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Abstract. Recent extreme weather events have had severe impacts on UK crop yields, and so there is concern that a greater 

frequency of extremes could affect crop production in a changing climate. Here we investigate the impacts of future climate 10 

change on wheat, the most widely grown cereal crop globally, in a temperate country with currently favourable wheat-growing 

conditions. Historically, following the plateau of UK wheat yields since the 1990s, we find there has been a recent significant 

increase in wheat yield volatility, which is only partially explained by seasonal metrics of temperature and precipitation across 

key wheat growth stages (Foundation, Construction and Production). We find climate impacts on wheat yields are strongest in 

years with compound weather extremes across multiple growth stages (e.g. frost and heavy rainfall). To assess how these 15 

conditions might evolve in the future, we analyse the latest 2.2km UK Climate Projections (UKCP Local): on average, the 

Foundation growth stage (broadly 1st October to 9th April) is likely to become warmer and wetter, while the Construction 

(10th April to 10th June) and Production (11th June to 26th July) stages are likely to become warmer and slightly drier. 

Statistical wheat yield projections, obtained by driving the regression model with UKCP Local simulations of precipitation 

and temperature for the UK’s three main wheat-growing regions, indicate continued growth of crop yields in the coming 20 

decades. Significantly warmer projected winter night temperatures offset the negative impacts of increasing rainfall during the 

Foundation stage, while warmer day temperatures and drier conditions are generally beneficial to yields in the Production 

stage. This work suggests that on average, at the regional scale, climate change is likely to have more positive impacts on UK 

wheat yields than previously considered. Against this background of positive change, however, our work illustrates that wheat 

farming in the UK is likely to move outside of the climatic envelope that it has previously experienced, increasing the risk of 25 

unseen weather conditions such as intense local thunderstorms or prolonged droughts, which are beyond the scope of this 

paper. 

Short summary.  This work considers how wheat yields are affected by weather conditions during the three main wheat 

growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future 

climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which 30 

farmers may struggle to adapt to and mitigate against. 
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1 Introduction 

Globally, wheat is the most widely grown cereal crop by area, with more than 214 million hectares harvested and an annual 

production of about 730 million tonnes (FAO, 2018). In the UK, wheat is the most prevalent arable crop, with an annual 

planting of approximately 1.7 million hectares (ha) (DEFRA, 2018a). The UK climate has historically been well suited to 35 

growing wheat (Reynolds, 2010), partly due to technology and investment in the agricultural sector (as can be seen from the 

increasing trend in Figure 1a as technological and agronomic innovations were introduced), but also due to the UK climate, 

which is suitable to temperate species when autumn-sown (Harkness et al., 2020; Reynolds, 2010). UK yields are of 

approximately 8 t ha-1 (Figure 1a-b) compared to a global average of 3.5 t ha-1 (FAO, 2018). However, recent climate extremes 

such as the UK hot summer of 2018 and wet autumn of 2019 had substantial negative impacts on farm businesses, with 40 

significant reductions in crop yields. This climate-mediated reduction of yields is supported by evidence from the UK 

government (DEFRA, 2018b, 2019), the farming industry (AHDB, 2020) and real-time precision yield monitoring (Hunt et 

al., 2019).  

Observed, direct impacts of climate change on crop yields are emerging globally (Brisson et al., 2010; Grassini et al., 2013; 

Hochman et al., 2017; Rigden et al., 2020), slowing the growth in global agricultural productivity (Ortiz-Bobea et al., 2021) 45 

and altering patterns of global food production (Ray et al., 2019). Rising temperatures under anthropogenic climate change 

are often detrimental to agricultural productivity (Ortiz-Bobea et al., 2021) and compound heat-drought impacts may directly 

affect crop growth: for instance, maize and soil yields are historically worse in places with strong associations between low 

rainfall and high temperature (Lesk et al., 2021). Cool and wet growth phases have also been linked to poor yields, because it 

is hard to warm the surface when soils are wet, and hard to dry wet soils during cooler periods. Thus it remains to be seen how 50 

warming and precipitation interact, and whether future warming may help offset the increased precipitation by drying out 

waterlogged soils. This interaction depends on how the link between precipitation and soil moisture may evolve in the future 

