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Abstract. The El Niño Southern Oscillation (ENSO) widely modulates the global carbon cycle, in particular, by altering the

net uptake of carbon in the tropical ocean. Indeed, over the tropics less carbon is released by oceans during El Niño while it

is the opposite for La Niña. Here, the skill of Earth System Models (ESM) from the latest Coupled Model Intercomparison

Project (CMIP6) to simulate the observed tropical Pacific CO2 flux variability in response to ENSO is assessed. The temporal

amplitude and spatial extent of CO2 flux anomalies vary considerably among models, while the surface temperature signals of5

El Niño and La Niña phases are generally well represented. Under historical conditions followed by the high warming Shared

Socio-economic Pathway (SSP5-8.5) scenarios, about half the ESMs simulate a reversal in ENSO-CO2 flux relationship. This

gradual shift, which occurs as early as the first half of the 21st century, is associated with a high CO2-induced increase in

Revelle factor that leads to stronger sensitivity of partial pressure of CO2 (pCO2) to changes in surface temperature between

ENSO phases. At the same time, uptake of anthropogenic CO2 substantially increases upper ocean dissolved inorganic carbon10

(DIC) concentrations, reducing its vertical gradient in the thermocline, and weakening the ENSO-modulated surface DIC

variability. The response of ENSO-CO2 flux relationship to future climate change is sensitive to the contemporary mean state

of the carbonate ion concentration in the tropics. Models that simulate shift in ENSO-CO2 flux relationship simulate positive

bias in surface carbonate concentration.

1 Introduction15

Since the beginning of the industrial era, human activities such as fossil fuel combustion, land-use changes and cement pro-

duction have released huge amounts of greenhouse gases (predominantly CO2) leading to the ongoing planetary scale climate
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change. This excess CO2 in the atmosphere is partly absorbed by the ocean and terrestrial biosphere, buffering the rate of

warming (Doney et al., 2014; Le Quéré et al., 2016). Over 2010-2019, approximately 3.4 ± 0.9 Pg C yr−1 and 2.5 ± 0.6 Pg C

yr−1 are absorbed respectively by the land and ocean, with substantial interannual variability (Friedlingstein et al., 2020). Due20

to its strong feedback to climate, improved understanding of this variability, governing mechanisms, and how they may evolve

in the future are required to constrain future climate change projections.

Due to its vast area, the tropical Pacific is the most important CO2 outgassing region in the world oceans today (Takahashi

et al., 2009), representing more than 17% of the global ocean CO2 uptake (0.44 ± 0.41 Pg C per year for 1990-2009 and

18◦S-18◦N, Ishii et al., 2014) and is projected to be the second region (after the Southern Ocean) with the highest amount25

of area-integrated anthropogenic carbon uptake in the 21st century under high CO2 scenario (Tjiputra et al., 2010; Roy et al.,

2011). In terms of interannual variability, the Equatorial Pacific CO2 flux represents the dominant mode of variability of the

global oceanic CO2 flux variations (Wetzel et al., 2005; Resplandy et al., 2015; Landschützer et al., 2016). In this region,

the mechanistic driver is associated with the El Niño-Southern Oscillation (ENSO), which has been well established and

thoroughly documented in many previous observational and modeling studies. For instance, Feely et al. (2006) showed strong30

negative correlation between CO2 fluxes and ENSO over the Equatorial Pacific using observations from 1981 to 2004. Using

ocean biogeochemical general circulation models forced with atmospheric reanalysis, similar regional CO2 flux fluctuations in

response to ENSO have been simulated (Winguth et al., 1994; Bousquet et al., 2000; Valsala et al., 2014; Wang et al., 2015).

The biogeochemical processes constraining the CO2 fluxes in the Equatorial Pacific are strongly influenced by the ENSO-

induced physical processes. These processes can be formulated as follows: during El Niño events, warmer sea surface temper-35

ature reduces the CO2 solubility which increases seawater partial pressure of CO2 (pCO2, Le Borgne et al., 2002; Patra et al.,

2005; Ishii et al., 2014). In parallel, during those events, weaker upwelling of nutrient- and dissolved inorganic carbon-rich

subsurface water acts to reduce the surface seawater pCO2 (Feely et al., 2006; Long et al., 2013; Wang et al., 2015). The

opposite happens during the La Niña phase. Among these competing processes, the ENSO-driven interannual variability of

CO2 flux is presumably dominated by the modulation of dissolved inorganic carbon (DIC) concentration by the upwelling40

process (McKinley et al., 2004; Li and Xu, 2013; Jin et al., 2017). Therefore, it is the change of thermocline depth and up-

welling strength during ENSO phase that mainly govern the tropical Pacific CO2 flux anomalies by constraining on surface

DIC concentration (e.g., Doney et al., 2009).

While models simulating ocean only are able to simulate the relationship between CO2 and ENSO (e.g. McKinley et al.,

2004; Wetzel et al., 2005; Li and Xu, 2013), this is not always the case for fully coupled Earth system models (ESMs).45

Indeed, based on ESM simulations from the Coupled Model Intercomparison Project 5 (CMIP5, Taylor et al., 2012), Dong

et al. (2017) showed that over the historical period some models underestimate the observed surface DIC variability and

consequently the CO2 flux anomalies. They attributed this to a weak relationship between the simulated upwelling variations

and the respective ENSO phases. Jin et al. (2019) enlightened that some ESMs poorly simulate the spatial pattern of the tropical

Pacific CO2 fluxes in response to ENSO over the historical period. They attributed this to the weak surface DIC-induced CO250

flux variability during ENSO, e.g. the anomalously low DIC signals associated with ENSO are insufficient to counteract the

SST-induced solubility effects.
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The main focus of this paper is to determine how the ENSO-induced variability of sea-air CO2 fluxes may be altered in the

high-CO2 future in ESM projections. In this study, the capability of the latest ESM collection from CMIP6 (Eyring et al., 2016)

in reproducing the observed ENSO-CO2 flux relationship over the contemporary period is first evaluated. Next, we analyze55

how this relationship evolves over an end member future projection. Given the importance of carbon cycle climate feedback

on future projections (e.g., Arora et al., 2020) and the large-scale impact of ENSO on the global climate, such evaluation is

timely and necessary. In particular, the aim is to identify and elucidate emerging consistent pattern among the ESMs to better

constrain future changes in ENSO-induced variability in the Equatorial Pacific. Studying the future evolution of ENSO-related

CO2 flux variations is also crucial since ENSO, the most dominant mode of global climate variability, and its extremes are60

projected to become more frequent, more intense and more extended in spatial impact (Cai et al., 2015).

