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Abstract. Given the increasing use of climate projections and multi-model ensemble weighting for a diverse array of 

applications, this project assesses the sensitivities of climate model weighting strategies, and their resulting ensemble means, 10 
to multiple components, such as the weighting schemes, climate variables, or spatial domains of interest. The purpose of this 

study is to assess the sensitivities associated with multi-model weighting strategies. The analysis makes use of global climate 

models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), and their statistically downscaled counterparts 

created with the Localized Canonical Analogs (LOCA) method. This work focuses on historical and projected future mean 

precipitation and daily high temperatures of the south-central United States. Results suggest that the model weights and the 15 
corresponding weighted model means can be sensitive to the weighting strategy that is applied. For instance, when 

estimating model weights based on Louisiana precipitation, the weighted projections show a wetter and cooler south-central 

domain in the future compared to other weighting strategies. Alternatively, for example, when estimating model weights 

based on New Mexico temperature, the weighted projections show a drier and warmer south-central domain in the future. 

However, when considering the entire south-central domain in estimating the model weights, the weighted future projections 20 
show a compromise in the precipitation and temperature estimates. As for uncertainty, our matrix of results provided a more 

certain picture of future climate compared to the spread in the original model ensemble. If future impact assessments utilize 

weighting strategies, then our findings suggest that how the specific weighting strategy used with climate projections may 

depend on the needs of an impact assessment or adaptation plan.  

1 Introduction 25 

The simulation output from climate models has been traditionally used for research into characterizing and understanding the 

climate system across multiple spatial scales. In recent years, ensembles of climate projections are increasingly used for 

impact and vulnerability assessments (e.g., Allstadt et al. 2015; Basso et al. 2015; Pourmoktharian et al. 2016; Gergel et al. 

2017; Massoud et al., 2018, 2019, 2020ab; Wootten et al., 2020ab). These include large-scale assessments, such as the 

National Climate Assessment (NCA, Wuebbles et al. 2017), and local and regional assessments for individual areas of the 30 
United States. Large and local scale assessments can make use of the entire ensemble of climate projections (composed of 
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global climate models [GCMs]) or make use of the unweighted ensemble mean. For these assessments, using the ensemble 

mean provides a useful and convenient way to assess projected changes in a region. Given the coarse resolution of the GCMs 

(typically > 100km2), many of these assessments make use of downscaled climate projections to translate larger-scale 

changes to local scales.   35 
  

Alongside the use of climate modeling and downscaling for climate research and increased use for impact and vulnerability 

assessments, there has also been a transition in the last 20 years toward using weighted multi-model means. Projections 

based on model weights derived from historical skill have been shown to have greater accuracy than an arithmetic multi-

model mean in many cases, provided that there is enough information to determine a weight for each model (Knutti et al. 40 
2010; Weigel et al. 2008; Peña and Van den Dool, 2008; Min and Hense, 2006). More recently, weighting based solely on 

skill has given way to weighting based upon both skill and independence in recognition of differences in skill between 

regions and variables and the lack of independence between GCMs resulting from common bases in model structure 

(Massoud et al. 2019, 2020a; Sanderson et al. 2015b, 2017; Knutti, 2010; Knutti et al. 2017). In acknowledgment of studies 

indicating that the global climate models are not fully independent, the Fourth National Climate Assessment (NCA4) was the 45 
first major climate assessment in the United States to use skill and independence-based model weighting on the ensemble of 

climate models (Sanderson and Wehner, 2017). 

  

Several studies have examined the effect of model weighting on the outcome of climate change projections from multiple 

ensembles. For example, in Massoud et al. (2019), the authors utilized information from various model averaging approaches 50 
to evaluate an ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012), finding that 

Bayesian Model Averaging (BMA) reduced the error by one third and constrained the uncertainty to 20-25% of the raw 

ensemble for projections of atmospheric river frequency. Massoud et al. (2020a) found that BMA constrained the uncertainty 

in precipitation projections over the contiguous United States (CONUS) to be a third of that in the original ensemble. In 

Wootten et al. (2020a), the authors found that ensemble weighting can change dramatically when weighting schemes are 55 
applied to statistically downscaled ensembles compared to a raw GCM ensemble. 

  

Other studies have applied model weighting to a certain variable or to multiple variables and went on to investigate climate 

change impacts for other variables (e.g., energy and hydrologic cycles). For example, Knutti et al. (2017) extended the 

weighting scheme of Sanderson et al (2015a; 2017) to projections of Arctic September temperatures and sea ice, finding that 60 
the uncertainty could be constrained by the scheme while noting the proposed weighting scheme is one of several that could 

be used for multiple applications.  The National Climate Assessment had previously considered weighting based only on 

commonly used climate variables (e.g., precipitation and temperature, Wuebbles et al., 2017), but discussions to use 

additional variables, such as equilibrium climate sensitivity, are currently ongoing. Other studies have calculated weights 

based on metrics in one domain (e.g. globally) and then applied them to projections for another domain (e.g. North America 65 
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or Europe) (Massoud et al., 2019). However, these studies are rare, as are studies providing comparisons of various 

weighting schemes. Examples of these studies include Shin et al. (2020), Brunner et al. (2020a), and Kolosu et al. (2021). 

Shin et al. (2020) suggested that researchers may provide results from several weighted ensembles to capture the 

uncertainties of future changes but did not explore weighting strategies beyond different weighting schemes. Brunner et al 

(2020a) found that the region can influence the agreement between approaches to constrain uncertainty in the CMIP5 110 
multimodel ensemble. Finally, Kolusu et al. (2021) focusing on a water-related decision context in Africa, finds that 

projected risk profiles were less sensitive to the weighting schemes used. Such studies as in these examples tend to focus on 

the sensitivity associated with one to a few components of a multi-model weighting strategy. No prior study (to the author’s 

knowledge) offers a comprehensive cross-comparison of the sensitivity resulting from the choices of the domain, variable, 

weighting scheme, and ensemble that comprise multi-model weighting strategies. In addition, the primary focus of these 115 
studies are continental regions although climate projections are now being used by regional and local organizations for 

climate impacts assessments and climate adaptation with additional modeling efforts. 

  
Taking these points into consideration, we assess the choices involved with using model weighting strategies by developing 

and investigating a multi-dimensional sensitivity matrix for applying model averaging for the south-central region of the US. 120 
To this end, we look at mean precipitation and high temperatures as our climate variables of interest. Furthermore, we use 

two sub-domains, the states of Louisiana and New Mexico, alongside the south-central U.S. study region. Overall, we 

created and apply various sets of model weights based on several choices that are typically involved in creating a model 

weighting strategy: a) the choice of the ensemble (CMIP5 or downscaled), b) the choice of model weighting scheme, c) the 

choice of climate variable of interest (precipitation vs temperature), and d) the choice of the domain used to derive weighting 125 
(entire south-central region vs smaller sub-domain). Therefore, one example of a strategy that we apply to estimate a set of 

weights uses the BMA weighting method on the CMIP5 ensemble projections of the precipitation variable for the Louisiana 

domain. To our knowledge, there has not been a model weighting study that included as many dimensions in the 

experimental matrix as this study, again these are model ensemble, domain, variable, and importantly, the weighting scheme 

itself. Prior studies have examined some of these dimensions individually, but the comprehensive experimental matrix used 130 
here allows the comparison of modeling weighting results based on all dimensions. This is important because there could be 

high sensitivities in the estimated model weights based on how the weighting strategy is formulated.  

  

Weighted multi-model means have primarily been focused on GCMs and continental scales (Brunner et al. 2019; Pickler and 

Mölg, 2021; Sperna Weiland et al. 2021). However, the use of climate projections has extended to regional, state, local, and 135 
tribal uses for climate impact assessments and adaptation planning. In these regional to local efforts, the raw projection data 

has been used but also provided to impact models (such as hydrology or crop models). Currently, impact assessments outside 

the traditional venues of climate modeling tend not to use weighted multi-model means but tend to use unweighted means 

created using downscaled GCM ensembles. Whether to use model weighting or not is currently a hot topic in the climate 
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modeling community, and the current study aims to comprehensively assess the sensitivity associated with multi-model 

ensemble weighting schemes and strategies to add further context to this debate. For reference for the reader, we define 150 
weighting schemes to refer to the numerical approach to weighting alone, such as Bayesian Model Averaging (BMA) or the 

approach defined by Sanderson et al. (2015, 2017). We define a weighting strategy as the weighting scheme and other 

choices made when using the weighting scheme to derive model weights. For example, a weighting strategy would be using 

the BMA weighting scheme to derive weights using the continental United States and daily high temperature alone and 

another weighting strategy would be using the BMA weighting scheme to derive weights using the Southern Great Plains of 155 
the United States and daily precipitation alone. Both such examples use the BMA weighting scheme, but with different 

choices made to derive weights, making the two examples different weighting strategies.  

 

Our analysis results in a wide array of possible future outcomes, which comes with high uncertainties on what to expect in 

the future in this domain. The main question we are after is whether or not some variables or domains have projected climate 160 
change signals that have high certainty, and alternatively, we would like to find out whether or not there are climate variables 

in any of the regions that have highly uncertain climate change projections, and if the use of model weighting can provide a 

better sense of this uncertainty. We aim to address these uncertainties by applying the multi-dimensional experimental 

matrix of model weighting strategies and hope to inform the scientific community of these sensitivities for the benefit of 

future stakeholders, including climate modelers and boundary organizations providing climate services. Our purpose in this 165 
study is not to address the skill of the multi-model weighting strategies in future projections, but rather to assess under what 

circumstances the projections are sensitive to multi-model weighting strategies and why.  

2 Methods and Data 

2.1 Study Domain and Variables 

The south-central United States (from about 26°N 108.5°W to 40°N 91°W) has a varied topography with a sharp gradient in 170 
mean annual precipitation from the east (humid) to the west (arid), and a generally warm climate. The Mississippi River 

Valley and the Ozark Mountains in the eastern portion of the region (elevations of 200–800 m), the Rocky Mountains in the 

west (1500–4400 m), and the Gulf of Mexico in the southeast (near sea level). Average annual precipitation in the southeast 

portion of the domain can be eight times higher than drier western locations and average daily high temperatures can reach 

40°C (Figure 1). 175 

2.2 Climate Projection Datasets 

We use one member each from 26 GCMs in the CMIP5 archive to form the GCM multi-model ensemble. To form the 

downscaled ensemble, the same 26 GCMs are used from the downscaled projections created with the Localized Constructed 

Analogs (LOCA) method (Pierce et al. 2014). The LOCA-downscaled projections have been used in other studies, including 
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the NCA4 (USGCRP, 2017) and Wootten et al. (2020a). CMIP5 GCMs are used in this study because LOCA downscaling 

with CMIP6 was not available at the time of this writing. That said, the weighting schemes used here are applicable also to 

other ensembles such as CMIP6 and CMIP3. Therefore, the findings of this study are generalizable to other ensembles. 