(a topic drawing increasing attention in both climate and crop science, enabled by the rise of satellite-derived soil moisture 

observations). Combined with the nutrition demands of a rapidly growing global population, there is an urgent requirement 

to estimate these effects on future crop yields. Breeding and evaluating new wheat varieties tolerant of hotter, drier summers 55 

may take decades (Zheng et al., 2012), and it is unclear whether advances in agronomy are occurring fast enough to mitigate 

the impacts of any accelerating frequency of extreme climatic events (Chen, D. et al., 2021). Changing climatic conditions 

may also affect yields indirectly by constraining the ability of farmers to undertake key management actions of tillage, sowing 

and harvest, or by causing damage to natural capital, such as soil erosion. These new constraints on yields may overtake any 

gains from physiological and phenological advances obtained through plant breeding. 60 

In order to assess this risk to future food production, there is a critical need to understand how climate extremes are likely to 

evolve during the seasonal growth phases that are most relevant to the farming industry. Observational evidence has revealed 

changes in the intensity, frequency, duration, and extent of weather extremes, such as heavy rainfall events and hot days, 

across certain regions and continents (Rahmstorf and Coumou, 2011; Slater et al., 2021). There has been much research 
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relating weather indices to potential crop variability or projected damage (Harkness et al., 2020; Iizumi and Ramankutty, 2016; 65 

Rosenzweig et al., 2001; Trnka et al., 2014), but most work has described weather extremes by using seasonal or annual metrics 

rather than focussing on the periods most relevant to crop growth (Frich et al., 2002; Zhang et al., 2011). There is also 

increasing research focus on compound weather extremes (Zscheischler et al., 2020) occurring simultaneously or in close 

succession, such as very warm temperatures in the late autumn followed by abnormally wet conditions in spring (Ben-Ari et 

al., 2018) and their impacts on crop yields. Of the total annual crop losses in world agriculture, many are due to direct 70 

weather and climatic effects such as drought, flash floods, heavy rainfall in otherwise dry periods, frost, hail, and storms  

(Ray et al., 2019; Sultan et al., 2019). High temperatures and heat stress lead to stomatal closure and therefore reduced 

photosynthesis due to restricted CO2 diffusion (Chaves et al., 2003), offsetting potential yield gains that might otherwise occur 

with greater fertilization in a CO2-enriched environment (Ainsworth and Long, 2021). In some regions of the mid and high 

latitudes, water excess may prove more detrimental to wheat yields than drought (Zampieri et al., 2017). However, for crops 75 

such as maize and soy yields, it has also been shown that heavy rainfall of up to 20 mm hr-1 may even prove beneficial, 

highlighting the benefits of rainfall intensification in a warming climate (Lesk et al., 2020). Overall, there is thus a need to 

investigate historical data to elucidate the linkage between extreme temperature and rainfall over the agricultural phases of 

relevance to crop growth. Climate models may then be employed to explore how such linkages might evolve as the climate 

warms.   80 

This work thus investigates: (1) whether statistically significant associations exist between observed temperature/precipitation 

metrics and historical wheat yields during the three crop growth stages, in the three main wheat-growing regions of the UK; 

and (2) the extent to which projections of compound temperature and precipitation extremes under a high-emissions scenario 

may impact future crop yields. To assess future changes in precipitation and temperature extremes, we employ state-of-the-art 

UK Climate Projections Local (UKCP 2.2km) convection-permitting simulations, which constitute a step-change in resolving 85 

small-scale processes in the atmosphere. These climate projections are considered the most reliable simulations presently 

available in terms of their ability to project future changes in meteorological extremes over the UK.  

2 Methods 

2.1 Wheat yield data 

Geographically, we focus on the three main wheat-growing regions outlined using the EU “NUTS” classification (European 90 

Commission, 2010). These three regions are (i) North Eastern Scotland, Eastern Scotland, and the North East English region 

(SNE); (ii) East Midlands, Yorkshire and the Humber regions (EMYH); and (iii) South East and Eastern region (SEE) (Figure 

1c-d). These three regions account for over 80% of total UK wheat production by tonnage (DEFRA, 2015) and correspond 

with the yield reporting boundaries of available data. The regional wheat yield data were obtained from the UK Department 

for Environment, Food and Rural Affairs (Defra) (DEFRA, 2015). The data are drawn from the England Cereals and Oilseeds 95 
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Production Survey and Scotland Cereal Production and Disposal Survey, part of an annual survey of the UK agricultural 

industry. For full details of the survey methodology, see (DEFRA, 2018b). The data were summarised by Defra to average 

yield at the national (1885-2020) and regional (1990-2020) levels, resulting in 136 and 31 years of data, respectively.  

