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Abstract. Dansgaard–Oeschger (DO) events are sudden climatic shifts from cold to substantially milder conditions in the arctic

region that occurred during previous glacial intervals. They can be most clearly identified in paleoclimate records of δ18O and

dust concentrations from Greenland ice cores, which serve as proxies for temperature and atmospheric circulation patterns,

respectively. The existence of stadial (cold) and interstadial (milder) phases is typically attributed to a bistability of the North

Atlantic climate system allowing for rapid transitions from the first to the latter and a more gentle yet still fairly abrupt reverse5

shift from the latter to the first. However, the underlying physical mechanisms causing these transitions remain debated. Here,

we conduct a data-driven analysis of the Greenland temperature and atmospheric circulation proxies under the purview of

stochastic processes. Based on the Kramers–Moyal equation we present a one-dimensional and two-dimensional derivation

of the proxies’ drift and diffusion terms, which unravels the features of the climate system’s stability landscape. Our results

show that: (1) in contrast to common assumptions, the δ18O proxy results from a monostable process, and transitions occur10

in the record only due to the coupling to other variables; (2) conditioned on δ18O the dust concentrations exhibit both mono

and bistable states, transitioning between them via a double-fold bifurcation; (3) the δ18O record is discontinuous in nature,

and mathematically requires an interpretation beyond the classical Langevin equation. These findings can help understand

candidate mechanisms underlying these archetypal examples of abrupt climate changes.
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1 Introduction15

In the presence of anthropogenically driven climate change, increasing amount of research focuses on the stability of the

climate system’s current state (Boers, 2021; Heinze et al., 2021; Rosier et al., 2021; Boers and Rypdal, 2021). Several climatic

subsystems have been identified to potentially undergo abrupt transitions if global warming exceeds certain thresholds (Lenton

and Schellnhuber, 2007; Lenton et al., 2008; Boers et al., 2021). Such abrupt transitions are often conceptually captured in

terms of dynamical systems transitioning between alternative equilibrium states; for example when a stable equilibrium is20

lost and a system shifts to another attractor in response to the crossing of a bifurcation point, or when a stochastic perturbation

pushes the system from one stable state to another. Furthermore, a system can experience rate-induced transitions during which

the system fails to track the changing domain of attraction of a given equilibrium state and suddenly transitions to another state.

Prominent examples for climate elements which are thought to be at risk of abrupt transitions under sustained anthropogenic

greenhouse gas forcing are given by the Greenland Ice Sheet (Boers, 2021), the Amazon rainforest (Boulton et al., 2021), the25

Atlantic Meridional Overturning Circulation (AMOC) (Boulton et al., 2014; Boers and Rypdal, 2021), and the West Antarctic

ice sheet (Rosier et al., 2021).

While the conceptual understanding of abrupt transitions in terms of dynamical system theory is well established, the only

observational evidence of abrupt climate transitions stems from proxy records that encode the evolution of past climate vari-

ability (Brovkin et al., 2021). Understanding the physical causes of such past abrupt climate changes is crucial for improving30

the capability of comprehensive Earth System Models to faithfully simulate such transitions, and is therefore a prerequisite

for assessing the risk of abrupt climate changes under future warming scenarios (Valdes, 2011; Boers et al., 2021). The most

prominent example of past abrupt climate shifts are the Dansgaard–Oeschger events – a series of sudden warming events that

dominated Greenland temperatures throughout the last glacial cycle, e.g., Refs. (Johnsen et al., 1992; Dansgaard et al., 1993;

North Greenland Ice Core Projects members, 2004). These events have first been revealed in δ18O record from Greenland ice35

cores (see Fig. 1), which serve as proxies for past air temperatures at the drilling site (Jouzel et al., 1997; Gkinis et al., 2014).

Taking place on time scales of decades, the amplitudes of warming are estimated to exceed 10◦C in most cases, and reach up to

16◦C in the annual mean temperature over Greenland (Steffensen et al., 2008; Kindler et al., 2014; Gkinis et al., 2014; Capron

et al., 2021). The sudden temperature increase is usually followed by a phase of moderate cooling, before the temperatures ulti-

mately relax back to their pre-event levels in a second phase of more abrupt cooling. While the duration of the relatively warm40

phases termed Greenland Interstadials (GIs) stretches from centuries to millennia, the cold Greenland Stadials (GSs) typically

persists over millennia before another sudden warming event starts a new DO cycle (Rasmussen et al., 2014). Moreover, in

addition to δ18O, further Greenland ice core proxies bear the signature of the DO cycles, such as dust (Fuhrer et al., 1999; North

Greenland Ice Core Projects members, 2004) and sodium concentrations (Erhardt et al., 2019), or the thickness of the annual

deposition layers (Erhardt et al., 2019). The common interpretation of these concomitant abrupt shifts in the different proxy45

time series is that the sudden Greenland warming events were accompanied by sudden changes in the atmospheric circulation,

retreat of the North Atlantic and Nordic Sea’s sea ice cover, and increases in the amount of local precipitation, respectively,

e.g., Refs. (Li and Born, 2019; Erhardt et al., 2019; Menviel et al., 2020). Importantly, despite substantial progress in recent
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years, no general consensus has yet been achieved regarding the mechanism that causes the DO events. Different patterns of

interaction between the AMOC, sea ice cover, the Northern Hemisphere atmospheric circulation, and even the continental ice50

sheets have been proposed and explored to explain the emergence of DO cycles (Broecker et al., 1985; Li et al., 2005; Petersen

et al., 2013; Cimatoribus et al., 2013; Dokken et al., 2013; Zhang et al., 2014; Kleppin et al., 2015; Lynch-Stieglitz, 2017; Vet-

toretti and Peltier, 2018; Boers, 2018; Boers et al., 2018; Li and Born, 2019; Gottwald, 2020; Menviel et al., 2020; Lohmann

et al., 2021).

Here, in order to reconstruct the dynamics that governed Greenland temperatures during the last glacial, we assume an55

inverse modelling approach, in a fashion similar to the analysis conducted in, e.g., Refs. (Ditlevsen, 1999; Livina et al., 2010;

Kwasniok, 2013; Krumscheid et al., 2015; Boers et al., 2017; Hassanibesheli et al., 2020). The key concept is to regard

the paleo-climate record as the realisation of a Markovian and stationary stochastic process (Kondrashov et al., 2005, 2015)

which can be described in terms of a stochastic differential equation. In this setting there exist different ways to estimate the

deterministic drift and the stochastic diffusion component. Drawing on the Kramers–Moyal equation (Kramers, 1940; Moyal,60

1949; Tabar, 2019), we recover the underlying drift term – or the potential landscape – that discloses the stability configuration

of the system, together with the diffusion term. In particular, we present the first Kramers–Moyal-based reconstruction of

the two-dimensional drift in the coupled system comprised of Greenland ice core δ18O values and dust concentrations. The

Kramers–Moyal equation generalises the Fokker–Planck description of stochastic processes, including explicitly the presence

of discontinuous elements. In this sense, it steps outside the classical description of a Langevin process, yet preserves a similar65

interpretation of the drift and diffusion of the processes.

