Table S1: Perturbed parameters in the GC3.05-PPE. Descriptions are from, and more detail of parameters can be found in Murphy et al. 2018.

Perturbed parameter	Name	Description	
Convection			
ent fac dp	Deep entrainment	Controls the shape of the mass flux and	
enc_rue_up	amplitude	sensitivity of deep convection to relative	
		humidity to deep entrainment.	
ent fac md	Mid entrainment	Controls the shape of the mass flux and the	
	amplitude	sensitivity of mid-level convection to relative	
	I IIII	humidity to mid-level entrainment.	
amdet fac	Mixing detrainment	Controls the rate of humidification of the	
_	6	atmosphere and the shape of the convective	
		heating profile.	
r_det	Coefficient for adaptive	Decrease of mass flux with height under	
	detrainment	decreasing parcel buoyancy.	
cca_md_knob,	Convective core	Controls how much deep and mid-level	
cca_dp_knob	radiative effects	convective core gets seen by radiation.	
cca_sh_knob	Shallow convection core	Controls how much shallow convection gets	
	radiative effects	seen by radiation.	
mparwtr	Maximum condensate	The maximum condensate a convective parcel	
		can hold before it is converted to precipitation.	
qlmin	Minimum critical cloud	The minimum value of the function that defines	
	condensate	the maximum amount of condensate a	
		convective parcel can hold before it is converted	
		to precipitation.	
Gravity wave drag			
gwd_frc	Critical Froude number	Determines the cut-off mountain height and the	
		depth of the blocked flow layer around sub-grid	
		mountains.	
fbcd	Flow blocking drag	Determines the size of the low-level drag	
	coefficient	associated with flow blocking effects by sub-	
1.6.		grid mountains.	
gwd_fsat	Inverse critical Froude	wayos goporated by sub-grid orography will	
	saturation	break and evert a drag on the flow	
asharn	Mountain wava	Determines the amplitude of the mountain	
gsharp	amplitude	waves generated by sub-grid or ography	
orog drag param	Drag coefficient for	Determines the size of the form drag exerted on	
orog_urug_purum	turbulent form drag	flow by small-scale sub-grid hills.	
nsigma	Scaling factor applied to	Determines the local assumed sub-grid	
	the standard deviation of	orography height which is used in the gravity	
	sub-grid mountain	wave drag scheme.	
	heights.	_	
Boundary layer			
g0	Flux profile parameter	Used in the definition of stability functions.	
ricrit = 10.0 / g0	Critical Richardson	Value of Richardson number below which air	
	number	becomes dynamically unstable and turbulent.	
a_ent_1	Cloud-top entrainment	Used in entrainment rate calculation.	
	rate.		
gl	Cloud-top diffusion	Used in cloud-top diffusion calculation.	
znloc_depth_tac	I hreshold fraction of	Fractional height into cloud layer for which	
	the cloud layer depth	RI-based boundary layer depth can	
1		diagnose shear dominated layer.	
par_mexcla	Neutral mixing length	Mixing length for fluid parcels under neutral	
11.1		stability conditions.	
iambua_min	winninum value of		
	I IIIAIII2 ICII2UI.		