The dates for the Foundation, Construction, and Production growth stages are taken from benchmarks in the UK’s ‘Wheat 

growth guide’, in Table 1 (AHDB, 2018). Prior knowledge on the effects of climate in different growth stages guides our 100 

choice of climate variables in the study (Table 1). Absolute anomalies of wheat yields were computed by fitting a locally-

weighted scatterplot smoothing curve (LOESS) to obtain the running mean (red lines shown in Figure 1a-b), and subtracting 

this running mean from each annual value (resulting anomalies shown in Figure 1c). We perform this calculation to remove 

the trend and thereby isolate annual anomalies, which we expect to be related to inter-annual climate variability rather than 

other factors such as long-term technological improvements, increasing atmospheric carbon dioxide, or climate warming.  105 

2.2 Historical precipitation and temperature reference data  

For historical climate data we employ the HadUK gridded 5km observational data from the National Climate Information 

Centre (NCIC) (Hollis et al., 2019). Provisional HadUK data were employed for the year 2020, produced as per previous years 

(Hollis et al., 2019); provisional data may have very small differences at regional scales compared with the final published 

dataset, available later in the year. Observed precipitation and temperature data were checked for completeness: any incomplete 110 

climate data during each of the crop growth stages (i.e. a Foundation phase with less than 187 days of data; a Construction 

phase with less than 60 days, or a Production phase with less than 46 days) were removed, to ensure consistency and 

comparability across years. 

To investigate the association with crop yields, we computed climate metrics within each geographical region and wheat 

growth stage (Table 2) using region-averaged values of temperature (°C) and precipitation (mm). Specifically, for temperature, 115 

we derived the maximum, mean, and minimum of the region-averaged maximum daily temperature (max_maxT, mean_maxT, 

min_maxT), of the mean daily temperature (max_meanT, mean_meanT, min_meanT), and of the minimum daily temperature 

(max_minT, mean_minT, min_minT). For example, max_maxT indicates the day with the hottest (maximum hourly) 

temperature, and max_minT indicates the day with the warmest night-time (minimum hourly) temperature, during a given 

growth stage.  We also create metrics representing the daily variability of temperature (var_dailyT) and its seasonal variability 120 

(var_maxT, var_meanT, var_minT). For instance, var_maxT indicates the difference between the highest/lowest daily values 

of maximum hourly temperature in a season.  

For precipitation, we computed metrics representing the total region-averaged daily precipitation within a growth stage 

(total_P) and its quantiles (max_dailyP or mean_dailyP), where max_dailyP is the maximum total daily precipitation within a 

growth stage. We also considered the variability of daily precipitation across a growth stage (varP_Q0.95-Q0.05); the number 125 

of heavy rainfall days where precipitation exceeds 10mm (days_P>10mm); and the number of dry days where precipitation is 

less than 0.01mm (days_P<0.01mm) (Table 2). The heavy precipitation threshold is chosen based on the historical wheat yield 
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literature for the British Isles (Thomas et al., 1989); other thresholds may be more relevant elsewhere. For instance, (Lesk et 

al., 2020) found extreme rainfall impacts only at especially high intensities >50mm/hour for US maize and soy; others have 

used more holistic distributional measures like the wet-day Gini coefficient (Shortridge, 2019), a measure of daily rainfall 130 

variability.  

2.3 UKCP Local (2.2km) projections 

The UKCP Local simulations have a spatial resolution of just 2.2km – providing exceptional detail in local rainfall changes. 

Importantly, such high resolution allows the climate model to explicitly represent convective precipitation events on the model 

grid (see (Kendon et al., 2019, 2020) for details), thus providing credible projections of future changes in short-duration 135 

precipitation extremes, and in particular for summer months. The UKCP Local simulations were initially released in September 

2019 (Kendon et al., 2019) but were then updated in July 2021 after correction of an error in the representation of graupel (soft 

ice pellets) (Kendon et al., 2021). Here we use the new updated Local 2.2km projections. The local 2.2km model (HadREM3-

RA11M) spans the UK and is nested within the 12km regional model (HadREM3-GA705), which is in turn driven by the 

60km global model (HadGEM3-GC3.05) (Andrews et al., 2019; Williams et al., 2018). The 2.2km-projections are available 140 

for three 20-year periods of 1981-2000, 2021-2040 and 2061-2080. Known atmospheric GHG concentrations are prescribed 

as forcings to the historical 20-year period. For the second and third periods, the projections employed follow the RCP8.5 

scenario, which assumes substantial on-going human burning of fossil fuels. The 2.2km projections consist of an ensemble of 

12 members (Table 3), each of which can be considered as a plausible realisation of the climatic response to rising GHG 

levels. The local members are driven by different members of the global coupled model ensemble, and corresponding regional 145 

model ensemble, created by perturbing uncertain parameters in the model physics within their bounds of uncertainty. Thus, 

the range of the 2.2km projections provides an estimate of the uncertainty in future changes due to natural variability while 

additionally accounting for uncertainty in the physics of the driving global climate model. We computed regionally-averaged 

