific weighting strategy

used with climate projections may depend on the needs of an impact assessment or adaptation plan.

1 Introduction

The simulation output from climate models has been traditionally used for research into characterizing and understanding the
climate system across multiple spatial scales. In recent years, ensembles of climate projections are increasingly used for
impact and vulnerability assessments (e.g., Allstadt et al. 2015; Basso et al. 2015; Pourmoktharian et al. 2016; Gergel et al.
2017; Massoud et al., 2018, 2019, 2020ab; Wootten et al., 2020ab). These include large-scale assessments, such as the
National Climate Assessment (NCA, Wuebbles et al. 2017), and local and regional assessments for individual areas of the
United States. Large and local scale assessments can make use of the entire ensemble of climate projections (composed of
global climate models [GCMs]) or make use of the unweighted ensemble mean. For these assessments, using the ensemble
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mean provides a useful and convenient way to assess projected changes in a region. Given the coarse resolution of the GCMs
(typically > 100km?), many of these assessments make use of downscaled climate projections to translate larger-scale

changes to local scales.

Alongside the use of climate modeling and downscaling for climate research and increased use for impact and vulnerability
assessments, there has also been a transition in the last 20 years toward using weighted multi-model means. Projections
based on model weights derived from historical skill have been shown to have greater accuracy than an arithmetic multi-
model mean in many cases, provided that there is enough information to determine a weight for each model (Knutti et al.
2010; Weigel et al. 2008; Pefia and Van den Dool, 2008; Min and Hense, 2006). More recently, weighting based solely on
skill has given way to weighting based upon both skill and independence. This transition has resulted from the recognition
that some models can be more skillful for certain variables and regions, but also as common bases of model structure,
parameterizations and associated programming code can result in a lack of independence between GCMs (Massoud et al.
2019, 2020a; Sanderson et al. 2015, 2017; Knutti, 2010; Knutti et al. 2017). In acknowledgment of studies indicating that the
global climate models are not fully independent, the Fourth National Climate Assessment (NCA4) was the first major
climate assessment in the United States to use skill and independence-based model weighting on the ensemble of climate

models (Sanderson and Wehner, 2017).

The authors of this paper have extensively investigated the effect of model weighting on the outcome of climate change
projections from multi-model ensembles (Massoud et al. 2019, 2020a; Wootten et al. 2020a). For example, in Massoud et al.
(2019), the authors utilized information from various model averaging approaches to evaluate 21 global climate models from
the Coupled Model Intercomparison Project Phase 5 (CMIPS5; Taylor et al., 2012), and they based their weighting strategies
on model independence as well as performance skill of the models to simulate atmospheric rivers globally. In Massoud et al.
(2020a), the authors used Bayesian model averaging (BMA) as a framework to constrain the spread of uncertainty in climate
projections of precipitation over the contiguous United States (CONUS). In Wootten et al. (2020a), the authors applied
various ensemble-weighting schemes to constrain precipitation projections in the south-central United States and applied
these strategies to both the 26-model ensemble from the CMIP5 archive and the downscaled version of the models. The latter
study is distinct from prior research, because it compared the interactions of ensemble-weighting schemes with GCMs and

statistical downscaling to produce multi-model ensemble means.

Some studies have applied model weighting to a certain variable or to multiple variables and went on to investigate climate
change impacts for other variables (e.g., energy and hydrologic cycles) (c.f. Knutti et al., 2017; Massoud et al., 2018). The
National Climate Assessment had previously considered weighting based only on commonly used climate variables (e.g.,
precipitation and temperature, Wuebbles et al., 2017), but discussions to use additional variables are currently ongoing.

Other studies have calculated weights based on metrics in one domain (e.g. globally) and then applied them to projections
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for another domain (e.g. North America or Europe) (Massoud et al., 2019). However, these studies are rare, as are studies
providing comparisons of various weighting schemes (e.g. Shin et al. 2020; Brunner et al., 2020a; Kolosu et al. 2021), and
no previous study offers a comprehensive cross-comparison of the effects on the ensemble means from the choices of the

domain, variable, weighting scheme, and ensemble.