The paper is organized as follows. Section 2 introduces the observational and model datasets, the study area, as well as the

methods used to analyse the relationship between ENSO and sea-air CO2 fluxes. Results on the contemporary ENSO related

spatial patterns and ENSO-CO2 flux relationship reversal and variability drivers are presented in Section 3, while Sections 4

and 5 provide the discussion and summary of this study.65

2 Data and methodologies

2.1 Observational and CMIP6 datasets

The ocean variables analyzed in this study are listed in Table 1. These variables are extracted from different observational and

simulation products at monthly temporal resolution. For observational-based fgco2, the monthly reconstruction values from

1982 to 2015 based on a two-step neural network data interpolation is used (Landschützer et al., 2016). Gridded monthly SST70

observations are taken from the Japanese 55-year Reanalysis reanalysis data (JRA-55) from 1958 to 2019 (Kobayashi et al.,

2015; Harada et al., 2016). The subsurface temperature profiles over the 1985-2014 period are computed from the ORAS5

reanalyses (Zuo et al., 2019). Total alkalinity average estimate including measures between 1972 and 2013 has been retrieved

from the GLODAP version 2 data product (Lauvset et al., 2016). Finally, the observed DIC climatology over the 2004-2017

period is extracted from Keppler et al. (2020) dataset. All variables are given at a regular 1◦× 1◦ spatial horizontal resolution.75

For the Earth system model simulations, the monthly output fields of surface fgco2, pCO2, SST, intPP, as well as 3D

temperature, DIC and alkalinity concentrations are taken from the Coupled Model Intercomparison Project phase 6 (CMIP6,

Eyring et al., 2016) database. At the time of study initiation, sixteen ESMs provide these variables required for the analysis (see

Table 2). The simulation variant for each model is chosen according the availability of the variables shown in Table 1. Given

the variety of (irregular) grids among the models, the model data sets are spatially regridded into a regular 1◦× 1◦ grid using80

climate data operators (CDO). The vertical resolutions of 3D temperature and DIC are linearly interpolated at 20 m resolution

from the surface down to 1000 m depth.

In this study, analyses are conducted over the same contemporary reference period 1985-2014, the end of the century future

period 2071-2100 under the high CO2 Shared Socio-economic Pathway scenario (SSP5-8.5, O’Neill et al., 2016) and the whole

1850-2100 period, combining both historical and SSP5-8.5 concentration-driven experiments. This high warming scenario has85
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Table 1. Ocean variables used in this study. The full name, the abbreviation, standardized CMIP6 name and the unit of each variable is given.

Variable abbreviation standardized name unit

surface sea-air CO2 fluxes fgco2 fgco2 mol C m−2 yr−1

surface CO2 seawater partial pressure pCO2 spco2 µatm

sea surface temperature SST tos ◦C

vertically integrated primary production by phytoplankton intPP intpp mol C m−2 yr−1

export production at 100m epc100 epc100 mol C m−2 yr−1

3D fields of dissolved inorganic carbon concentration DIC dissic µmol C L−1

3D fields of temperature - thetao ◦C

3D fields of alkalinity ALK talk µmol eq L−1

3D fields of carbonate ion (estimated as ALK-DIC) CO2−
3 - µmol C L−1

been chosen in order to use a clear signal with a high signal to noise ratio. Indeed, using a high emissions end-member scenario

gives us the best chance to actually see a change in such strong relationship between ENSO and CO2 fluxes. The model

simulation outputs are first evaluated against the observations for the reference period, followed by analysis of future evolution

and changes with respect to the reference period.

Table 2. List of the 16 CMIP6 models used in this study with the horizontal resolution of the ocean component, variant label, model and data

references. Note that most of the models have irregular grids and the resolution quoted in the table are approximate.

CMIP6 Model Name Horizontal Ocean Resolution Variant Label ESM Reference Data

(lon. by lat. in degree)

ACCESS-ESM1-5 1◦×1◦ r1i1p1f1 Law et al. (2017) Ziehn et al. (2019)

CanESM5-CanOE 1◦×1◦ r1i1p2f1 Swart et al. (2019c) Swart et al. (2019b)

CanESM5 1◦×1◦ r1i1p2f1 Swart et al. (2019c) Swart et al. (2019a)

CESM2 1.125◦×0.53◦ r10i1p1f1 Lauritzen et al. (2018) Danabasoglu (2019a)

CESM2-WACCM 1.125◦×0.53◦ r1i1p1f1 Liu et al. (2019) Danabasoglu (2019b)

CNRM-ESM2-1 .3◦-1◦ r1i1p1f2 Séférian et al. (2019) Seferian (2018)

GFDL-CM4 0.25◦×0.25◦ r1i1p1f1 Held et al. (2019) Guo et al. (2018)

GFDL-ESM4 0.5◦×0.5◦ r1i1p1f1 Dunne et al. (2020) Krasting et al. (2018)

IPSL-CM6A-LR .3◦-1◦ r1i1p1f1 Boucher et al. (2020) Boucher et al. (2018)

MIROC-ES2L 1◦×1◦ r1i1p1f2 Hajima et al. (2020) Hajima et al. (2019)

MPI-ESM1-2-HR 0.4◦×0.4◦ r1i1p1f1 Müller et al. (2018) Jungclaus et al. (2019)

MPI-ESM1-2-LR 1.5◦×1.5◦ r1i1p1f1 Mauritsen et al. (2019) Wieners et al. (2019)

MRI-ESM2-0 1◦×(0.3-0.5)◦ r1i2p1f1 Yukimoto et al. (2019a) Yukimoto et al. (2019b)

NorESM2-LM 1◦×1◦ r1i1p1f1 Seland et al. (2020) Seland et al. (2019)

NorESM2-MM 1◦×1◦ r1i1p1f1 Seland et al. (2020) Bentsen et al. (2019)

UKESM1-0-LL 1◦×1◦ r1i1p1f2 Sellar et al. (2019) Tang et al. (2019)
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2.2 Variable anomalies, Niño34 index and thermocline depth computation90

The analysis focuses on the correlation between CO2 flux anomalies and Niño34 index. First, the monthly anomalies of sea-air

CO2 fluxes at each grid-point are computed by detrending each calendar month separately using a cubic smoothing spline

(implemented by the function smooth.spline in R software; R Core Team, 2016) over the period 1850-2100. For instance, the

non-linear trend of Januaries at a given grid-point is removed from the respective time-series comprising all January values. The

SST and pCO2 anomalies used in the analyses are also computed in the same manner. The degree of freedom of the spline is95

set to get a good compromise between the smoothness (smoothing parameter above 0.8) and the number of parameters (knots)

to estimate the trend over to whole Equatorial Pacific with (Hastie and Tibshirani, 1990, Chap.10). The degree of freedom is

set to 5 for SST and fgco2. A degree of freedom of 12 is needed for pCO2 given its steeper increase.

