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Abstract. Climate model output emulation has long been attempted to support impact research, mainly to fill-in gaps in the

scenario space. Given the computational cost of running coupled Earth System Models (ESMs), which are usually the domain

of super computers and require on the order of weeks to complete a century-long simulation, only a handful of different

scenarios are usually chosen to externally force ESM simulations. An effective emulator, able to run on standard computers in

times of the order of minutes, rather than days, could therefore be used to derive climate information under scenarios that were5

not run by ESMs. Lately, the necessity of accounting for internal variability has also made the availability of initial condition

ensembles, under a specific scenario, important, increasing further the computational demand. At least so far, emulators have

been limited to simplified ESM-like output, either seasonal, annual or decadal averages of basic quantities, like temperature and

precipitation, often emulated independently of one another. With this work, we propose a more comprehensive solution to ESM

output emulation. Our emulator, STITCHES, uses existing archives of Earth System Models’ (ESMs) scenario experiments to10

construct ESM-like output under new scenarios, or enrich existing initial condition ensembles, which is what other emulators

also aim to do. Importantly, however, STITCHES’ output has the same characteristics of the ESM output it sets out to emulate:

multivariate, spatially resolved and high frequency, representing both the forced component and the internal variability around

it. STITCHES extends the idea of time-sampling - according to which climate outcomes are stratified by the global warming

level at which they manifest themselves, irrespective of the scenario and time at which they occur - to the construction of a15

continuous history of ESM-like output over the whole 21st century, consistent with a 21st century trajectory of Global Surface

Air Temperature (GSAT) derived from the scenario that has been chosen as the target of the emulation. STITCHES does

so by first splitting the target GSAT trajectory into decade-long windows, then matching each window in turn to a decade-

long window within an existing model simulation from the available scenario runs according to its proximity to the target

in absolute size of the temperature anomaly and its rate of change. A look-up table is therefore created of a sequence of20

existing experiments/time windows that, when stitched together, create a GSAT trajectory "similar" to the target. Importantly,

we can then stitch together much more than GSAT from these windows, i.e., any output that the ESM has saved for these

experiments/time windows, at any frequency and spatial scale available in its archive. We show that the stitching does not

introduce artifacts, in the great majority of cases (we look at temperature and precipitation at monthly frequency and on the

native grid of the ESM, and at an index of ENSO activity, the Southern Oscillation Index). This is true even if the criteria25

for the identification of the decades to be stitched together are chosen to work for a smoothed time series of annual GSAT, a
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result we expect given the larger amount of noise affecting most other variables at finer spatial scales and higher frequencies,

which therefore are more "forgiving" of the stitching. We successfully test the method’s performance over many ESMs and

scenarios. Only a few exceptions surface, but these less-than-optimal outcomes are always associated with a scarcity of the

archived simulations from which we can gather the decade-long windows that form the building blocks of the emulated time30

series. In the great majority of cases, STITCHES performance is satisfactory according to metrics that reward consistency in

trends, inter-annual and inter-ensemble variance, and autocorrelation structure of the time series stitched together. The method

therefore can be used to create ESM-like output according to new scenarios, on the basis of a trajectory of GSAT produced

according to that scenario, which could be easily obtained by a simple climate model. It can also be used to increase the

size of existing initial condition ensembles. There are aspects of our emulator that will immediately disqualify it for specific35

applications, like when climate information is needed whose characteristics result from accumulated quantities over windows

of times longer than those used as pieces by STITCHES, droughts longer than a decade for example. But for many applications,

we argue that a stitched product can satisfy the climate information needs of impact researchers. STITCHES cannot emulate

ESM output from scenarios that result in GSAT trajectories outside of the envelope available in the archive, neither can it

emulate trajectories with shapes different from existing ones (overshoots with negative derivative, for example). Therefore,40

the size and characteristics of the available archives of ESM output are the principal limitations for STITCHES deployment.

Thus, we argue for the possibility of designing scenario experiments within, for example, the next phase of the Coupled Model

Intercomparison Project according to new principles, relieved of the need to produce a number of similar trajectories that vary

only in radiative forcing strength, but more strategically covering the space of temperature anomalies and rates of change.

1 Introduction45

In this paper, we introduce a novel and comprehensive solution to climate model emulation. Our principal motivation is to

support the climate information needs of the impact research community under arbitrary future scenarios of anthropogenic

forcings, but we believe that our proposal may potentially benefit the scenario development, integrated assessment and climate

modeling communities.

The overarching problem that our method seeks to resolve stems from the computational and human labor costs of running50

climate model experiments according to plausible future scenarios (as opposed to idealized forcings, e.g., 1% CO2 increase

pathways) with complex Earth System Models (ESMs). High costs are involved in translating emission and land-use scenarios

produced by Integrated Assessment Models (IAMs) into inputs for ESMs. Running these experiments on super-computers

is also very expensive, and considerable labor costs are involved in setting them up, launching them and attending to their

completion. Lastly, significant effort is involved in translating ESM output into datasets that can be used in impact analysis, for55

example through statistical downscaling and bias-correction (Lange, 2019).

The latest phase of the Coupled Model Intercomparison Project, Phase 6, CMIP6 (Eyring et al., 2016) prescribed stan-

dardized experiments that a large international community of modeling centers performed in order to answer a wide range

of scientific questions. CMIP6 used a decentralized structure composed of self-organized MIPs, among which ScenarioMIP
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coordinated future scenario projections. ScenarioMIP’s experimental design (O’Neill et al., 2016) had to negotiate the trade-off60

between ensuring that the impact, adaptation and vulnerability (IAV) research community obtained ESM output from future

scenarios of relevance to their analysis framework, and respecting the competing demands on ESMs’ time and resources that

the larger CMIP6 effort posed. Despite the latter, the modeling community signed up almost unanimously for the ScenarioMIP

request – at a minimum, running the four scenarios in its Tier 1. Each experiment involved a complex set of forcing inputs (e.g.,

greenhouse gases and other atmospheric element concentrations, land use change trajectories) harmonized to corresponding65

historical estimates and downscaled from the aggregated trajectories produced by the IAMs (Gidden et al., 2019; Hurtt et al.,

2020; Meinshausen et al., 2020). The computation, preparation and provision of these forcings required a complementary

community effort (https://esgf-node.llnl.gov/projects/input4mips/). ESM outcomes from ScenarioMIP experiments form the

basis for myriads of studies of the physical climate system, starting from basic characterizations of scenarios ranges and dif-

ferences (Tebaldi et al., 2021) to complex and focused process-based analyses. Importantly, the same results are being used70

to conduct integrated IAV analyses, often within the Shared Socioeconomic Pathways-Representative Concentration Pathways

(SSPs-RCPs) framework (van Vuuren et al., 2014) that matches qualitative and quantitative assumptions about future societal

trends (like population and GDP – the SSP part) to outcomes from simulations forced by GHG trajectories consistent with

those (the RCP part).

The range of radiative forcing at 2100 covered by the experiments in Tier 1 of ScenarioMIP, when complemented by the75

Paris-inspired low warming scenario reaching only 1.9Wm−2 by 2100, can be considered well representative of the range of

future plausible outcomes, reaching up to 8.5Wm−2. Ideally, however, impact analyses should be able to use an arbitrary set

of scenarios within this range, not just the handful run by ESMs. This freedom from specific (CMIP6) experiments is partic-

ularly relevant when impact analyses are conducted within an IAM framework, i.e., when the integrated assessment model

endogenously produces its own trajectory of emissions and therefore global temperature changes, which should be translated80

into consistent resolved climate information driving impacts within the same integrated modeling ecosystem. Another desir-

able aspect for impact risk assessment, one that also imposes a trade-off on resources, is the availability of initial condition

ensembles (sometimes simply called "large ensembles") under each scenario, in order to explore the contribution of internal

variability to future changes and their impacts (Hawkins and Sutton, 2009; Lehner et al., 2020).

Thus far, the need for additional scenarios not available in ESM output archives has been addressed – when at all – by simple85

emulators of ESM output, usually producing multi-decadal averages of temperature and – separately – precipitation change

fields. Most popular has been simple pattern scaling, starting from its initial conception (Santer et al., 1990), popularized

by the software MAGICC-SCENGEN (http://www.magicc.org/, Meinshausen et al. (2011)), and made more sophisticated by

the possibility of producing higher frequency fields, thus representing internal variability, for example by Link et al. (2019)

and Nath et al. (2022). More complex emulators have also been proposed departing from pattern scaling (Castruccio et al.,90

2014), or extensions of pattern scaling that use zonal averages to drive the emulation (Schlosser et al., 2013), or that emulate

other metrics besides average temperature and precipitation (Huntingford and Cox, 2000), even extremes (Tebaldi et al., 2020;

Quilcaille et al., 2022). In many cases, however, specific applications challenge the use of emulators in place of ESM output:

impact models have evolved so to require coherent multivariate input (i.e., multiple variables that preserve their spatial and
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temporal correlations), often at relatively high temporal frequencies (annual or monthly, when not higher), often spanning95

multidecadal periods, not just time slices. It is difficult to imagine any emulator, short of having the same complexity of an

ESM, able to satisfy these requirements exhaustively.

Our approach, STITCHES, emulates an ESM by using its own output as building blocks, thus reproducing by construction

the high-dimensionality, complexity and multiple frequencies of original ESM output. Working with existing scenario experi-

ments run by an individual ESM, we stitch together output from time windows/experiments that we extract from the available100

archive on the basis of the corresponding value of global average temperature in those time windows/experiments.