Taking these points into consideration, we assess the choices involved with using model weighting strategies by developing
and investigating a multi-dimensional sensitivity matrix for applying model averaging for the south-central region of the US
- as defined by the NCA. To this end, we look at mean precipitation and high temperatures as our climate variables of
interest. Furthermore, we use two sub-domains, the states of Louisiana and New Mexico, alongside the south-central U.S.
study region. Overall, we created and apply various sets of model weights based on several choices that are typically
involved in creating a model weighting strategy: a) the choice of the ensemble (CMIPS or downscaled), b) the choice of
model weighting scheme, c) the choice of climate variable of interest (precipitation vs temperature), and d) the choice of the
domain used to derive weighting (entire south-central region vs smaller sub-domain). Therefore, one example of a strategy
that we apply to estimate a set of weights uses the BMA weighting method on the CMIP5 ensemble projections of the
precipitation variable for the Louisiana domain. To our knowledge, there has not been a model weighting study that included
as many dimensions in the experimental matrix as this study, again these are model ensemble, domain, variable, and

importantly, the weighting scheme itself.

Weighted multi-model means have primarily been focused on GCMs and continental scales (Brunner et al. 2019; Pickler and
Molg, 2021; Sperna Weiland et al. 2021). However, the use of climate projections has extended to regional, state, local, and
tribal uses for climate impact assessments and adaptation planning. In these regional to local efforts, the raw projection data
has been used but also provided to impact models (such as hydrology or crop models). Currently, impact assessments outside
the traditional venues of climate modeling tend not to use weighted multi-model means but tend to use unweighted means
created using downscaled GCM ensembles. Whether to use model weighting or not is currently a hot topic in the climate
modeling community, and the current study aims to comprehensively assess the sensitivity associated with multi-model
ensemble weighting schemes and strategies to add further context to this debate. For reference for the reader, we define
weighting schemes to refer to the numerical approach to weighting alone, such as Bayesian Model Averaging (BMA) or the
approach defined by Sanderson et al. (2015, 2017). We define a weighting strategy as the weighting scheme and other
choices made when using the weighting scheme to derive model weights. For example, a weighting strategy would be using
the BMA weighting scheme to derive weights using the continental United States and daily high temperature alone and
another weighting strategy would be using the BMA weighting scheme to derive weights using the Southern Great Plains of
the United States and daily precipitation alone. Both such examples use the BMA weighting scheme, but with different

choices made to derive weights, making the two examples different weighting strategies.
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Our analysis results in a wide array of possible future outcomes, which comes with high uncertainties on what to expect in
the future in this domain. The main question we are after is whether or not some variables or domains have projected climate
change signals that have high certainty, and alternatively, we would like to find out whether or not there are climate variables
in any of the regions that have highly uncertain climate change projections, and if the use of model weighting can provide a
better sense of this uncertainty. We aim to address these uncertainties by applying the multi-dimensional experimental
matrix of model weighting strategies and hope to inform the scientific community of these sensitivities for the benefit of

future stakeholders, including climate modelers and boundary organizations providing climate services.

2 Methods and Data
2.1 Study Domain and Variables

The south-central United States (from about 26°N 108.5°W to 40°N 91°W) has a varied topography with a sharp gradient in
mean annual precipitation from the east (humid) to the west (arid), and a generally warm climate. The Mississippi River

Valley and the Ozark Mountains in the eastern portion of the region (elevations of 200-800 m), the Rocky Mountains in the
west (1500-4400 m), and the Gulf of Mexico in the southeast (near sea level). Average annual precipitation in the southeast

portion of the domain can be eight times higher than drier western locations and average daily high temperatures can reach

40°C (Figure 1).

2.2 Climate Projection Datasets

We use one member each from 26 GCMs in the CMIPS5 archive to form the GCM multi-model ensemble. To form the
downscaled ensemble, the same 26 GCMs are used from the downscaled projections created with the Localized Constructed
Analogs (LOCA) method (Pierce et al. 2014). The LOCA-downscaled projections have been used in other studies, including
the NCA4 (USGCRP, 2017) and Wootten et al. (2020a). CMIP5 GCMs are used in this study because LOCA downscaling
with CMIP6 was not available at the time of this writing. Table S1 lists the GCMs used for both the GCM ensemble
(hereafter CMIP5 ensemble) and downscaled ensemble (hereafter LOCA ensemble). See Wootten et al. (2020a) for more

details on the climate projection datasets.