Table S1 lists the GCMs used for both the GCM ensemble (hereafter CMIP5 ensemble) and downscaled ensemble (hereafter 185 
LOCA ensemble). See Wootten et al. (2020a) for more details on the climate projection datasets. 

 

To facilitate analysis, the data for each ensemble member and the gridded observations are interpolated from their native 

resolution to a common 10 km grid using a bi-linear interpolation similar to that described in Wootten et al. (2020b). We 

examine projected daily precipitation (pr) and daily high temperature (tmax) changes from 1981–2005 to 2070–2099 under 190 
the RCP 8.5 scenario, which ramps the anthropogenic radiative forcing to 8.5 W/m2 by 2100. We chose RCP 8.5 to 

maximize the change signals and allow us to analyze greater differences between weight schemes and downscaling 

techniques. The historical period (1981–2005) is used for both the historical simulations and observations to facilitate 

comparisons with other studies (Wootten et al. 2020b) and because the historical period of the CMIP5 archive ends in 2005 

(Taylor et al. 2012).  195 

2.3 Observation Data 

Many publicly available downscaled projections (including LOCA) are created using gridded observation-based data for 

training. Gridded observations are based largely on station data that are adjusted and interpolated to a grid in a manner that 

attempts to account for biases, temporal/spatial incoherence, and missing station data (Behnke et al. 2016; Wootten et al. 

2020b; Karl et al. 1986; Abatzoglou, 2013). In this study, we use Livneh version 1.2 (hereafter Livneh [Livneh et al. 2013]), 200 
interpolated to the same 10 km grid using bilinear interpolation, as the gridded observation data used for comparison to the 

ensembles. Livneh is used in part to facilitate any comparisons between this study and the results of Wootten et al. 

(2020a).  The LOCA ensemble used the Livneh data as the training data, so it is expected that LOCA will be more accurate 

than the CMIP ensemble when compared to the Livneh dataset. While we recognize that different gridded observations and 

downscaling techniques influence projections of precipitation variables (e.g., number of days with rain, heavy rain events), 205 
the effect is minimal on the mean annual precipitation (Wootten et al. 2020b). Therefore, we find it is appropriate to make 

use of only one statistical downscaling method and one gridded observation dataset. 

2.4 Weighting Schemes 

In this analysis, we make use of model weighting schemes detailed in Wootten et al. (2020a) and similar to the weighting 

schemes applied in Massoud et al. (2020a). The resulting weighting schemes are applied multiple times to complete an 210 
experimental matrix of weighting strategies allowing for in-depth comparisons of the sensitivity of the ensemble mean to 

various approaches to deriving and applying the multi-model weights. These weighting methods include the unweighted 

model mean, the historical skill weighting (hereafter Skill), the historical skill and historical independence weighting (SI-h), 
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the historical skill and future independence weighting (SI-c), and the Bayesian Model Averaging (BMA) method. All of the 

methods are calculated in the same manner as in Wootten et al (2020a). In essence, the unweighted strategy takes the simple 215 
mean of the entire ensemble. The Skill scheme utilizes each model’s skill in representing the historical observations via the 

root mean square error (RMSE) of the model against the historical observations. The SI-h scheme is the same weighting 

scheme as shown in Sanderson et al. (2017), creating an independence and skill weight using the historical simulations of 

each model in an ensemble. To briefly summarize the SI-h (Sanderson et al. 2017) approach, an intermodel distance matrix 

is calculated using the area-weighted RMSE of each model with the other models and with observations. This distance 220 
matrix is used to calculate independence and skill weights, where the distances between one model and every other model 

are used to calculate the independence weight and the distance between one model and the observations are used to calculate 

the skill weight. The overall weight given to each model is the product of the skill and independence weights normalized 

such that all the overall weights for each model sums to one. The SI-c scheme is unique to Wootten et al. (2020a) and 

modifies the Sanderson et al. (2017) approach to use historical skill to derive the skill component of the weighting and the 225 
climate change signal (i.e., the future projections) to derive the independence component of the weighting. To achieve this, 

the SI-c uses two distance matrices, the first distance matrix (used to calculate the skill weight) is the same as the SI-h, while 

the second distance matrix (used to calculate the independence weight) is the area-weighted RMSE of the change signals 

between the models. The overall weights are then calculated in the same way as the overall weights from SI-c. The BMA 

scheme employs a probabilistic search algorithm to find an optimal set of model weights that produce a model average that 230 
has high skill and low uncertainty when compared to the observation and its uncertainty. BMA is an approach that produces 

a multi-model average created from optimized model weights, which correspond to a distribution of weights for each model, 

such that the BMA-weighted model ensemble average for the historical simulation closely matches the observational 

reference constraint. In essence, the close fit to observations is a consequence of applying higher weights on more skillful 

models. Furthermore, since the BMA method estimates a distribution of model weights, various model combinations become 235 
possible, which explicitly takes care of the model dependence issue. The equations for all the weighting schemes used in this 

study are provided in the supplemental material, and readers are referred to Wootten et al. (2020a) and Massoud et al. (2019, 

2020a) for more details on each method. 

2.5 Experimental Matrix 

Each weighting scheme (Skill, SI-h, SI-c, and BMA) is applied to both ensembles (CMIP5 and LOCA) and three domains 240 
(south-central U.S., Louisiana, New Mexico) to fill out an experimental matrix of weights, representing a collection of 

weighting strategies. As a result, for each weighting scheme (skill, SI-h, SI-c, and BMA) and ensemble (CMIP5 and LOCA), 

there are six sets of weights produced (i.e., 3 regions and 2 variables). One example of a weighting strategy would be the 

BMA weighting scheme used on the CMIP5 ensemble trained on tmax for the entire domain. Another weighting strategy 

example would be a skill-based weighting scheme used on the LOCA ensemble trained on precipitation in Louisiana. There 245 
are a total of 48 such model weighting strategies (ensemble choice x variable choice x weighting scheme choice x domain 
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choice = 2 x 2 x 3 x 4 = 48) and corresponding multi-model weights. In addition to the set of 48 weighting strategies, an 

unweighted ensemble mean is also used. The unweighted strategy effectively has equal weights for all models regardless of 

variable, domain, or ensemble. As such, including an unweighted ensemble mean represents only one additional modeling 

strategy, which brings the total to 49 model averaging strategies in our experimental matrix. 250 
  

The various model weights from each strategy are calculated, and the derived sets of weights are then applied to create 

ensemble means for the three domains and two variables. In other words, a certain set of weights can be used to determine 

projected changes in either tmax or pr and can be used for any of the domains, the full domain, Louisiana, or New Mexico. 

There are a total of 288 such maps that can be created to investigate future climate change. These are 48 model averaging 255 
choices described above, applied to 2 different variables in 3 different domains, or 48 x 2 x 3 = 288 combinations of maps. 

This collection of 288 is in addition to the results from unweighted means of temperature and precipitation. Including these 

unweighted means, there are 290 combinations of maps from this project. This explains the highly dimensional experimental 

matrix applied in this study, which provides the total uncertainty that is estimated with our future change projections. See 

Figure 2 for a schematic describing the various choices made to create each model weighting strategy and the choices made 260 
to how each of these model weights can be applied. However, we also note that there will be several duplicates in the 

experiment. For example, when using the same weighting strategy, the resulting ensemble mean in a subdomain will be the 

same as the resulting ensemble mean in the same portion of the full domain.  

3 Results 

This section will first consider the sensitivity of the model weighting schemes to the ensembles, variables, and domains used. 265 
This section will then focus on the bias and change signal from the resulting combinations of ensemble means.  

3.1 Ensemble weights – results from various model weighting strategies 

The resulting sets of model weights for the CMIP5 ensemble for each weighting strategy are shown in Figure 3. The 24 sets 

of model weights for the LOCA ensemble for each weighting strategy are shown in Figure 4. Alongside the best-estimated 

weight from strategies using the BMA weighting scheme, the box-whisker plots in the image show the spread of weights 270 
from the 100 iterations of BMA for each ensemble, variable, and domain where BMA was used to derive model weights. 

The red dots in these figures depict the outliers from the BMA distributions of weights. 

 

One observation is that the weighting schemes themselves are all sensitive to the ensemble, variable, and domain for which 

they are derived in terms of which GCMs are given the highest weight. This is reflected further when one considers which 275 
models from each ensemble are given the strongest weights by each model weighting scheme (Table 1). From Table 1, no 
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model appears in the top three for all weighting strategies. The model most consistently in the top three is the CanESM2, 

which is in the top three for 35.4% of the 48 weighting strategies. 

 
Although the weighting schemes are sensitive to ensemble, variable, and domain, the weights produced by Skill, SI-h, and 280 
SI-c are similar to each other, while the BMA weighting tends to be different. This is particularly true for precipitation and 

follows what was shown by Wootten et al. (2020a) and Massoud et al. (2020a). The BMA approach provides a distribution 

of weights for each model and this distribution of weights overlaps the weights of the Skill, SI-h, and SI-c approaches. This 

distribution of weights covers a broader region of the model weight space, but the best BMA combination (marked as orange 

squares in Figures 3 and 4) is noticeably different from the other schemes. The BMA best combination is the single set of 285 
model weights from the BMA posterior that creates a weighted model average that has the best fit to the observations. 

Although all the samples of model weights from the BMA posterior have an improved fit compared to the original ensemble 

mean and provide a range of model weights as shown in the BMA distributions in Figures 3 and 4, the BMA best 

combination is considered the best of all these samples.  

 290 
The pattern of the weights, shown in Figures 3 and 4, changes significantly between weighting strategies, particularly among 

the BMA weights and in the CMIP ensemble. Among the BMA and CMIP5 ensemble combinations (Figure 3), there are no 

common patterns to the model weights based on domain or variable. However, while the patterns between Skill, SI-h, and 

SI-c are similar to each other, their magnitude is consistently smaller than BMA. This indicates that when applying different 

weighting schemes, different models are given higher weights when applying the CMIP5 ensemble for different domains or 295 
variables. 