The idea of using existing simulations’ output over a window when global average temperature reaches a given warming

level of interest, often called time-sampling, has been frequently and prominently used in recent years (King et al., 2018;

James et al., 2017). In fact, it constitutes the foundation of an entire special assessment report of the Intergovernmental Panel

on Climate Change (Masson-Delmotte et al., 2018), which assessed the consequences of reaching a global warming level of105

1.5◦C versus higher levels. That report’s impact chapter made extensive use of this approach in the absence – at the time of its

writing – of ESM experiments that simulated low warming scenarios consistent with the Paris targets of 1.5◦C or 2◦C. Rather,

windows of time within experiments run under higher scenarios were isolated when global average temperature reached 1.5◦C

or 2◦C, and the corresponding ESM output was extracted and analyzed to describe climate at those levels, and the ensuing

impacts. Here we extend this approach, which only used individual time windows, to the emulation of ESM output for entire110

transient scenarios, i.e., trajectories of greenhouse gases and other anthropogenic forcings evolving continuously over the 21st

century (Manabe et al., 1991; King et al., 2020). We first translate the target transient scenario into its GSAT time series

over the century. We then split the GSAT trajectory into decade-long windows, and we identify for each of them a "nearest

neighbor" among decade-long windows from GSAT trajectories available from existing ESM experiments. Nearest neighbors

are defined in terms of the level of GSAT warming, but also the warming rate in the window. The sequence of nearest neighbors,115

identifying time-windows and experiments from the archive that constitute the building blocks of the emulation, becomes in

practice a sequence of pointers that can be used to extract and stitch together any variable available in the ESM archive for

those time windows and experiments, not just GSAT. We will show that our synthetic time series created by stitching together

discrete windows are for most purposes (i.e., variables, time and spatial scales) acceptable surrogates of continuous ESM

output. In other words, we show that the stitching in most cases does not introduce significant discontinuities at the seams, or120

otherwise spurious behavior, for most application we can envision.

In the next sections, we first describe our method in detail (Sect. 2), then present results of the emulator and document the

ability of the method to reproduce output for the two intermediate scenarios of ScenarioMIP Tier 1 (SSP2-4.5 and SSP3-7.0)

given only output from the two scenarios that bracket the targets, SSP1-2.6 and SSP5-8.5. This is the case for many of the ESMs

that contributed to ScenarioMIP (Sect. 3.1.1). We also show how the method can be used to form additional initial condition125

ensemble members on the basis of the existing simulations (Sect. 3.1.2). In closing (Sect. 4), we summarize the strengths

and value of our proposed emulation and discuss its limitations, highlighting what needs to be considered before applying

STITCHES in place of true ESM output. We also discuss the challenges that STITCHES encounters when targeting scenarios

of shapes other than regularly increasing forcings, like stabilized scenarios and overshoots, besides the obvious limitations to
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scenarios that produce warming levels intermediate to the existing ones. Therefore we suggest that a concerted effort could be130

made to facilitate the application of the emulator by choosing scenarios of different shapes, rather than scenarios that only vary

in the strength of the radiative forcing, when ESM experiments are prescribed. If climate model output emulators, possibly

used in a complementary fashion, become part of the overall strategy in providing climate information to the impact research

community, we argue that the next ScenarioMIP design may follow different priorities from the current ones.

2 Methods135

We here describe the emulator rationale and its main aspects, and discuss our validation approach.

Many applications have in the recent past focused on a window, along the length of an ESM simulation, when global average

temperature change conforms to a given criterion (e.g., is on average 1.5◦C with respect to a pre-industrial baseline). Climate in

this window as represented by the multivariate ESM output is taken to be representative of conditions at that global temperature,

no matter the scenario under which the global temperature is reached, or the time in the simulation when that happens. This140

"scenario-independence" assumption is valid for most atmospheric variables, which have a short memory and whose behavior

depends on the instantaneous warming level. However, any quantity that is defined as an integral over time, like severe mega-

droughts, or behaves in a way that is related to such integral, like sea-level change, cannot be accurately represented by this

method. These caveats should not be overlooked, but for many aspects of the climate system that can be well represented by

so-called time-sampling, this approach has obviated the need of running scenarios stabilizing at low warming levels through145

ESMs ((Masson-Delmotte et al., 2018)). It has also been instrumental for presenting climate outcomes at a range of discrete

warming levels, even as recently as the latest assessment report by working group 1, the Physical Science Basis, of the IPCC,

which used global warming levels as an alternative to scenarios to organize the discussion of future projections (Chen et al.,

2021; Lee et al., 2021; Seneviratne et al., 2021; Gutiérrez et al., 2021).

Our method, that we suggestively call STITCHES, extends the time-sampling approach to an entire century-long global150

average temperature trajectory, rather than just individual and discrete global average temperature levels. Our hypothesis is that

we can devise stringent enough criteria in matching successive pieces of a time series of global temperature (GSAT) generated

under a target scenario to pieces chosen from available GSAT time series generated by ESMs according to the scenarios run

and archived in community databases (e.g., through the CMIP6 database1, or the CLIVAR SMILES collection2, etc.). After

matching we can stitch together these available pieces forming a time series of GSAT that appears as if it was produced by the155

ESM according to the new scenario. If the stitching works for GSAT, we show that we can also stitch together the corresponding

pieces of simulations for many other impact-relevant variables that are in essence slaved to GSAT, at a range of time and spatial

scales, without introducing artifacts and discontinuities of consequence for most application in impact research, especially in

the context of the uncertainties that climate or impact models are well known to introduce.

1https://esgf-node.llnl.gov/projects/esgf-llnl/
2https://www.cesm.ucar.edu/projects/community-projects/MMLEA/
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Our algorithm is applied separately to each individual ESM, as stitching together different models’ lengths of simulations160

would almost certainly introduce spurious behavior. Within a single ESM universe, we can envision two distinct types of

application of our algorithm, both of which would build from existing simulations under future scenarios by that model. In one

case, the goal is to minimize the number of scenarios run by that ESM, supplementing the existing ones with stitched ones.

To demonstrate the utility of STITCHES in this case, we will show the effectiveness of the method in emulating ESM output

under intermediate scenarios to existing ones. This application benefits impact research, enriching the choice of scenarios165

whose impacts can be evaluated and compared; it also translates into saving resources by lowering the number of scenarios

to be simulated by the ESMs, in no small measure when considering the large effort involved in preparing forcing inputs.

(We repeat here, however, that by construction our algorithm does not allow extrapolating to levels of warming above those

of the highest scenario available in the archive, or below the lowest. We will elaborate further on the limiting factors of the

archive characteristics for the creation of new scenarios.) In the other case, the goal is to enrich the number of ensemble170

members available for existing scenarios. To this effect, STITCHES can be deployed on available simulations of the target

scenario and neighboring scenarios, all potential sources of usable time samples. In this context however we also see promising

complementarity with recently developed emulators that focus specifically on estimating the statistical characteristics of an

ESM internal variability, and randomly generating new realizations of it (Beusch et al., 2020, 2021; Nath et al., 2022; Quilcaille

et al., 2022; Liu et al., 2022).175

We now describe the steps of the STITCHES algorithm. See also Figure A1 for a graphic illustration of the algorithm.

1. Time series of annual GSAT from all available simulations of the 21st century by a given model (all scenarios and initial

condition ensemble members) are computed; the time series are made into anomalies with respect to a baseline period of

1995-2014 (we refer to GSAT time series in the following for brevity, but in all cases what we mean is GSAT anomalies

time series);180

2. a X-year running mean is applied to the GSAT time series and "pieces" are separated at a regular interval of X years

(we use X = 9 in our demonstration). We label these pieces derived from the existing ESM simulations as "available".

They identify the potential building blocks for our stitching procedure;

3. for each available piece i of smoothed, annual GSAT we compute its median value, Ti and, as a measure of the rate of

temperature change within the piece, the linear trend within the piece, dTi;185

4. the same smoothing and splitting procedure is applied to the trajectory of GSAT for the target scenario to be emulated;

we call the result "target pieces". Note that in the examples of this paper, we derive the target GSAT trajectory from the

same ESM, run under a scenario that we choose as target of the emulation. Therefore, we apply the smoothing procedure

to the target GSAT time series as well. Often the real application of the algorithm will target a time series of GSAT that

is produced by a simple model, like MAGICC (http://www.magicc.org/, Meinshausen et al. (2011)) or Hector (Hartin190

et al., 2015), on the basis of a target scenario. These simple models do not simulate internal variability and therefore their

output is in no need to be smoothed. Also, in these cases the moving average window X may be adjusted by narrowing or
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extending X until the muted year-to-year variability of the smooth target series produced by the simple model is closely

matched;

5. each target piece and each available piece can now be represented by a point in the two-dimensional space (T,X ∗195

dT ) (See Figure 1). In this space, we apply Euclidean distance (dl2) to determine, for each of the target pieces its

neighbors among the available pieces, within a tolerance Z, used to define a heterogeneous matching neighborhood

around each target point of radius ri = dl2
(
(Ti,X ∗ dTi),nearestneighbor

)
+Z. The choice of Z could be tailored to

the characteristics of each ESM/scenario considered, but, importantly, is also directly relevant for the number of matches

found and therefore the number of emulated scenarios constructed. Modification of the algorithm could also apply a200

differential weight to the two dimensions;

6. for each of the target pieces in the sequence spanning the 21st century, one of the neighbors within its Z radius is chosen,

and the sequence of chosen available pieces is stitched together sequentially, to form the emulated GSAT trajectory. We

can randomize the choice of matches, or choose nearest neighbors; importantly we do not choose the same piece more

than once along the same emulated trajectory (one available piece may be neighbor of more than one target piece along205

the same target scenario) to avoid unrealistic repetitions, and we do not choose the same piece for the same window

in time when constructing more than one ensemble member for the same scenario, to avoid what we call "collapsed"

ensembles or "envelope collapse", i.e. trajectories that pass through the same values year after year over a window of

time. We apply this restriction both within a single generated trajectory (once an archive window has been used for a

target-year, it can not be used again for other target-years in that trajectory), and across ensemble members (if two target210

ensemble members match to the same archive-window for the same target-year, only one of the ensemble members may

keep the match). All these constraints could of course be relaxed.

7. So far the algorithm has produced a new GSAT trajectory, emulating the target one. Importantly, however, the algorithm

delivers in essence an ordered series of pointers to the time-windows and specific experiments in the archived output

from which the chosen neighboring pieces were extracted. Any output from the model (any variable, in isolation or215

jointly, at any archived frequency, and on the native grid of the ESM) can be stitched together according to this sequence,

recreating the climate outcome of the desired variable(s) consistent with the emulated scenario.