The Niño34 index corresponds to the standardised area-weighted mean SST anomalies over the Niño34 region: 5◦S-5◦N

× 190◦-240◦E. These anomalies are computed relative to the 1981-2010 climatology. For the CMIP6 model outputs, the100

SST values are first detrended over the 1850-2100 period using cubic spline. Then, model specific Niño34 index is computed

relative to the 1981-2010 climatology. Hereafter, the regimes referred to as El Niño (La Niña) are defined from the respective

Niño34 indices (specific for observations and each models). For months with Niño34 index above one standard deviation of

each dataset specific Niño34 are categorised into El Niño regime, and vice versa for La Niña regime.

The thermocline is a transition layer where the temperature decreases rapidly with depth from the warm surface mixed layer105

to the cold deep water layer, where the temperature is relatively uniform. A deeper thermocline (e.g., during El Niño) limits

the amount of interior DIC brought to shallower depths by upwelling. This indicator is used in this study to assess the changes

in the mechanisms linking ENSO and CO2 fluxes in the present day and in the future projections. The thermocline depth is

typically defined as the depth with the maximum vertical temperature gradient (Zhu et al., 2021, and the reference therein). In

this paper, the gradient is computed as the vertical difference within each 20m layer (after the vertical interpolation) and the110

thermocline depth is the average depth of the layer with highest gradient.

2.3 Thermal and non-thermal contributions to surface pCO2

In order to differentiate the thermal (th, driven by SST) and non-thermal (nt, driven by other factors, such as DIC, alkalinity and

salinity) contributions, the temporal variations of surface ocean pCO2 is decomposed into the two terms following Takahashi

et al. (1993; 2002). Seawater pCO2 is thermodynamically dependent on temperature and is computed from the temperature115

sensitivity of CO2 γT (4.23%◦C−1). This sensitivity has experimentally been determined and is associated with very little error

(Takahashi et al., 1993), which is not further considered. The thermal pCO2 component pCOth
2 is computed as follows:

pCOth
2 =< pCO2 >annual exp(γT (dSST−< dSST>)) . (1)

In Eq. (1), the annual pCO2 average, < pCO2 >annual is perturbed with temperature anomalies computed as the difference

between the detrended SST, dSST (done with a cubic spline) and the long term mean dSST, <dSST>. The non-thermal compo-120

nent (pCOnt
2 ), which reflects the effect of biophysical processes, is computed by normalizing the pCO2 to <dSST> (Takahashi
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et al., 2002):

pCOnt
2 = pCO2 exp(γT (< dSST>−dSST)) (2)

In Eq. (2), the exponential term removes the SST-associated pCO2 variation. This decomposition is well-known and extensively

used at regional and global scale (e.g., Landschützer et al., 2018; Jiménez-López et al., 2019; Ko et al., 2021).125

2.4 Biological contribution to surface pCO2
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Figure 1. Annual Revelle factor and γDIC (in µmol kg−1) for CMIP6 models. Average ESMs over the early historical (1851-1880), contem-

porary (1985-2014 ) and future (2071-2100 ) are given in the right panels.

The buffering capacity of the ocean is a measure of the ability of the ocean to take up carbon and is quantified by the Revelle

factor,R= ∆pCO2
pCO2

/ ∆DIC
DIC (Revelle and Suess, 1957). The Revelle factorR is the ratio of the relative change of seawater pCO2

(or aqueous CO2 concentration, CO2(aq)) to the relative change of dissolved inorganic carbon (DIC = CO2(aq) + HCO−3 + CO2−
3 ,

Egleston et al., 2010; Hauck and Völker, 2015). The sensitivity of pCO2 to DIC perturbations can be estimated using the buffer130

factor γDIC that is related to the Revelle factor as γDIC = DIC
R and can be explicitly retrieved from the carbonate system pa-

rameters (Egleston et al., 2010). To summarise, the higher the Revelle factor, the lower the buffer capacity (or the buffer factor

γDIC) of the ocean and its CO2 uptake capacity. The annual evolution of surface Revelle factor and buffer factor γDIC for

6
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CMIP6 models over the 1850-2100 period in the Equatorial Pacific (defined below) are given in Fig. 1. Using this relationship,

the reduction in pCO2 can be quantified as a result of reduction in DIC concentration, e.g., associated with biological carbon135

absorption:

∆pCO2 bio =
∆DICbio

γDIC
pCO2 (3)

where ∆DICbio is the mean reduction in surface DIC concentration due to biological production (estimated from the monthly

intPP in [mol C m−2 month−1] divided by the euphotic layer depth, here assumed to be 100 m). A similar approach has been

used in Hauck and Völker (2015) to determine the impact of biological activity on surface pCO2 in the Southern Ocean. The140

∆pCO2 bio is relevant to evaluate the biological contributions, during El Niño and La Niña, to pCO2 variations. This quantity

non-linearly increases with ∆DICbio, i.e., biological contributions to pCO2 variations increases as the buffering capacity

decreases.