UKCP temperature and precipitation projections for each of the three regions shown in Figure 1d, and for each of the crop 

growth stages indicated in Table 1. For a detailed discussion of modelling assumptions and limitations see section 2.6.  150 

2.4 Bias correction  

Given the driving parent model of each UKCP Local simulation comes from a perturbed physics ensemble, each ensemble 

member is typically regarded as a different model and therefore is independently bias-corrected. UKCP Local simulations of 

area-averaged precipitation and temperature were bias-corrected against the 5km area-averaged observed daily HadUK data 

(Hollis et al., 2019) for each geographical region, using the entire the historical period of Dec 1980 to Nov 2000 (Table 3). 155 

The bias correction scaling factors were identified and applied with the “hyfo” (Xu, 2020) package written in the software R. 

This bias correction approach is a simple scaling method which is additive for temperature and multiplicative for precipitation 

(one correction factor per ensemble, per region), so it preserves an absolute or relative trend, respectively. The UKCP data 

have 30 days in each month, therefore, to perform the bias correction we added calendar days for each of the three 20-year 
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periods (e.g. from 1980-12-01 to 2000-11-30 with only 30 days in each month) and merged the historical period with observed 160 

data, removing any non-matched days (e.g. dropping the 31st of the month from the observed data, or dropping February 29th-

30th from the projections). This produced two overlapping time series of equal length over the period of Dec 1980 to Nov 2000 

to perform the bias correction. We make the assumption these present-day biases are likely to extend into the future periods, a 

key caveat of any bias correction method. The bias correction factors are relatively small, which suggests the simulations are 

well-aligned with the historical observations: x0.89 on average for precipitation for the three regions (individual factors for 165 

each member and region are shown in Table 3); −0.04°C for minimum daily temperature, +0.54°C for mean daily temperature, 

and +1.14°C for maximum daily temperature. We apply the bias corrections to the two future UKCP periods (Dec 2020 to 

Nov 2040 and Dec 2060 to Nov 2080, recalling these are for the RCP8.5 scenario). The bias correction performs well at the 

annual scale (Figure 2) but may differ across specific growth stages and regions (e.g. in the Foundation phase, median 

precipitation is slightly overestimated in EMYH and SEE regions) (Figure 3). Bias-corrected projections inevitably contain 170 

some uncertainty, and should be considered as providing general directions of change.  

2.5 Statistical approach 

We first assess the association between climate metrics and crop yield by using pairwise two-variable Pearson correlations 

(expressed as annual crop yield versus each individual seasonal climate variable). The magnitudes of the correlation 

coefficients and their p-values are provided in Table 2.  175 

Second, to assess the additive or offsetting effects of different climate conditions across crop growth stages, we develop a 

multiple linear regression model between regional crop yields and climate (Equation 1). We develop one model per region, 

with different observed temperature and precipitation variables for each region. Using Table 2, we purposely select just two 

continuous variables per growth stage to develop the model (one temperature-based metric and one precipitation-based metric), 

thereby avoiding correlated metrics. The equation used to fit the observed data for a given region is formulated as: 180 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +  𝛽3𝑥3 + 𝛽4𝑥4 + 𝜖  (1) 

where y represents the wheat yields (t/ha); 𝑥1 is Foundationmax_minT (°C), 𝑥2 is Foundationtotal_P (mm), 𝑥3 is Productionmax_maxT 

(°C), and 𝑥4  is Productiontotal_P (mm); 𝛽0  is the intercept; 𝛽1 to 𝛽4  are the regression slope coefficients for each of the 

explanatory climate variables; and 𝜖 is the error. The model statistics and coefficients are provided in Table 4 for each region. 

Although the model is significant (p<0.05) in EMYH, SEE and NAT, the predictability is relatively low (Predicted R2 of 0.09 185 

for NAT). Alternative metrics could also be selected, such as var_dailyT or var_maxT in the Production phase, or 

days_P>10mm in either phase, or additional variables reflecting e.g. precipitation intensity. These variables have not been 

tested and should be evaluated in future research, further developing the statistical crop model. Our model is a proof-of-concept 

that could be refined to improve the predictive skill if further data becomes available. The Construction phase is not included 

in the regression model as it shows no consistent associations with wheat yields (Table 2). The multiple regression describes 190 

the “extremeness” of climate independently for each crop growth stage, and so may account for compound positive and 
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negative climate impacts on wheat yield across a year. For instance, detrimental climate conditions may have a cumulative 

impact on wheat yields if occurring across multiple growth stages, such as heavy precipitation events during the Foundation 

phase (Foundationtotal_P), followed by meteorological drought during the Production phase (Productiontotal_P). Conversely, poor 

conditions in one stage may be mitigated by good conditions or agronomic interventions in another stage (e.g. wet weather 195 

leading to increased incidence of fungal disease can be mitigated by subsequent increased use of fungicides), and this would 

be reflected by the regression model. 