dec_thresh_cld,	Decoupling threshold for			
dec_thresh_cloud2cu	cloud boundary layers.			
forced_cub_fac	Mixing factor applied to	Determines the fraction of diagnosed adiabatic		
	the in-cloud water	water content of forced cumulus clouds which is		
	content of forced	allowed to remain.		
	cumulus clouds.			
Clouds and cloud radiation				
dbsdtbs_turb_0	Cloud erosion rate	Determines the rate which un-resolved sub-grid motions mix clear and cloudy air.		
two_d_fsd_factor	Scaling to make sub-grid	Makes the cloud water variability around the		
	cloud condensate	grid box average a two dimensional relationship,		
	variance to cloud cover	based on 1-d empirical relationship.		
	and convective activity			
	to dimensional.			
dp_corr_strat	Decorrelation scale	Determines the vertical overlap between clouds		
-	pressure	in the sub-column in the cloud generator used to		
	-	calculate the radiative impact of clouds.		
ice width	Ice width	Determines the amount of ice water content that		
		corresponds to a factor of two reduction in the		
		width of the vapour distribution in the liquid-		
		free part of the grid box.		
Cloud microphysics				
1 7				
c_r_correl	Cloud-rain correlation	Determines the sub-grid correlation between		
	coefficient	cloud and precipitation.		
<u>m_c1</u>	Ice fall speed	Scaling factor for the ice fall speed.		
ai	Precursor coefficient in	Changing ai has the effect of changing the		
	the mass-diameter	density of ice.		
	relationship for ice.			
xlr		Controls the shape of the PSD for raindrops.		
ar	Aspect ratio of ice	Used to calculate the depositional capacitance of		
	particles.	ice crystals which affects how efficiently they		
		grow by depleting water vapour.		
mp_dz_scal	Vertical scale in mixed-	Vertical length scale over which the turbulence		
	phase turbulent	acts to produce supercooled water.		
	production of			
	supercooled liquid water.			
Aerosols				
ps_anth_so2_emiss	Anthropogenic SO ₂	Direct scaling of anthropogenic SO ₂ emission		
·	emission flux	flux.		
ps dry so2 veloc	Dry deposition rate of	Scaling factor for the dry deposition rate which		
1 - 7	SO ₂	removes SO ₂ from lowest levels through		
	_	deposition according to land surface type and		
		prevailing wind speed.		
ps sigma updraught	Scaling of the standard	Relates the activation of aerosols to cloud		
r888	deviation use to define	droplets to the standard deviation used to define		
	the pdf of updraught	the pdf of updraught velocity		
	velocity	the part of uparticipant versionly.		
biom_aer_ems_scaling	Scaling of emission	Direct scaling of emission flux.		
~	flux from biomass			
	burning			
ps_natl_ss_emiss	Scaling of emission	Direct scaling of emissions flux.		
	flux from sea spray	-		
pd_natl_dms_emiss	Dimethyl-sulphide	Direct scaling of emissions flux.		
	emission flux	-		
ps_acc_cor_scav	Scavenging rate in the	Scaling of the scavenging rate calculated in the		
	coarse and accumulation	model.		
	modes.			

ps_cloud-pH	pH of cloud drops	Controls the in-cloud SO ₄ production dependent on SO ₂ availability.	
Land surface and snow			
u10_max_coare	Maximum wind speed used in the Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm	This is the highest wind speed used in calculating the Charnock coefficient in the COARE algorithm.	
rO	Grain size of fresh snow	The grain size of fresh snow is set to this value.	
rho_snow_fresh	Fresh snow density	The density of fresh snow.	
tupp_io	Upper value about 4K above the optimal value for photosynthesis	Temperatures above the optimal value for photosynthesis will drive a decline in photosynthesis.	
f0_io	Maximum ratio of internal to external CO ₂	Controls the gradient of CO_2 between plant stomata and the ambient air.	
nl0-io	Top leaf nitrogen concentration	Defines the top leaf ration of nitrogen to carbon. Plant photosynthesis is defined in the model to be proportional to the leaf nitrogen concentration.	
rootd_ft_io	Root depth	Controls the depth to which soil moisture is available.	
psm	Scaling factor for critical and saturation levels for soil moisture towards wilt level	This pair of parameters control the critical and saturated volumetric soil moisture thresholds. The critical threshold controls the level above which evapotranspiration is no longer soil moisture dependent.	

Figure S1: 1860 to 1975 aerosol ERF for individual ensemble members. Global mean aerosol ERF, and northern hemisphere (0 to 60 $^{\circ}$ N) – southern hemisphere (0 to 60 $^{\circ}$ S) are shown above each ensemble member. The ensemble mean and standard deviation are shown in the first two plots.