As pointed out in the description of the algorithm, its parameters (X,Z) are subject to tuning. However, they both have an

interpretable function, and only small variations should be acceptable as alternative setting. In particular,

– X is the size of the smoothing window and the length of the pieces used as building blocks of the synthetic time series.220

Producing a time series from the available ESM GSAT series whose smoothness matches that of the target series should

be the first aim of this parameter, when the target series does not contain internal variability. The use of about 9 years

for GSAT has shown in our tests to be a good first guess, but trial and error for the specific simple model used may be

in order. When starting from a time series that contains internal variability as our target, the same rule of thumb can be

a starting point for the application of the smoothing to both target and available GSAT trajectories. Naturally the time225
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window also dictates the size of the piece: if the window is long enough to erase internal variability, it will prevent any

piece from reflecting a single phase of a mode of variability, and therefore, when stitched together, the pieces will not

systematically give rise to unrealistic sequences of the phases of those modes. (This may of course fail for the longest

multi-decadal modes, like NAO or PDO, so if the impact analysis is focusing on the sensitivity of the analyzed system

to the phases of these modes, STITCHES may not be the best choice of emulator for this type of impacts.)230

– Z is the tolerance radius within which we identify neighbors in the two-dimensional space (T,X ∗ dT ). The distance

along each dimension is immediately interpretable and comparable to the magnitude of the yearly values of GSAT within

a piece of the smoothed series (in the T direction) and to the size of its variation within the piece, i.e., a measure of the

rate of temperature change within the piece (in the X ∗ dT direction) providing guidance in choosing the size of the

tolerance. The specific application may allow increasing the tolerance if a "jump" between pieces is not a concern for235

the application envisioned, a beneficial choice in enlarging the number of synthetic series that can be constructed from

a finite archive of "building blocks". We also note here that fixing this tolerance in the space of the smoothed GSAT

time series leaves open the possibility that the original, i.e., non-smoothed, yearly values can present the occasional large

"jump" at the seams where the stitching is performed. This is of course also possible for the additional variables, besides

GSAT, that we emulate. Our expectation is that the noise of annual or monthly variability for most variables and spatial240

scales is large enough to overwhelm the occasional jump at the seam. We will show that this is in fact the case in the large

majority of cases, so, unless the application is particularly sensitive to year-to-year variations, it might not be considered

a fatal defect. Section 3.1.3 presents some results specifically addressing the trade-off between Z and the number of

replicates that STITCHES can create. We also note here that in our version of the algorithm we chose a simple Euclidean

distance thus weighing the two dimensions equally, but a user may decide to have give larger weight to one of the two.245

At the time of writing, STITCHES is built to integrate with (and depends on) the PANGEO CMIP6 archive of results3. From

available runs on PANGEO, we have selected all models, all experiments and all ensemble members with reported monthly

gridded data for surface air temperature and precipitation, (we will consider a smaller subset that also provides monthly gridded

sea level pressure for one particular validation exercise). Model-specific archives are created separately for each ESM. Figure

1 plots the model-specific archive of (T,X ∗ dT ) for six ESMs with various size ensembles for each of the scenarios (see250

Table 1). In the following, we either use a portion of the archive to emulate a left-out portion of the simulations, or we use all

the archive to add new "ensemble members" to some scenarios. The former set-up simulates the situation where non-existing

scenarios are created from existing ones, but here we also gain the prerogative of validating the emulated scenarios against

their true realizations. When the goal instead is to enrich the ensemble size of existing scenarios, one has the option of using

also the members of an existing initial condition ensemble, thus producing trajectories that repeat existing ensemble members’255

windows, but in a difference sequence, and mixed with other scenarios’ windows. PANGEO contains files where both the

historical period and the future have been connected under the label of a specific SSP. Our emulation applies to the entire period

(1850-2100), but for brevity in most of the following we will label the various cases simply under the corresponding SSP. In fact,

3http://gallery.pangeo.io/repos/pangeo-gallery/cmip6/
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most of the ESMs have branched different scenarios from the same historical simulations, so a strict out-of-sample construction

of the historical period is in most cases impossible, and the effect is to produce emulated trajectories of the historical period260

that may use identical pieces to the target from the available. STITCHES main purpose remains the construction of future

scenarios, though, so we do not worry about this detail as we do not predicate our assessment of performance on the historical

period.

Figure 1. GSAT archive content, plotted in the space of (T,X ∗ dT ), i.e., the warming level with respect to the period 1995-2014 (as

represented by te median value of the X annual values in the window) and the within window rate of warming (as represented by a linear

trend fitted to the X values), for six of the ESMs used in our emulation exercises. Each point corresponds to a X = 9-year-long window in

the GSAT time series from an existing scenario simulation, indicated by the color legend.
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3 Results

3.1 General tests and validation of the synthetic series265

We now show results for several test cases. Table 1 details the models, experiments and ensemble sizes from the CMIP6 archive

available through the PANGEO interface as of March 15, 2022.

Table 1. The ESMs, experiments from ScenarioMIP (O’Neill et al., 2016) and ensemble sizes from the PANGEO archive (as of 03/15/2022)

used to derive test cases for our emulator.

Model SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-CM2 5 5 5 5

ACCESS-ESM1-5 40 10 30 35

BCC-CSM2-MR 1 1 1 1

CAMS-CSM1-0 2 2 2 2

CanESM5 25 25 25 25

CAS-ESM2-0 2 2 2 2

CMCC-CM2-SR5 1 1 1 1

CMCC-ESM2 1 1 1 1

FGOALS-g3 4 4 4 4

FIO-ESM-2-0 3 3 0 3

GISS-E2-1-G 4 5 9 4

HadGEM3-GC31-LL 1 4 0 4

MCM-UA-1-0 1 1 1 1

MIROC-ES2L 10 30 10 10

MIROC6 50 50 3 50

MPI-ESM1-2-HR 2 2 10 2

MPI-ESM1-2-LR 10 10 10 10

MRI-ESM2-0 5 5 5 6

NESM3 2 2 0 2

NorESM2-LM 1 3 3 1

NorESM2-MM 1 2 1 1

TaiESM1 1 1 1 1

UKESM1-0-LL 13 14 13 5

10



3.1.1 Validation of emulated intermediate scenarios

Table 2. The number of emulated trajectories produced to assess the performance of STITCHES in recreating intermediate scenarios (SSP2-

4.5 and SSP3-7.0) from the two "bracketing" scenarios (SSP1-2.6 and SSP5-8.5).

Model SSP2-4.5 SSP3-7.0

ACCESS-CM2 4 3

ACCESS-ESM1-5 5 5

BCC-CSM2-MR 1 1

CAMS-CSM1-0 2 2

CanESM5 3 1

CAS-ESM2-0 2 1

CMCC-CM2-SR5 1 1

CMCC-ESM2 1 1

FGOALS-g3 4 4

FIO-ESM-2-0 3 -

GISS-E2-1-G 4 5

HadGEM3-GC31-LL 1 -

MCM-UA-1-0 1 1

MIROC-ES2L 3 5

MIROC6 - 3

MPI-ESM1-2-HR 2 2

MPI-ESM1-2-LR 5 4

MRI-ESM2-0 1 3

NESM3 2 -

NorESM2-LM 1 1

NorESM2-MM 1 1

TaiESM1 1 1

UKESM1-0-LL 3 4

Our first goal is to test the ability of STITCHES to reconstruct ESM-like output for new scenarios using ESM output from

existing scenarios. We do so for all available ESMs in the PANGEO CMIP6 archive that provide at least one member under270

SSP1-2.6 and one member under SSP5-8.5, targeting the two intermediate scenarios SSP2-4.5 and SSP3-7.0 (See Table 1).

As already mentioned, when the goal is emulating ESM output for non-existing scenarios, our targets need to be trajectories

that reach warming levels within the ones available in the archive, as our algorithm does not allow extrapolating. Similarly,

STITCHES cannot emulate overshoot scenarios, given that the archive does not offer a large sample of overshoot experiments
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from which we can piece out our building blocks (obviously, the cooling behavior of GSAT in an overshoot experiment cannot275

be sampled from increasing, or flat, GSAT trajectories.) These considerations could be useful to keep in mind when designing

the next phase of ScenarioMIP. Intentionally, we fix the values of the two parameters (X,Z) = (9,0.075), independently of

the specific ESM targeted. A specific choice could only ameliorate the performance of our emulator for any given model used

as test case. However, our common choice is the result of considering the behavior of many ESMs and finding values that are

consistent with most, so, de facto, these parameters are tailored to some ESMs and less tailored to others. The best performance280

that we document could be regarded as what is expected when tailoring the parameter values to the specific ESM that we want

to emulate.

Table 2 lists the number of emulated trajectories for each of the intermediate scenarios targeted, and for each of the models.

Since this exercise is not about producing many replicates, but simply reproducing a target trajectory, for each model we set out

to reproduce as many targets trajectory as there are ensemble members available under SSP2-4.5 or SSP3-7.0 if such number is285

less than or equal to five, capping at five the number of targets also for those models with more ensemble members potentially

available as targets (see Table 1).

As mentioned in Sect. 2 our emulation approach produces the same complex, multidimensional output as an ESM does.

Thus, validation could take a practically infinite number of forms, over a range of variables in isolation or jointly, and over

arbitrary space and time scales. To simplify the task, however, we rely here on the well known result that – among atmospheric290

variables that are commonly used for impact modeling – surface air temperature has, relatively speaking, a lower amount of

internal variability, and this variability becomes lower the larger the averages taken in the time and space domains. Thus, our

validation will start by considering the behavior of annual average GSAT trajectories from STITCHES.