Third, to assess future changes in crop yields, we drive the same multiple regression model with the bias-corrected projections 

of the same variables, computed from the 12 members of the UKCP Local simulations. This approach allows us to fuse together 

the data-driven regression model with the meteorological simulations for higher greenhouse gas emissions. We use the model 200 

results to understand how multivariate climate change could lead to compensating or compounding impacts on future crop 

yields.  

2.6 Assumptions and limitations 

One of the advantages of the empirical data-driven approach herein is that there are fewer assumptions than in a process-based 

model approach. However, such an approach makes some key assumptions nonetheless, listed here:  205 

(1) To assess the impact of extreme weather on crop yields, we assume that the crop yields are affected by weather within the 

pre-defined crop growth stages described in Table 1. We employ fixed-in-time growth stages for practicality, but in reality 

these growth stages may be weather dependent from year-to-year, as plant vulnerabilities to extreme temperatures or 

precipitation may differ, e.g. from one July to another July. We did not use the 99 detailed physiological growth stages (AHDB, 

2022), but rather the high-level growth stages which are defined over long time periods to split the year into key stages of 210 

wheat growth.  

(2) A major assumption in our regression-based approach is that wheat responses to climatic variables in the past are a reliable 

predictor of responses in the future. One important uncertainty that we do not consider is how wheat growth and water use 

might respond to increases in atmospheric CO2 (Ewert et al., 2002; Swann et al., 2016). 

(3) Spatially, we average the climate metrics over the three regions. This aggregation to regional scales may mask variation in 215 

the weather conditions occurring in individual grid cells (or farms) – for instance the regional average could show little change, 

but this could hide large local changes (such as less frequent but more intense bursts of rain), or contrasting directions of 

change within the region. Other spatial metrics, such as extracting the highest rainfall event within each region, may be worth 

testing in future work.  

(4) The multiple regression model describes the impact of compound climate effects in different growth stages on wheat yields 220 

but not that of antecedent conditions (memory effects). Compound effects are captured well by our model, e.g. frost conditions 

during the Foundation phase and heavy waterlogging during the Production phase might combine to produce poor conditions 
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across the whole year. However, the model cannot assess whether the climatic impacts during the Production phase are the 

same irrespective of “memory” impacts from the climatic conditions in the earlier plant development stages (for example, the 

antecedent effects of a warm winter and wet spring in leading to a crop failure, e.g. (Ben-Ari et al., 2018)).  225 

(5) For the future projections of altered meteorological conditions, the UKCP18 HadGEM3 climate model simulations (in 

which the UKCP Local 2.2km simulations are nested) were only performed for the RCP8.5 pathway for atmospheric 

greenhouse gas concentrations, and we do not address emissions uncertainty from other scenarios. While the likelihood of 

such high on-going emissions is now considered low (Chen, D. et al., 2021; Hausfather and Peters, 2020), the RCP8.5 scenario 

is commonly used to facilitate detection of climate signals in future projections above natural variations in the climate (due to 230 

the large changes projected), and was deliberately chosen as the configuration for UKCP Local simulations to maximise the 

signal to noise. Using a high emissions scenario also has the advantage that one can make estimates of climate changes for 

lower emissions scenarios using scaling approaches. 

(6) Our analysis employs one single model, the UKCP Local (2.2km) climate projections. As described in section 2.3, the 

UKCP Local simulations are driven by a perturbed physics ensemble (PPE) of a single forcing Earth System Model (ESM), 235 

i.e. the parameters within the physics of the driving ESM are perturbed within their bounds of uncertainty. Thus, the 12 

members of the high-resolution ensemble describe both internal climate variability and the climate modelling uncertainty in 

the driving model (i.e. they have wider uncertainty than is typically represented in one single climate model). The trends of 

the UKCP Local simulations therefore at least partially cover the range of uncertainty and trends that would occur in the ESMs 

developed by other climate research centres. However, the climate modelling range of uncertainty is likely to be underestimated 240 

since the UKCP Local ensemble lacks information from other international climate models. In winter, the UKCP Local 

simulations show some higher precipitation responses compared to the full CMIP5 ensemble due to the improved 

representation of winter-time convective showers in the Local 2.2km model (Kendon et al 2020). UKCP Local projections 

also project relatively high temperature changes compared with other climate models (see e.g. https://interactive-

atlas.ipcc.ch/regional-information). Changes in summer precipitation show a considerable drying in the UKCP Local 245 

projections, whereas the CMIP5 (and hence likely also CMIP6) simulations indicate that outcomes with more modest 

reductions or small increases should also be considered (Kendon et al., 2021).  