 

When using the LOCA ensemble (Figure 4), there is more consistency in which models are given higher weights, 

particularly for weighting strategies using high temperature (tmax). For the LOCA ensemble, the distribution of the BMA 

weights has a similar pattern across all three domains for the tmax derived weights, and the best-weighted models are also 300 
somewhat consistent between domains. Similar to the CMIP5 ensemble in Figure 3, the BMA weights tend to be larger for 

the highest weighted models in the LOCA ensemble compared to those derived with the Skill, SI-h, and SI-c schemes. We 

speculate that the reason for this is because the Skill, SI-h, and SI-c schemes involve the ‘skill’ of each model when 

estimating weights, and since the LOCA downscaled ensemble is bias corrected, most models have similar skill and 

therefore similar weights. For weights derived with tmax, the Skill, SI-h, and SI-c have very similar patterns for both the full 305 
and New Mexico domains. The Skill and SI-h weighting schemes, which focus entirely on the historical period, created 

nearly identical weights for the 26 models when weights are derived based on tmax in the full and New Mexico domains. 

While the weights from Skill and SI-h are not identical when derived using tmax in the Louisiana domain, the weights for 

the LOCA ensemble in Louisiana generally range from 0.025 to 0.050. The SI-c weights derived using tmax in the LOCA 

ensemble have a similar pattern between the full and New Mexico domains, but a very different pattern in the Louisiana 310 
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domain (Figure 4). In addition, the SI-c also tends to have a different pattern from the Skill and SI-h weights when tmax and 

LOCA are used for derivation. There is much more sensitivity to domains when using precipitation and the LOCA ensemble 

to derive weights, compared to that of tmax. Regardless of the weighting scheme, there is no common pattern in the weights 

between domains when the LOCA ensemble and precipitation are used to derive weights. Again, the BMA scheme applies 

much larger weights to the top models for precipitation-based LOCA weighting compared to the Skill, SI-h, and SI-c 315 
weighting schemes.  

 

The LOCA statistical downscaling method, like most statistical downscaling methods, incorporates a bias correction 

approach, which inherently improves the historical skill. In addition, the Skill, SI-h, and SI-c methods focus primarily on the 

first moment of the ensemble distribution when deriving weights, which limits the ability to penalize for co-dependence 320 
between models in an ensemble. Finally, the BMA considers multiple moments of the ensemble distribution using multiple 

samples via Markov Chain Monte Carlo (MCMC), rewarding skillful models and penalizing co-dependency. Of the 

weighting combinations used here, the BMA tends to be the most sensitive to the ensemble, variable, and domain used to 

determine weights. Given that the BMA focuses on multiple moments of the distribution and is most sensitive to the 

different choices considered here (ensemble, variable, and domain) it is plausible that the BMA approach responds to and 325 
captures the changes in skill and co-dependence among the ensemble members resulting from these various choices. 

3.2 Size of the experimental matrix of model weights and how to apply them 

One can apply the 48 weighting strategies described above in a similar manner to the way the weighting strategies 

themselves are created. For example, one could apply the weights derived from the CMIP5 ensemble precipitation for the 

full domain using BMA to create a weighted ensemble mean of CMIP5 precipitation for Louisiana. As shown in Figure 2, 330 
each weighting strategy is applied to the variables (high temperature and precipitation) and domains (full, Louisiana, and 

New Mexico) to produce a set of ensemble means. Altogether, the maximum number of weighted ensemble means produced 

with these 48 weighting strategies is 48x2x3=288. However, this maximum number of ensemble means resulting from the 

experiment contains several duplicates. For example, when using the same set of weights, the resulting ensemble mean in a 

subdomain will be the same as the resulting ensemble mean from the same portion of the full domain. As such, the actual 335 
number of ensemble means in this experiment is smaller than 288.  

3.3 Historical Bias and Future Projected Changes in unweighted model ensembles 

The figures shown in later sections focus on the ensemble means from the 48 weighting strategies applied to the full domain. 

The discussion surrounding bias and projected changes represented by the ensemble means in the following subsection will 

be compared to the unweighted ensemble means of high temperature and precipitation from the CMIP5 and LOCA 340 
ensembles. For this reason, we first show the historical ranges and the ranges of the future projected changes using the 

unweighted model ensemble (Figure 5) before reporting on the results using the weighted ensembles. The unweighted 
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CMIP5 ensemble as a whole tends to underestimate high temperatures in the historical period, overestimate precipitation in 

New Mexico, and underestimate precipitation in Louisiana (top left panel of Figure 5). The LOCA ensemble is much closer 

to the Livneh observations, which is expected given the bias correction applied in statistical downscaling. Yet, for the 345 
unweighted LOCA ensemble, there is a tendency to underestimate precipitation in the whole domain and the New Mexico 

subdomain and to overestimate temperature in all of the domains (bottom left panel of Figure 5). For the future projected 

changes in the unweighted CMIP and LOCA ensembles, the projected high temperature changes are consistent between 

ensembles (bottom right panel of Figure 5), and the projected changes in precipitation are less variable in the LOCA 

ensemble for the New Mexico domain and more variable for the Louisiana domain (top right panel of Figure 5). In addition, 350 
the right-hand panels of Figure 5 show that the projected changes around the mean from the raw ensemble are significantly 

larger than the reduced spread in Figure 6 (particularly from the BMA results) in the weighted ensembles. This suggests that 

the raw ensemble has less confidence for both variables, both ensembles, and all three regions compared to the weighted 

ensembles. Given this baseline information, the following subsections discuss and compare the unweighted and weighted 

ensemble means for each ensemble (CMIP5 and LOCA). The weights for each model from each multi-model weighting 355 
strategy are given in Tables S2-S7.  

3.4 Historical Bias and Future Projected Changes using the weighted ensembles 

The 48 weighting strategies are then applied across three domains and two variables to produce 288 ensemble means. The 

mean projected changes can be sensitive to the weighting scheme, domain, and variable used. The future projected changes 

from the different ensemble means are summarized in Figure 6, where the boxplots represent the range of the ensemble mean 360 
change from the 100 BMA posterior weights. When the weighting strategy uses tmax, the resulting CMIP5 mean projected 

change shows predominantly a decrease in precipitation for all domains (top-left group of panels in Figure 6, top row of 

figures). For the weighting strategies using tmax with the LOCA ensemble (top right group of panels in Figure 6, top row of 

figures), the mean precipitation projections are more variable concerning the domain the weighting is applied.  

 365 
Using weighting strategies using precipitation and the CMIP5 ensemble, the mean projected precipitation 

increases/decreases when Louisiana/New Mexico is used to derive weights across all three applied domains (top-left group 

of panels in Figure 6, bottom row of figures). For weighting strategies using precipitation in the LOCA ensemble, the mean 

projected precipitation generally decreases for most weighting schemes (top right group of panels in Figure 6, bottom row of 

figures), except for the resulting means for Louisiana with the BMA weighting scheme. In contrast to precipitation, the 370 
ensemble mean changes for tmax are fairly consistent for both CMIP and LOCA ensembles (bottom groups of panels in 

Figure 6, all rows of figures), with all model weighting strategies indicating a consistent increase in temperature for all 

domains.  

 



11 
 

As for the uncertainty in the results, we find in our matrix of results a reduction in the overall uncertainty compared to the 375 
spread in the original ensemble. This can be seen when comparing the results of the unweighted (Figure 5) and weighted 

ensembles (Figure 6). Although the maps of future change and the results from Figure 6 show that the weighted ensemble 

means have different results based on the weighting strategy used, the overall uncertainty is still reduced when applying 

model weighting even when considering the many strategies implemented in this study. This is particularly evident when 

examining the results for those strategies using the BMA weighting scheme (Figure 6). 380 
 

Aside from the comparisons of the weighted mean change to the raw ensemble change and unweighted mean change, one 

can consider the magnitude of these means compared to the internal variability of the climate models and intermodel spread 

of the projected change. The intermodel spread calculated here is represented by the unweighted standard deviation of the 

projected change of ensemble members. The internal variability of the historical and future period is represented by the 385 
ensemble average of the standard deviation of each variable from each ensemble member over time (per Hawkins and 

Sutton, 2009; 2011, Maher et al. 2020) for each of the three domains (full, Louisiana, and New Mexico). However, we note 

that the forcing response is not removed given the temporal period is not continuous which is a caveat for this analysis. In 

the case of tmax, the projected changes from each ensemble mean is greater than the internal variability of the models and 

the intermodel spread regardless of the weighting scheme, ensemble, domain used to derive the weights, or the variable used 390 
to derive the weights (Figure 7). In contrast, the differences between weighting strategies do result in some differences in 

weighted means for the projected change in precipitation that are comparable to the internal variability and intermodel 

spread. For example, for the CMIP5 ensemble means weighted for Louisiana precipitation and applied to Louisiana 

precipitation, the difference between the BMA ensemble mean and the unweighted mean is comparable to the intermodel 

spread and internal variability. In addition, the difference between the BMA ensemble mean created based on Louisiana 395 
precipitation and all the weighted ensemble means created based on full domain precipitation is also comparable to the 

intermodel spread and internal variability. Overall, results in Figure 7 suggest that, in general, the projected changes in 

temperature are larger than the ensemble spread and the internal variability of temperature, whereas for precipitation, the 

projected changes are not as great as the original ensemble spread or the internal variability of precipitation. 

 400 
The following section and corresponding figures compare the results from the various weighting strategies applied in this 

study. Figure 8 looks at historical biases and Figure 9 shows the projected future change signals in precipitation for the for 

strategies using the CMIP5 ensemble. Figures 10 and 11 look at historical bias and projected future change signals in high 

temperature for CMIP5. Figure 12 looks at the projected future change signal in precipitation for weighting strategies using 

the LOCA ensemble, and Figure 13 looks at the projected future change signal in high temperature for weighting strategies 405 
using the LOCA ensemble. For an in-depth analysis of how the model weighting strategies impact the resulting historical 

bias and climate change signals shown in Figures 8-13, readers are referred to the supplementary section, with a discussion 

on the main findings reported in the next section. For additional results that complete the analysis, readers are referred to the 
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supplementary section (Figures S1-S6), which includes bias maps from the LOCA ensemble (S1-S2) as well as error 

distributions from the historical simulations of both ensembles (S3-S6). Figures S3-S6 indicate that all the weighting 410 
strategies used in this study resulted in higher skill for both high temperature and precipitation in all three domains. To 

summarize the results for skill, the RMSE of each weighting strategy is shown for all three domains for precipitation and 

high temperature in Table 2 and Table 3 and the RMSE for the unweighted cases are in Table 4. Of the weighting strategies 

using the CMIP5 ensemble 92%, 92%, and 75% have lower RMSE for precipitation than their unweighted counterparts for 

the full, New Mexico, and Louisiana domains. Similarly for the high temperature, 96%, 100%, and 79% of weighting 415 
strategies have lower RMSE than their unweighted counterparts for the full, New Mexico, and Louisiana domains. 