Our first concern is to not systematically introduce significant discontinuities when stitching together separate windows

of ESM output, often from altogether different experiments (if always from the same ESM). To this end, we consider the295

year-to-year difference in the annual GSAT trajectories stitched together. The tolerance allowed for the match (Z = 0.075) is

responsible for keeping the stitched-together pieces of the smoothed trajectories within a narrow interval of one another, but

cannot directly control what happens when we recover the stitched-together original trajectories of (non-smoothed) annual

values for this validation exercise. These could differ by a larger amount if, by chance, the 9-year pieces happen to end/begin

with widely different values. Our concern is that this does not happen systematically. Table 3 reports, for each ESM, how many300

of these seams (as many for each trajectory as there are 9-year intervals) produce a year-to-year variation that is larger than

twice the standard deviation of the real year-to-year variations. The latter are taken as either those from the archive simulations

used as building blocks within the stitched trajectories (thus addressing the question "do the seams stand out from the rest

of the series within which they appear?") or those in the target series (thus addressing the question "do the seams stand out

compared to the year-to-year variations of the trajectories we want to emulate?"). As can be assessed, this behavior emerges305

only very sporadically, with most cases well below 10% of the seams. In fact the mean of these values is just above 5%, which

could be the expected outcome by chance of such an exercise, even if those outliers came from the same distributions used as

comparison.
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Table 3. For all the models used in our emulation of ESM output under SSP2-4.5 and SSP3-7.0 we report the number of "seams" at which

annual GSAT presents a jump that is larger than twice the inter-annual standard deviation. The latter is computed either from the inter-annual

variations of the archive simulations used in the stitching (in practice, the inter-annual standard deviations of the stitched trajectories without

including the seams in its computation), or from the target experiments (the inter-annual standard deviations of the real series that we are

emulating). We also show the total number of seams from which percentages are computed.

Model SSP2-4.5 SSP3-7.0

fraction fraction total seams fraction fraction total seams

(vs. archive) (vs. target) (vs. archive) (vs. target)

ACCESS-CM2 9 11 108 4 6 81

ACCESS-ESM1-5 1 1 135 9 10 270

BCC-CSM2-MR 2 2 27 2 2 27

CAMS-CSM1-0 3 3 54 3 3 54

CanESM5 2 3 81 0 0 27

CAS-ESM2-0 0 0 54 2 2 27

CMCC-CM2-SR5 0 0 27 3 2 27

CMCC-ESM2 1 1 27 1 1 27

FGOALS-g3 2 5 108 5 5 108

FIO-ESM-2-0 1 3 81

GISS-E2-1-G 1 2 108 4 4 135

HadGEM3-GC31-LL 1 1 27

MCM-UA-1-0 3 2 27 4 4 27

MIROC-ES2L 3 3 81 3 4 135

MIROC6 1 1 108 1 1 81

MPI-ESM1-2-HR 2 3 54 2 4 54

MPI-ESM1-2-LR 5 6 135 3 3 108

MRI-ESM2-0 3 1 27 5 5 81

NESM3 3 3 54

NorESM2-LM 3 3 27 1 1 27

NorESM2-MM 3 4 27 2 2 27

TaiESM1 2 2 27 3 3 27

UKESM1-0-LL 3 3 81 4 5 108

We then compare linear trends fitted to the stitched trajectories to linear trends fitted to the target series, by separately

fitting a linear trend to the historical period (1850-2014) and the future period, 2015-2100. The trends are defined as the310

angular coefficient of a linear regression of annual mean values of GSAT onto years, and we consider central estimates (by
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ordinary least squares) and 95% confidence intervals. We find that in all cases (109 stitched trajectories across the models and

the two scenarios) historical trend central estimates for the stitched series fall comfortably within the confidence intervals of

the historical trends of the target series. For the future trends, the confidence intervals of the stitched series overlap with the

confidence intervals of the trends from the target series in all cases. There are 21 trajectories out of the 109 for which the central315

estimates fall outside those confidence intervals. In all these cases, the difference between the central estimate and the closest

bound of the confidence interval is a very small value: in one single case, the central estimate is outside the confidence intervals

by 0.056◦C per decade. In two more cases, the values are between 0.04◦C and 0.05◦C; six more cases miss by 0.01-0.023◦C

per decade, with the remaining 12 cases falling outside the respective confidence intervals only by 0.01◦C per decade or less.

We also compute inter-annual standard deviations for target and stitched trajectories, finding that once again, historical320

simulations remain within the ranges of the target trajectories in all cases. For the future period, in 78% of cases, the stitched

series show inter-annual variability within 20% of that of the target series. The remaining 24 cases, out of the 109 tested, whose

interannual variations fall outside the range of the target series show discrepancies that amount to less than 0.2◦C in all cases,

with a median value of 0.004◦C and a third quartile of 0.05◦C. Last, we compute autocorrelation and partial autocorrelation

to determine the frequency characteristics of the time series. The results confirm the similarities of stitched and target series,325

i.e, the emulated trajectories do not show spurious behavior, with discrepancies in the AR order estimated only for lags at the

margin of statistical significance (not shown).

Even if for a large majority of cases the performance of the emulator seems acceptable, and in many cases indistinguishable

from the target cases, we underline that some model/experiment combinations appear to be challenging for this uniform set

up. Most of these cases coincide with models providing only one ensemble member per scenario, and the spurious behavior is330

often found at the higher end of the warming range within the scenario emulated, where the only possible matches come from

the model’s only SSP5-8.5 available trajectory. It is not unlikely that the matches from the higher scenario result in less than

optimal windows, given the limited choice available for the higher temperature levels. Likely, fixing the tolerance parameter

to a tighter value could improve these specific emulation cases, or simply fail to create an emulated trajectory, so that the user

would have an outright warning of the difficulty in matching. Here we remain within a generic setting in order to show the335

trade-offs at play, and identify lessons. We show in Figure 2 some examples of target (in black) and stitched (colored lines)

GSAT trajectories for the two intermediate scenarios and three of the ESMs we test, differing from one another in the size of

the archive available and their climate sensitivities (see caption). Additional examples are shown in Figure B1 through B7 in

the appendix. From these additional figures one can also assess that the behaviors that appear to deviate from the expected are

all at the tail end of the simulations, and only for those models that offer only one pair of scenarios in the archive to sample340

from. This is particularly true when the target scenario is SSP2-4.5, which adds the extra challenge of a trajectory that stabilizes

(dT ≈ 0) and needs to find matches among windows that, at those levels of warming, can only come from SSP5-8.5, a scenario

of steadily increasing forcing. (As already mentioned, stabilization scenarios together with overshoots pose a challenge to

STITCHES given the content of the CMIP6 archive from which we construct our emulations.) In these figures we use a range

of colors, from cool to warm hues, to give a sense of the number of trajectories plotted in these spaghetti diagrams: while the345
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target ensemble is always drawn in black lines, the emulated trajectories are in color, with cases showing warmer colors being

those where we have created a larger number of stitched trajectories (see also Table 2).

Figure 2. Examples of target (black lines) and stitched (colored) GSAT time series for three ESMs in the PANGEO archive that ran at least

one trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We choose these three models as

they provide differing ensemble sizes (see Table 1) and are characterized by different values of equilibrium climate sensitivity (4.73K, 3.40K

and 2.72K respectively). See Figures B1- B7 for further examples.
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For all cases when the emulation of GSAT time series (made of annual average values) does not present inconsistencies our

hypothesis is that noisier quantities would not suffer from detectable discontinuities either. We have tested this expectation for

a range of quantities (temperature, precipitation, and sea level pressure) and scales (from subcontinental to local, i.e. grid-point350

level). Here, as examples, we compare trends and variability (computed as the standard deviations of the residuals from the

trend) between stitched and target time series under the two scenarios (over the 2015-2100 period) for temperature (TAS)

and precipitation (PR). All metrics here are computed using time series of gridded output at monthly frequency, covering the

entire annual cycle, for the length of the emulated output (2015-2100). In the appendix we show similar results for month-

specific output sampling behavior during Boreal winter (January) and Boreal summer (July), addressing the possibility that the355

emulation could be differently challenged by stronger or weaker forced trends. We use results from the emulation of two models

that represent extremes in the PANGEO dataset, in terms of availability of archive trajectories: CAMS-CM1-0 (with only two

ensemble members each for SSP1-2.6 and SSP5-8.5) for which we have derived one emulated trajectory per scenario (SSP2-4.5

and SSP3-7.0) and MIROC6 (with 50 ensemble members for each) for which we have emulated three trajectories per scenario.

In the trend figures we blacken grid-points where the trends computed from the stitched trajectories are significantly different360

from those computed from the target trajectory. We use here the same criterion that we applied to the validation of GSAT:

trends are significantly different when their 95% confidence intervals do not overlap. For the analysis of monthly variability we

show maps of the ratio of the two variances computed from the stitched and target time series, after removing the linear trends.

We consider substantially different variances that are not within 20% of one another, i.e. whose ratio is either less than 0.8 or

more than 1.2. The color bar is chosen to highlight these two thresholds. Figure 3 shows results for the comparison of TAS365

and PR trends for CAMS-CM1-0 while Figure C1 through C3 in the appendix show the corresponding analysis for MIROC6.

For temperature, as can be assessed in Figure 3, top panels, only isolated patches over the tropical oceans show statistically

significant differences in trends. The results for MIROC6, where we can look at three different realizations, show that also

for this model’s emulation the areas of disagreement consist of isolated patches mostly over ocean regions, and not consistent

from realization to realization, suggesting the role of internal variability in producing these results, rather than a systematic370

problem with STITCHES. Internal variability is likely responsible for an area in the Arctic showing significant discrepancies

in two of the three realizations, but effects of ice-free summer intensified warming (Blackport and Kushner, 2016), or behavior

of the AMOC could also contribute to this limited area of disagreement. For precipitation the inconsistent areas are barely

detectable as smaller scatters of points, mostly over the oceans. These results remain essentially unchanged when considering

trends for individual months. Figures C4 and C7 show a sample of plots for January and July temperature and precipitation375

trends for the two models. As can be assessed, the appearance of statistically significant patches of trend disagreement has the

same qualitative characteristics as those in the maps showing the comparison of trends computed using the year-long monthly

data.

16



Figure 3. Absolute difference in future trends of monthly temperature (TAS) and precipitation (PR) between stitched and target realizations.