(7) The UKCP Local projections provide high spatial resolution (2.2km) downscaling of global climate model projections 

specifically for the UK. Such high resolution simulations are able to at least partially resolve convective storms, and do not 

require a parameterisation scheme to provide a representation of convection, which is a simplification of the real world and a 250 

known source of model deficiencies. These simulations are therefore considered more reliable for projecting future changes in 

rainfall characteristics. However, there is still uncertainty in the parameterisation of UKCP Local, and so it can be expected 

that as future research groups also build convective-permitting models, differences will emerge that we are presently unable 

to account for. 
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3 Results and Discussion 255 

3.1 Historical increases in wheat yields and interannual yield volatility   

Since the late 1800s, and especially since the 1950s, there has been exceptional growth in UK wheat yields due to rapid 

advances in crop breeding, increasing farm mechanisation and the availability of agrochemical inputs, such as fertilisers 

(Figure 1a). Sustained increases throughout the 1980s-90s reflect the development of farming technologies, varieties, 

improved nutrient use efficiency and effective pesticides and growth regulators. Available time series of crop yields are much 260 

shorter when disaggregated to the regional level (Figure 1b) than at the national level (Figure 1a). Of particular note, though, 

is that the EMYH and SNE regions exhibit some levelling of wheat yields since 1990, mirroring the national trend, while the 

southernmost region, SEE, has seen some continued increases (Figure 1b).  

In addition to increases in mean yields, the national yield time series exhibits a visible increase in the variance of yields in the 

last few decades (Figure 1c). This increase in volatility is not solely driven by increases in the mean of the time series. A 265 

comparison of the variance of crop yields between the periods 1885-1989 (105 years) and 1990-2020 (31 years) using both 

Levene's test (p=0.022) and the non-parametric Fligner-Killeen’s test (p=0.093) indicates that there is a significant difference 

in the variance. The results are even more significant when comparing periods of similar length, 1960-1989 and 1990-2020 

(30-31 years) for both Levene (p=0.002) and Fligner-Killeen (p=0.003), or focussing on the last two decades, 1970-1999 and 

2000-2020 (30-21 years); p<0.001 for both tests. A question of notable interest, therefore, is understanding why the variance 270 

of yields has significantly increased, and whether it might be associated with more frequent or intense weather extremes. 

3.2 Association between climate extremes and wheat yields in each crop growth stage  

We assess the association between seasonal climate and crop yields by using precipitation and temperature metrics during the 

three crop growth stages. We expect the association between climate anomalies and wheat yields to differ regionally due to a 

range of factors, including the resilience of the wheat plant, husbandry practices of farmers and agronomists, biophysical 275 

conditions (e.g. soils, day length), and climatic differences (e.g. rainfall tends to be more frontal in the north, with orographic 

rainfall over high ground, and more convective in the southeastern UK). Although only some of the associations between the 

seasonal climate metrics and annual crop yields are statistically significant, we show all the associations and their relative 

strength for full transparency (Table 2). In Figures 4-5, we focus on total_P, max_minT, and max_maxT in each growth stage, 

as these are some of the most consistent metrics in the historical data (Table 2); figures produced using max_maxT give very 280 

similar patterns to max_meanT (not shown). These figures reveal the climatic ‘space’ generated by the interaction between 

precipitation and temperature in each growth stage: some of the worst UK wheat yields in recent decades have occurred during 

years with anomalously high/low seasonal rainfall, or prolonged heat, an important indicator of crop heat stress (Arnell and 

Freeman, 2021). The figures also indicate that temperature and precipitation are not independent from one another, since the 

wet years with poor yields also tend to be relatively cool (e.g. 2001, 2020 in the Foundation phase), and the dry years can 285 

sometimes be particularly hot (e.g. 1976, 2018 in the Production phase) (Figure 5).  