This article is structured as follows: In Sec. 2 we introduce the paleo-climatic proxies under examination and the detrending

method used to ensure that the data is approximately stationary. In Sec. 3 we introduce the Kramers–Moyal expansion as

the prime method to extract the potential landscape and examine the influence of stochastic noise and possible discontinuous

elements within the records. In Sec. 4 we present the results, beginning with a one-dimensional analysis of the two proxies, in70

Sec. 4.1. We examine their separate potential landscapes and higher-order Kramers–Moyal coefficients, and therein manifest

the need to augment our examination to a two-dimensional plane. This is consequently discussed in Sec. 4.2, where we uncover

the conditioned potential landscapes of the joint proxy process. We examine the stability configurations of the δ18O and dust

time series in respective comparison, unveiling the arguments for mono-stability of the δ18O, and a mixed set of states for the

dust, which undergoes an double-fold bifurcation parametrised by the δ18O. In Sec. 6 we discuss the results and consequences75

of our findings in a paleoclimate context.

2 Data and pre-processing

The analysis presented here is based primarily on the joint δ18O and dust concentration time series obtained by the North

Greenland Ice Core Project (NGRIP) (Ruth et al., 2003; North Greenland Ice Core Projects members, 2004; Gkinis et al.,

2014). The concentration of stable water isotopes expressed as δ18O values in units of permil is a proxy for the site temperature80

at the time of precipitation (Jouzel et al., 1997; Gkinis et al., 2014). The concentration of dust, i.e. the number of particles
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Figure 1. The dust (a) and the δ18O (b) records from the NGRIP ice core in Greenland, from 59 kyr to 27 kyr before the year 2000 B.C.E.

(b2k). The dust data is the natural logarithm of the actual dust concentrations, in order to facilitate visual comparison to the δ18O. All time

series are normalised. The two proxies have been pre-processed, in order to ensure stationarity, by removing a linear trend drawn from the

global average surface (see App. A). The grey shadings mark the Greenland Interstadial (GI) intervals. The time series can be found in (J. P.

Steffensen, Centre for Ice and Climate, Niels Bohr Institute, 2014; Seierstad et al., 2014).

with diameter above one micron per millilitre is assumed to be controlled mostly by two factors: First, climatic conditions at

the emission source, that is, the dust storm activity over East Asian deserts preconditioned on generally dry regional climate.

Second, the transport efficiency, which is affected by the strength and position of the polar jet stream (Ruth et al., 2007;

Schüpbach et al., 2018; Erhardt et al., 2019). Correspondingly, the substantial changes in the dust concentrations across DO85

events are interpreted as large-scale reorganisations of the Northern Hemisphere’s atmospheric circulation (Erhardt et al.,

2019). Since the dust concentrations approximately follow an exponential distribution, we consider in the following re-scaled

values by taking the natural logarithm and multiplying by −1 in order to emphasise the similarity to the δ18O time series (cf.

Fig. 1). For ease of notation we will use the term dust although technically we refer to the negative natural logarithm of the

dust concentration.90

Data is available for both proxies at an equidistant resolution of 5 cm, from 1346.45 m to 2426.00 m of depth in the NGRIP

ice core. This translates into non-equidistant temporal resolution ranging from sub-annual resolution at the beginning to ∼ 5

years at the end of the period 9527.3 – 59944.5 yr b2k (before the year 2000). All ages are according to the Greenland Ice

Core Chronology 2005 (GICC05), the common age-depth model for both proxies (Vinther et al., 2006; Rasmussen et al., 2006;

Andersen et al., 2006; Svensson et al., 2008).95
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The analysis conducted in this work assumes stationarity of the underlying data-generating process. However, Boers et

al. (Boers, 2018) pointed out a low-frequency influence of the background climate, for example, expressed in terms of global

ice volume, on the frequency of DO events, whith suppressed DO variability during the coldest parts of the glacial such as the

Last Glacial Maximum. We therefore complement the NGRIP dust and δ18O data with a reconstruction of the global average

surface temperature as presented in Ref. (Snyder, 2016). Moreover, Boers et al. (Boers et al., 2017) highlighted that δ18O100

and dust show high co-variability over the period 59–22 kyr b2k. However, this relationship weakens after 22 kyr b2k, thus

constraining the potential data segment eligible for our study. Excluding also the Last Glacial Maximum from the data, we

restrict our analysis to the period 59–27 kyr b2k, which is characterised by a fairly stable background climate and persistent

co-variability between dust and δ18O. To compensate for the remaining influence of the background climate on the climate

proxy records, we remove a linear trend with respect to the global average surface temperature from both time series (see105

App. A for the details). After the detrending we consider the data as the outcome of an approximately stationary process. As

the final step of the pre-processing the data is binned to temporally equidistant increments of 5 years and normalised with

respect to the average amplitude of the DO transitions.

Lastly, the analysis in this work is based on Markovian stochastic processes. To assess whether the data is Markovian, we

analyse the auto-covariance function of the increments of the detrended data. The covariance is largely zero everywhere, except110

for a weak anti-correlation at the shortest lag, supporting the assumption that the data is approximately Markovian (see App. B).

3 Methods

In this section, we present the methods used to study the coupled δ18O and dust dynamics, drawing on the theory of stochastic

processes and stochastic differential equations. Starting from the well-known Langevin process, we introduce the broader

Kramers–Moyal (KM) framework. The Fokker–Planck equation associated with a Langevin process will be expanded to the115

more general Kramers–Moyal equation in one and two dimensions. While the KM setting is suited for the treatment of complex

noise, the interpretation of a deterministic drift component is preserved. This allows us to investigate the stability configuration

of the coupled δ18O–dust system. We begin by shortly introducing one-dimensional stationary Markovian stochastic processes.

3.1 Continuous and discontinuous stochastic processes

A one-dimensional stochastic process is a mapping from time t ∈ R into some adequate state space that describes the dynamics120

of a random variable x(t), subject to random fluctuations. A prominent example for a stochastic process is given by the

stationary Langevin equation, a stochastic differential equation of the form

dx(t) = a(x)dt + b(x)dB(t), (1)

with the drift term a(x), the diffusion term b(x), and an uncorrelated Brownian motion B(t). If the properties of the dynamics

do not change over time, i.e. a(x) and b(x) do not depend on time, these processes are called stationary. While the Langevin125

equation is continuous in time, stochastic processes can in principle have discontinuous features, such as sudden jumps. An
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easy way to incorporate discontinuities is to include in Eq. (1) an elementary Lévy process L(t), modulated with an amplitude

h(x) (Applebaum, 2011)

dx(t) = a(x)dt + b(x)dB(t) +h(x)dL(t). (2)

The interpretation of a(x) and b(x) as drift and diffusion remains preserved under this generalisation. Note that Langevin130

processes are just a subclass of Lévy processes, and all these processes are Markovian.

3.2 The one-dimensional Kramers–Moyal equation

Stochastic processes can be either described in terms of random variables, following a stochastic differential equation as

introduced above, or in terms of the evolution of their conditional probability density function p(x,t|x′, t′), following a par-

tial differential equation. If a single particle’s motion is governed by the Langevin equation, its probability density function135

p(x,t|x′, t′) evolves according to the Fokker–Planck equation, given by

∂

∂t
p(x,t|x′, t′) =− ∂

∂x
D1(x)p(x,t|x′, t′)

+
∂2

∂x2
D2(x)p(x,t|x′, t′),

(3)

which we consider in a stationary case as above, i.e. without explicit time dependence of the coefficients D1(x) and D2(x).