The value of the difference is expressed by the color scale and we marked by black crosses those locations where the trends computed from

target and stitched time series do not overlap in their 95% confidence intervals, indicating statistically significant differences. Emulation of

CAMS-CM1-0 monthly time series for 2015-2100 under SSP2-4.5 and SSP3-7.0.
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Figure 4. Ratio in monthly variability (standard deviation of residuals from trends) of future temperature (TAS) and precipitation (PR)

between stitched (at the numerator) and target (at the denominator) realizations. The value of the ratio is expressed by the color scale which

highlights the transition at 0.8 and 1.2. Emulation of CAMS-CM1-0 monthly time series for 2015-2100 under SSP2-4.5 and SSP3-7.0.

Performance in terms of monthly variability of temperature is within 20% of the true variability practically over all the land

regions, and over the large majority of the oceans’ areas, with the exception of a systematic bias over the west Pacific cold380

tongue. Rainfall variability appears less homogeneously accurate, until one realizes that the areas where variability appears

inconsistent (i.e., areas where the value of the ratio is smaller than 0.8, or larger than 1.2) coincide with climatologically very

dry areas of both the Northern and Southern hemispheres. In these regions variability is low, and therefore small differences

in the numerator and denominator may cause large variation of the ratio, without implying meaningful differences in rainfall

behavior.385

Last, still concerned with single time series behavior, we consider a different quantity altogether: the Southern Oscillation

Index (SOI), describing the evolution of the El-Niño Southern Oscillation mode of variability. The SOI index is defined as the
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standardized difference between sea level pressure (SLP) monthly anomalies at Tahiti and Darwin, Australia4. The negative or

positive sign of this difference indicates abnormally warm or cold ocean waters across the eastern tropical Pacific, associated

with El Niño or La Niña episodes. The index, despite being a uni-dimensional time series, reflects the behavior of a coherent390

spatial field (SLP) at monthly frequency. Its frequency characteristics are important to preserve, as the opposite phases of the

SOI have been found to be associated with significant shifts in the weather of regions having strong teleconnections, causing

droughts or intense precipitation, and cooler or warmer than average conditions (Mason and Goddard, 2001; Lenssen et al.,

2020) . Therefore, for impact analysis, we would not want to produce time series of this index with a spurious behavior,

compared to the corresponding continuous output of the emulated ESM. Thus, we perform a comparison of the characteristics395

of the true and emulated SOI time series using (partial) auto-correlation function and spectral density estimates. Note however

that we are not comparing these frequency characteristics to observations, which is not the point of our validation exercise. We

consider this validation particularly important, both because of the salience of ENSO behavior for many types of impact, and

because the frequency characteristics of this mode of variability are close to our 9-year windows.

Figure 5 presents target and stitched time series of the ENSO index for one of the models (CAMS-CM1-0) and three twenty400

year windows along the two scenarios emulated. As can be gauged, the three pairs of time series appear similar in magnitude

and oscillatory behavior. In order to confirm the latter, we show in Figure 6 the (partial) auto-correlation functions of the

corresponding time series. This analysis produces indistinguishable lag patterns, and, importantly, does not reveal any spurious

behavior at 9 years’ lags. Figures D1 through D6 in the appendix confirm that results are similar for three emulated ensemble

members under each scenario for MIROC6. Further, we show in Figure D7 the spectral densities of the entire time series,405

comparing target and stitched, and showing how the densities of the stitched trajectories have a behavior that is qualitatively

and quantitatively (up to what appears as some noisy behavior at very low frequencies) consistent with that of the target

trajectories.

4https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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Figure 5. Examples of target (left) and stitched (right) SOI time series for three twenty-year windows along the length of the simulation:

2015-2034 in the top four panels; 2035-2054 in the middle four panels; 2081-2100 in the bottom four panels. Results from emulation of

SSP2-4.5 and SSP3-7.0 for CAMS-CM1-0.
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Figure 6. Auto-correlation (ACFs) and Partial auto-correlation functions (PACFs) for real and stitched SOI time series. Top two rows: SSP2-

4.5 ACF for target and stitched series and respective PACFS. Bottom two rows: SSP3-7.0 ACF for target and stitched series and respective

PACFs. (Our software – R function acf(..,type="partial") – does not define the PACF at lag zero.)21



On the basis of these results we confirm the correctness of our expectation that, after validating the statistical characteristics

of a large scale, low frequency quantity like annual GSAT, further validation of emulated variables at grid-point scale and410

higher temporal frequency do not seem to present larger challenges. The higher noise of these quantities indeed accommodates

the discontinuities introduced by their emulation.

3.1.2 Validation of emulated initial condition members

Our emulator can also be used to provide multiple ensemble members under the same scenario, akin to initial condition

ensembles. For this type of application, besides the necessary validation of the individual members according to the above415

described metrics, we want to validate the properties of the synthetic ensembles as such, comparing their mean behavior

and their spread to those of real initial condition ensembles from the same ESM. Figures E1 through E5 show the resulting

ensembles for a number of experiments that we conducted over several ESMs and the two scenarios SSP2-4.5 and SSP3-7.0.

We chose models that provided at least 5 21st century trajectories of the Tier 1 scenarios. As mentioned in Section 2, this

exercise is conducted by using the entire archive available, as we mimic a situation where we are not creating a new scenario,420

but augmenting the size of an initial condition ensemble run under existing ones.

We adopt the two-dimensional metric of performance introduced by Tebaldi et al. (2020). We indicate by y a quantity derived

from the true ensemble and by ŷ the same quantity derived from the emulated ensemble. Further, we indicate by angle brackets

the ensemble average operation. The two dimensional metric is then defined as

Er(y, ŷ) =

(
|⟨y⟩− ⟨ŷ⟩|√
⟨(y−⟨y⟩)2⟩

,

√
⟨(⟨y⟩− ⟨ŷ⟩)2⟩
⟨(y−⟨y⟩)2⟩

)
. (1)425

Its first component (which we indicate below as E1) measures the systematic bias between the means of the true and the

synthetic ensembles, normalized by the true ensemble standard deviation. The second, E2 is defined as the ratio between the

synthetic and the true ensemble standard deviations. In a perfect emulation, Er = (0,1). It is useful to note that the magnitude

of these metric components is expressed as a fraction (or multiple) of the true ensemble variance, allowing a judgment of the

size of the discrepancies introduced by STITCHES as they compare to the true internal variability of the target ensemble. Here430

as before we focus on annual series of global mean temperature. Table 4 reports the values of E1 and E2. The number under

the column labelled "Archive Size" indicates how many 21st century trajectories were available for each of the four scenarios

in the archive to create 9-year building blocks for STITCHES. Note that when a model provided numerous trajectories to build

from, we tested the performance for increasing sizes of the archive (e.g., for the CanESM5 model we repeat the exercise using

5-,10-,15-,20-,25-members initial condition ensembles for each scenario). The following two columns in the tables list the size435

of the target ensemble emulated, which is therefore available for validation (y), under "Target Members", and the size of the

stitched ensemble, under "Stitched Members", which is the number of additional trajectories created by STITCHES that could

be added to the existing ensemble. We choose three years along the 21st century, 2010, 2050 and 2090, and we utilize 9-year

windows around those years to compute formula 1 (similar results were obtained by using a shorter 5-year window).

Several outcomes can be gleaned from Table 4. STITCHES trajectories have mean and variability characteristics within440

a small window of the target ensembles in the great majority of cases. Of course the application should dictate what is the
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Table 4. The two components of the Er metric, E1 and E2, computed for several experiments across ESMs, scenarios and number of

available archive trajectories from which to create the stitched ensembles. Numbers in columns 4 through 9 represent fractions of the target

ensemble standard deviation (see formula 1).

Model Scenario Archive Target Stitched E1 E2

Size Members Members 2010 2050 2090 2010 2050 2090

ACCESS-CM2 ssp245 5 5 5 0.00 0.36 0.00 1.03 0.82 1.09

ACCESS-ESM1-5 ssp245 5 10 6 0.29 0.00 0.02 1.16 1.16 1.35

CanESM5 ssp245 5 25 5 0.15 0.13 0.36 0.68 1.26 0.87

MIROC-ES2L ssp245 5 30 5 0.08 0.50 0.07 0.96 0.95 1.00

MPI-ESM1-2-LR ssp245 5 10 5 0.01 0.03 0.25 1.07 1.06 1.26

MRI-ESM2-0 ssp245 5 5 4 0.00 0.19 0.11 1.09 1.09 1.21

UKESM1-0-LL ssp245 5 14 3 0.04 0.51 0.37 1.18 0.99 0.93

ACCESS-ESM1-5 ssp245 10 10 9 0.00 0.02 0.00 1.40 0.99 1.18

MIROC-ES2L ssp245 10 30 10 0.01 0.00 0.02 1.20 1.17 1.01

MPI-ESM1-2-LR ssp245 10 10 10 0.00 0.04 0.01 1.06 0.89 0.86

CanESM5 ssp245 10 25 10 0.02 0.01 0.01 1.02 1.13 0.91

CanESM5 ssp245 15 25 15 0.01 0.01 0.01 0.92 0.87 0.99

CanESM5 ssp245 20 25 20 0.01 0.01 0.02 1.02 1.02 0.99

CanESM5 ssp245 25 25 23 0.00 0.00 0.00 0.88 1.02 1.00

ACCESS-CM2 ssp370 5 5 5 0.00 0.00 0.00 0.89 0.91 1.00

ACCESS-ESM1-5 ssp370 5 30 5 0.05 0.14 0.02 1.09 1.04 1.40

CanESM5 ssp370 5 25 4 0.30 0.03 0.00 1.40 0.85 0.90

MIROC-ES2L ssp370 5 10 5 0.06 0.69 0.01 1.18 1.16 0.90

MPI-ESM1-2-LR ssp370 5 10 5 0.27 0.30 0.00 1.28 1.15 1.20

MRI-ESM2-0 ssp370 5 5 5 0.00 0.07 0.01 0.90 1.13 1.14

UKESM1-0-LL ssp370 5 13 3 0.01 0.00 0.09 0.94 1.30 1.03

ACCESS-ESM1-5 ssp370 10 30 11 0.00 0.07 0.01 1.25 0.93 0.91

CanESM5 ssp370 10 25 10 0.11 0.00 0.03 0.87 1.02 1.03

MIROC-ES2L ssp370 10 10 9 0.11 0.22 0.00 1.11 1.08 0.98

MPI-ESM1-2-LR ssp370 10 10 9 0.01 0.00 0.01 1.12 1.46 1.05

CanESM5 ssp370 15 25 14 0.01 0.07 0.03 0.94 0.91 1.02

CanESM5 ssp370 20 25 19 0.00 0.00 0.01 0.90 0.96 1.02

CanESM5 ssp370 25 25 23 0.01 0.00 0.00 0.95 1.01 1.01

standard that needs to be met by the synthetic ensembles, but if discrepancies of up to 25 or 30% of the true internal variability

are acceptable, most cases described in the table would meet that standard, and in the great majority of cases by a large margin,
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especially once the ensembles available from which we sample building blocks have at least 10 members. This exercise uses a

tolerance value Z = 0.075 across the board, but tuning the value to specific ESM characteristics could ameliorate some of the445

worse performances. A look at the best performances suggests what we should expect, if the tuning was conducted specifically

to each ESM characteristics of variability. Section 3.1.3 below further expands on the relation between the tuning parameter

Z, the size of the ensembles that STITCHES can create, and the values of the Er metric.