Therefore, most weighting strategies have higher skill than the unweighted CMIP5 ensemble. However, there is a similar 

pattern for weighting strategies using the LOCA ensemble. For precipitation, 79%, 58%, and 67% of weighting strategies 

using the LOCA ensemble have a lower RMSE than their unweighted counterparts for the full, New Mexico, and Louisiana 

domains. Similarly for high temperature, 88%, 88%, and 83% of weighting strategies using the LOCA ensemble have a 420 
lower RMSE than their unweighted counterparts. It is important to note that this analysis of RMSE and bias is for the 

historical period only. Prior studies have noted that reducing historical biases does not mean better performance during the 

future period (Dixon et al. 2016; Sanderson et al. 2017). Therefore, historical skill alone does not justify the use of any 

weighting strategy. In what follows, we do not recommend using any specific weighting strategy based on the historical 

skill. Rather, we focus on the sensitivity of the projected changes to the various weighting strategies.  425 

4 Discussion 

Among climate scientists and the climate modeling community, there is a debate regarding the weighting of multi-model 

ensembles and, if one does apply weighting, how to do so. This debate includes scientists involved in the development of 

climate projections for the United States’ Fifth National Climate Assessment (US 5th NCA report), as well as other national 

and international assessments. The authors of this study are involved in the development of climate projections for the US 5th 430 
NCA report via group discussions on climate modeling, downscaling, and model weighting, and these discussions include 

the same questions of interest in this study. The debate over climate model weighing, particularly as connected with the 

NCA, is a main reason that this study investigates an extensive and comprehensive research matrix. Previous studies, such as 

those of Sanderson et al (2015 and 2017) and Knutti (2017) have focused on the evaluation and application of singular 

weighting strategies, while other studies have begun to consider the added components of bias correction (Shin et al. 2020), 435 
additional approaches to weighting (Brunner et al. 2020b), and the sensitivities of multi-model ensemble weighting in small 

regions (Kolusu et al. 2021).  

 

This is the first study, to the authors’ knowledge, to comprehensively assess the sensitivities of the model weights and 

resulting ensemble means to the combinations of variables, domains, ensemble types (raw or downscaled), and weighting 440 



13 
 

schemes used for a large and complex region of the United States. The specific weighting schemes used include the 

Sanderson et al. (2017) approach and the Bayesian Model Averaging (BMA; Massoud et al. 2019, 2020a; Wootten et al. 

2020a). The former approach is a prominent weighting scheme used in the Fourth National Climate Assessment, while the 

BMA is an increasingly prominent technique that will be used to create the projections in the Fifth National Climate 

Assessment (NCA). The remaining two weighting schemes used are a variation of the Sanderson et al. (2017) method 445 
proposed by Wootten et al (2020a) and a common skill weighting approach. These weighting schemes are compared 

alongside the resulting values from an unweighted ensemble mean, which is the most commonly used from of multi-model 

ensemble averaging in the literature.  Therefore, this study quantifies multiple weighting sensitivities to inform the larger 

discussion on multi-model ensemble weighting. Our study assesses the sensitivities associated with multi-model weighting 

strategies but does not consider the skill of the model-weighting strategies in the future projections. This latter aspect is the 450 
subject of future work.  

4.1 Sensitivities of the Results to the Experimental Design 

The results from individual weighting schemes are sensitive to the choice of domain and variable of interest, regardless of 

whether the ensemble is downscaled or not. However, one can also note that the BMA weighting scheme tends to be more 

sensitive than the others. As noted by Wootten et al. (2020a) and Massoud et al. (2019, 2020a), the Skill, SI-h, and SI-c 455 
weighting schemes focus on the first moment of the distribution of a variable, while the BMA approach focuses on multiple 

moments of the distribution of weights. The BMA weighting can therefore produce weights that are significantly different 

from the other weighting schemes. In addition, the BMA will also be more sensitive to the differences between domains and 

variables that are provided to derive model weighting. This is particularly the case with regards to the CMIP5 ensemble 

results for both variables but also is evident in the LOCA ensemble results for precipitation. The ensemble weights are most 460 
sensitive to the variable and domain using the CMIP5 ensemble and the weights created with the LOCA ensemble are less 

sensitive. A statistical downscaling procedure reduces the bias of the ensemble members compared to the raw CMIP5 

ensemble, which likely results in there being less sensitivity when the LOCA ensemble is used. This is particularly likely for 

high temperatures, which is traditionally much less challenging for both global models and downscaling techniques to 

capture. 465 
 

We find that, for precipitation, the ensemble mean projected change from a multi-model ensemble is sensitive to the various 

choices associated with the derivation of model weighting. In contrast, for high temperature, the ensemble mean projected 

change is less sensitive. We also find that, while a weighting strategy offers greater skill than an unweighted ensemble mean, 

there are distinct difference based on the ensemble, variable, and domain of interest. The larger domain of the south-central 470 
region contains multiple climatic regions. The western portion of the domain includes the arid and mountainous New Mexico 

and Southern Colorado. The eastern portion of the domain is the much wetter and less mountainous area of Louisiana, 

Arkansas, and southern Missouri. The complexity of the region presents a challenge to GCM representation of precipitation 
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and temperature. Deriving ensemble weights based on Louisiana precipitation favors models which are wetter while deriving 

ensemble weights based on New Mexico precipitation favors those models which are drier. This effect translates into the 475 
projected changes for precipitation in the CMIP5 ensemble that can reverse the change signal in the domain (Figure 9). The 

sensitivity for precipitation is evident when precipitation is the focus for deriving model weights, but also present to a lesser 

degree when high temperature is the focus for deriving model weights. The high temperature changes are also sensitive to 

the domain when precipitation weighting is used because precipitation-based weighting favors wetter or drier models (Figure 

11). In contrast, the high temperature change from the CMIP5 ensemble is much less sensitive when calculated with weights 480 
derived from high temperatures. The sensitivity present using the CMIP5 ensemble is less apparent for the projected changes 

with the LOCA ensemble. LOCA ensemble means derived using the BMA weighting are more sensitive to the variable and 

domain used to derive weights. The LOCA downscaling, like most statistical downscaling methods, corrects the bias of the 

CMIP5 ensemble, pushing all models to have similar historical skill. It follows that the BMA weighting is more sensitive to 

the different choices considered here (ensemble, variable, and domain) and that the BMA weighting responds to and captures 485 
changes in skill and co-dependence resulting from the different options of ensemble, variable, and domain. One caveat in 

this study is that the sub-domains of New Mexico and Louisiana are small compared to the resolution of the GCMs in 

CMIP5. This suggests that natural variability may have had some effect on the results. In future work, the authors will repeat 

this analysis using the larger regions of the United States used in the National Climate Assessment. 

4.2 Consideration of weighting scheme, variables of interest, and domain choice 490 

This study finds that mean projections of temperature are much less sensitive to the weighting scheme used, while mean 

projections of precipitation are more sensitive, particularly if the domain is very humid or very arid (Figures 8-13). The use 

of multiple weighting strategies would allow for the sensitivities associated with model weighting to be captured and 

considered. 

 495 
The results from this study also suggest that weighting on specific variables could be used to address the large biases and co-

dependencies with respect to that variable among the models and produce ensemble means that reflect the appropriate 

confidence with regards to that variable. However, temperature, precipitation, and multiple other variables have strong 

physical relationships and thus are not fully independent themselves. As such, creating separate weights for variables 

independently may break the physical relationships between variables in resulting ensemble means. In addition, this study 500 
did not examine multivariate weighting strategies such as the implementation of SI-h in the Fourth National Climate 

Assessment (Sanderson and Wehner. 2017). A multivariate weighting strategy (a weighting scheme used with multiple 

variables in a given domain) will likely retain physical relationships between variables when used to calculate a multi-model 

ensemble mean. However, this was not explored in this study. In addition (to our knowledge),  the sensitivity of  multivariate 

weighting strategies has not been explored in prior literature. Future work will explore multivariate ensemble weighting in 505 
greater depth. 
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Climate model evaluations and national and international assessments typically focus global or continental areas. However, 

the individual National Climate Assessment (NCA) regions are climatically very different from each other. The individual 

GCMs in the CMIP ensemble likely do not have the same performance across all regions and an individual downscaling 510 
technique can be evaluated in one of these regions but applied to the entire continental United States or North America. In 

addition, the regions of Alaska, the U.S. Pacific Islands, and the U.S. Caribbean Islands have vastly different climates to the 

continental United States. In this study, we have found that the weighting for precipitation in particular can be very sensitive 

to domain and weighting scheme used. This is also found to be the case to a lesser degree with temperature. Based on this 

study, the model weighting for each of the NCA regions will likely be vastly different than the weighting for the continental 515 
United States as a whole.  

 
At the time of writing, discussion surrounding the use of weighted multi-model ensembles has been traditionally limited to 

climate model developers and the production of national or international climate assessments but is beginning to be used in 

impact assessments. Among climate model developers, Knutti et al. (2017) argue that model weighting is a necessity in part 520 
to account for situations where the model spread in the present-day climatology is massive resulting in some models having 

biases so large that using an unweighted mean is difficult to justify. In other situations, model interdependence becomes 

increasingly relevant with the increased use of common code bases across institutions causing unweighted means to be 

overconfident (Brunner et al., 2020b). This concern was also shared by Wootten et al. (2020a) with respect to the common 

modeling code base applied in the statistical downscaling process. Based on expert discussions surrounding downscaling and 525 
model weighting, the NCA is now considering weighting based on model climate sensitivity as opposed to traditional model 

weighting approaches (Nijsse et al., 2020; Hausfather et al., 2022). This study demonstrates that the weights and resulting 

ensemble means (particularly for precipitation) are sensitive to the ensemble (CMIP or LOCA), variable, and domain used. 

However, nothing done in this study negates the concerns of Knutti et al. (2017) and Wootten et al. (2020a). An unweighted 

mean will allow models with large biases and co-dependencies regardless of the domain or variable of interest larger 530 
influence in either climate models or impact assessments. Therefore, although this study demonstrates that resulting 

ensemble means for variables of interest are sensitive to the choice of weighting strategy, a weighting strategy should still be 

used, with careful consideration given to domain, variable, and weighting scheme used.  