These coefficients directly relate to the drift and diffusion terms given in Eq. (1) by

D1(x) = a(x), (4a)140

D2(x) =
1
2
b2(x). (4b)

The Fokker–Planck equation can only describe continuous processes (Risken and Frank, 1996; Stemler et al., 2007; Gardiner,

2009; Tabar, 2019). Giving up the condition of continuity, the temporal evolution of the conditional probability density follows

the Kramers–Moyal equation

∂

∂t
p(x,t|x′, t′) =

∞∑

m=1

(
− ∂

∂x

)m

Dm(x)p(x,t|x′, t′), (5)145

where Dm(x) denotes the mth Kramers–Moyal (KM) coefficient, defined from the corresponding conditional moments Mm(x,τ)

of the variable x and a time-lag τ , i.e.

Dm(x) =
1
m!

lim
τ→0

Mm(x,τ)
τ

=
1
m!

lim
τ→0

1
τ
⟨(x(t + τ)−x(t))m |x(t)=x⟩ ,

(6)

where ⟨· · · ⟩ denotes the expected value. If a stochastic process is ‘sufficiently’ continuous, the third and all higher KM coef-

ficients vanish according to Pawula’s theorem (Pawula, 1967a, b), and the Kramers–Moyal equation (Eq. (5)) reduces to the150

simpler Fokker–Planck (Fokker–Planck–Kolmogorov) equation (Eq. (3)). While the Langevin equation is the direct counterpart
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of the Fokker–Planck equation, for the Kramers–Moyal equation a single particle’s equation of motion can assume different

functional forms that describe different (discontinuous) stochastic processes (one example is given by Eq. (2)). However, for

numerous of these stochastic processes, the KM coefficients can be related to the properties of the stochastic process in the

spirit of Eq. (4). Importantly, interpretation of the first and second KM coefficients as the drift and diffusion terms, respectively,155

is preserved in the presence of discontinuities.

In practice, as can be understood from Eq. (6), one of the pivotal elements of using a description such as the Kramers–Moyal

equation is the possibility to estimate the coefficients Dm(x) directly from data. To retrieve the KM coefficients Dm(x) from

a single realisation of a stochastic process, i.e. a single time series, we evaluate the transition probability densities in the limit

of a vanishing time step τ → 0, which numerically corresponds to considering the shortest increment ∆t in the data (τ →∆t).160

In other words

Dm(x)≈ 1
m!

1
∆t
⟨(x(t + ∆t)−x(t))m |x(t)=x⟩ , (7)

with which we estimate the various KM coefficients directly from the data. Details on the numerical implementation of this

estimation procedure are given in App. C and App. D.

An important remark which will help in the following analysis of the paleoclimate time series is the physical interpretation165

of the drift. Thinking of the stochastic variable x(t) as the position of a point particle allows to interpret the integral over the

drift as a potential landscape

V (x) =−
x∫

−∞

D1(x′) dx′+ c. (8)

This potential controls the motion of the particle in the sense that the deterministic part of the dynamics will drive the particle

to the bottom of potential wells. Stochastic fluctuations, however, may counteract this relaxation and push the particle out of170

equilibrium and even into another well. We will use this to best illustrate the stability configuration of each proxy.

3.3 Distinguishing between continuous and discontinuous processes in time series

The striking difference between the Fokker–Planck equation (3) and the Kramers–Moyal equation (5) is the presence of higher-

order Kramers–Moyal coefficients Dm(x),m > 2, which arise as the direct consequence of discontinuities in a Markovian

stochastic process.175

Consider the KM coefficients Dm(x) estimated from the records of a stochastic process as outlined above. A first met-

ric to discern whether this process is discontinuous is to evaluate the ratio of the fourth KM coefficient to the second one,

D4(x)/D2(x). This roughly compares the size of the the discontinuous paths with the size of the diffusive effects. Thus, val-

ues of the ratio D4(x)/D2(x) close to zero imply continuous sample paths with no jumps in the data. Values larger than zero,

i.e. ∼ 1, indicate that the jump contribution is of the same order of magnitude as the diffusive contribution (Risken and Frank,180

1996; Anvari et al., 2016; Tabar, 2019).

This assessment can be refined by regarding the Lehnertz–Tabar Q-ratio (Lehnertz et al., 2018), which takes advantage of

the fact that continuous and discontinuous systems ‘scale’ in a different fashion. While a purely continuous stochastic process
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diffuses proportionally to time t (or possibly a power of time tβ in anomalous diffusions (Einstein, 1905; von Smoluchowski,

1906; Havlin and Ben-Avraham, 1987)), discontinuous processes can cover large distances in short times, i.e. jump, which185

causes them to exhibit no scaling relations with time t. This can be evaluated via the comparative convergence of the conditional

moments Mm(x,τ) of a stochastic process with the scaling τ (cf. Eq. (7)), given by

Q(x,τ) =
M6(x,τ)
5M4(x,τ)

∼





τ, for diffusions,

k, for jumpy processes,
(9)

where the moments Mm(x,τ) are given by Eq. (7). If the process is purely diffusive Q(x,τ)∼ τ (i.e. a linear function of τ )

and if the process yields discontinuous trajectories Q(x,τ)∼ k (i.e. a constant over τ ).190

3.4 The two-dimensional case

Above, we have introduced the Kramers–Moyal equation for a one-dimensional stochastic process. However, with δ18O and

dust representing two different yet coupled climate proxy variables, it is necessary to analyse their records in a combined

manner. The two-dimensional Kramers–Moyal equation is given by (Risken and Frank, 1996; Lind et al., 2005; Tabar, 2019;

Rydin Gorjão et al., 2019)195

∂

∂t
p(x1,x2, t|x′1,x′2, t′) =

∞∑

i,j=1

(−1)i+j

(
∂i+j

∂xi
1∂xj

2

)
Di,j(x1,x2)p(x1,x2, t|x′1,x′2, t′).

(10)

The coefficients Di,j(x1,x2) of the two-dimensional Kramers–Moyal equation can be estimated – analogously to the one-

dimensional coefficients – from the record of a two-dimensional stochastic process x(t) = (x1(t),x2(t)).