To facilitate analysis, the data for each ensemble member and the gridded observations are interpolated from their native
resolution to a common 10 km grid using a bi-linear interpolation similar to that described in Wootten et al. (2020b). We
examine projected daily precipitation (pr) and daily high temperature (tmax) changes from 1981-2005 to 2070-2099 under
the RCP 8.5 scenario, which ramps the anthropogenic radiative forcing to 8.5 W/m? by 2100. We chose RCP 8.5 to
maximize the change signals and allow us to analyze greater differences between weight schemes and downscaling

techniques. The historical period (1981-2005) is used for both the historical simulations and observations to facilitate
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comparisons with other studies (Wootten et al. 2020b) and because the historical period of the CMIP5 archive ends in 2005
(Taylor et al. 2012).

2.3 Observation Data

Many publicly available downscaled projections (including LOCA) are created using gridded observation-based data for
training. Gridded observations are based largely on station data that are adjusted and interpolated to a grid in a manner that
attempts to account for biases, temporal/spatial incoherence, and missing station data (Behnke et al. 2016; Wootten et al.
2020b; Karl et al. 1986; Abatzoglou, 2013). In this study, we use Livneh version 1.2 (hereafter Livneh [Livneh et al. 2013]),
interpolated to the same 10 km grid using bilinear interpolation, as the gridded observation data used for comparison to the
ensembles. Livneh is used in part to facilitate any comparisons between this study and the results of Wootten et al.

(2020a). The LOCA ensemble used the Livneh data as the training data, so it is expected that LOCA will be more accurate
than the CMIP ensemble when compared to the Livneh dataset. While we recognize that different gridded observations and
downscaling techniques influence projections of precipitation variables (e.g., number of days with rain, heavy rain events),
the effect is minimal on the mean annual precipitation (Wootten et al. 2020b). Therefore, we find it is appropriate to make

use of only one statistical downscaling method and one gridded observation dataset.

2.4 Weighting Schemes

In this analysis, we make use of model weighting schemes detailed in Wootten et al. (2020a) and similar to the weighting
schemes applied in Massoud et al. (2020a). The resulting weighting schemes are applied multiple times to complete an
experimental matrix of weighting strategies allowing for in-depth comparisons of the sensitivity of the ensemble mean to
various approaches to deriving and applying the multi-model weights. These weighting methods include the unweighted
model mean, the historical skill weighting (hereafter Skill), the historical skill and historical independence weighting (SI-h),
the historical skill and future independence weighting (SI-c), and the Bayesian Model Averaging (BMA) method. All of the
methods are calculated in the same manner as in Wootten et al (2020a). In essence, the unweighted strategy takes the simple
mean of the entire ensemble. The Skill scheme utilizes each model’s skill in representing the historical observations via the
root mean square error (RMSE) of the model against the historical observations. The SI-h scheme is the same weighting
scheme as shown in Sanderson et al. (2017), creating an independence and skill weight using the historical simulations of
each model in an ensemble. To briefly summarize the SI-h (Sanderson et al. 2017) approach, an intermodel distance matrix
is calculated using the area-weighted RMSE of each model with the other models and with observations. This distance
matrix is used to calculate independence and skill weights, where the distances between one model and every other model
are used to calculate the independence weight and the distance between one model and the observations are used to calculate
the skill weight. The overall weight given to each model is the product of the skill and independence weights normalized
such that all the overall weights for each model sums to one. The SI-c scheme is unique to Wootten et al. (2020a) and