 

4.3 Challenges and Future Work 535 

In this study, we showed that the weighting schemes and the resulting weighted ensemble means are sensitive to the domain 

and variable used. We have several findings from this analysis. Firstly, we find that the model weights themselves are 

sensitive to the weighting scheme used, with BMA being the most sensitive owing to the ability to capture multiple moments 
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of the distribution of the ensemble. Second, we find that precipitation can be highly sensitive to the domain used in the 

weighting strategy. We also find that temperature can also be sensitive to a lesser degree.     540 
 

Our findings are somewhat different from those of Befort et al. (2022) which suggests the impact of model weighting 

strategy to be minor. However, we note that Befort et al. (2022) focused on decadal climate prediction with a smaller 

ensemble than the one presented in this study. At the time of this writing, some intercomparisons of weighting schemes have 

been attempted in smaller regions with a smaller number of weighting strategies. Balhane et al. (2022) found that resulting 545 
model weights are sensitive to the quantity of interest used in derivation while also finding that model weights are less 

sensitive to spatial domain. This agrees in part with our study showing the model weighting and resulting means are sensitive 

to both the domain and variable of interest used with the model weighting scheme. A future application of this analysis may 

incorporate additional concerns or new approaches to ensemble weighting associated with emergent constraints. The 

relationship between interannual variability and long-term trends has led to new consideration of weighting an ensemble by 550 
the ability of individual models to represent observed variability for the quantities of interest (Wenzel et al. 2014; Nijsse et 

al., 2020; Balhane et al. 2022). As described here, this reflects changing the variable of interest in a weighting strategy to 

reduce the uncertainty in the ensemble by constraining it to the observed variability. While the emergent constraints 

approach is potentially useful, it depends upon having reliable observations of each variable and thorough understanding of 

the physical process alongside multiple other limitations (Kuepp et al. 2019; Caldwell et al. 2018). In addition, the emergent 555 
constraints approach focus on observed variability may not address the “hot model” problem identified by Hausfather et al. 

(2022), where models with overly high climate sensitivity result in overly large projected increases in global temperatures. 

While neither approach were the focus of this study, future research should consider the impacts of using one or both 

(observed variability or climate sensitivity) in weighting strategies to constrain climate model ensembles and reduce 

uncertainty. In this study, we focused on the sensitivity under RCP 8.5 to maximize the effects observed from different 560 
weighting strategies. Given the smaller change signals under other RCPs it is possible that the sensitivities observed here 

have a lesser magnitude under other RCPs. Considering this component is another aspect that could be explored in future 

work.  

 

Finally, the authors recognize that the climate modeling community and connected stakeholders are incorporating climate 565 
model simulations as inputs to additional modeling efforts such as hydrology modeling or crop modeling for use in impacts 

assessments. While most impact assessments have not incorporated model weighting directly, some studies are beginning to 

do so (e.g., Skahill et al., 2021; Amos et al. 2020; Sperna Weiland et al. 2021; Schäfer Rodrigues Silva et al. 2022; Elshall et 

al. 2022). There are known non-linear relationships between climate and impacts modeling (such as hydrology or crop 

modeling). Would weighting strategy that used climate model inputs produce the same result as multi-model weighting 570 
based on, for example, streamflow output using an ensemble of climate projections as inputs? Given the sensitivities 

associated with weighting schemes, variables, domains, and ensembles (identified in this study), we suspect that the 
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weighting strategy would not be the same when using the output of an impacts model (such as streamflow) and that the 

translation of error and co-dependencies from climate model projections to impacts models (may result in a higher degree of 

sensitivity with respect to stakeholder specific variables (such as streamflow). Therefore, the questions of sensitivity of 575 
weighting strategies and ensemble means bear increasing relevance as the number of users of climate projection output 

continues to increase. 

5 Conclusions 

This study examines the sensitivity of the multi-model ensemble weighting process and resulting ensemble means to the 

choices of variable, domain, ensemble, and weighting scheme for the south-central region of the US. In general, we see that 580 
weighting for Louisiana makes the future wetter and less hot, weighting for New Mexico makes the future drier and hotter, 

and accounting for the whole domain provides a compromise between the two. In addition, we see that ensemble mean 

projections for precipitation are more sensitive to the various aspects tested in this study, while ensemble mean projections 

for high temperature are less sensitive. As such, some domains/variables have uncertain outcomes, regardless of the 

weighting method. But for other domains/variables, the uncertainty is dramatically reduced, which can be helpful for the 585 
assessment of climate models and climate adaptation planning. The sensitivity of precipitation and temperature projections is 

reduced when LOCA is used, which is likely the result of the bias correction associated with the LOCA downscaling 

method. In addition, the BMA weighting scheme is more sensitive than the other weighting schemes. BMA’s sensitivity is 

the result of the BMA approach focusing on multiple moments of the distribution to account for model biases and co-

dependencies. 590 
  

Although there is sensitivity associated with the model weighting, efforts using a multi-model ensemble of climate 

projections should incorporate model weighting. Model weighting still accounts for issues of bias and co-dependence that 

preclude a model democracy approach to crafting multi-model ensemble means. Incorporating multiple weighting schemes 

allows for assessing and capturing the sensitivity associated with model weighting to the benefit of both climate modeling 595 
efforts and climate adaptation efforts. Given the sensitivity associated with weighting for different variables and domains, 

one may also consider crafting weighting schemes with a focus on the domains or variables of interest to an application. In 

addition, since some impact assessments or adaptation planning efforts make use of climate projections as inputs to impacts 

models (such as hydrology or crop models) there is a need to consider similar research to this study with regards to the direct 

outputs of impacts models using climate projections.  600 
 

There are a couple of caveats and suggested future research. First, this study makes use of domains that are fairly small 

where the spatially aggregated internal climate variability is larger than that of a large domain. Second, this study focused on 

the south-central United States. Future efforts should consider this analysis using larger regions, such as the continental 
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United States and the NCA sub-regions. Future efforts should also consider examining multivariate weighting to account for 605 
the physical relationships between variables. Third, this study does assume stationarity in the multi-model ensemble weights 

and resulting weighted means. Future research will examine the accuracy and sensitivity using a perfect model exercise 

(such as what is described by Dixon et al. 2016 and Sanderson et al. 2017) to test the stationarity assumption associated with 

ensemble weighting. This is important since studies like Sanderson et al. (2017) show that a more skillful representation of 

the present-day state does not necessarily translate to a more skillful projection in the future. Our study does not consider the 610 
skill of the multi-model weighting strategies in the future projections, but rather it assesses the sensitivity of future 

projections to the various multi-model weighting strategies. Fourth, this study did not consider an emergent constraints 

approach on either observed variability or climate sensitivity, which should be considered in future research. Finally, given 

the increasing use of climate model ensembles in impacts models, future efforts should consider a similar investigation to 

this study using an impacts model. Such future efforts will answer multiple questions regarding the appropriate model 615 
weighting schemes, but also provide potential guidance to boundary organizations building capacity to assist in regional and 

local climate adaptation planning and impact assessments. 

6 Code Availability 

R Code to calculate weights associated with the Skill, SI-h, and SI-c weighting and produce all analysis in this study are 

available from Dr. Wootten on request. Programming code for BMA calculations is available from Dr. Massoud on request. 620 

7 Data Availability 

CMIP5 GCM output are available through the Earth System Grid Federation Portal at Lawrence Livermore National 

Laboratory (https://esgf-node.llnl.gov/search/cmip5/). The LOCA downscaled climate projections for CMIP5 GCMs are 

available through numerous portals included the USGS Center for Integrated Data Analytics GeoData Portal 

(cida.usgs.gov/gdp). The Livneh gridded observations are available from the National Centers for Environmental 625 
Information (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0129374;view=html). 

 

8 Author Contribution 

Dr. Wootten and Dr. Massoud – Conceptualization, Formal Analysis, Investigation, Methodology, Writing – original draft 

preparation, Writing – review and editing, Visualization, Validation. Dr. Wootten – Data Curation. Dr. Waliser and Dr. Lee 630 
– Supervision, Writing – review and editing. 



19 
 

9 Competing Interest 

The authors declare that they have no conflict of interest. 

10 Acknowledgements 

A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract 635 
with the National Aeronautics and Space Administration (80NM0018D0004). The authors thank the reviewers for their 

comments and critiques to strengthen this article. This manuscript has been authored by UT-Battelle, LLC, under contract 

DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by 

accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, 

worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US 640 
government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the 

DOE Public Access Plan. 

References 

Abatzoglou, J.: Development of gridded surface meteorological data for ecological applications and modeling, International 
Journal of Climatology, 33, 121-131, doi:10.1002/joc.3413, 2013. 645 
Allstadt, A.J., Vavrus, S.J., Heglund, P.J., Pidgeon, A.M., Thogmartin, W.E., and Radelhoff, V.C.: Spring plant phenology 
and false springs in the conterminous US during the 21st century, Environmental Research Letters, 10, doi:10.1088/1748-
9326/10/10/104008, 2015 
Amante, C. and Eakins, B.W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA 
Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. 650 
Amos, M., Young, P.J., Hosking, J.S., Lamarque, J.-F., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bekki, S., Deushi, 
M., Jöckel, P., Kinnison, D., Kirner, O., Kunze, M., Marchand, M., Plummer, D.A., Saint-Martin, D., Sudo, K., Tilmes, S., 
and Yamashita, Y.: Projecting ozone hold recovery using an ensemble fo chemistry-climate models weighted by model 
performance and independence, Atmospheric Chemistry and Physics, 20, 9961-9977, doi: 10.5194/acp-20-9961-2020, 2020. 
Balhane, S., Driouech, F., Chafki, O., Manzanas, R., Chehbouni, A., and Moufouma-Okia, W.: Changes in mean and 655 
extreme temperature and precipitation events from different weighted multi-model ensembles over the northern half of 
Morocco, Climate Dynamics, 58, 389-404, doi: 10.1007/s00382-021-05910-w, 2022 
Basso, B., Hyndman, D.W., Kendall, A.D., Grace, P.R., and Robertson, G.P.: Can impacts of climate change agricultural 
adaptation strategies be accurately quantified if crop models are annually re-initialized?, PLoS One, 10, 
doi:10.1371/journal.pone.0127333, 2015 660 
Befort, D.J., Brunner, L., Borchert, L.F., O’Reilly, C.H., Mignot, J., Ballinger, A.P., Hergerl, G.C., Murphy, J.M. and 
Weisheimer, A.: Combination of Decadal Predictions and Climate Projections in Time: Challenges and Potential Solutions, 
Geophysical Research Letters, 49,15,e2022GL098568, doi: 10.1029/2022GL098568, 2022 
Behnke, R., Vavrus, S., Allstadt, A., Thogmartin, W., and Radelhoff, V.C.: Evaluation of downscaled gridded climate data 
for the conterminous United States, Ecological Applications, 26, 1338-1351, doi:10.1002/15-1061, 2016. 665 
Bishop, Craig H., and Shanley, K.T.: Bayesian model averaging’s problematic treatment of extreme weather and a paradigm 
shift that fixes it, Monthly Weather Review, 136, 12, 4641-4652, 2008. 
Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty in European climate projections using 
combined performance-independence weighting, Environmental Research Letters, 14, doi: 10.1088/1748-9236/ab492f, 
2019. 670 