The drift terms D1,0(x) and D0,1(x) carry the same meaning as before. However, relating the higher order two-dimensional

KM coefficients to the various parameters of a stochastic differential equation is not straightforward. In a two-dimensional200

setting, we can still use D1,0(x) and D0,1(x) to similarly investigate the deterministic part of the underlying dynamics in state

space. An intuitive way to understand the motion of a two-dimensional process is to examine the vector field generated by the

two drifts, given by

F (x1,x2) = (D1,0(x1,x2),D0,1(x1,x2))
⊤
. (11)

For various applications where the fluctuations are not comparable in size, i.e. where the diffusion elements are not of similar205

scale, one can draw a clearer picture of the motion of the two-dimensional system by referring to an effective vector field

F eff(x1,x2) =
(

D1,0(x1,x2)
D2,0(x1,x2)

,
D0,1(x1,x2)
D0,2(x1,x2)

)⊤
. (12)

This indicates the probable motion of the two-dimensional dynamical variable in a re-scaled temporal axis, i.e. as if the noise

contributions were of identical strength, and is an effective tool to disclose the regions of convergence of the coupled system

in the two-dimensional state space.210
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Similarly to the one-dimensional case, one can obtain potential landscapes as integrals over the two drifts:

V1,0(x1|x2) =−
x1∫

−∞

D1,0(x′1,x2) dx′1 + C(x2), (13a)

V0,1(x2|x1) =−
x2∫

−∞

D0,1(x1,x
′
2) dx′2 + C(x1). (13b)

The potential landscapes naturally emerge only in a conditional form, since D1,0(x1,x2) represents the drift of the first dy-

namical variable x1 conditioned on fixed values x2 of the second dynamical variable. Idem for D0,1(x1,x2), representing the215

drift of x2 conditioned on x1. Thus, Eqs. 13 (a) and (b) describe the deterministic motion of one variable assuming that the

other variable is kept constant.

The numerical analysis was performed with python's NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and

pandas (Wes McKinney, 2010). Kramers–Moyal analysis was performed with kramersmoyal (Rydin Gorjão and Meirin-

hos, 2019) and JumpDiff (Rydin Gorjão et al., 2020). Figures were generated with Matplotlib (Hunter, 2007).220

4 Results

This section first discusses the non-parametric estimate of the KM coefficients of the isolated dust and δ18O records in a

one-dimensional setting. Subsequently, the KM analysis of the two-dimensional coupled system is presented in detail.

4.1 Stability configuration and continuity of the dust and the δ18O in a one-dimensional setting

We begin by first examining the non-parametric estimates of the KM coefficients of the dust record in a one-dimensional225

setting. Panels (a) and (c) of Fig. 2 show the first and second KM coefficients, obtained according to Eq. (7). The reconstructed

potential shown in Fig. 2 (b) exhibits two separate wells, i.e. two distinct minima. This suggests bi-stable dynamics, akin to

what one observes from the trajectories of the dust record (see Fig. 1 (a) for comparison). We find the second KM coefficient

to be fairly constant (Fig. 2 (c)) and the ratio between fourth and second KM coefficients to be negligible (Fig. 2 (d)), which

suggests that a Langevin process with additive noise is a viable description of the isolated dust dynamics. In such a setup, the230

noise can stochastically induce transitions from one well to the other in qualitative agreement with the apparent sudden regime

shifts observed in the record. We will revisit the continuity of the dust record after the analysis of the δ18O in one dimension.

Note that the model equations employed here are by construction symmetric with respect to time, therefore, as it is, the model

cannot reproduce the temporal asymmetry that is visually suggested in the dust record.

We proceed with discussing analogous results for the δ18O record. Fig. 2 (e) and (f) display estimates of the drift and the235

potential landscape for δ18O, respectively. Most prominently, the drift has only a single stable fixed point (zero-crossing of the

drift), or equivalently the potential function exhibits only a single well. The second KM coefficient is mostly constant, like in

the case of dust (Fig. 2 (g)). With respect to the normalised units, the first and second KM coefficients of δ18O exceed their

counterparts for dust by factors of approximately 3-4 and 10, respectively. This indicates that δ18O exhibits faster dynamics
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Figure 2. The non-parametric estimates of the first KM coefficient D1(x), the associated potential landscape V (x), the second KM coeffi-

cient D2(x), and the ratio of the fourth to the second KM coefficient D4(x)/D2(x). Left column for dust, right column for δ18O. Note that

while the dust exhibits a bi-stable potential ((a)-(b)), the δ18O exhibits a mono-stable one ((e)-(f)). The second KM coefficient D2(x) is con-

stant in both records ((c) and (g)). The ratio D4(x)/D2(x) is small for the dust record, yet non-negligible for the δ18O, suggesting that this

time series is a realisation of a discontinuous stochastic process. Details on the choice of kernel and bandwidth used for the KM coefficient

estimation, as well as an analysis of the influence of the kernel bandwidth, can be found in App. C. A more detailed analysis of the second

KM coefficients for both proxies can be found in App. D, which is supplemented by obtaining a corrective term for the Kramers–Moyal

coefficients in Eq. (7) by extending the formal solution of the Kramers–Moyal/Fokker–Planck equation in Eqs. (5) and (3).

than dust. Moreover, we find that the fourth KM coefficient D4(x) for the δ18O is of the same magnitude as the second KM240

coefficient D2(x) (Fig. 2 (h)). This points to the potential presence of discontinuities in the record, which we will revisit shortly.

Given the high correlation between the dust and the δ18O records, the differences in the reconstructed potentials and the ratio

between fourth and second KM coefficient are remarkable. At first sight, the monostability of the reconstructed δ18O potential

contradicts the apparent two regime nature of the time series. There are two possible explanations for this discrepancy: First,

regime switching of monostable stochastic process can be achieved through complex noise structures (e.g., Lévy-like noise,245

generalised Fokker–Planck equations, or fractal motions) (Chechkin et al., 2003, 2004; Metzler and Klafter, 2004). Secondly, a

similar effect can be obtained in a two-dimensional setting if the dynamics of one dynamical variable explicitly depends on the

other, which would be impossible to judge from the one-dimensional analysis presented so far. Thus, within the limits of this

analysis – that is assuming that the process is Markovian and stationary and that the system under study is fully represented by
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Figure 3. The Lehnertz–Tabar Q-ratio of the dust and the δ18O concentration, following Eq. (9), in a double-logarithmic scale. For the δ18O

one observes a constant relation of Q(x,τ) with τ , indicating that this time series is the realisation of a jumpy (discontinuous) processes.

The dust concentration exhibits a linear relation with τ , thus is a purely diffusive process. The state x in Q(x,τ) is chosen at the maximum

of the distribution of the time series.

dust and δ18O (no coupling to further hidden variables) – the source of the regime switching must either be endowed by more250

complex noise processes or by the coupling between the dust and the δ18O systems.

While we have found the ratio between the fourth and second KM coefficient to be negligible in the case of the dust record,

for δ18O our analysis yields D4(x)/D2(x)∼ 1. We remind the reader that, for a continuous stochastic process x(t), all KM

coefficients Dm(x) = 0,m > 2, according to Pawula’s theorem. When dealing with real world data this is never strictly the

case, of course, thus examining the ‘ratio of jumps to diffusive motion’, that is D4(x)/D2(x), serves only as a first indication255

if the process is continuous or not. Still, our results suggest that the dust record can be regarded as a realisation of a continuous

stochastic process on the time scale of 5 yr, while the δ18O is likely to comprise discontinuities on this time scale. We use

the stricter Lehnertz–Tabar Q-ratio to underpin our assessment further. In Fig. 3, we clearly see a constant relation of Q(x,τ)

with respect to τ for the δ18O record, suggesting that this stochastic process includes jumps. In contrast, we observe a linear

relation between Q(x,τ) and τ for the dust count, suggesting a purely diffusive process without jumps. We note here that the260

presence of correlated forms of noise is also sufficient to generate higher-order Kramers–Moyal coefficients (though not affect

their scaling or the Q-ratio). However, we exclude this option as the auto-correlation of the increments of the data shows no

correlations apart from the shortest increment, as seen in App. B.