2.5 Study Area

For analysis of integrated surface properties, the focus on evaluating the anomalies over the Equatorial Pacific is given within145

the 2◦S-2◦N and 180◦-260◦E domain (hereafter referred to as Equatorial Pacific or simply EP). EP area is indicated by the

green box in the bottom right SST panel of Figure 2. This region is identified as the common domain where the models and

observation show the largest change in SST between ENSO phases. The same domain is also considered for subsurface analysis

conducted in this study, namely the changes in the vertical DIC, carbonate ion concentration and temperature profiles between

the contemporary and future periods.150

3 Results

3.1 Contemporary (1985-2014) ENSO-related patterns

Figure 2 depicts the tropical Pacific SST and sea-air CO2 fluxes average anomalies for La Niña and El Niño regimes over the

contemporary period from observations and the CMIP6 multi-model mean. The corresponding values for each model are given

in Figs. S1 and S2 of the supplemental material. For surface temperature anomalies, some models clearly simulate too strong155

and too broad SST anomalies (Fig. S1) but the CMIP6 multi-model ensemble mean values show a strong resemblance with

the observations, though with slightly too strong anomalies in the central Equatorial Pacific. However, the warm anomalies

observed over the coast of Peru during El Niño is slightly weaker in the model simulations. In these two regions, the inter-

model variability is also large (contour lines in Fig. 2). For the sea-air CO2 flux anomalies, the simulated spatial extent are

less in agreement with the observational estimates. The spatial distribution of CO2 flux anomalies are also different from one160

model to another and none of the model simulate a spatial correlation with observation of more than 0.8 according the regime

with even negative correlation (see Fig. S3 of supplemental material). The co-location of spatial distribution of the temperature

and CO2 flux anomalies during the ENSO phase is quite straightforward in the observations while it seems less obvious in

the models. This suggests that some of the observed mechanisms governing the ENSO-related variability of CO2 flux are not

7
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Figure 2. Observed and mean CMIP6 SST (in ◦C, top) and sea-air CO2 fluxes (in mol C m−2 yr−1, bottom) average anomalies over the

1985-2014 contemporary period for the La Niña (left) and El Niño (right) regimes. In squared brackets, the number of months in each

regimes are given for the observations and the mean number with one standard deviation for CMIP6 ensemble. Black contours indicate

CMIP6 ensemble anomalies one standard deviation. Green box in the lower right SST panel illustrates the EP (Equatorial Pacific) area.

well reproduced by the models. Most models simulate a weaker CO2 flux anomalies compared to the observations, which is165

consistent with that of CMIP5 model results (Dong et al., 2017). Nevertheless, the multi model mean reproduces the observed

outgassing anomaly signals over most of the tropical Pacific during La Niña, and vice versa for El Niño.

Figure 3 shows the zonal average of temperature and DIC vertical sections over the contemporary period and its anomalies

during the La Niña and El Niño regimes from the observations and the CMIP6 ensemble mean (for DIC, only the mean values

is shown for observations). During El Niño events, the observations depict a clear warming signal in the eastern part of the170

tropical Pacific extending throughout the upper ocean with a maximum warming around 70 m depth. Cool anomaly can be seen

in the western part of the domain at approximately 150 m depth. The opposite anomaly patterns can be seen during La Niña.

The observed and simulated long-term mean temperature patterns are quite similar, while the magnitude of the anomalies are

weaker in the CMIP6 multi-model mean. The contemporary DIC average concentration is generally higher in the models than

8
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Figure 3. Observed and mean CMIP6 vertical section of temperatures (in ◦C, top) and DIC (in µmol C L−1, bottom) zonal (between 5◦N and

5◦S) average over the 1985-2014 contemporary period (middle column). Average anomalies (differences) relative to contemporary mean are

given for La Niña (left) and El Niño (right) regimes. Dotted lines indicate the average thermocline depth. In square brackets, the number of

months in each regimes are given for the observations and the mean number with one s.d. for the CMIP6 ensemble. Black contours indicate

CMIP6 ensemble anomalies one standard deviation.

in the observations. Note that the observed average is the result of the climatology over the 2004-2017 period while the average175

for CMIP6 is computed over 30 years (1985-2014). The subsurface DIC signals of anomalies contrasting La Niña and El Niño

regimes are pronounced in the upper layer but also in the east of 240◦E down to 300 m, with positive (negative) anomalies

during La Niña (El Niño) associated with changes in the upwelling dynamics. This area presents also the largest inter-model

variability. Consequently, this DIC anomaly determines the CO2 flux anomaly at the surface. An opposite DIC anomaly signal

9
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is simulated in the western part of the section below 100 m depth. The zonal average of temperature and DIC along the vertical180

sections and its anomalies from each individual model are given in Figs. S4 and S5 of the supplemental material.

3.2 Transient changes in ENSO-CO2 flux relationship

OBS Correlation = −0.79
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Figure 4. CMIP6 model ensemble annual time series of the Niño34 index (in ◦C, red lines), the average CO2 flux anomalies over the EP area

(in Tg C yr−1, blue lines), and the correlation for each 30-year moving window (significant correlation are indicated by black dots and the

non-significant ones are grey). The vertical bars indicate the center 30-year period with the first positive correlation. The first row shows the

observed time series of Niño34 index and average CO2 fluxes anomalies over the 1985-2014. The green asterisks indicates the correlation of

the models over the observed and the 2071-2100 periods. Models names are given in green for the models with shifting correlation sign, in

orange for those maintaining the negative correlation and black for that simulating positive correlation already in 1850.
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In this section, the characteristics of sea-air CO2 flux variability associated with ENSO is investigated over the EP area.

Figure 4 represents the annual Niño34 index and the annual average CO2 flux anomalies from observations and 16 CMIP6

models. A correlation analysis between CO2 flux anomaly and ENSO index is performed to study the the strength and direction185

of the linear relationship between these two variables. The statistical significance of these correlation is assessed by testing if the

correlation follows a Student’s t-distribution (with N -2 degrees of freedom, N the number of years) at the 95% significance

level. The correlation between annual CO2 flux anomaly and annual ENSO index is given for the models for each 30-year

sliding window over the 1850-2100 period. The observed correlation over the 1985-2014 is significantly negative (r=-0.79)

which is also the case for all the models for the beginning of the 1850-2100 period, except for the two MPI models. Among190

these models, seven maintain a negative correlation throughout the future period while seven display a shift toward a positive

correlation which occurs as early as 2025. The CMIP6 models correlation over the observational period and the 2071-2100

period are indicated by the green asterisks in Fig. 4 and reported in Table 3. Figure S6 of the supplemental material gives the

same figure as Fig.4 zoomed over the contemporary period.