20 
 

Brunner, L., McSweeney, C., Ballinger, A.P., Befort, D.J., Benassi, M., Booth, B., and Coppola, E.: Comparing methods to 
constrain future European climate projections using a consistent framework, Journal of Climate, 33, 20, 8671-8692, 2020a. 
Brunner, L., Pendergrass, A.G., Lehner, F., Merrifield, A.L., Lorenz, R., and Knutti, R.: Reduced global warming from 
CMIP6 projections when weighting models by performance and independence, Earth System Dynamics, 11, 4, 995-1012, 
2020b. 675 
Caldwell, P.M., Zelinka, M.D., and Klein, S.A.: Evaluating Emergent Constraints on Equilibrium Climate Sensitivity, 
Journal of Climate, 31,10,3921-3942,doi: 10.1175/JCLI-D-17-0631.1, 2018. 
Cesana, G., Suselj, K., and Brient, F.: On the Dependence of Cloud Feedbacks on Physical Parameterizations in WRF 
Aquaplanet Simulations, Geophysical Research Letters, 44, 10,762-10,771. doi:10.1002/2017GL074820, 2017. 
Dilling, L, and Berrgren, J. 2014: What do stakeholders need to manage for climate change and variability? A document-680 
based analysis from three mountain states in the Western USA, Regional Environmental Change, 15, 657-667, 
doi:10.1007/s10113-014-0668-y, 2014. 
Dixon, K.W., Lanzante, J.R., Nath, M.J., Hayhoe, K., Stoner, A., Radhakrishnan, A., Balaji, V., and Gaitán, C.: Evlauting 
the assumption in statistically downscaled climate projections: is past performance an indicator of future results?, Climatic 
Change, 135, 395-408, doi: 10.1007/s10584-016-1598-0, 2016. 685 
Duan, Q., Newsha, K., Ajami, X.G., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model 
averaging, Advances in Water Resources ,30, 5, 1371-1386, 2007. 
Elshall, A., Ye, M., Kranz, S.A., Harrington, J., Yang, X., Wan, Y., and Maltrud, M.: Application-specific optimal model 
weighting of global climate models: A red tide example, Climate Services, 28, 100334, doi: 10.1016/j.cliser.2022.100334, 
2022 690 
Eyring, V., Bony, S., Meehl, G. A., Senior, C.A., Stevens, B., Stouffer, R.J., and Taylor, K.E.: Overview of the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, 
doi:10.5194/gmd-9-1937-2016, 2016. 
Eyring, V., Cox, P.M., Flato, G.M., Gleckler, P.J., Abramowitz, G., Caldwell, P., and Collins, W.D.: Taking climate model 
evaluation to the next level, Nature Climate Change, 1.  695 
Fan, Y., Olson, R., and Evans, J.P.: A Bayesian posterior predictive framework for weighting ensemble regional climate 
models, Geoscientific Model Development, 10, 6, 2321-2332, 2017. 
Gergel, D.R., Nijssen, B., Abatzoglour, J.T., Lettenmaier, D.P., and Stumbaugh, M.R.: Effects of climate change on 
snowpack and fire potential in the western USA, Climatic Change, 141, 287-299, doi: 10.1007/s10584-017-1899-y, 2017. 
Gibson, Peter B., Waliser, D.E., Lee, H., Tian, B., and Massoud, E.: Climate model evaluation in the presence of 700 
observational uncertainty: precipitation indices over the Contiguous United States, Journal of Hydrometeorology, 2019, 
2019. 
Gneiting, T., and Raftery, A.E.: Weather forecasting with ensemble methods, Science, 310, 5746, 248-249, 2005. 
GRDC: Major River Basins of the World/Global Runoff Data Centre, GRDC, 2nd ed.; Federal Institute of Hydrology (BfG): 
Koblenz, Germany, 2020. 705 
Hausfather, Z., Marvel, K., Schmidt, G.A., Nielsen-Gammon, J.W., and Zelinka, M.: Climate simulations: recognize the ‘hot 
model’ problem, Nature, 605,26-29,doi: 10.1038/d41586-022-01192-2, 2022 
Hoeting, J. A., Madigan, D., Raftery, A.E., and Volinsky, C.T.: Bayesian model averaging: a tutorial, Statistical Science, 
382-401, 1999. 
Karl, T.R., Williams, C.N., Young, P.J., and Wendland, W.M.: A Model to Estimate the Time of Observation Bias 710 
Associated with Monthly Mean Maximum, Minimum, and Mean Temperatures for the United States, Journal of Climate and 
Applied Meteorology, 25, 1986. 
Keupp, L., Hertig, E., Kaspar-Ott, I., Pollinger, F., Ring, C., Paeth, H., and Jacobeit, J.: Weighted multi-model ensemble 
projection of extreme precipitation in the Mediterranean region using statistical downscaling, Theoretical and Applied 
Climatology, 138,1269-1295, doi: 10.1007/s00704-019-02851-7, 2019 715 
Knutti, R: The end of model democracy?, Climatic Change, 102, doi:10.1007/s10584-010-9800-2, 2010. 
Knutti, R., Sedlacek, J., Sanderson, B.M., Lorenz, R., Fischer, E.M., and Eyring, V.: A climate model weighting scheme 
accounting for performance and independence, Geophysical Research Letters, 44, DOI:10.1002/2016GL072012, 2017. 



21 
 

Kolosu, S.R., Siderius, C., Todd, M.C., Bhave, A., Conway, D., James, R., Washington, R., Geressu, R.,  Harou, J.J. and 
Kashaigili, J.J.: Sensitivity of projected climate impacts to climate model weighting: multi-sector analysis in eastern Africa, 720 
Climatic Change, 164, doi: 10.1007/s10584-021-02991-8, 2021. 
Kotamarthi, R., Mearns, L., Hayhoe, K., Castro, C.L., and Wuebbles, D.: Use of Climate Information for Decision-Making 
and Impacts Research: State of Our Understanding, Prepared for the Department of Defense, Strategic Environmental 
Research and Development Program, 55pp, 2016.  
Lee, H., Goodman, A., McGibbney, L., Waliser, D.E., Kim, J., Loikith, P.C., Gibson, P.B., and Massoud, E.C.: Regional 725 
Climate Model Evaluation System powered by Apache Open Climate Workbench v1. 3.0: an enabling tool for facilitating 
regional climate studies, Geoscientific Model Development, 2018. 
Livneh, B., Rosenberg, E.A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K.M., Maurer, E.P., and Lettenmaier, D.P.: A long-
term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and 
extensions, Journal of Climate, 26, 9384-9392, 2013. 730 
Maher, N., Lehner, F., and Marotzke, J.: Quantifying the role of internal variability in the temperature we expect to observe 
in the coming decades, Environmental Research Letters, 15, 5, 054014, doi: 10.1088/1748-9326/ab7d02, 2020. 
Massoud, E.C., Espinoza, V., Guan, B., Waliser, D.E.: Global Climate Model Ensemble Approaches for Future Projections 
of Atmospheric Rivers, Earth’s Future, doi:10.1029 / 2019EF001249, 2019. 
Massoud, E.C., Lee, H., Gibson, P. B., Loikith, P., and Waliser, D.E.: Bayesian model averaging of climate model 735 
projections constrained by precipitation observations over the contiguous United States, Journal of Hydrometeorology, 21, 
10, 2020, 2401-2418, 2020a. 
Massoud, E.C., Massoud, T., Guan, B., Sengupta, A., Espinoza, V., De Luna, M., Raymond, C., and Waliser, D.E.: 
Atmospheric rivers and precipitation in the middle east and north Africa (Mena), Water, 12, 10, 2863, 2020b. 
Min, S.-K., and Hense, A.: A Bayesian approach to climate model evaluation and multi-model averaging with and 740 
application to global mean surface temperatures, Geophysical Research Letters, 33, 8, doi: /10.1029/2006GL025779, 2006 
Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate response (TCR) and 
equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models, Earth Syst. Dynam., 11, 737–
750, https://doi.org/10.5194/esd-11-737-2020, 2020.  
Olson, R., Fan, Y., and Evans, J.P.: A simple method for Bayesian model averaging of regional climate model projections: 745 
Application to southeast Australian temperatures, Geophysical Research Letters, 43, 14, 7661-7669, 2016.  
Olson, R., An, S.-I., Fan, Y., and Evans, J.P.: Accounting for skill in trend, variability, and autocorrelation facilitates better 
multi-model projections: Application to the AMOC and temperature time series, PloS one, 14, 4, e0214535, 2019. 
Parding, K.M., Dobler, A., McSweeney, C., Landgren, O.A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., 
Räty, O., and Viktor, E.: GCMeval – An interactive tool for evaluation and selection of climate model ensembles, Climate 750 
Services, 18, doi:10.1016/j.cliser.2020.100167, 2020. 
Peña, M., and van den Dool, H.: Consolidation of Multimodel Forecasts by Ridge Regressison: Application to Pacific Sea 
Surface Temperature, Journal of Climate, 21, 24, doi: /10.1175/2008JCLI2226.1, 2008 
Pickler, C., and Mölg, T.: General Circulation Model Selection Technique for Downscaling: Exemplary Application to East 
Africa, Journal of Geophysical Research – Atmospheres, 126, doi: 10.1029/2020JD033033, 2021. 755 
Pierce, D.W., Cayan, D.R., and Thrasher, B.L.,: Statistical downscaling using Localized Constructed Analogs (LOCA), J. 
Hydrometeorology, 15, doi:10.1175/JHM-D-14-0082.1, 2014. 
Pourmoktharian, A., Driscoll, C.T., Campbell, J.L., Hayhoe, K., and Stoner, A.M.K.: The effects of climate downscaling 
technique and observations dataset on modeled ecological responses, Ecological Applications, 26, 1321-1337, doi: 
10.1890/15-0745, 2016. 760 
Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian model averaging to calibrate forecast 
ensembles, Monthly Weather Review, 133, 5, 1155-1174, 2005. 
Rummukainen M.: State-of-the-art with regional climate models, WIREs Climate Change, 1, doi:10.1002/wcc.008, 2010. 
Sanderson, B.M., Knutti, R., and Caldwell, P.: A representative democracy to reduce interdependency in a multimodel 
ensemble, Journal of Climate, 28, 13, 5171-5194, 2015a. 765 
Sanderson, B.M., Knutti, R., and Caldwell, P.: Addressing interdependency in a multimodel ensemble by interpolation of 
model properties, Journal of Climate, 28, 13, 5150-5170, 2015b. 