4.2 δ18O and dust proxies in a two-dimensional setting

The different stability features in the dust and δ18O observed in our one-dimensional analysis propel us to study the two proxies265

in a two-dimensional, coupled setting. This allows us to investigate potential couplings and, as we will show, to reconcile the

two-regime nature of the δ18O time series with the single potential well reconstructed in the one-dimensional analysis. In the

following x1 and x2 refer to dust and δ18O, respectively.
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Figure 4. Two-dimensional PDF, potential landscapes, and vector fields. In (a) the PDF. The contour indicates a cutoff > 0.015 of the

PDF, the state space we consider henceforth. The dotted elements are the records, separated into stadials (GS) and interstadials (GI). In

(b) the effective vector field F eff and in the inset F . In (c) the potential landscape V1,0(x1|x2) of the dust, conditioned on the δ18O. The

inset shows D1,0(x1,x2). In (d) the potential landscape V0,1(x2|x1) of the δ18O, conditioned on the dust. The inset shows D0,1(x1,x2). For

V0,1(x2|x1), in (d), one finds that the location of the minimum of the landscape changes with the value of the dust conentration and undergoes

no bifurcation itself. The system is always mono-stable, yet the minimum is not fixed in state space. In stark contrast, the dust landscape

V1,0(x1|x2), in (c), can show up to three fixed points, depending on the value of δ18O. The system exhibits a double-fold bifurcation,

transitioning from a single (stable) fixed point for negative values of δ18O, bifurcating to three fixed points (two stable), and again returning

to a single (stable) fixed point for positive values of δ18O This offers a good explanation of the apparent ‘regime switching’ in the dust record,

as the system has two stable fixed points co-existing in some regions of the state space. In (b), the effective vector field shows the direction

a conceptual particle follows in this two-dimensional space, telling us how δ18O and dust interact and the expected trajectory the coupled

system follows.

First we inspect the drift coefficients as before in the one dimensional setting, and reconstruct the conditional potentials

according to Eq. (13). This yields two two-dimensional scalar fields whose physical explanatory power is limited to one270

direction each.
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4.2.1 Double-fold bifurcation of the dust

The reconstructed conditional potential V1,0(x1|x2) of the dust is displayed in Fig. 4 (d). As a conditioned potential, it can be

read by taking vertical ‘slices’ of the potential. Depending on the value of δ18O, the potential of the dust changes from a mono-

stable to a bi-stable regime. Where for approximately δ18O <−1.0 there is only one stable fixed point (a global minimum), for275

approximately −1.0 < δ18O < 0.9 there are three fixed points, two stable ones (a local minimum and a global minimum) and

an unstable one (the local maximum) between them. For approximately δ18O > 0.9 there is again just one stable fixed point (a

global minimum). With the position of these stable fixed points depending continuously on δ18O we find here the characteristic

form of a double-fold bifurcation. Fig. 4 (d) suggests that the second bifurcation (δ18O = 0.9) is in fact located at a slightly

higher value, since the merger of the upper stable branch and the unstable branch is not fully covered by the reconstruction.280

In such a setting, abrupt transitions as those observed in the dust record can happen in two ways: either random fluctuations

move the system across the unstable branch (if present, depending on the value of the control parameter) or the control param-

eter, in this case the δ18O, crosses a bifurcation point and the currently attracting stable fixed point is dissolved. In both cases,

the system will transition fairly abruptly to the alternative stable branch. Rate-induced tipping seems unlikely in this case, since

the unstable branch is mostly a constant with respect to a change of the control parameter (i.e. δ18O). This structure prevents285

to cross the unstable branch by means of a rapid shift in δ18O.

4.2.2 Coupling of the δ18O drift with the dust

We now turn our attention to the δ18O variable. In Fig. 4 (c) we present the reconstructed potential V0,1(x2|x1) for δ18O,

conditioned on the value x1 for the dust. Taking a horizontal ‘slice’ we recover a parabolic shape with a single minimum.

Qualitatively, this feature is preserved across the entire range of potential conditioning dust values. However, the position of290

the minimum δ18O∗ appears to be determined by the dust in a continuous manner, with high rate of change for intermediate dust

values whilst no change for more extreme dust values. Our finding of δ18O following a mono-stable process is thus confirmed

in the two-dimensional analysis, with the added feature that the potential minimum’s position is subject to change in response

to an ‘external control’ imposed by the dust.

In summary, in the two-dimensional analysis the monostability of the δ18O and the bistability of the dust found in the295

one-dimensional analysis remain preserved. We find a continuous dependency of the position of the stable δ18O fixed point

on the dust. In contrast, a breakdown of the dust’s bistability for extreme values of δ18O can be observed. These findings

are consistent with the observed regime switching of both records, which we struggled to reconcile with the results obtained

from the one-dimensional analysis. If attracted by the upper stable branch, the dust assumes values on the order of ∼ 0.5. This

implies a δ18O stable fixed point position of ∼−0.6. A transition in the dust to the lower stable branch associated with dust300

values ∼−0.5 shifts the stable fixed point of δ18O to ∼ 0.6. The bistability embedded in the potential governing the dust is

thus transferred to the δ18O and provides an explanation for the observed regime switches of the record. The stable regime

(δ18O ∼−1.5, dust ∼ 1) can be identified with Greenland stadials, while the regime (δ18O ∼ 2, dust ∼−1) corresponds to

Greenland interstadials.
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The study of the conditional potentials provided insight in the underlying static stability configuration of the coupled δ18O–305

dust system. However, to gain a more specific understanding of the dynamics, we investigate the (effective) vector field of

motion F (F eff ) in the next step.

For each point in state space, the vector field F(x1,x2) = (D1,0(x1,x2),D0,1(x1,x2))
⊤ indicates the expected direction

of movement of the system (see inset of Fig. 4 (b)). One can see that the restoring force in the δ18O direction substantially

exceeds the one in the dust direction. This is in line with the magnitude of both the first and second KM coefficients obtained310

in the one-dimensional analysis (see Fig. 2) and points to a time scale separation in the dynamics of the coupled system. In

the δ18O direction strong fluctuations are quickly compensated by a strong restoring force. In the dust direction, however, the

fluctuations and the restoring force are smaller than that of the δ18O, while the ratio between noise and drift is comparable in

both directions. This can be interpreted as a time scale separation with fast dynamics happening along the δ18O dimension.

In order to make the dynamics along the dust direction visible, we rescale the two-dimensional potentials in relation to315

their diffusion (the second Kramers–Moyal coefficients D2,0 and D2,0). The effective vector field Feff, obtained according to

Eq. (12), is displayed in Fig. 4 (b). While in the un-scaled vector field F the influence of the dust drift on the coupled system

is practically hidden by strength of the δ18O drift, we can now observe more complex structures in the effective vector field.

Two main regions of convergence can easily be identified around (δ18O∼−0.6,dust∼ 0.5) and (δ18O∼ 0.6,dust∼−0.5)

which correspond to Greenland stadials and interstadials, respectively, as mentioned previously. These convergent regions320

consistently coincide with the two maxima in the two-dimensional density shown in Fig. 4 (a). The effective vector field of

motion does not indicate a clear path that the system would take in order to transition between stadial and interstadial states.