Table 3. Standard deviations of sea-air CO2 fluxes (σCO2 ; in mol C m−2 yr−1) and Niño34 index (σNiño34; in ◦C), and their annual

correlation coefficients ρ over the 1985-2014 period. In brackets are the standard deviation and correlation over the 2071-2100 period.

Average Revelle Factor for each model and both periods are also given. Models in bold have significant correlation for both periods and are

the ones selected as into ’reversed’ and preserved’ groups. † marks the models with shifting towards positive correlation. ‡ marks the models

maintaining negative correlation. ∗ marks the model starting with positive correlation. Non-significant correlation are given in italic.

ρ σCO2 σNiño34 Revelle Factor

OBS -0.79 17.55 0.69 -

ACCESS-ESM1-5† -0.78 (0.14) 10.24 (7.86) 0.72 (0.84) 9.69 (12.56)

CanESM5† -0.55 (0.52) 5.58 (10.78) 0.89 (0.76) 9.67 (12.35)

CanESM5-CanOE† -0.52 (0.19) 4.04 (9.55) 0.89 (0.76) 9.64 (12.28)

GFDL-CM4† -0.4 (0.73) 6.66 (13.2) 0.7 (0.71) 9.49 (12.56)

GFDL-ESM4 † -0.65 (0.19) 10.33 (17.01) 0.83 (0.86) 9.66 (12.51)

MIROC-ES2L† -0.94 (0.22) 21.4 (9.41) 0.86 (0.86) 9.53 (12.60)

MRI-ESM2-0† -0.77 (0.89) 4.25 (17.82) .66 (0.95) 9.21 (11.97)

CESM2‡ -0.86 (0) 22.64 (15.09) 0.86 (0.46) 9.77 (12.42)

CESM2-WACCM‡ -0.84 (-0.35) 13.3 (15.17) 0.68 (0.53) 9.92 (12.41)

CNRM-ESM2-1‡ -0.65 (-0.2) 7.99 (12.75) 0.63 (0.77) 10.07 (12.95)

IPSL-CM6A-LR‡ -0.97 (-0.44) 8.55 (8.2) 0.79 (0.64) 9.82 (12.62)

NorESM2-LM‡ -0.74 (-0.41) 8.31 (9.92) 0.83 (1.03) 9.71 (12.63)

NorESM2-MM‡ -0.89 (-0.46) 17.72 (10.28) 0.91 (0.73) 9.69 (12.56)

UKESM1-0-LL‡ -0.78 (-0.42) 7.28 (8.18) 0.64 (0.77) 10.04 (12.54)

MPI-ESM1-2-HR∗ 0.87 (0.92) 7.95 (11.72) 0.91 (0.93) 9.55 (12.68)

MPI-ESM1-2-LR∗ 0.89 (0.93) 7.43 (17.84) 0.87 (1.00) 9.58 (12.66)
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Figure 4 also shows that the amplitude of CO2 fluxes anomalies and their covariance with the Niño34 index are not uniform195

across the models. The correlation between sea-air CO2 flux anomalies and Niño34 are given in Table 3 along with their

respective standard deviations σCO2 and σNiño34. The contemporary variability of CO2 flux anomaly is underestimated by

most of the models (see Table 3) and increases or decrease in the future according the models. Six models given in bold in

Table 3 are selected to illustrate the shifting and non-shifting CO2 fluxes anomalies response to ENSO variability in their future

projections. These are the models are selected because they reproduce best the observed Niño index and CO2 flux anomalies200

correlation in the contemporary period while the correlation is significant over contemporary and future periods.

The monthly Niño34 index of the six selected models are presented against the CO2 fluxes anomalies in Fig. 5, both for

the contemporary (1985-2014) and future (2071-2100) periods. Values from present-day observations are also depicted. The

models in the first row (CanESM5, GFDL-CM4, MRI-ESM2-0) show a change of the Niño34-CO2 flux correlation while the

models in the second row (IPSL-CM6A-LR, NorESM2-MM, UKESM1-0-LL) maintain the sign of the correlation between205

1850 and 2100. This reversal is thus independent on the performance of the model over the contemporary period, though the

models in the first row tend to simulate lower than observed CO2 flux anomaly variability. Hereafter, these first row models

that simulate a reversal in ENSO-CO2 flux relationship are referred to as “reversed” ESMs while the other three ESMs that

maintain the contemporary relationship are referred to as “preserved” ESMs. These two groups of models are confronted in

further analysis.210
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Figure 5. Scatter plots for the six selected models of the monthly Niño34 index (in ◦C) against the monthly CO2 flux anomalies (in Tg

C yr−1) average over the EP domain in the 1985-2014 contemporary period (in yellow) and the 2071-2100 (in blue) period. The observed

scatter plot is given in black. Top panels show CanESM5, GFDL-CM4, MRI-ESM2-0 and all reversed ESMs. Bottom panels are for IPSL-

CM6A-LR, NorESM2-MM, UKESM1-0-LL and all preserved ESMs.
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3.3 Drivers of ENSO-CO2 flux variability

In order to elucidate the drivers of the modified relationship in the reversed ESMs, the thermal and non-thermal contributions

to pCO2 are investigated. Figure 6 represents the average El Niño and La Niña of pCO2 anomalies mean for the reversed and

preserved ESMs over the early historical (1851-1880), contemporary and future periods. As expected, pCO2 thermal (non-

thermal) component always induces positive (negative) anomalies during El Niño while the opposite is true during La Niña.215

The non-thermal component is rather dominant (non-thermal/thermal ratios > 100%) under the early historical period (1851-

1880) and even more dominant during La Niña (bigger ratios). This explains the total pCO2 positive anomalies during La Niña

(consistent with enhanced CO2 outgassing; Fig. 2) and the negative anomalies during El Niño (consistent with weakened CO2

outgassing) for both groups of ESMs over the early historical and contemporary periods. Over the future period, the dominance

of the non-thermal component is even enhanced for preserved ESMs, which maintain the same CO2 flux-ENSO relationship.220

However, for the reversed ESMs the thermal component becomes dominant by the end of the 21st century (ratio<100%)

inducing total pCO2 negative anomalies during La Niña and positive anomalies during El Niño. The dominance of the thermal

component explains the reversal in the ENSO-CO2 flux relationship highlighted in Figs. 4 and 5.
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Figure 6. El Niño and La Niña average of total (in red), thermal (in blue) and non-thermal (in green) pCO2 mean anomalies (in µatm) for

the reversed (left) and preserved (right) ESMs over the early historical (1851-1880), contemporary (1985-2014 ) and future (2071-2100 )

periods in the EP domain. The absolute ratio between the non-thermal and thermal components is given (in %) for each period, group and

ENSO phase.