Figure S2: 1860 to 2005 aerosol ERF for individual ensemble members. Global mean aerosol ERF, and northern hemisphere (0 to 60 $^{\circ}$ N) – southern hemisphere (0 to 60 $^{\circ}$ S) are shown above each ensemble member. The ensemble mean and standard deviation are shown in the first two plots.

Figure S3: Time series of Φ_{ITCZ} anomaly against a 1950 to 2000 reference period with no rolling mean for global (top, 0 - 360 ° longitude), Atlantic (middle, -70 - 10 ° longitude) and Pacific regional means (150 - 285 ° longitude). Historical emissions are shown in black, RCP8.5 in red and RCP2.6 in blue. Major volcanic eruptions are marked with grey vertical lines. The ensemble mean is shown by the darker line, and the individual ensemble members in the lighter lines.

Figure S4: Time series of the inter-hemispheric (60 °S to 60 °N, NH-SH) surface temperature anomaly against a 1950 to 2000 reference period with a 5-year rolling mean for global (top, 0 - 360 ° longitude), Atlantic (middle, -70 - 10 ° longitude) and Pacific regional means (150 - 285 ° longitude). Historical emissions are shown in black, RCP8.5 in red and RCP2.6 in blue. Major volcanic eruptions are marked with grey vertical lines. The ensemble mean is shown by the darker line, and the individual ensemble members in the lighter lines.

Figure S5: Time series of the inter-hemispheric (60 °S to 60 °N, NH-SH) total AOD anomaly against a 1950 to 2000 reference period with a 5-year rolling mean for global (top, 0 - 360 ° longitude), Atlantic (middle, -70 - 10 ° longitude) and Pacific regional means (150 - 285 ° longitude). Historical emissions are shown in black and RCP8.5 in red. Major volcanic eruptions are marked with grey vertical lines. The ensemble mean is shown by the darker line, and the individual ensemble members in the lighter lines.

Figure S6: Scatter plot of trend in 5-year rolling mean Φ_{ITCZ} in 1950 to 1985 (top) against ocean-only interhemispheric (60 °S to 60 °N) trend in surface air temperature (top), total implied radiative forcing (middle) and 1860 to 1975 aerosol ERF (bottom) for global (left), Atlantic (middle) and Pacific (right) regional means. Individual ensemble members are coloured according to legend. Spearman's rank correlation coefficient is shown at top left of each plot.

 ϕ_{ITCZ} trend for 1950 to 1985 vs ocean-only inter-hemispheric variables (60 $^\circ$ S to 60 $^\circ$ N)

Table S2. Table of Spearman's rank correlation coefficients for the trend in global mean 5-year rolling mean Φ_{TTCZ} and ocean-only inter-hemispheric variables shown in Figure 3 for the time periods: 1950 to 1985, 1950 to 1980, 1940 to 1985, 1940 to 1985, 1940 to 1975.

Time period	Correlation with the	Correlation with the	Inter-hemispheric 1860
	trend in inter-	trend in inter-	to 1975 aerosol ERF
	hemispheric surface air	hemispheric implied	(W m ⁻²)
	temperature (°C year-1)	total forcing	
		$(W m^{-2} year^{-1})$	
1950 to 1985 (shown)	r= 0.92	r= 0.75	r= 0.07
1950 to 1980	r= 0.69	r= 0.66	r= 0.14
1940 to 1985	r= 0.19	r= 0.55	r= -0.08
1940 to 1980	r= -0.03	r= 0.49	r= -0.10
1940 to 1975	r= 0.26	r= 0.63	r= -0.35

Figure S7: Scatter plot of (top) 1950 to 1985 inter-hemispheric surface temperature trend against 1860 to 1975 aerosol ERF and (middle, bottom) 2006 to 2060 inter-hemispheric surface temperature trend against 1860 to 2005 aerosol ERF for global (left), Atlantic (middle) and Pacific (right) regional means. Individual ensemble members are coloured according to legend. Spearman's correlation coefficient is shown at top left of each plot.