modifies the Sanderson et al. (2017) approach to use historical skill to derive the skill component of the weighting and the
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climate change signal (i.e., the future projections) to derive the independence component of the weighting. To achieve this,
the SI-c uses two distance matrices, the first distance matrix (used to calculate the skill weight) is the same as the SI-h, while
the second distance matrix (used to calculate the independence weight) is the area-weighted RMSE of the change signals
between the models. The overall weights are then calculated in the same way as the overall weights from SI-c. The BMA
scheme employs a probabilistic search algorithm to find an optimal set of model weights that produce a model average that
has high skill and low uncertainty when compared to the observation and its uncertainty. BMA is an approach that produces
a multi-model average created from optimized model weights, which correspond to a distribution of weights for each model,
such that the BMA-weighted model ensemble average for the historical simulation closely matches the observational
reference constraint. In essence, the close fit to observations is a consequence of applying higher weights on more skillful
models. Furthermore, since the BMA method estimates a distribution of model weights, various model combinations become
possible, which explicitly takes care of the model dependence issue. The equations for all the weighting schemes used in this
study are provided in the supplemental material, and readers are referred to Wootten et al. (2020a) and Massoud et al. (2019,

2020a) for more details on each method.

2.5 Experimental Matrix

Each weighting scheme (Skill, SI-h, SI-c, and BMA) is applied to both ensembles (CMIP5 and LOCA) and three domains
(south-central U.S., Louisiana, New Mexico) to fill out an experimental matrix of weights, representing a collection of
weighting strategies. As a result, for each weighting scheme (skill, SI-h, SI-c, and BMA) and ensemble (CMIP5 and LOCA),
there are six sets of weights produced (i.e., 3 regions and 2 variables). One example of a weighting strategy would be the
BMA weighting scheme used on the CMIP5 ensemble trained on tmax for the entire domain. Another weighting strategy
example would be a skill-based weighting scheme used on the LOCA ensemble trained on precipitation in Louisiana. There
are a total of 48 such model weighting strategies (ensemble choice x variable choice x weighting scheme choice x domain
choice = 2 x 2 x 3 x 4 = 48) and corresponding multi-model weights. In addition to the set of 48 weighting strategies, an
unweighted ensemble mean is also used. The unweighted strategy effectively has equal weights for all models regardless of
variable, domain, or ensemble. As such, including an unweighted ensemble mean represents only one additional modeling

strategy, which brings the total to 49 model averaging strategies in our experimental matrix.

The various model weights from each strategy are calculated, and the derived sets of weights are then applied to create
ensemble means for the three domains and two variables. In other words, a certain set of weights can be used to determine
projected changes in either tmax or pr and can be used for any of the domains, the full domain, Louisiana, or New Mexico.
There are a total of 288 such maps that can be created to investigate future climate change. These are 48 model averaging
choices described above, applied to 2 different variables in 3 different domains, or 48 x 2 x 3 = 288 combinations of maps.
This collection of 288 is in addition to the results from unweighted means of temperature and precipitation. Including these

unweighted means, there are 290 combinations of maps from this project. This explains the highly dimensional experimental
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matrix applied in this study, which provides the total uncertainty that is estimated with our future change projections. See
Figure 2 for a schematic describing the various choices made to create each model weighting strategy and the choices made
to how each of these model weights can be applied. However, we also note that there will be several duplicates in the
experiment. For example, when using the same weighting strategy, the resulting ensemble mean in a subdomain will be the

same as the resulting ensemble mean in the same portion of the full domain.

3 Results

This section will first consider the sensitivity of the model weighting schemes to the ensembles, variables, and domains used.

This section will then focus on the bias and change signal from the resulting combinations of ensemble means.

3.1 Ensemble weights — results from various model weighting strategies

The resulting sets of model weights for the CMIP5 ensemble for each weighting strategy are shown in Figure 3. The 24 sets
of model weights for the LOCA ensemble for each weighting strategy are shown in Figure 4. Alongside the best-estimated
weight from strategies using the BMA weighting scheme, the box-whisker plots in the image show the spread of weights
from the 100 iterations of BMA for each ensemble, variable, and domain where BMA was used to derive model weights.

The red dots in these figures depict the outliers from the BMA distributions of weights.

One observation is that the weighting schemes themselves are all sensitive to the ensemble, variable, and domain for which
they are derived in terms of which GCMs are given the highest weight. This is reflected further when one considers which
models from each ensemble are given the strongest weights by each model weighting scheme (Table 1). From Table 1, no
model appears in the top three for all weighting strategies. The model most consistently in the top three is the CanESM2,
which is in the top three for 35.4% of the 48 weighting strategies.