This leaves open the possibility that transitions between stadial and interstadial states are mainly induced by noise as argued

by, e.g., Ref. (Ditlevsen et al., 2007) (i.e. noise-induced tipping), facilitated by a shallow potential barrier close to the minima

of the (effective) vector field.325

5 Discussion

We have used the one and two-dimensional Kramers–Moyal equation to investigate the combined dust and δ18O record from

the NGRIP ice core for the time interval 59–27 kyr b2k, which exhibits pronounced DO variability. The approach was chosen to

disclose the dynamical features of this two-dimensional system. In the following, we discuss how our study relates to previously

published investigations of the same data and how it contributes to the broad discourse on DO variability.330

Although we obtain slightly different and in parts opposing result, our study ties in naturally with previous data-driven

analysis of Greenland ice core proxy data. After the work presented by Boers et al. (Boers et al., 2017) it is only the second

study to follow a two-dimensional inverse modelling approach with respect to Greenland ice core data.

Adopting a Langevin-type approach (Ditlevsen, 1999) found the calcium record from the GRIP ice core (Fuhrer et al., 1993)

with annual resolution to be consistent with a bi-stable drift term and α-stable noise. We cannot confirm the presence of α-335

stable noise in the dust record – which is often regarded as an equivalent to calcium – from the NGRIP ice core. This might be

due to the lower resolution of the data analysed here.
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Livina et al. (Livina et al., 2010) reported on a changing number of stable states detected in one-dimensional GRIP and

NGRIP δ18O and GRIP calcium data with 20 yr and annual resolution, respectively. Their analysis attests bistability of the

δ18O record for the period investigated here for both ice cores. However, throughout the last glacial maximum – which we340

intentionally excluded from our study – Livina et al. (Livina et al., 2010) find monostability consistently in all three time

series. Assuming a stationary process for the period 60–20 kyr b2k, the bistability of δ18O potential was later confirmed by

Kwasniok (Kwasniok, 2013) based on 50 yr resolution data from NGRIP and GRIP.

Our results suggest that the two regime nature is probably not an intrinsic feature of the δ18O, but rather an effect of the

coupling to other climate variables. Assuming that δ18O exclusively represents local temperatures, this result seems reasonable345

as one would not expect two distinct stable temperature regimes with all controlling factors kept fixed. In contrast, considering

the position of the jet stream a dynamical bistability is far more plausible and could explain the bistability of the dust record

found in this study. We note that the bistability of jet stream has been evidenced – although in a somewhat different setting and

sense – in reanalysis data of modern climate (Woollings et al., 2010). Evidently, our analysis is limited to solely two climate

proxy variables and the stability of the one can only be assessed conditioned on the other, leaving aside potential coupling to350

further external factors. Yet our results question the prevailing perception of the δ18O record as the signature of an intrinsically

bistable process. This is at least partly in line with the findings of Lohmann et al. (Lohmann and Ditlevsen, 2019), who have

shown that a fast-slow limit cycle model outperforms a simple double well model if δ18O is identified with the model’s fast

component.

Boers et al. (Boers et al., 2017) were the first to study the dynamical features of the combined δ18O–dust record. They355

proposed a third-order polynomial two-dimensional drift in combination with a non-Markovian term and Gaussian white noise

to model the coupled dynamics. While our approach is limited to a Markovian setting, it allows for more general forms of

the drift and of the noise. In particular, we have shown that the δ18O record cannot be treated as a time-continuous process.

The non-vanishing fourth KM coefficient in the δ18O, which indicates forcing beyond typical Gaussian white noise, could

point to an external trigger that directly acts on the Greenland temperatures. A sudden shift in the latter could then entail a360

regime switch in the atmospheric configuration. However, the interpretation of the fourth KM coefficient is not straightforward

and depends on the exact choice of the stochastic process model. The role of discontinuities in the δ18O record merits further

investigation. Moreover, it should be mentioned that non-Markovian processes, as proposed in Ref. (Boers et al., 2017), can

also give rise to higher-order KM coefficients.

The results obtained in our analysis do not give a clear answer to the question for the exact mechanism that triggered DO365

events. In principle, the revealed double-fold bifurcation would allow for bifurcation-induced transitions and thus for a limit-

cycle behaviour. However, the record show that system does not track the stable fixed point branches until the bifurcation

points, but tends to transition earlier (not shown). Also, the structure of the δ18O drift is incompatible with a deterministic

cyclic motion in the dust-δ18O plane. In fact, the specific structure of the double-fold bifurcation leaves room for a weak

barrier between stadial and interstadial states in the vicinity of the bifurcation point, thus creating a ‘channel’-like passage,370

through which the system passes.
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We conclude therefore that – based on our results – the DO transitions are to large degree induced by noise, acting on the

background of a double-fold dynamics governing the dust, for which the δ18O acts as control parameter. These finding do

not contradict previous studies that proposed limit-cycle models to explain the δ18O record, since the cyclic motion was not

expected to happen in a state space comprised of Greenland temperatures and atmospheric large scale circulation (Kwasniok,375

2013; Lohmann and Ditlevsen, 2019).

6 Conclusion

In this article, we have analysed the records of δ18O and dust concentrations from the NGRIP ice core from a data-driven

perspective (Ruth et al., 2003; North Greenland Ice Core Projects members, 2004; Gkinis et al., 2014). The central point of our

study was to examine the stability configuration of the coupled δ18O–dust process by reconstructing its potential landscape. For380

this aim we utilised the Kramers–Moyal equation which generalises the Fokker–Planck equation in the sense that higher-order

Kramers–Moyal coefficients can be related to discontinuities in the stochastic processes.

In a first step, a standard one-dimensional Kramers–Moyal analysis revealed a monostable potential for the isolated δ18O

record and a bistable one for the dust. This finding calls the prevailing understanding that the Greenland ice core δ18O record

stem from bistable dynamics into question. The qualitative difference between the reconstructed potentails is remarkable given385

the high co-variability of the two time series and their synchronous two-regime character, which dominates not only the dust

but also the δ18O record. Moreover, we found non-vanishing higher-order Kramers–Moyal coefficients for δ18O, indicating the

presence of discontinuities in the record, assuming the process is truly Markovian. This renders the Langevin equation unsuited

to fully describe the underlying process and requires the addition of jumps. In contrast, according to our analysis, the isolated

dust record is a continuous process that is described well by the Langevin equation.390

In a second step, we expanded our analysis to a two-dimensional setting that takes into account possible couplings between

the δ18O and dust time series. Our two-dimensional examination of the conditioned potential landscapes confirms our initial

finding of a mono-stable potential for the δ18O, wherein the minimum’s position is controlled by the value of the dust. The

dust variable, on the other hand, seems to undergo a double-fold bifurcation parametrised by the δ18O, where we can observe

the change from a single (stable) fixed point to three fixed points (two stable, one unstable), and again to a single (stable)395

fixed point, from small to large values of δ18O. Our analysis reveals two convergent regions in the δ18O–dust state space in

agreement with the two-regime nature of the coupled record. Importantly, our findings question the prevailing interpretation

of the isolated δ18O record as the direct signature of an intrinsically bistable process. Regarding δ18O as a direct measure of

the local temperature, it seems plausible that not the temperature itself is bistable but rather that the bistability is enshrined in

another climate variable that drives Greenland temperatures. The apparent two-regime nature of the δ18O record would thus400

only be inherited from the actual bistability of other processes. This may be the atmospheric circulation as represented by the

dust proxy, or another external driver whose signature might be encoded in the higher-order KM coefficients of the δ18O.