Inter-hemispheric (60°S to 60°N)

02123 02242 02491

02832 02868

Figure S8: Scatter plot of the 1950 to 1985 trend in 5-year rolling mean Φ_{ITCZ} against inter-hemispheric top of atmosphere outgoing shortwave flux (rsut) (0 to 60 °S and ° N latitude) for global (left), Atlantic (middle) and Pacific (right) regional means. Individual ensemble members are coloured according to legend. Spearman's rank correlation coefficient is shown at top left of each plot.

Figure S9: Scatter plot of the 1950 to 1985 trend in 5-year rolling mean Φ_{TTCZ} against inter-hemispheric (0 to 60 ° S and ° N latitude) total AOD (top) and dust AOD (bottom) for global (left), Atlantic (middle) and Pacific (right) regional means. Individual ensemble members are coloured according to legend. Spearman's rank correlation coefficient is shown at top left of each plot.

Figure S10: Scatter plot of 1950 to 1985 and 1940 to 1975 trend in 5-year rolling mean Φ_{ITCZ} against trend in global inter-hemispheric (90 °S to 90 °N) implied forcing from shortwave non-cloud interactions and cloud interactions for global (left), Atlantic (middle) and Pacific (right) regional. Spearman's rank correlation coefficient is shown at top left of each plot.

Figure S11: Plots of the parameters that have a Spearman's rank correlation coefficient or r > 0.5 with the trend in 5year rolling mean Φ_{TTCZ} in 1950 to 1985 in global (top), Atlantic (middle) and Pacific (bottom) regional means. Individual ensemble members are coloured according to legend. Negative relationships are shown in pink and positive in green. Definitions of parameters are in Table S1.

Text S1. Tropical precipitation shifts were also calculated based on the methodology in Allen et al. 2015 in order to compare the spread in our single-model PPE to a multi-model ensemble. First, the annual precipitation anomaly is calculated against a 1961 – 1990 base period. This methodology then defines tropical precipitation shifts (mm decade⁻¹) as the difference between area-weighted northern hemisphere (0 - 20 °N) and southern hemispheric (0 - 20 °S) regional means over land and ocean. The Atlantic region is defined (75 °W – 30 °E) and the Pacific region as (30 °E – 75 °W). The trend over 1950 – 1985 is calculated from the 5-year rolling mean of this metric.

Figure S12. The 1950 to 1985 trend in the tropical precipitation metric (NH-SH PRECT / mm decade⁻¹) defined in Text S1 over land and ocean for the three regional means.

Trend in NH-SH PRECT between 1950 - 1985

Figure S13: Scatter plot of trend in 5-year rolling mean Φ_{TTCZ} in 2006 to 2060 (top) against ocean-only interhemispheric (60 °S to 60 °N) trend in surface air temperature (top), implied total forcing (middle) and 1860 to 1975 aerosol ERF (bottom) for global (left), Atlantic (middle) and Pacific (right) regional means. Individual ensemble members are coloured according to legend. The Spearman's rank correlation coefficient is shown at top left of each plot. For the top row, RCP8.5 is red, RCP2.6 is teal, and the scenarios combined is black.

Figure S14. Time series of trend in 5-year rolling mean Φ_{ITCZ} in 2006 to 2040 for RCP8.5, the internal variability is estimated from HadGEM3-GC3.1 (historical and SSP5-8.5) ensemble. This figure tests how the trend over a future time period of comparable size to the historical time period influences the range of trends in tropical precipitation across the ensemble.

References

Allen, R. J., Evan, A. T. and Booth, B. B. B.: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late Twentieth Century, J. Clim., 28(20), 8219–8246, doi:10.1175/JCLI-D-15-0148.1, 2015.

Murphy, J. M., Harris, G. R., Sexton, D. M. H., Kendon, E. J., Bett, P. E., Clark, R. T., Eagle, K. E., Fosser, G., Fung, F., Lowe, J. A., McDonald, R. E., McInnes, R. N., McSweeney, C. F., Mitchell, J. F. B., Rostron, J. W., Thornton, H. E., Tucker, S. and Yamazaki, K.: UKCP18: Land Projections Science Report., 2018.