Although the weighting schemes are sensitive to ensemble, variable, and domain, the weights produced by Skill, SI-h, and
SI-c are similar to each other, while the BMA weighting tends to be different. This is particularly true for precipitation and
follows what was shown by Wootten et al. (2020a) and Massoud et al. (2020a). The BMA approach provides a distribution
of weights for each model and this distribution of weights overlaps the weights of the Skill, SI-h, and SI-c approaches. This
distribution of weights covers a broader region of the model weight space, but the best BMA combination (marked as orange
squares in Figures 3 and 4) is noticeably different from the other schemes. The BMA best combination is the single set of
model weights from the BMA posterior that creates a weighted model average that has the best fit to the observations.
Although all the samples of model weights from the BMA posterior have an improved fit compared to the original ensemble
mean and provide a range of model weights as shown in the BMA distributions in Figures 3 and 4, the BMA best

combination is considered the best of all these samples.
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The pattern of the weights, shown in Figures 3 and 4, changes significantly between weighting strategies, particularly among
the BMA weights and in the CMIP ensemble. Among the BMA and CMIP5 ensemble combinations (Figure 3), there are no
common patterns to the model weights based on domain or variable. However, while the patterns between Skill, SI-h, and
SI-c are similar to each other, their magnitude is consistently smaller than BMA. This indicates that when applying different
weighting schemes, different models are given higher weights when applying the CMIP5 ensemble for different domains or

variables.

When using the LOCA ensemble (Figure 4), there is more consistency in which models are given higher weights,
particularly for weighting strategies using high temperature (tmax). For the LOCA ensemble, the distribution of the BMA
weights has a similar pattern across all three domains for the tmax derived weights, and the best-weighted models are also
somewhat consistent between domains. Similar to the CMIPS5 ensemble in Figure 3, the BMA weights tend to be larger for
the highest weighted models in the LOCA ensemble compared to those derived with the Skill, SI-h, and SI-c schemes. We
speculate that the reason for this is because the Skill, SI-h, and SI-c schemes involve the ‘skill” of each model when
estimating weights, and since the LOCA downscaled ensemble is bias corrected, most models have similar skill and
therefore similar weights. For weights derived with tmax, the Skill, SI-h, and SI-c have very similar patterns for both the full
and New Mexico domains. The Skill and SI-h weighting schemes, which focus entirely on the historical period, created
nearly identical weights for the 26 models when weights are derived based on tmax in the full and New Mexico domains.
While the weights from Skill and SI-h are not identical when derived using tmax in the Louisiana domain, the weights for
the LOCA ensemble in Louisiana generally range from 0.025 to 0.050. The SI-c weights derived using tmax in the LOCA
ensemble have a similar pattern between the full and New Mexico domains, but a very different pattern in the Louisiana
domain (Figure 4). In addition, the SI-c also tends to have a different pattern from the Skill and SI-h weights when tmax and
LOCA are used for derivation. There is much more sensitivity to domains when using precipitation and the LOCA ensemble
to derive weights, compared to that of tmax. Regardless of the weighting scheme, there is no common pattern in the weights
between domains when the LOCA ensemble and precipitation are used to derive weights. Again, the BMA scheme applies
much larger weights to the top models for precipitation-based LOCA weighting compared to the Skill, SI-h, and SI-c

weighting schemes.

The LOCA statistical downscaling method, like most statistical downscaling methods, incorporates a bias correction
approach, which inherently improves the historical skill. In addition, the Skill, SI-h, and SI-c methods focus primarily on the
first moment of the ensemble distribution when deriving weights, which limits the ability to penalize for co-dependence
between models in an ensemble. Finally, the BMA considers multiple moments of the ensemble distribution using multiple
samples via Markov Chain Monte Carlo (MCMC), rewarding skillful models and penalizing co-dependency. Of the

weighting combinations used here, the BMA tends to be the most sensitive to the ensemble, variable, and domain used to
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determine weights. Given that the BMA focuses on multiple moments of the distribution and is most sensitive to the
different choices considered here (ensemble, variable, and domain) it is plausible that the BMA approach responds to and

captures the changes in skill and co-dependence among the ensemble members resulting from these various choices.