Many physical mechanisms have been proposed as candidates for explaining the DO events, with most of them building on

the proposed bistability of the Atlantic Meridional Overturning Circulation (AMOC), e.g., Refs. (Ganopolski and Rahmstorf,
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2001; Clark et al., 2002; Vettoretti and Peltier, 2018; Lohmann et al., 2021). While some studies argue that DO cycles are the405

signature of self-sustained oscillations within the coupled sea-ice ocean system (Boers et al., 2018; Vettoretti and Peltier, 2018;

Menviel et al., 2020), others advocate for an active role of the atmosphere or even ice sheets in the initialisation of DO events,

e.g., Refs. (Kleppin et al., 2015; Zhang et al., 2014; Gottwald, 2020). The proposed self-sustained oscillation mechanism is not

contradicted by our investigation and neither is a stochastic trigger embedded in the sea ice. Our results do also not contradict

an atmospheric trigger for the DO events – we see that if the dust switches from one state to the other this will in turn shift the410

level of the δ18O. Yet, the atmospheric transitions would in this picture not be induced by rare extreme events as proposed by

Ditlevsen (Ditlevsen, 1999), but rather by a regular additive Gaussian noise. However, as mentioned previously, the absence of

discontinuities in the dust record may also be a question of the temporal data resolution.

Certainly, DO events and their global expression feature a complex interplay of the AMOC, the North Atlantic and Nordic

Sea’s sea ice cover, the polar jet stream and probably more climatic subsystems such as ice sheets or the East Asian Monsoon415

system (Cheng et al., 2013). Our analysis considered only a two-dimensional projection of the very high-dimensional dynamics

and can therefore not be expected to deliver all details of the triggering mechanism. Neither the ocean-focused self-sustained

oscillation hypothesis, nor the idea that the atmosphere acts as a trigger, can be ruled out based on our findings. Nevertheless,

our results challenge prevailing assumptions, e.g., regarding the bistability and the smoothness of the temperature proxy record

and adds valuable information that may help further constrain physical hypotheses to explain the DO events in the future.420

Analysis structurally similar to this one should be applied to other pairs of Greenland proxies to investigate the corresponding

two-dimensional drift. Finally, our study underlines the need for higher resolution data, as the scarcity of data points is a

limiting factor for the quality of non-parametric estimate of the KM coefficients.

Code availability. The code used for this study will be made available by the authors upon request.

Data availability. The original measurements of δ18O and dust concentrations go back to (North Greenland Ice Core Projects members,425

2004) and (Ruth et al., 2003), respectively. The 5 cm resolution data together with corresponding GICC05 ages used for this study were first

published as a Supplement to (Gkinis et al., 2014) and can be downloaded from www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls

(last access: 18. November 2021). The reconstruction of global average surface temperatures is available as a Supplement to (Snyder, 2016)

under https://static-content.springer.com/esm/art%3A10.1038%2Fnature19798/MediaObjects/41586_2016_BFnature19798_MOESM258_ESM.xlsx

(last access: 18. November 2021).430

Appendix A: Data detrending

As mentioned in Sec. 2, this study focuses on the period 59–27 kyr b2k. Detrending of the data is needed to ensure that the time

series can be considered stationary processes, which is an underlying assumption for the Kramer–Moyal analysis performed in

our investigation. To compensate for the influence of the background climate on the climate proxy records of dust and δ18O, we
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Figure A1. Removal of a linear trend in the NGRIP δ18O and dust time series (North Greenland Ice Core Projects members, 2004) with

respect to a global average surface temperature reconstruction (Snyder, 2016). In panel (a) both original δ18O (blue) as well as detrended and

normalised (purple) are shown. Idem for the dust record in panel (b) (dark green and light green, respectively). The background temperature

given in anomalies to present day climate is shown in both aforementioned panels (red). Panels (c) and (d) show a scatter plot the original

δ18O and dust data with respect to temporarily corresponding temperature anomalies, respectively. Data from Interstadials (Stadials) is shown

in orange (light blue). The black dashed line results from a simple linear fit to the entire data, while the continuous black lines correspond to

the fitting scheme that uses a single slope but two different offsets to separately fit the Stadial and Interstadial data.

remove a linear drift with respect to reconstructed global average surface temperatures (Snyder, 2016) from both time series.435

Fig. A1 illustrates the detrending scheme for both time series. Due to the two regime nature of the time series, a simple linear

regression overestimates the temperature dependencies (see Fig. A1(c) and (d), dashed line). Instead, we separate the data from

Greenland Stadials and Greenland Interstadials and then minimise the expression




N∑

i=1


δ18O(ti)− a∆T (ti)−





bGI, if ti ∈ GI

bGS, if ti ∈ GS




2


1/2

, (A1)

with respect to the parameters a, bGI, and bGS (correspondingly for dust). ti ∈ GS (GI) indicates that a given time ti falls into440

a Stadial (Interstadial) period. The index i runs over all data points and N denotes the total number of points. The resulting a

is used to detrend the original data with respect to the temperature. The detrended data is then normalised by subtraction of its

mean and division by the difference between the mean Stadial and mean Interstadial values.
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Appendix B: Markov property of the data

The Markov property of the data, central in this work, is a necessary property whilst designing Markovian stochastic models445

to describe any paleo-climatic data, as the name suggests. These include the most commonly used stochastic models, e.g.,

Langevin processes, based on having independent increments of the data (Risken and Frank, 1996; Friedrich et al., 2011). This

is best understood by examining the Chapman–Kolmogorov equation of the joint probability densities pi1,...,in
(x1, . . . ,xn),

with {xi} a collection of random variables ordered with t1 < · · ·< tn

pt1,...,tn
(x1, . . . ,xn) =

pt1(x1)pt2;t1(x2 | x1) · · ·ptn;tn−1(xn | xn−1),
(B1)450

where the Markov property here allows us to separate each joint probability density as being solely a function of two adjacent

segments. One of the most straightforward ways of evaluating the Markov property for data is to examine the auto-correlation

function of the increments of the data at the shortest incremental distance. That is, take the data xt, construct the differences

∆xt = xt+1−xt, and obtain the auto-correlation function ρ(τ)

ρ(τ) =
E[(∆xt−µt)(∆xt+τ −µt+τ )]

σtσt+τ
, (B2)455

here µ is the mean and σ2 the variance of ∆xt. In Fig. B1 we display the auto-correlation functions ρ(τ) of the two time series,

which is only lightly anti-correlated at the shortest lag of τ = 5y.

Here, we include a small note of caution for the interested reader. Pre-processing paleo-climatic data is usually implemented

to reduce the noise or remove short or long term trends. A common method to remove long-term trends in the records is to

apply a low-pass filter. This will invariantly lead to spurious correlations, thus it should be considered with care, dependent on460

the data analysis techniques employed. In our case, this would be disastrous. Low-pass filtering the data would create spurious

correlations in the incremental time series and Markovianity would be lost.