We have performed the same exercise by limiting the archive to the two bracketing scenarios, SSP1-2.6 and SSP5-8.5, and

trying to construct ensembles for SSP2-4.5 and SSP3-7.0. In this case STITCHES is significantly challenged: its performance,450

as measured by the Er metric, is significantly diminished and, when comparing what happens for the same model and increas-

ing numbers of archive members, unpredictable, due to the fact that the algorithm randomizes both the identity of the archive

members and the choice of the nearest neighbors to construct the emulated output. Table F1 reports these discrepancies. A look

at Figure 1 may suggest the nature of the challenge here, because of the relatively extreme nature of SSP5-8.5 values compared

to SSP2-4.5 in particular. Section 3.1.3 below also discusses this aspect. We argue that this challenge could be lessened by a455

more deliberate design of ESM experiments in relation to the (T,X ∗ dT ) space. Additionally, as it has been argued recently,

SSP5-8.5 may represent an obsolete or at least improbable scenario (Hausfather and Peters, 2020) and therefore the range to

be explored by future scenarios could be narrower in the next phase of CMIP experiments.
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3.1.3 Trade-offs between generated ensemble size and Z

The size of a stitched ensemble targeting a given experiment is directly related to the number of ESM ensemble members460

present in the archive, as well as the tolerance for matching, Z. Larger values of Z result in larger numbers of stitched ensemble

members, until the archive is exhausted. It is unlikely that a closed form relationship between (archive size,Z) and size of the

stitched ensemble exists, as another factor in the success of the emulation is how similar the GSAT trajectories in the archive are

to the target and archive scenarios, not only in median value but in rate of warming, the two dimensions of our neighborhood.

Instead, we present empirical estimates, for each ESM separately, of a conservative cutoff value for Z, Zcutoff that should465

safely result in generated ensemble members satisfying our validation criteria presented in the above Sections 3.1.1 and 3.1.2.

Specifically, we will identify the Zcutoff at which the generated ensemble size appears to saturate while still maintaining small

Er values. Thus, using Z values beyond the provided Zcutoff provides no additional benefit.

To identify Zcutoff for each experiment of each ESM, we conduct a sweep of Z values ranging from 0.04 to 0.3◦C. As

noted in step 6 of the algorithm, the actual matches within each Z neighborhood are drawn randomly for stitching a trajectory.470

Therefore, at each Z value tested, we perform 50 of these random draws of the STITCHES algorithm for generating the largest

possible collapse-free ensemble, targeting each of experiment SSP2-4.5 and SSP3-7.0, and using the full archive for that ESM

(see Table 1). We calculate the same Er statistics above for both GSAT and the GSAT differences "at the seams" computed

over the annual time series of stitched GSAT, for each draw of a full generated ensemble. Zcutoff is identified as the largest

tolerance value that keeps the average value across draws of the two pairs of these metrics for each target ensemble below475

10%. Generally, it is the E2 dimension of the GSAT differences at the seams when targeting SSP2-4.5 that is largest of the four

error metrics across both target experiments: i.e., the standard deviation of the generated interannual jumps differs from the

standard deviation of the target interannual jumps of the target. This exercise should be repeated for other values of X (number

of years in a window), particularly for values substantially further away from the X = 9 value considered in this work. The

metarepository for this paper (see code and data availability) includes the experiment scripts used for this exploration, which480

users may adapt.

Zcutoff values and the corresponding draw-averaged generated ensemble size for each experiment-ESM combination are re-

ported in Table 5. Increasing the tolerance beyond these Zcutoff can increase the generated ensemble size, but with larger errors,

meaning potentially the stitched realizations at that point may not behave well. For example, at Zcutoff = 0.25, ACCESS-CM2

can stitch seven realizations targeting SSP2-4.5 but at max error of 11.6% (E2 of the GSAT differences in this case). Values485

of E2 of the GSAT differences this large may correspond to stitched GSAT trajectories that clearly feature abrupt switching

between windows of distinctly SSP1-2.6 and SSP5-8.5 behavior, rather than actually emulating an SSP2-4.5 trajectory. Finally,

if one wishes to select a single tolerance to use for emulation of both SSP2-4.5 and SSP3-7.0 (and likely for similar, novel,

intermediate scenarios), the larger Zcutoff should be used. For example, if one wished for a single Zcutoff value for CanESM5,

Zcutoff = 0.13 would provide generated ensemble sizes of 25 each for both SSP2-4.5 and SSP3-7.0 (with a draw-averaged max490

Er of 5.1% rather than 4.3%).
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By comparing the generated ensemble size from Table 5 with the CMIP6 archive sizes outlined in Table 1, we see that for

most ESMs, STITCHES can generate a stitched ensemble of the same size as the target ensemble. The cases with large archive

sizes (CanESM5, MIROC-ES2L, MIROC6, and MPI-ESM1-LR) however, make it clear that the size of the stitched ensemble

is not necessarily a direct function of the availability of runs in the archive or the size of the target ensemble, but depends on495

the proximity in (T,dT ∗X) space of the target windows to the archive windows. A look at the panels in Figure 1 gives a

good representation of the challenges, as SSP370 appears to lie comfortably within the envelope of the SSP585 runs, whereas

SSP126 and SSP245 appear more isolated. We will discuss the implications of this in Section 4. The Zcutoff values in Table 5

are also not the final limits on where good matches may be generated. Specifically, because we start the matching neighborhood

for each target point by finding the nearest neighbor in the archive first and then adding the tolerance to that distance (step 5 of500

the algorithm), there is a heterogeneity of matching neighborhood size for each target point even within a single trajectory. A

different choice could uncover further results, however the choice to begin with nearest neighbors was made for convenience: at

Z = 0, the stitched trajectory returned is simply made up of the nearest neighbor points in the archive. Finally, there is utility in

the stochastic draws used in this exercise as well. Multiple draws of generated ensembles fed through impacts models may lead

to new insights, despite the fact that appending multiple draws together into a single “super"-generated ensemble is not advised505

as it will bypass the restriction on generated ensemble envelope collapse enforced in step 6 of our constructive algorithm.
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Table 5. For each ESM and the two scenarios targeted by the emulation, we show the size of the archive, the number of trajectories used as

target, and the number of stitched trajectories obtained from them, for the value of Zcutoff which keeps the metric Er, when averaged across

50 draws, at the maximum value indicated. We refer to Section 3.1.3 for details.

Model Target Scenario Archive size Target size Stitched size Zcutoff Er*

ACCESS-CM2 SSP2-4.5 16 3 5 0.175 5.4 %

BCC-CSM2-MR SSP2-4.5 4 1 1 0.04 0.49%

CanESM5 SSP2-4.5 100 25 25 0.105 4.3%

CAS-ESM2-0 SSP2-4.5 8 2 3 0.265 4.6%

CESM2-WACCM SSP2-4.5 10 3 3 0.115 5.4%

CMCC-CM2-SR5 SSP2-4.5 4 1 1 0.04 1.7%

CMCC-ESM2 SSP2-4.5 4 1 1 0.04 0.78%

FGOALS-g3 SSP2-4.5 16 4 5 0.105 3.5%

FIO-ESM-2-0 SSP2-4.5 9 3 3 0.09 3.4%

HadGEM3-GC31-LL SSP2-4.5 9 4 1 0.04 2.2%

MCM-UA-1-0 SSP2-4.5 4 1 1 0.04 1.1%

MIROC-ES2L SSP2-4.5 60 30 66 0.215 5.9%

MIROC6 SSP2-4.5 123 20 19 0.21 6.7%

MPI-ESM1-2-HR SSP2-4.5 16 2 3 0.075 3.2%

MPI-ESM1-2-LR SSP2-4.5 40 10 12 0.135 5.5%

NorESM2-LM SSP2-4.5 7 3 4 0.125 4.6%

NorESM2-MM SSP2-4.5 5 2 4 0.15 5.7%

UKESM1-0-LL SSP2-4.5 37 6 13 0.18 4.7%

ACCESS-CM2 SSP3-7.0 16 5 5 0.13 4.5 %

BCC-CSM2-MR SSP3-7.0 4 1 1 0.04 0.36%

CanESM5 SSP3-7.0 100 25 25 0.13 5.0%

CAS-ESM2-0 SSP3-7.0 8 2 3 0.26 5.4%

CESM2-WACCM SSP3-7.0 10 3 1 0.04 0.67%

CMCC-CM2-SR5 SSP3-7.0 4 1 1 0.04 0.31%

CMCC-ESM2 SSP3-7.0 4 1 1 0.04 0.75%

FGOALS-g3 SSP3-7.0 16 4 5 0.12 0.54%

MCM-UA-1-0 SSP3-7.0 4 1 1 0.04 0.3%

MIROC-ES2L SSP3-7.0 60 10 28 0.255 3.9%

MIROC6 SSP3-7.0 123 3 51 0.22 6.0%

MPI-ESM1-2-HR SSP3-7.0 16 10 9 0.07 4.4%

MPI-ESM1-2-LR SSP3-7.0 40 10 12 0.14 5.2%

NorESM2-LM SSP3-7.0 7 3 1 0.04 2.1%

NorESM2-MM SSP3-7.0 5 1 1 0.04 0.33%

UKESM1-0-LL SSP3-7.0 37 13 13 0.16 5.4%
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4 Discussion and conclusions