In a high CO2 future, it is expected that the pCO2 will be more sensitive to SST and surface DIC modulations due to lower

buffering capacity (Fig. 1; e.g., see also Gallego et al. (2020)). It is therefore useful to determine whether or not the reversal225

in the ENSO-pCO2 response can solely be attributed to the background atmospheric CO2 increase. Indeed, the non-thermal

component is already dominant and will become more dominant as CO2 rises. In order to test this hypothesis, the anomaly

estimates of the thermal and non-thermal components of early historical ENSO pCO2 signals are scaled to higher background

pCO2, namely contemporary and future periods. This enables us to evaluate how the non-thermal/thermal ratio varies into the

future assuming no change in the biological and physical forcing (i.e. amplitude of ENSO-induced changes in SST and DIC230
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are unchanged). This is done by keeping the dSST variable in Eqs. 1 and 2 at early historical period, while scaling up the pCO2

elements to contemporary and future values. A similar figure as Fig. 6 showing these scaled components is given in Fig. S7

of the supplementary material. Following this scaling, the non-thermal component remains dominant for the three periods in

both groups of models. This means that the pCO2 increase alone cannot explain the reversal behaviour in the reversed ESMs. It

suggests changes in biological and physical forcing are also responsible for the thermal component becoming more dominant235

in this group of ESMs.
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Figure 7. Mean SST (in ◦C) versus mean DIC (in µmol C L−1) over the early historical (1851-1880), contemporary (1985-2014) and

future (2071-2100) periods in the EP domain simulated by all reversed and preserved ESMs (top panels, circle markers). The multi-model

mean values of SST and DIC (asterisk markers) from each ESM group together with their respective mean values during La Niña (square

markers) and El Niño (diamond markers) are also depicted for the three periods. Isolevels of pCO2 for varying SST and DIC are given in the

background. Bottom panels show the multi-model range and mean of surface carbonate concentration (in µmol C L−1) for both groups and

three periods.

Next, we quantify the pCO2 sensitivity to ENSO-induced temperature and DIC changes across different time periods. Figure

7 shows the mean states of SST against surface DIC for reversed and preserved ESMs over the early historical, contemporary

and future periods. pCO2 isolevels for varying SST and DIC are computed using the carbonate system parameters codes from

the R package “seacarb” (Gattuso et al., 2020). These values have been computed using surface alkalinity from multi-model240
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mean state (over the 1850-2100 period) from reversed and preserved groups separately. The multi-model range and mean of

average surface carbonate ion concentration is also given for both groups over the three periods.

All models show higher sensitivity of pCO2 to temperature and DIC perturbations in the future, i.e. the same variations of

DIC or temperature in the future will induce a stronger change in surface pCO2. Indeed, pCO2 isolevels are getting closer as

SST and DIC increase (see Fig.7). The main difference between the two groups is that the reversed models simulate (i) higher245

surface DIC increase from early historical or contemporary to future periods and (ii) lower range of DIC changes during ENSO

phases. The pCO2 level and its increase of across different time periods are very similar between the two ESM groups. The

simulated temperature changes are also similar between both groups. The higher surface DIC increase in the reversed models

can be explained by the higher CO2−
3 ion concentration at beginning of the transient simulation, which translates to higher

carbon buffer capacity and allow these models to take up more excess carbon from the atmosphere. The lower surface DIC250

range (between in La Niña and El Niño regimes) in the reversed models could be associated with changes in biology- and/or

upwelling-induced surface DIC fluctuations.

Even without climate change, the influence of biological production on perturbing surface pCO2 is expected to increase

with higher Revelle factor in the future. Here, we quantify the contribution of biological production in reducing the surface

pCO2 (i.e., ∆pCO2 bio) during both La Niña and El Niño phases according to Eq. 3. In the contemporary period, stronger255

primary productivity during La Niña attenuates the upwelling-induced pCO2 increase, and vice versa during El Niño. In addi-

tion, this anomaly pattern observed in the contemporary period is maintained into the future (see Fig. S8 of the supplemental

material depicting time-series of the average intPP computed over the EP area). Figure 8 shows that these biological contri-

butions significantly increase in the future, with higher ∆pCO2 bio persists during La Niña phase. This stronger contrast in

biologically-induced ∆pCO2 bio difference between La Niña and El Niño regimes is also enhanced by the increased future260

primary production variability simulated in the respective ESMs (Fig. S8). The projected variability in primary production

between La Niña than El Niño is even bigger for the reversed than preserved ESMs (i.e., by up to a factor of five larger; see

Fig. S8). Note that the majority of the chosen ESMs simulate a declining trend in the primary production toward the end of

the 21st century. The export production at 100m also shows similar ENSO-induced variability and evolution as the intPP (not

shown).265

As stated above, the primary reason for the enhanced biological contribution on ∆pCO2 bio is driven by the increasing

Revelle Factor with higher atmospheric CO2 concentrations in the future (see Fig. 1 and Hauck and Völker, 2015). Assuming

that the upwelling-induced DIC variation stays constant in the reversed ESMs, an enhanced primary production fluctuation

(higher during La Niña, lower during El Niño) in the future would decrease the ratio between non-thermal and thermal pCO2

components and therefore could contribute to the simulated reversed relationship (Fig. 6). Fig. S8 also shows that the preserved270

ESMs also simulate enhanced primary production variability but with a lesser magnitude than the reversed ESMs. Yet the

contemporary ENSO-CO2 flux relationships in this ESM group are maintained in the future, suggesting too low biological

contribution or other additional processes are at play.

In addition to surface biological activities, the reduction of the non-thermal contribution to the total pCO2 in the reversed

ESMs can also be attributed by changes in upwelling-induced surface DIC modulation. Here, we examine the mean vertical275

15

https://doi.org/10.5194/esd-2022-12
Preprint. Discussion started: 8 April 2022
c© Author(s) 2022. CC BY 4.0 License.