0 10 20 30 40 50
τ

1.0

0.5

0.0

−0.5

ρ
(τ

)

dust [n.u.]

δ18O [n.u.]

Figure B1. Autocorrelation ρ(τ) of the increments ∆xt of δ18O and dust records. Both records show a weak anti-correlation at the shortest

lag τ = 5y, and no correlation for τ > 5y. We thus consider the data Markovian.
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Appendix C: Nadaraya–Watson estimator of the Kramers–Moyal coefficients and bandwidth selection

In order to carry out the estimation in Eq. 7 we map each data point in the corresponding state space to a kernel density and

then take a weighted average over all data points465

Dm(x)∼ 1
m!

1
∆t
⟨(x(t + ∆t)−x(t))m|x(t) = x⟩

∼ 1
m!

1
∆t

1
N

N−1∑

i=1

K(x−xi)(xi+1−xi)m.
(C1)

Alike selecting the number of bins in a histogram, when employing kernel-density estimation with an Nadaraya–Watson

estimator for the Kramers–Moyal coefficients Dm(x), one needs to select both a kernel and a bandwidth (Nadaraya, 1964;

Watson, 1964; Lamouroux and Lehnertz, 2009). Firstly, the choice of the kernel is the choice of a function K(x) for the

estimator f̂h(x), where h is the bandwidth at a point x470

f̂h(x) =
1

nh

n∑

i=1

K

(
x−xi

h

)
. (C2)

for a collection {xi} of n random variables. The kernel K(x) is such that K(x) = 1/hK(x/h) and is normalisable
∫∞
−∞K(x)dx =

1 (Tabar, 2019). The bandwidth is equivalent to the selection of the number of bins, except that binning in a histogram is always

“placing numbers into non-overlapping boxes”. The optimal kernel is the commonly denoted Epanechnikov kernel (Epanech-

nikov, 1967), but Gaussian kernels can be used as well. These nevertheless require a compact support in (−∞,∞), thus on a475

computer they require some sort of truncation (even if Fourier space, as the Gaussian shape remains unchanged).

The selection of an appropriate bandwidth h can be aided – unlike the selection of the number of bins – by the Silverman’s

rule-of-thumb (Silverman, 1998), given by

hS =
(

4σ̂5

3n

) 1
5

, (C3)

where again σ2 is the variance of the time series. In Fig. C1 three different bandwidths are used to evaluated the various KM480

coefficient, as given in Fig. 4 The bandwidths are the optimal bandwidth given by the Silverman’s rule-of-thumb hS, three

times hS, and one-third hS.

Note that in neither of the examples with different bandwidths we notice a change of the potential shape of the various

records. The mono-stability of the potential V (x) of δ18O is persistent, as is the bi-stability of the potential V (x) of the dust

concentration.485

Appendix D: Second-order correction to the Fokker–Planck/Kramers–Moyal operator

In order to correctly retrieve from data the Kramers–Moyal coefficients, we need to evaluate the operation in the Fokker–Planck

equation Eq. (3). In fact, we showed that this equation is not sufficient to describe the fast transitions in the δ18O record. Let
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Figure C1. The effect of the bandwidth selection hS on the KM estimations, in identical fashion to Fig. 2. The non-parametric estimates of

the first KM coefficient D1(x), the associated potential landscape V (x), the second KM coefficient D2(x), and the ratio of the fourth to

the second KM coefficient D4(x)/D2(x). Left column for dust, right column for δ18O. Three bandwidths used for the Nadaraya–Watson

kernel-density estimator: the optimal Silverman’s rule-of-thumb hS, three times hS, and one-third hS. The Nadaraya–Watson kernel-density

estimator’s bandwidths hS for δ18O is 0.131 and for dust 0.103. In all cases, the interpretation of the estimator remains the same: bi-stability

in the dust, mono-stability in the δ18O. In (c) and (g) are included the first-order estimator for the second KM coefficient D2(x), i.e. without

corrective terms, discussed in App. D.

us nevertheless focus on this equation for the moment, and rewrite it in a more formal manner as an operator

∂

∂t
p(x,t+τ |x′, t) =

∂

∂x
D1(x)p(x,t+τ |x′, t)490

+
∂2

∂x2
D2(x)p(x,t+τ |x′, t)

= LFP p(x,t+τ |x′, t), (D1)

with LFP the formal Fokker–Planck operator and

Dm(x) =
1
m!

lim
τ→∞

Mm(x,τ)
τ

, (D2)

where Mm(x,τ) is the m-order conditional moment, i.e.495

Mm(x,τ) =

∞∫

−∞

(x′−x)mp(x′, t+τ |x,t)dx′. (D3)
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which we introduced in Eq. (7) in a similar notation. If we limit m≤ 2, we are truly talking about a Langevin process described

by the Fokker–Planck equation, with LFP the formal Fokker–Planck operator. We also saw that we can generalise the problem

and not truncate the terms at second order, thus including an infinite series of conditional moment Mm(x,τ) would give rise

to the Kramers–Moyal equation and the Kramers–Moyal operator LKM. The subsequent second-order correction is showcased500

here for the Fokker–Planck equation, based on Ref. (Gottschall and Peinke, 2008; Rydin Gorjão et al., 2021). For sake of

coherence, we utilise here the second-order corrections to show that the second Kramers–Moyal coefficient – the diffusion

strength – can be seen as constant, i.e. not state depended.

In order to solve Eq. (3), one takes the formal step considering an initial conditions δ(x−x′) as a starting point and employing

the exponential representation of the operator, which we can decompose it into a power series as505

p(x,t+τ |x′, t) = exp(τLFP)δ(x−x′)

=
∞∑

k=0

(τLKM)k

k!
δ(x−x′) . (D4)

From here we consider the first-order and second-order approximation, i.e. truncation of the operator, as

exp(τLFP)∼ 1 + τLFP +
τ2

2
LFPLFP +O(τ3). (D5)

Considering only the first-order, ∼ τ , we recover the well-known relation between the conditional moments and the Kramers–510

Moyal coefficients, given by

Dm(x) = lim
τ→0

Mm(x,τ)
(m!)τ

. (D6)

If we now include the second-order approximation, i.e. we consider terms up to ∼ τ2, we obtain a corrective term for the

second Kramers–Moyal coefficient

D1(x) = lim
τ→0

1
τ

M1(x,τ),

D2(x) = lim
τ→0

1
2τ

(
M2(x,τ)−M1(x,τ)2

)
.

515

We employ this correction to our examination to show that the diffusion coefficient, i.e. the amplitude of the fluctuations, is

constant in space. In Fig. C1(c) and (g) we display both the first-order and the corrected, second-order diffusion coefficient. In

this we can see that utilising solely the first-order correction could lead us to erroneously consider the diffusion term as state

dependent (having a parabolic shape), suggesting a multiplicative noise. By implementing the second-order corrective terms a

considerable improvement of the estimation is achieved, to what we judge to be simple additive (not state dependent) noise in520

the records.
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İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,740

A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

von Smoluchowski, M.: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Annalen der Physik, 326,

756–780, https://doi.org/10.1002/andp.19063261405, 1906.
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