We have proposed an algorithm, STITCHES, that exploits available simulations of future scenarios to deliver fully consistent

and complete ESM-like output according to a new scenario, based on the trajectory of global temperature that the new scenario

produces. STITCHES works by stitching together decade-long windows (we use 9 years to be precise, but the length of the510

window is a tunable parameter) of existing 21st century ESM simulation output. These windows are chosen on the basis of their

corresponding GSAT absolute value and derivative, identified to match those of subsequent windows of the GSAT time series

derived from the scenario to be emulated. The same algorithm can also be used to enrich the size of existing initial condition

ensembles. We have demonstrated the algorithm performance using the PANGEO CMIP6/ScenarioMIP archive of the four

Tier 1 experiments, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, targeting the emulation of the two intermediate scenarios.515

Our numerous validation tests have shown that the stitched time series do not reveal in the great majority of cases spurious

behavior, even when the matching criteria are set without being specifically tailored to the internal variability of the ESM

to be emulated. We have shown that jumps or discontinuities are seldom created at global scale, when considering surface

temperature. Since surface temperature is the smoothest quantity among the variables commonly used to drive impact models,

our hypothesis has been that any other variable at global or regional scale, and for yearly frequencies or higher, would be even520

better-behaved at the seams, since the larger internal variability would even more easily overwhelm discontinuities introduced

by STITCHES. We have confirmed this hypothesis with case studies for gridded temperature and precipitation at the monthly

frequency. We have also shown that for ENSO, a salient mode of variability for many natural and human systems, a 9-year

window does not introduce odd frequency artifacts in the SOI time series. This should reassure modelers of impacts sensitive to

ENSO teleconnections. Synthetic "large ensembles" created to enrich initial condition experiments show an ensemble behavior525

within a small neighborhood of the truth (in most cases much narrower than ±25− 30% of the target ensemble variability) in

terms of ensemble mean and ensemble variance.

Our exploration of the performance of the algorithm as a function of the available archive size suggests that five 21st

century trajectories ensure an acceptable performance (according to our metrics) and even smaller archive sizes often - if

not always – deliver acceptable stitched new trajectories. Thus, for modeling centers choosing to invest resources in future530

scenario simulations, running a well-chosen small set of trajectories that span what the community considers the plausible

range of GSAT absolute change and rates of change, or radiative forcing, could suffice, and the center could be better served by

focusing on running a few initial condition ensemble members for each trajectory, rather than investing in multiple similarly

shaped scenarios. This also entails savings for the community that provides the direct forcing inputs to ESMs by translating

IAM output into spatially and time resolved forcing fields for scenario simulations. Resources in post-processing of model535

output, extending to the need of downscaling and bias-correcting, will be saved as well, as the emulated scenarios can be built

from those post-processed ones.

Of course, our proposal does come with caveats. ENSO frequencies are right around the timescale that is preserved by 9-year

windows, but there exist slower modes of variability in the climate system whose single phases may instead align with such time

span, and whose coherent behavior would be broken by our window splitting and stitching together. Thus, any investigation540

28



of impacts that are known to be sensitive to low-frequency variability at decadal time scales needs to proceed with caution,

try lengthening the window X , or not use STITCHES output at all. Similarly, any impact that depends on quantities whose

integral is important, rather than their instantaneous value, cannot use the output from STITCHES if such integral frequently,

or by definition, extends over the window size. Pre-eminently, sea level rise derived from ocean heat content, which is a path

dependent quantity, cannot use the ocean heat content that comes with a STITCHES scenario, which would not be coherent545

with the scenario path. Similarly, mega-droughts lasting over a decade cannot be coherently represented in a scenario emulated

by STITCHES.

There are more subtle aspects of stitched scenarios that may pose questions of fidelity and representativeness. We have not

addressed the challenges that short but intense forcing episodes, like volcanic eruptions, may pose, since we have focused

the application of STITCHES on future scenarios, which do not represent them. A careful look at Figure 1 can highlight550

a region of the space populated by grey dots (the historical part of the simulations) showing a peculiar pairing of absolute

temperature anomalies and rate of change in the region around T =−0.01 compared to that around T = 0.01. This would

suggest a specific behavior of GSAT while recovering from volcanic eruptions that is not easily emulated by finding analogs

in the historical period (away from volcanic episodes). One other possible challenge to STITCHES has to do with regional

and/or short-lived forcers like land-use and aerosols, which usually vary across scenarios. STITCHES would not represent555

closely these forcers if the scenario to be emulated contained different regional patterns or histories for them, compared to

the scenarios used to generate the pieces. Thus, if those regional, short-lived forcers create climate signals that significantly

alter the nature of the output they appear in, STITCHES would not replicate those signals. This is, however, not different from

what happened in any analysis using time-sampling (King et al., 2018), or simple pattern scaling. Thus, here we work under

the assumption that – amidst the uncertainties of different ESM responses and impact modeling affecting regional climate and560

impact outcomes – the signals introduced by regional and/or short-lived forcers would not be consequential to the results. We

do encourage deeper exploration of these questions.

Last, some technical aspects of our algorithm will benefit from further analysis/considerations: possibly some applications

may be able to relax the tolerance parameter, and thus set the conditions for easier matching and more numerous stitched

realizations. This might be true of applications that would not be too sensitive to interannual differences. On the contrary,565

tightening the tolerance to match specific ESMs’ internal variability will be beneficial in eliminating spurious behavior that

we have documented in some cases, especially when the archive of available runs is poor. More generally we could choose a

difference distance measure in the (T,X ∗dT ) space, or a completely different space over which to look for nearest neighbors,

but the necessity of conforming to what a simple model can produce on the basis of a new emission scenario needs to be kept

as a consideration.570

We would have liked to make more than just a rule-of-thumb recommendation for the number of ensemble members that

modeling centers should run, and link that formally to the number of expected trajectories created by STITCHES. That said,

the last phases of CMIP have shown that, ultimately, modeling centers will commit what they can to running future scenarios.

Our proposal shifts those energies and resources away from running a number of scenarios of similar shapes. One additional
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possibility that we have not explored is utilizing idealized experiments like 1% CO2 among the building blocks, consistently575

with our discussion of the secondary relevance (until proved wrong) of forcing agents other than well-mixed greenhouse gases.

In addition to stabilized scenarios, which were not systematically explored by the last set of simulations and that therefore

would pose a challenge to STITCHES, STITCHES cannot emulate at this time another type of scenario that is becoming more

and more prominent in the policy discourse: the overshoot, i.e., a scenario that presents a peak and decline in forcing and

therefore global average temperature. If a range of overshoots are sought, there is the need to run with ESMs some cases with580

different steepness and length in order to provide building blocks of decreasing temperature at different rates.

Despite the warranted caveats, we believe that our proposal has desirable outcomes for the research communities occupied

with climate, scenario and impact modeling. Impact and IAM modelers that want to assess impacts for scenarios other than

those that have been generated by ESMs, including endogenously generate forcing pathways within IAMs, could rely on

STITCHES to fill the gaps, acquiring the same type of output, in all its complexity and refinement, that an ESM would provide.585

An ’on-line’ application of STITCHES within an IAM simulation could allow modeling climate impacts within the evolving

system that the IAM is modeling, and therefore represent fully consistent feedback loops between climate change drivers

(emissions) and climate change impacts. The wider impact research community could choose from a larger set of trajectories,

and possibly, a larger set of initial condition ensembles than ESM ran. Climate modelers can reduce the effort devoted to

preparing inputs for, setting up, running and post-processing future scenarios. We acknowledge here the richness of climate590

model output archives already at our disposal (CMIP5, CMIP6, SMILES) which right now provide a wide variety of building

blocks. The next phases of CMIP could complement what is available now by deliberately exploring types of scenarios that are

not well represented in the current archives, like stabilized trajectories and overshoots. The challenge would lie in choosing the

best set of runs to optimally populate the (T,X ∗ dT ) space to maximize the number and shape of attainable new trajectories

from the existing ones. The deployment of STITCHES, in concert with other emulators like MESMER-M and X (Nath et al.,595

2022; Quilcaille et al., 2022) and PREMU (Liu et al., 2022), which are intended to produce new realizations of internal

variability could then complement and enrich the effort of the ESM community.

Code and data availability. The STITCHES software is available via GitHub (https://github.com/JGCRI/stitches/releases/tag/v0.9.0) and is

frozen on zenodo (https://doi.org/10.5281/zenodo.6463264). Note that at the time of archiving, GitHub-zenodo integration was not func-

tioning and so the pre-release STITCHES files were uploaded to zenodo directly. The code using the STITCHES software to generate600

data and the code analyzing data for this paper is available at a GitHub metarepository (https://github.com/JGCRI/Tebaldi_etal_2022_ESD)

and is frozen on zenodo(https://doi.org/10.5281/zenodo.6463270). All our ESM data is from the CMIP6 archive available through PAN-

GEO (http://gallery.pangeo.io/repos/pangeo-gallery/cmip6/). The data generated using the STITCHES package and analyzed in this paper is

archived (https://doi.org/10.5281/zenodo.6461693).
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Appendix A: A diagram of the STITCHES algorithm605

Figure A1. Numbers to the side of the boxes refer to the algorithm steps detailed in section 2.
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Appendix B: Additional GSAT time series for intermediate scenarios

Figure B1. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B2. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B3. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B4. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B5. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B6. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Figure B7. Examples of target (black lines) and stitched (colored) GSAT time series for ESMs in the PANGEO archive that ran at least one

trajectory along the Tier 1 experiments of ScenarioMIP (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5). We use the two bracketing scenarios and

emulate trajectories that follow the two intermediate scenarios.
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Appendix C: Additional trend and variability analysis of gridded data

Figure C1. Absolute difference in decadal trends of temperature (TAS) and precipitation (PR) between stitched and target realizations. The

value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95% confidence

intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences. Emulation

of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. First realization.
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Figure C2. Absolute difference in decadal trends of temperature (TAS) and precipitation (PR) between stitched and target realizations. The

value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95% confidence

intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences. Emulation

of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. Second realization.
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Figure C3. Absolute difference in decadal trends of temperature (TAS) and precipitation (PR) between stitched and target realizations. The

value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95% confidence

intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences. Emulation

of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. Third realization.
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Figure C4. Absolute difference in decadal trends of January temperature (TAS) and precipitation (PR) between stitched and target realiza-

tions. The value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95%

confidence intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences.