30 60 90 120

Preserved

Reversed

∆pCO2 bio  [µatm]

1985−2014 2071−2100La Niña El Niño

Figure 8. Multi-model mean average biological contribution to the oceanic pCO2 (in µatm) deficit during La Niña and El Niño regimes for

the 1985-2014 and 2071-2100 period for all reversed (top) and preserved (bottom) models in the EP domain.

profiles of DIC and temperature and carbonate ion in the EP domain across the two ESM groups. Figure 9 shows the average

vertical profiles of DIC and temperature for the two groups of ESMs over the the EP domain from the surface down to 300

m depth. Both groups consistently show DIC and temperature increase in the future, but the change varies in magnitude and

vertical distribution.

Indeed, the reversed ESMs simulate higher historical DIC (yellow lines in first row of Fig. 9) making them more biased280

than the preserved ones. The simulated DIC increase is similar at 100 m and deeper for both groups (purple dashed lines).

However, the increase from the surface to 100 m is larger for the reversed ESMs. This leads to a stronger reduction in vertical

DIC gradient, which would also contributes to a less ENSO-induced surface DIC variability in the reversed ESMs. This is

also consistent with the projected more dominant thermal contribution relative to the total pCO2. The future increase in the

upper ocean DIC concentration is associated with the uptake of anthropogenic carbon from the atmosphere. We note that the285

increase in DIC concentration at depth can also be associated with the shallow water overturning circulation, which advects

southern DIC-rich (and carbonate poor) waters into the region (Toyama et al., 2017; Rodgers et al., 2020) and can also affect

the buffering capacity of upwelled watermass.

The higher surface DIC increase is also illustrated in the right panel Fig. 10, depicting that the reversed ESMs simulate more

carbon uptakes (or less cumulated DIC loss because the tropical Pacific is a mean outgassing system) than the preserved models290

over the transient simulation period. This is attributed to the higher CO2−
3 concentration simulated by the reversed ESMs at

the beginning of the transient simulation from surface to 300m depth (see bottom panels of Fig. 9 and left panel of Figure 10

for surface CO2−
3 ). Hence, reversed ESMs have higher buffering capacity which makes them able to uptake more atmospheric

carbon. This is the first order explanation for the projected higher surface CO2−
3 reduction (see bottom panels of Fig. 9 and

middle panel of Figure 10).295

The relationship between historical surface carbonate concentration and CO2 uptakes can be generalised for all models.

Figure 11 shows contemporary surface carbonate concentration against the cumulated sea-air CO2 flux from 1850 to 2100

over EP for all the models except the MPI models. The correlation at 0.67 indicates that the carbonate concentration is a good

indicator of the buffering capacity of the model: the higher the carbonate the lower the cumulated CO2 outgassing (ie. more
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Figure 9. Multi-model mean of vertical DIC (in µmol C L−1, top panels), temperature (in ◦C, middle panels) and carbonate ion concentration

(in µmol C L−1, bottom panels) profiles over the 1985-2014 (in yellow lines) and 2071-2100 (in blue lines) periods for reversed (left) and

preserved (left) models. The profile difference between both period profile (∆) is given in purple dashed-dotted lines. The black lines with

dots are the observed profile for the three variables. The dashed horizontal lines indicate the average thermocline depth for each groups and

time periods. One standard deviation is given in shaded colours.

carbon uptakes). The preserved ESMs are less biased in terms of carbonate concentration, which tend to indicate that their300

behaviour should be more reliable.

The preserved ESMs simulate stronger warming at the surface (see middle panels of Fig. 9), suggesting stronger future

stratification, which is consistent with the higher increase in the subsurface DIC (e.g., associated with the biological reminer-

alisation) with less upwelling. Consequently, the weaker future stratification in the reversed ESMs is also consistent with the

more uniform DIC vertical profile.305
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Figure 10. Maps of average surface CO2−
3 concentration (left in µmol C L−1) for the reversed (top) and preserved ESMs for the 1851-1880

period. The middle column shows the carbonate ion concentration difference between the 2071-2100 and 1851-1880 periods. The right

column show the surface DIC concentration difference between the 2071-2100 and 1851-1880 periods. The green boxes outline the EP

region.

Figure 11. Average contemporary surface CO2−
3 concentration (in µmol C L−1) plotted against the cumulated sea-air CO2 fluxes (in Pg C)

from 1850 to 2100 in the EP region. ρ is the correlation and green and orange square respectively indicates the reversed and perserved ESMs.

ENSO-induced upwelling variability alters the surface DIC anomalies. However, there is no significant difference in the

thermocline depth evolution between the reversed and preserved ESM groups. The thermocline depths are expected to become

shallower toward the end of the 21st century, consistent with future warmer upper layer and stronger stratification. In all

ESMs, the thermocline depth variation due to ENSO, i.e. shallower thermocline depth during El Niño events (indicating the
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anomalously weak upwelling state) and vice versa during La Niña, is maintained in the future. Figure S9 of the supplemental310

material depicts time-series of the average thermocline depth computed over the EP domain. Despite future shallowing of

thermocline depth, the ENSO-driven surface DIC variation in all ESMs (anomalously lower DIC during El Niño and higher

DIC during LA Niña) is also maintained in the future (see Fig. S10).

4 Discussion, limitations and perspectives

In the tropical Pacific, the dominant mode of sea-air CO2 fluxes variability over the interannual time scale has been established315

to be associated with ENSO. Here, by evaluating the capacity of 16 CMIP6 ESMs to reproduce this relationship over the

historical period provides a valuable means to validate their performance. As shown in Table 3, while most ESMs are able to

reproduce the observed contemporary relationships (i.e., negative correlation or outgassing anomaly during La Niña and vice

versa during El Niño), there are two ESMs that simulate the complete opposite relationship. Furthermore, the amplitude of

the Niño34 (CO2 fluxes) variability also varies considerably among models over the contemporary period, from 0.91 (0.23) to320

1.32 (1.29) times, as compared to the observations (Table 3). As with previous generation ESMs (Jin et al., 2019), considerable

differences in the spatial extent of CO2 flux anomaly patterns associated with ENSO variability are also simulated in the current

CMIP6 ESMs.