3.2 Size of the experimental matrix of model weights and how to apply them

One can apply the 48 weighting strategies described above in a similar manner to the way the weighting strategies
themselves are created. For example, one could apply the weights derived from the CMIP5 ensemble precipitation for the
full domain using BMA to create a weighted ensemble mean of CMIPS5 precipitation for Louisiana. As shown in Figure 2,
each weighting strategy is applied to the variables (high temperature and precipitation) and domains (full, Louisiana, and
New Mexico) to produce a set of ensemble means. Altogether, the maximum number of weighted ensemble means produced
with these 48 weighting strategies is 48x2x3=288. However, this maximum number of ensemble means resulting from the
experiment contains several duplicates. For example, when using the same set of weights, the resulting ensemble mean in a
subdomain will be the same as the resulting ensemble mean from the same portion of the full domain. As such, the actual

number of ensemble means in this experiment is smaller than 288.

3.3 Historical Bias and Future Projected Changes in unweighted model ensembles

The figures shown in later sections focus on the ensemble means from the 48 weighting strategies applied to the full domain.
The discussion surrounding bias and projected changes represented by the ensemble means in the following subsection will
be compared to the unweighted ensemble means of high temperature and precipitation from the CMIPS5 and LOCA
ensembles. For this reason, we first show the historical ranges and the ranges of the future projected changes using the
unweighted model ensemble (Figure 5) before reporting on the results using the weighted ensembles. The unweighted
CMIPS ensemble as a whole tends to underestimate high temperatures in the historical period, overestimate precipitation in
New Mexico, and underestimate precipitation in Louisiana (top left panel of Figure 5). The LOCA ensemble is much closer
to the Livneh observations, which is expected given the bias correction applied in statistical downscaling. Yet, for the
unweighted LOCA ensemble, there is a tendency to underestimate precipitation in the whole domain and the New Mexico
subdomain and to overestimate temperature in all of the domains (bottom left panel of Figure 5). For the future projected
changes in the unweighted CMIP and LOCA ensembles, the projected high temperature changes are consistent between
ensembles (bottom right panel of Figure 5), and the projected changes in precipitation are less variable in the LOCA
ensemble for the New Mexico domain and more variable for the Louisiana domain (top right panel of Figure 5). Given this
baseline information, the following subsections discuss and compare the unweighted and weighted ensemble means for each

ensemble (CMIPS and LOCA).
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3.4 Historical Bias and Future Projected Changes using the weighted ensembles

The 48 weighting strategies are then applied across three domains and two variables to produce 288 ensemble means. The
mean projected changes can be sensitive to the weighting scheme, domain, and variable used. The future projected changes
from the different ensemble means are summarized in Figure 6, where the boxplots represent the range of the ensemble mean
change from the 100 BMA posterior weights. When the weighting strategy uses tmax, the resulting CMIP5 mean projected
change shows predominantly a decrease in precipitation for all domains (top-left group of panels in Figure 6, top row of
figures). For the weighting strategies using tmax with the LOCA ensemble (top right group of panels in Figure 6, top row of

figures), the mean precipitation projections are more variable concerning the domain the weighting is applied.

Using weighting strategies using precipitation and the CMIP5 ensemble, the mean projected precipitation
increases/decreases when Louisiana/New Mexico is used to derive weights across all three applied domains (top-left group
of panels in Figure 6, bottom row of figures). For weighting strategies using precipitation in the LOCA ensemble, the mean
projected precipitation generally decreases for most weighting schemes (top right group of panels in Figure 6, bottom row of
figures), except for the resulting means for Louisiana with the BMA weighting scheme. In contrast to precipitation, the
ensemble mean changes for tmax are fairly consistent for both CMIP and LOCA ensembles (bottom groups of panels in
Figure 6, all rows of figures), with all model weighting strategies indicating a consistent increase in temperature for all

domains.

As for the uncertainty in the results, we find in our matrix of results a reduction in the overall uncertainty compared to the
spread in the original ensemble. This can be seen when comparing the results of the unweighted (Figure 5) and weighted
ensembles (Figure 6). Although the maps of f