10 

 

From a crop physiology perspective, in the Foundation phase (October to early April; Table 1), prolonged waterlogging of the 

soil may suppress wheat yields by restricting root development and plant growth (AHDB, 2018). We find a significant negative 

association between crop yields and the number of heavy rainfall days in the EMYH region (Table 2, days_P>10mm); as can 

be seen in Figure 5 (years 2001, 2020; Figure 4a). The association between yields and total_P days_P>10mm and yields is 290 

also negative in SEE and at the national scale, but not significantly so. In the winter of 2000/01, for instance, wet autumn and 

winter conditions resulted in delayed sowing and poor seedbed conditions. Additionally, colder-than-usual conditions in the 

Foundation stage (e.g. year 2013, not shown) may delay or prevent crop tillering: frost can damage early drilled and fast-

growing varieties, while frost heave can kill seedlings. We find significant positive associations between yield and max_minT 

at the national scale and in the EMYH region, and with min_meanT and min_minT in the SEE region (Table 2). The positive 295 

associations indicate that warming temperatures may benefit UK wheat yields in a warming climate.  

While crops are growing rapidly during the Construction phase (April to early June), both late frosts and dry weather can 

reduce crop growth (Table 1). For this period in each year, we find no significant associations between climate characteristics 

and crop yields (Table 2). This is not necessarily a contradiction, as reduced growth does not always carry through to reduced 

yield. Both low yields (e.g. years 1976, 2001, 2020; Figure 4b) and some high yields (1962, 1984) have occurred during drier-300 

than-average Construction phases. Overall, wheat yields seem to be more sensitive to climate conditions during the Foundation 

or Production phases. 

The clearest association between climate extremes and crop yields seems to be in the Production phase, which is the time from 

post-flowering to harvest (summer: June and July). It is during this phase that yields may be susceptible to both drought and 

water logging (Table 1). We find a consistently negative association between heavy rainfall (both total_P and days_P>10mm) 305 

and crop yield in all three regions. For total_P the association is significant in EMYH and at the national scale, and for 

days_P>10mm in EMYH (Table 2). The association between low wheat yields and high summer rainfall is apparent in specific 

years such as 2007 and 2012 (top left of Figure 4c and Figure 5c). For example, year 2012 witnessed exceptionally poor 

yields due to high spring and summer rain, a high incidence of fungal disease (e.g. Septoria tritici) (DEFRA, 2012) and low 

sunlight during the grain-filling period (i.e. the first part of the production period, when the grain is swelling and requires 310 

sunlight for photosynthesis). In contrast, good yield years are often associated with warm summer temperatures and moderate 

to low rainfall: this can be seen in the positive associations between wheat yields and max_maxT or max_meanT, which are 

significant both nationally and in EMYH (Table 2). Examples are years 2015, 2019 (Figure 4c, Figure 5c). During the 

Production phase, meteorological drought conditions may also have negative impacts. Hot, dry weather shortens the growth 

period, resulting in early canopy senescence and reduced grain weight (Table 1). Indeed, some of the UK’s poorest crop yields 315 

occurred during warm, dry summers (e.g. years 2013, 2018 in SNE and SEE; Figure 5c). The benchmark grain-filling period 

is 45 days from flowering until maximum dry weight in late July, but it can be as short as 28 days during severe droughts 

(AHDB, 2018).  
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3.3 Explaining the association between crop yields and climate extremes: compound impacts across growth stages 

It can be challenging to systematically identify the weather conditions to which wheat yields are most vulnerable within 320 

individual growth stages. Most of the correlations in the historical data are not statistically significant (Table 2). The often 

relatively weak association between climate anomalies and wheat yields at the level of individual growth stages can be 

explained partly by the shortness of observational records, the combined resilience of the wheat plant (i.e. physiological 

reproductive mechanisms) and the husbandry skills of farmers and agronomists in mitigating these impacts by adjusting to 

climatic extremes. There is thus a role for agronomic management in mitigating apparent relationships with climate: this role 325 

might not be as direct as irrigating in response to drought, but farmers can dampen the effects of climatic variation through 

crop management, for example, by changing fungicide regimes to response to increased fungal disease brought about by wetter 

conditions, changing the timing or amount of inputs of nutrients, pesticides and growth regulators (Knight et al., 2012). The 

relatively intensive nature of UK wheat production (Hillocks, 2012; Wesseler et al., 2015) may thus be sufficient to dampen 

crop responses to climatic variation (Gagic et al., 2017). Farmers can also change many other aspects of management, including 330 

wheat variety, tillage, sowing date, sowing rate, or harvest date, in response to forecast or current conditions. Wheat cultivars 

are bred with a measure of resistance to certain climatic variables, so a farmer can select a cultivar appropriate to local climatic 

conditions (Kahiluoto et al., 2019).  