Model projections suggest an enhanced ENSO variability in the future associated with the intensification of upper-ocean

stratification (Cai et al., 2018). Due to the climate-carbon cycle feedback, analysing how the ENSO-induced CO2 fluxes will325

be altered by future climate change could provide a valuable insight on the projections of long-term anthropogenic climate

change (Betts et al., 2020). Among the analysed ESMs, half of models show a reversal in their ENSO-CO2 flux relationship

in the Equatorial Pacific (i.e., from an anomalous CO2 uptake to outgassing during El Niño and vice versa during La Niña

events) under the strongest future climate change scenario SSP5-8.5. This reversed relationship, superimposed on the projected

ENSO-CO2 fluxes by the land biosphere (Kim et al., 2016), suggests an even stronger increase in atmospheric CO2 growth330

rate during future El Niño events. Nevertheless, our assessment indicates that ESMs that simulate this reversed pattern also

simulate considerable bias in the contemporary surface CO2−
3 concentration; therefore, the projections from these ESMs should

be considered with caution.

The readers must keep two things in mind while interpreting the results of this study: (i) only the high emissions SSP5-8.5

scenario has been considered. Results may be scenario dependent, especially with respect to the future atmospheric CO2 level.335

(ii) The models have been grouped (and averaged) into two categories to identify patterns or consistencies and to simplify the

analyses. In addition, we have focused our analysis in contrasting El Niño and La Niña for a confined region in the Equatorial

Pacific (i.e., 2◦S-2◦N and 180◦-260◦E). We have also applied our analysis on a slightly larger domain (5◦N-5◦S, 150◦W-

240◦W), and the overall conclusions remain consistent (not shown).

Accurate representations of the tropical Pacific mean climate state and ENSO-related hydrographic changes in models are340

fundamental for ENSO impact studies. For instance, ESM projections of precipitation changes associated with future ENSO

depend on the contemporary SST biases and trends (Stevenson et al., 2021). Simulating the contemporary tropical Pacific
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climate accurately has been a great challenge for the modelling community over the past decades, but evidence of continuous

improvements over preceding generation ESMs is a promising sign (e.g., IPCC, 2021; Bellenger et al., 2014).

We show that the simulated amplitude and spatial extent of physical and biogeochemical properties induced by ENSO vary345

considerably across ESMs. Future model development should therefore focus on capturing the observed mean state as well

as the regional anomalies pattern during dominant climate modes, such as La Niña vs El Niño phases. To achieve these de-

velopments, long-term interior carbon chemistry observations are needed. In particular, vertical distribution of DIC/ALK/CO3

concentrations during El Niño and La Niña would be extremely helpful to constrain the contrasting ESM projections.

The important roles of vertical DIC gradient and biological production in the reversal of the ENSO-CO2 flux relationship are350

also highlighted in this study. For example, the increased primary production variability that contribute the reversed ENSO-CO2

flux relationship can be associated with model-dependent primary production formulation (e.g., sensitivity of phytoplankton

growth rate to temperature) and circulation-driven nutrient upwelling patterns, among others. We note that elucidating the

drivers of enhanced primary production in each ESM is beyond the scope of this paper.

Future model developments are also necessary to ensure that ESMs are able to reliably capture multiple layers of non-linear355

processes that connect ENSO variability and sea-air CO2 fluxes in the Equatorial Pacific. The latest generation of ESMs have

progressed considerably in reproducing key climatological properties of surface ocean biogeochemistry (Séférian et al., 2020).

Future advancements could focus on improving the biogeochemical representation in the interior as well as better understanding

of the physical-biogeochemical interactions across various time scales, as well as across different regions. For instance, outside

the tropical Pacific, the ocean carbon cycle are modulated by different climate modes, such as the North Atlantic Oscillation360

(Keller et al., 2012; Tjiputra et al., 2012) and the Southern Annular Mode (Lenton and Matear, 2007; Keppler and Landschützer,

2019). Future studies that advance our understanding of how the ocean carbon cycle in these regions might be affected by future

anthropogenic climate change could be valuable to further reduce uncertainties in future climate projections.

5 Summary

In this paper, the ENSO-induced response of sea-air CO2 fluxes under a high CO2 future climate scenario is presented using365

observed data and model simulations from CMIP6 ESMs. The heart of the work was to examine the roles of two concurrent

physical and biogeochemical processes driving the sea-air CO2 fluxes variability: (i) anomalously high (low) surface tempera-

ture that leads to low (high) CO2 solubility, which enhances (reduces) outgassing, and (ii) anomalously strong (weak) upwelling

that brings more (less) DIC-rich water to the surface and enhances (reduces) outgassing. Opposing effect of these two processes

is enhanced by ENSO: high sea surface temperature is associated with weaker upwelling and stronger stratification during El370

Niño and the opposite occurs during La Niña.

The findings can be summarised as following:

– During the historical period, observational data shows that sea-air CO2 flux anomalies are negatively correlated with

ENSO-associated warming, and this is reproduced in the vast majority of the models (14 of 16);
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– Under the high emissions future projection (SSP5-8.5), this correlation persists in half of the examined models (7 of 14),375

but is projected to reverse across the other half;

– Depending on the model, the future variability of CO2 fluxes anomaly in the Equatorial Pacific domain could either

increase or decreases. This is consistent with the projected pCO2 variability over the same area (Gallego et al., 2020).

However, Liao et al. (2021) found weaker future CO2 flux anomalies during ENSO phases which maybe partly related

to their model selection in their analyses.380

– All the models shows a higher Revelle Factor in the future, leading to a stronger pCO2 sensitivity to changes in surface

temperature between ENSO phases (similar results has been shown for CMIP5 Gallego et al., 2020);

– In this study, the mechanisms leading to the reversal of this ENSO-CO2 flux relationship are explained by the thermal

contribution to pCO2 becoming more dominant relative to the non-thermal component. This is explained by (i) the

increase in the pCO2, (ii) the enhanced primary production fluctuation, and (iii) the upper ocean DIC concentration385

increase (due to increasing anthropogenic CO2 uptake) which decreases the vertical gradient in the thermocline, and

eventually attenuating the ENSO-modulated surface DIC variability;

– A reversing ENSO-CO2 flux relationship over the 21st century projected in some ESMs seems unlikely since it is a direct

consequence of a strong bias in the mean state of carbonate ion concentration over the historical period.
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