Deleted: Massoud, E.C., Purdy, A.J., Miro, M.E., and Famiglietti, 
J.S.: Projecting groundwater storage changes in California’s Central 
Valley, Scientific Reports, 8, 1, 1-9, 2018.¶770 



22 
 

Sanderson, B.M., Wehner, M., and Knutti, R.: Skill and independence weighting for multi-model assessments, Geoscientific 
Model Development, 2379-2395, doi:10.5194/gmd-2016-285, 2017. 
Sanderson, B.M. and Wehner, M.F.,: Model weighting strategy. In: Climate Science Special Report: Fourth National 
Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock 
(eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 436-442, doi: 10.7930/J06T0JS3, 2017. 775 
Schäfer Rodrigues Silva, A., Weber, T.K.D., Gayler, S., Guthke, A., Höge, M., Nowak, W., and Streck, T.: Diagnosing 
Similarities in probabilistic multi-model ensembles: an application to soil-plant-growth-modeling, Modeling Earth Systems 
and Environment, 8, 5143-5175, doi: 10.1007/s40808-022-01427-1, 2022. 
Schoof, J.T.: Statistical downscaling in climatology, Geography Compass, 7, 249-265, 2013. 
Shin, Y., Lee, Y., and Park, J.-S.: A Weighting Scheme in A Multi-Model Ensemble for Bias-Corrected Climate Simulation, 780 
Atmosphere, 11, doi:10.3390/atmos11080775, 2020. 
Skahill B., Berenguer B., Stoll M.: Ensembles for Viticulture Climate Classifications of the Willamette Valley Wine Region, 
Climate, 9, 9, 140, doi:10.3390/cli9090140, 2021. 
Smith, L. and Stern, N.: Uncertainty in science and its role in climate policy, Philosophical Transactions of the Royal Society 
A, 369,1-24. doi:10.1098/rsta.2011.0149, 2011. 785 
Sperna Weiland, F.C., Visser, R.D., Greve, P., Bisselink, B., Brunner, L., Weerts, A.H.: Estimating Regionalized 
Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX projections, Frontiers 
in Water, 3, doi: 10.3389/frwa.2021.713537, 2021. 
Tapiador, F.J., Roca, R., Genio, A.D., Dewitte, B., Petersen, W., and Zhang, F.: Is Precipitation a Good Metric for Model 
Performance? Bulletin of the American Meteorological Society, 100, 223-233, doi: 10.1175/bams-d-17-0218.1, 2019. 790 
Taylor, A., Gregory, J.M., Webb, M.J., and Taylor, K.E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled 
atmosphere-ocean climate models, Geophysical Research Letters, 39, doi:10.1029/2012GL051607, 2012. 
USGCRP: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, 
K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, 
DC, USA, 470 pp, doi:10.7930/J0J964J6, 2017. 795 
Vrugt, J.A. and Robinson, B.A.: Treatment of uncertainty using ensemble methods: Comparison of sequential data 
assimilation and Bayesian model averaging, Water Resources Research, 43, 1, 2007. 
Vrugt, J.A., and Massoud, E.C.: Uncertainty quantification of complex system models: Bayesian Analysis, Handbook of 
Hydrometeorological Ensemble Forecasting, Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, HL, Schaake, JC, 
Eds, 2018. 800 
Vrugt, J.A., Cajo, J.F., Ter Braak, M. P.C., Hyman, J.M., and Robinson, B.A. Treatment of input uncertainty in hydrologic 
modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resources Research, 44, 12, 2008. 
Weart, S.: The development of general circulation models of climate, Studies in History and Philosophy of Science Part B - 
Studies in History and Philosophy of Modern Physics, 41, 208-217. doi:10.1016/j.shpsb.2010.06.002, 2010. 
Weigel, A.P., Liniger, M.A., and Appenzeller, C.: Can multi-model combination really enhance the prediction skill of 805 
probabilistic ensemble forecasts?, Quarterly Journal of the Royal Meteorological Society, 134, 630, doi: /10.1002/qj.210, 
2008 
Wenzel, S., Cox, P.M., Eyring, V., and Friedlingstein, P.: Emergent Constraints on climate-carbon cycle feedbacks in the 
CMIP5 Earth System Models, JGR Biogeosciences, 119,5,794-807, doi: 10.1002/2013JG002591, 2014. 
Wootten, A.M., Massoud, E.C., Sengupta, A., Waliser, D.E., and Lee, H.: The Effect of Statistical Downscaling on the 810 
Weighting of Multi-Model Ensembles of Precipitation, Climate, 8, 12, 138, 2020a. 
Wootten, A.M., Dixon, K.W., Adams-Smith, D.J. and McPherson, R.A. Statistically downscaled precipitation sensitivity to 
gridded observation data and downscaling technique, Int. J. Climatol., doi:10.1002/joc.6716, 2020b. 
Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton, R., Kossin, J.P., Taylor, P.C., 
Waple, A.M., and Weaver, C.P.: Executive summary. In: Climate Science Special Report: Fourth National Climate 815 
Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. 
U.S. Global Change Research Program, Washington, DC, USA, pp. 12-34, doi: 10.7930/J0DJ5CTG, 2017. 
 
 
Figures 820 



23 
 

 
 

 
Figure 1: Topographical map for the study domain: The elevation map of the south-central United States with major rivers 
overlaid on it. Brown/green shading denotes elevation (in units of m), while the rivers are outlined in blue. Topography, 825 
bathymetry, and shoreline data are obtained from the National Oceanic and Atmospheric Administration (NOAA) National 
Geophysical Data Center’s ETOPO1 Global Relief Model (Amante and Eakins, 2009). This is a 1 arc-minute model of the Earth’s 
surface developed from diverse global and regional digital datasets and then shifted to a common horizontal and vertical datum. 
River shapefiles are obtained from the Global Runoff Data Centre’s Major River Basins of the World (GRDC 2020). Center — 
Study domain overlaid with annual average precipitation (mm) from Livneh v. 1.2 (Livneh et al. 2013). Right— Study domain 830 
overlaid with annual high temperatures (°C) from Livneh v. 1.2 (Livneh et al. 2013). 
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Figure 2: Flowchart showing the process of analysis with weighting schemes. Each version of the model average is constructed 
based on several choices: a) the choice of the ensemble (CMIP vs LOCA), b) the choice of model weighting strategy (unweighted, 835 
Skill, SI-h, SI-c, or BMA), c) the choice of climate variable of interest (precipitation or temperature), and d) the choice of the 
domain used for the ensemble averaging (entire south-central region, Louisiana, or New Mexico). These various choices give up to 
48, plus the unweighted version, so 49 overall choices of model weighting strategies. Then, once the model average is constructed 
and trained, there is a choice to be made on which variable and which domain to apply this model average to. Therefore, this 
results in 48 x 2 x 3 = 288 possible future outcomes in our experimental matrix plus 2 unweighted outcomes, for a total of 290 840 
combinations. 
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Figure 3: Model Weights for each of the 4 weighting schemes using the CMIP5 ensemble. The left column is weights based on 
precipitation (pr) alone and the right column is weights based on high temperature (tmax) alone. The top row is weights based on 
the full domain, the middle row is weights based on Louisiana alone, the bottom row is weights based on New Mexico alone. The 845 
boxplots are the spread of weights from the 100 iterations of the BMA weighting scheme. The red dots in these figures depict the 
outliers from the BMA distributions of weights. 
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Figure 4: Same a Figure 3, but for the LOCA ensemble. 

 850 
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Figure 5: The unweighted model values across each of the three domains. The left column is during the historical period (1981-
2005) and the raw ensemble is compared to the same values from the Livneh observations. The right column is the 2070-2099 
projected changes under RCP 8.5 from both ensembles. The top row is for precipitation, the bottom row is for high temperature. 
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 855 
Figure 6: Mean projected changes in temperature and precipitation using all 48 weighting schemes, applied to all three domains 
and both variables (tmax and pr). The top group focuses on pr, the bottom row focuses on tmax, the left group focuses on the 
CMIP5 ensemble, and the right group focuses on the LOCA ensemble. In an individual group, the top row is the results from 
weighting schemes derived with tmax, and the bottom row is the results from weighting schemes derived with pr. In addition, 
within an individual group, the left column is the results for weighting derived using the full domain, the middle column is the 860 
results for weighting derived using the New Mexico domain, and the right column is the results for weighting derived using the 
Louisiana domain. Within a given domain and variable, the results are shown from left to right for the domain the weights are 
applied to. The boxplots are the results from the 100 BMA posterior weights. 
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Figure 7: Absolute value of mean projected changes in temperature and precipitation using all 48 weighting schemes, applied to all 865 
three domains and both variables (tmax and pr), the standard deviation of the projected changes from the CMIP5 and LOCA 
ensembles for both variables, and ensemble average standard deviation of annual precipitation and temperature for both the 
historical and future periods (no weighting is used to calculate any standard deviations). The top group focuses on pr, the bottom 
row focuses on tmax, the left group focuses on the CMIP5 ensemble, and the right group focuses on the LOCA ensemble. In an 
individual group, the top row is the results from weighting schemes derived with tmax, and the bottom row is the results from 870 
weighting schemes derived with pr. In addition, within an individual group, the left column is the results for weighting derived 
using the full domain, the middle column is the results for weighting derived using the New Mexico domain, and the right column 
is the results for weighting derived using the Louisiana domain. Within a given domain and variable, the results are shown from 
left to right for the domain the weights are applied to.  
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 875 
Figure 8: Bias of CMIP5 ensemble mean precipitation (1981-2005) from the unweighted ensemble (left) and each weighted 
ensemble mean (right). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA weighting schemes 
respectively. On the right side, the top group of twelve plots are the results for weights derived using temperature (tmax) and the 
bottom group of twelve plots are the results for weights derived using precipitation (pr). Within a group of twelve on the right-
hand side, the top row is for weights deriving using the full domain, the middle row is for weights derived using the Louisiana 880 
domain, and the bottom row is for weights derived using the New Mexico domain. 
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Figure 9: CMIP5 ensemble mean projected precipitation change (2070-2099, RCP 8.5) from the unweighted ensemble (left) and 
each weighted ensemble mean (right). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA 
weighting schemes respectively. On the right side, the top group of twelve plots are the results for weights derived using 885 
temperature (tmax) and the bottom group of twelve plots are the results for weights derived using precipitation (pr). Within a 
group of twelve on the right-hand side, the top row is for weights deriving using the full domain, the middle row is for weights 
derived using the Louisiana domain, and the bottom row is for weights derived using the New Mexico domain. 