Emulation of CAMS, January time series over 2015-2100, for SSP2-4.5 and SSP3-7.0.
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Figure C5. Absolute difference in decadal trends of July temperature (TAS) and precipitation (PR) between stitched and target realizations.

The value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95%

confidence intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences.

Emulation of CAMS, July time series over 2015-2100, for SSP2-4.5 and SSP3-7.0.
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Figure C6. Absolute difference in decadal trends of January temperature (TAS) and precipitation (PR) between stitched and target realiza-

tions. The value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95%

confidence intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences.

Emulation of MIROC6, January time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. First realization.
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Figure C7. Absolute difference in decadal trends of July temperature (TAS) and precipitation (PR) between stitched and target realizations.

The value of the difference is expressed by the color scale and we marked as significant by black crosses those locations where the 95%

confidence intervals of the trends computed from target and stitched time series do not overlap, indicating statistically significant differences.

Emulation of MIROC6, July time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. First realization.
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Figure C8. Ratio in monthly variability (standard deviation of residuals from trends) of temperature (TAS) and precipitation (PR) between

stitched (at the numerator) and target (at the denominator) time series. The value of the ratio is expressed by the color scale which highlights

the transitions at 0.8 and 1.2. Emulation of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. First realization.
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Figure C9. Ratio in monthly variability (standard deviation of residuals from trends) of temperature (TAS) and precipitation (PR) between

stitched (at the numerator) and target (at the denominator) time series. The value of the ratio is expressed by the color scale which highlights

the transitions at 0.8 and 1.2. Emulation of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. Second realization.
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Figure C10. Ratio in monthly variability (standard deviation of residuals from trends) of temperature (TAS) and precipitation (PR) between

stitched (at the numerator) and target (at the denominator) time series. The value of the ratio is expressed by the color scale which highlights

the transitions at 0.8 and 1.2. Emulation of MIROC6, monthly time series over 2015-2100, for SSP2-4.5 and SSP3-7.0. Third realization.
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Appendix D: Additional SOI analysis for MIROC6

Figure D1. Examples of target (left) and stitched (right) SOI time series for three twenty-year windows along the length of the simulation:

2015-2034 in the top four panels; 2035-2054 in the middle four panels; 2081-2100 in the bottom four panels. Results from emulation of

SSP2-4.5 and SSP3-7.0 for one of three ensemble members emulated under each scenario for MIROC6.
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Figure D2. Auto-correlation (ACFs) and Partial auto-correlation functions (PACFs) for real and stitched SOI time series. Top two rows:

SSP2-4.5 ACF for target and stitched series and respective PACFS. Bottom two rows: SSP3-7.0 ACF for target and stitchedseries and

respective PACFs. Results from emulation of one of three ensemble members emulated under each scenario for MIROC6. (Our software – R

function acf(..,type="partial") – does not define the PACF at lag zero.)
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Figure D3. Examples of target (left) and stitched (right) SOI time series for three twenty-year windows along the length of the simulation:

2015-2034 in the top four panels; 2035-2054 in the middle four panels; 2081-2100 in the bottom four panels. Results from emulation of

SSP2-4.5 and SSP3-7.0 for one of three ensemble members emulated under each scenario for MIROC6.

52



Figure D4. Auto-correlation (ACFs) and Partial auto-correlation functions (PACFs) for real and stitched SOI time series. Top two rows:

SSP2-4.5 ACF for target and stitched series and respective PACFS. Bottom two rows: SSP3-7.0 ACF for target and stitchedseries and

respective PACFs. Results from emulation of one of three ensemble members emulated under each scenario for MIROC6. (Our software – R

function acf(..,type="partial") – does not define the PACF at lag zero.)
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Figure D5. Examples of target (left) and stitched (right) SOI time series for three twenty-year windows along the length of the simulation:

2015-2034 in the top four panels; 2035-2054 in the middle four panels; 2081-2100 in the bottom four panels. Results from emulation of

SSP2-4.5 and SSP3-7.0 for one of three ensemble members emulated under each scenario for MIROC6.
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Figure D6. Auto-correlation (ACFs) and Partial auto-correlation functions (PACFs) for real and stitched SOI time series. Top two rows:

SSP2-4.5 ACF for target and stitched series and respective PACFS. Bottom two rows: SSP3-7.0 ACF for target and stitchedseries and

respective PACFs. Results from emulation of one of three ensemble members emulated under each scenario for MIROC6. (Our software – R

function acf(..,type="partial") – does not define the PACF at lag zero.)
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Figure D7. Spectral densities computed from target (solid lines) and stitched (dashed lines) SOI time series, for both models and one (for

CAMS-CM-0, top 4 plots) and three (for MIROC6, bottom 4 plots) realizations.
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Appendix E: GSAT time series for enriched ensembles

Figure E1. Examples of enriched ensembles of GSAT time series for ESMs in the PANGEO archive that have at least 5 trajectories available

over the 21st century. As in the figures in Appendix A, warmer colors indicate a larger number of stitched trajectories in the figure, as the

title also describes.
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Figure E2. Examples of enriched ensembles of GSAT time series for ESMs in the PANGEO archive that have at least 5 trajectories available

over the 21st century. As in the figures in Appendix A, warmer colors indicate a larger number of stitched trajectories in the figure, as the

title also describes.
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Figure E3. Examples of enriched ensembles of GSAT time series for ESMs in the PANGEO archive that have at least 5 trajectories available

over the 21st century. As in the figures in Appendix A, warmer colors indicate a larger number of stitched trajectories in the figure, as the

title also describes.
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Figure E4. Examples of enriched ensembles of GSAT time series for ESMs in the PANGEO archive that have at least 5 trajectories available

over the 21st century. As in the figures in Appendix A, warmer colors indicate a larger number of stitched trajectories in the figure, as the

title also describes.
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Figure E5. Examples of enriched ensembles of GSAT time series for ESMs in the PANGEO archive that have at least 5 trajectories available

over the 21st century. As in the figures in Appendix A, warmer colors indicate a larger number of stitched trajectories in the figure, as the

title also describes.
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Appendix F: Table of E1 and E2 metrics for enriched ensemble exercise performed using only bracketing scenarios610

SSP1-2.6 and SSP5-8.5.

Table F1. The two components of the Er metric, E1 and E2, computed for several experiments across ESMs, scenarios and number of

available archive trajectories from which to create the stitched ensembles. Numbers in columns 4 through 9 represent fractions of the target

ensemble standard deviation (see formula 1).

Model Scenario Archive Target Stitched E1 E2

Size Members Members 2010 2050 2090 2010 2050 2090

ACCESS-CM2 ssp245 5 5 4 0.07 0.12 0.38 1.05 0.50 2.01

ACCESS-ESM1-5 ssp245 5 10 1 0.68 0.18 0.02 1.20 0.67 0.75

CanESM5 ssp245 5 25 2 0.10 0.44 1.24 1.20 1.09 6.94

MIROC-ES2L ssp245 5 30 2 0.00 2.57 0.61 0.96 1.43 0.70

MPI-ESM1-2-LR ssp245 5 10 2 0.47 0.06 1.22 1.31 1.50 0.77

MRI-ESM2-0 ssp245 5 5 1 0.50 0.09 6.34 0.75 1.76 2.49

UKESM1-0-LL ssp245 5 14 1 0.04 0.00 6.57 0.47 0.56 1.69

ACCESS-ESM1-5 ssp245 10 10 3 0.06 0.06 0.55 0.55 1.57 1.43

CanESM5 ssp245 10 25 5 0.00 0.00 3.19 1.41 0.81 7.67

MIROC-ES2L ssp245 10 30 2 1.53 0.90 0.24 0.82 1.06 2.06

MPI-ESM1-2-LR ssp245 10 10 5 0.06 0.09 0.42 0.84 1.10 2.43

CanESM5 ssp245 15 25 3 0.48 0.01 0.16 1.35 1.03 3.66

CanESM5 ssp245 20 25 6 0.01 0.18 5.27 1.07 1.09 5.22

CanESM5 ssp245 25 25 7 0.01 0.05 4.30 0.84 1.00 4.34

ACCESS-CM2 ssp370 5 5 3 0.07 0.06 0.06 1.90 2.61 1.34

ACCESS-ESM1-5 ssp370 5 30 4 0.07 0.52 0.11 0.51 1.23 1.13

CanESM5 ssp370 5 25 2 0.00 1.85 0.22 1.12 0.28 2.48

MIROC-ES2L ssp370 5 10 3 1.41 0.27 0.14 0.91 1.63 1.57

MPI-ESM1-2-LR ssp370 5 10 4 0.40 0.07 0.02 0.81 1.73 2.39

MRI-ESM2-0 ssp370 5 5 3 0.12 0.12 0.08 1.27 1.24 1.63

UKESM1-0-LL ssp370 5 13 2 0.21 0.30 0.09 0.70 0.84 1.78

ACCESS-ESM1-5 ssp370 10 30 5 0.07 0.00 0.01 0.96 1.24 2.06

CanESM5 ssp370 10 25 2 1.29 0.16 1.13 1.53 0.89 0.68

MIROC-ES2L ssp370 10 10 4 0.29 0.00 0.05 1.06 1.16 1.08

MPI-ESM1-2-LR ssp370 10 10 4 0.03 0.24 0.05 1.23 1.84 1.87

CanESM5 ssp370 15 25 8 0.00 0.15 0.81 0.67 2.07 1.94

CanESM5 ssp370 20 25 7 0.02 0.31 0.00 1.08 1.32 2.53

CanESM5 ssp370 25 25 6 0.00 0.00 1.04 1.04 1.31 0.84
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