32 
 

 
Figure 10: Same as Figure 8, but for the bias of high temperature of the CMIP5 ensemble. 890 
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Figure 11: Same as Figure 9, but for the mean projected change of high temperature from the CMIP5 ensemble. 
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 895 
Figure 12: Same as Figure 9, but for the mean projected change of precipitation from the LOCA ensemble. 
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Figure 13: Same as Figure 11, but for the mean projected change of high temperature from the LOCA ensemble. 
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Table 1: Top three highest weighted models from each of the 48 weighting combinations. 

Domain Weighting 
is Based On 

Variable Weighting 
is Based On Ensemble Skill SI-h SI-c BMA 

Full 

tmax 

CMIP5 

ACCESS1-0 CanESM2 CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 

CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 MPI-ESM-MR 

CMCC-CMS MIROC-ESM CMCC-CM CMCC-CM 

LOCA 

MRI-CGCM3 MRI-CGCM3 MRI-CGCM3 MRI-CGCM3 

MIROC-ESM MIROC-ESM GISS-E2-R CanESM2 

CESM1-BGC CESM1-BGC IPSL-CM5A-MR FGOALS-g2 

pr 

CMIP5 

EC-EARTH ACCESS1-3 CMCC-CM ACCESS1-3 

CMCC-CM EC-EARTH ACCESS1-0 EC-EARTH 

ACCESS1-0 GISS-E2-R EC-EARTH CMCC-CM 

LOCA 

CESM1-BGC CanESM2 IPSL-CM5A-MR MIROC-ESM 

CanESM2 MIROC-ESM ACCESS1-0 CanESM2 

MIROC-ESM CESM1-BGC CMCC-CM CESM1-BGC 

Louisiana 

tmax 

CMIP5 

ACCESS1-3 ACCESS1-3 ACCESS1-3 CMCC-CM 

CMCC-CMS MPI-ESM-MR ACCESS1-0 ACCESS1-3 

MPI-ESM-LR CMCC-CMS MPI-ESM-LR MIROC5 

LOCA 

MRI-CGCM3 MIROC-ESM MIROC-ESM-
CHEM MRI-CGCM3 

MIROC-ESM MRI-CGCM3 MRI-CGCM3 GISS-E2-H 

ACCESS1-3 ACCESS1-3 GFDL-CM3 GFDL-ESM2M 

pr 

CMIP5 

ACCESS1-3 ACCESS1-3 ACCESS1-3 GISS-E2-R 

GISS-E2-R GISS-E2-R GISS-E2-R ACCESS1-3 

EC-EARTH EC-EARTH EC-EARTH MIROC-ESM-
CHEM 

LOCA 

CCSM4 GISS-E2-R GISS-E2-R CCSM4 

GISS-E2-R CanESM2 IPSL-CM5A-MR GISS-E2-R 

GFDL-ESM2M CCSM4 FGOALS-g2 EC-EARTH 

New Mexico tmax CMIP5 CanESM2 CanESM2 CSIRO-Mk3-6-0 CanESM2 
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CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 CSIRO-Mk3-6-0 

ACCESS1-0 ACCESS1-0 CanESM2 IPSL-CM5A-LR 

LOCA 

MRI-CGCM3 MIROC-ESM MRI-CGCM3 MRI-CGCM3 

MIROC-ESM MRI-CGCM3 MIROC-ESM MIROC-ESM 

GISS-E2-H CanESM2 GFDL-CM3 FGOALS-g2 

pr 

CMIP5 

CanESM2 CanESM2 IPSL-CM5A-MR CanESM2 

IPSL-CM5A-MR CSIRO-Mk3-6-0 CanESM2 IPSL-CM5A-MR 

ACCESS1-3 IPSL-CM5A-MR ACCESS1-3 CSIRO-Mk3-6-0 

LOCA 

MPI-ESM-LR MPI-ESM-LR CanESM2 CanESM2 

CanESM2 CanESM2 MPI-ESM-LR MIROC-ESM 

MIROC-ESM MIROC-ESM CMCC-CM EC-EARTH 
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Table 2: RMSE (mm) of daily precipitation for each weighting strategy applied in all three domains. Weighting strategies include 
the weighting scheme and the ensemble, variable, and domain used to derive model weights.  960 

Weighting Strategy Applied Domain 

Ensemble Variable Domain Weighting Scheme Full New Mexico Louisiana 

CMIP5 

pr 

Full 

Skill 212.10 232.01 399.03 

SI-h 196.04 217.24 346.87 

SI-c 209.86 231.81 387.89 

BMA 138.18 144.07 197.90 

New Mexico 

Skill 188.21 403.07 109.52 

SI-h 198.05 106.89 436.66 

SI-c 192.07 109.17 412.74 

BMA 262.49 109.67 573.99 

Louisiana 

Skill 179.65 182.57 91.68 

SI-h 177.40 175.26 89.30 

SI-c 180.19 186.10 92.42 

BMA 220.92 212.44 109.47 

tmax 

Full 

Skill 223.77 240.32 431.97 

SI-h 226.69 225.97 458.80 

SI-c 222.72 233.96 431.94 

BMA 205.24 136.17 477.53 

New Mexico 

Skill 212.83 438.97 197.46 

SI-h 219.89 145.69 498.12 

SI-c 219.94 207.25 450.48 

BMA 255.59 109.41 586.54 

Louisiana 

Skill 196.94 211.71 373.35 

SI-h 191.86 195.90 381.33 

SI-c 180.19 193.73 351.64 

BMA 167.19 171.51 313.55 

LOCA pr 

Full 

Skill 66.67 79.58 60.58 

SI-h 66.66 60.59 79.54 

SI-c 66.81 60.61 80.10 

BMA 55.87 55.02 69.31 

New Mexico 

Skill 66.26 59.94 79.54 

SI-h 66.24 60.04 79.37 

SI-c 66.53 59.60 80.56 

BMA 56.76 53.94 62.77 
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Louisiana 

Skill 65.72 60.43 76.29 

SI-h 65.49 60.66 75.04 

SI-c 66.15 61.31 75.34 

BMA 61.77 60.30 55.27 

tmax 

Full 

Skill 66.77 60.63 79.71 

SI-h 66.77 60.63 79.74 

SI-c 67.32 60.98 80.82 

BMA 66.78 62.76 80.40 

New Mexico 

Skill 66.77 60.62 79.72 

SI-h 66.77 60.62 79.74 

SI-c 66.94 60.76 80.59 

BMA 63.02 59.10 81.92 

Louisiana 

Skill 66.69 60.89 78.65 

SI-h 66.54 60.74 79.56 

SI-c 68.39 61.41 81.79 

BMA 69.53 65.02 83.67 
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Table 3: RMSE (°C) of daily precipitation for each weighting strategy applied in all three domains. Weighting strategies include 
the weighting scheme and the ensemble, variable, and domain used to derive model weights.  

Weighting Strategy Applied Domain 

Ensemble Variable Domain Weighting Scheme Full New Mexico Louisiana 

CMIP5 

pr 

Full 

Skill 2.19 3.67 0.86 

SI-h 2.19 3.64 0.93 

SI-c 2.29 3.80 0.93 

BMA 2.04 3.37 0.80 

New Mexico 

Skill 1.79 2.78 0.71 

SI-h 1.76 2.48 0.75 

SI-c 1.81 2.86 0.71 

BMA 1.83 2.58 0.81 

Louisiana 

Skill 2.29 3.61 1.36 

SI-h 2.27 3.57 1.34 

SI-c 2.33 3.66 1.42 

BMA 2.47 3.75 1.79 

tmax 

Full 

Skill 2.09 3.50 0.70 

SI-h 1.96 3.24 0.71 

SI-c 2.09 3.48 0.74 

BMA 1.58 2.51 0.61 

New Mexico 

Skill 1.77 2.72 0.66 

SI-h 1.87 2.21 0.92 

SI-c 1.78 2.77 0.66 

BMA 2.10 2.07 1.08 

Louisiana 

Skill 1.92 3.21 0.49 

SI-h 1.90 3.19 0.48 

SI-c 1.91 3.17 0.49 

BMA 1.86 3.15 0.40 

LOCA pr 

Full 

Skill 0.43 0.49 0.40 

SI-h 0.43 0.49 0.40 

SI-c 0.44 0.49 0.41 

BMA 0.34 0.44 0.33 

New Mexico 

Skill 0.43 0.49 0.40 

SI-h 0.43 0.49 0.40 

SI-c 0.44 0.49 0.40 

BMA 0.36 0.44 0.37 



41 
 

Louisiana 

Skill 0.43 0.49 0.39 

SI-h 0.43 0.49 0.39 

SI-c 0.43 0.49 0.39 

BMA 0.42 0.49 0.35 

tmax 

Full 

Skill 0.43 0.49 0.40 

SI-h 0.43 0.49 0.40 

SI-c 0.43 0.49 0.39 

BMA 0.28 0.43 0.21 

New Mexico 

Skill 0.43 0.49 0.40 

SI-h 0.43 0.49 0.40 

SI-c 0.43 0.49 0.39 

BMA 0.31 0.43 0.21 

Louisiana 

Skill 0.42 0.48 0.37 

SI-h 0.41 0.48 0.36 

SI-c 0.42 0.48 0.35 

BMA 0.29 0.44 0.21 
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Table 4: RMSE of precipitation (mm) and high temperature (°C) for unweighted ensembles. 

  Domain 

Variable Ensemble Full  New Mexico Louisiana 

pr 
CMIP5 239.25 266.19 449.79 

LOCA 66.79 60.63 79.76 

tmax 
CMIP5 2.39 3.95 0.96 

LOCA 0.43 0.49 0.40 
 
 
 1000 
 