Low correlations between climate and yield anomalies over seasonal wheat growth stages may also reflect compensatory 

effects between growing phases. For instance, a less than ideal Foundation phase might be offset by a favourable Production 335 

phase or vice versa. It is equally important to note that growing phases in real plants are determined by their growth, rather 

than calendar days. Thus a phase may last longer, resulting in delayed crop growth, but maintaining the expected yield. Our 

calendar-fixed phases are a simplification of this process. 

Conversely, cumulative detrimental impacts of climate across stages (e.g. accumulated rainfall and subsequent waterlogging) 

may be one of the most damaging factors affecting overall annual crop yields. In other words, the flexibility and techniques 340 

farmers have at their disposal to adapt to climate variability are bounded. For instance, low yields in year 2018 were due to 

very dry conditions in the Foundation stage, followed by very hot and dry conditions in the Construction and Production stage 

(DEFRA, 2018a). In contrast, very low yields in years 2001 and 2007 were caused by a combination of high rainfall in the 

Foundation and Production stages (Figure 4). The exceptionally wet winter of 2019 (affecting the 2020 harvest in Figure 4) 

also imposed severe constraints on farming operations and resulted in a reduction in the areas of autumn-sown crops. These 345 

examples illustrate why a full understanding of projected changes to temperature and precipitation across wheat growth stages 

is required. 

To try to assess the offsetting or additive effects across growth stages, we develop a simple multiple regression model relating 

the observed wheat yields in each region to just two metrics reflecting temperature and precipitation conditions in the most 

important stages based on the outcomes of Table 2: Foundationmax_minT, Foundationtotal_P, Productionmax_maxT, and 350 
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Productiontotal_P. We find this model is significant at the 95% level (p<0.05) for EMYH, SEE, and the national scale but not 

SNE (Figure 6, Table 4). The lack of significance in SNE can be easily explained, since the association between yields and 

Foundationmax_minT  is weak there (R=0.15), but good elsewhere (~R=0.3 in SEE and EMYH). Similarly, the association 

between Foundationtotal_P and annual yields is negative in other regions (~R=-0.2/-0.28 in SEE and EMYH) but weakly positive 

in SNE (Table 2). The multiple regression model displays the best fit in the EMYH region, where the climate metrics display 355 

the strongest correlations with yields (significant for Foundationmax_minT, Productionmax_maxT, and Productiontotal_P). As expected, 

these model fits only explain a portion of yield variation (R2 ranges from 0.12 for SNE to 0.32 for EMYH), since crop yields 

are only partially explained by climate, as discussed above. However, the models allow us to capture the multivariate impacts 

of temperature (Foundationmax_minT and Productionmax_maxT exhibit a positive association with crop yields) and precipitation 

(Foundationtotal_P and Productiontotal_P exhibit a negative association with yields). Thus, the strongest associations between 360 

climate and yield anomalies may occur during years with cumulative climate impacts across growth stages. Cumulative 

impacts can be seen in the improved R2 in the multiple regression compared to the pairwise correlations. In other words, the 

model is capturing something individual variable correlations do not, and this could be that compensation across phases. That 

said, whether this added explanatory power is from inter-stage compensation, or compensation between variables within a 

single stage, is not clear from the regression results alone.  365 

3.4 Annual projections of future climate conditions and implications for crop yields 

At the annual scale, projections of future maximum hourly temperature are available for the periods 2021-2040 and 2061-2080 

from the UKCP Local simulations. The interquartile range of projected temperature for 2021-2040 lies well above the median 

of historical extremes (Figure 2a-c). Future high-temperature conditions generally fall beyond the bounds of annual variability 

experienced in the contemporary period for all three wheat-growing regions (Figure 2c). As expected, changes are largest for 370 

the later modelled period 2061-2080, corresponding to higher atmospheric greenhouse gas concentrations. This exceedance of 

historical thresholds by temperature projections is true for all 12 UKCP Local ensemble members, independent of uncertainty 

in changes in the large-scale conditions sampled by perturbing parameters in the Hadley Centre global climate model. 

However, it is important to note that the 12 climate model members (Table 3) do not sample the full range of uncertainty, 

evident in differences between all available global climate models (Kendon et al., 2021); see section 2.6 for a discussion.  375 

For total annual precipitation (Figure 2d), the projections do not indicate a very obvious increase or decrease in any of the 

three regions relative to the historical period, although SNE may seem very slightly wetter, and SEE very slightly drier on 

average (comparing medians) in the later period (2061-2080). This lack of trend in yearly data may be explained by the 

opposing changes in the different seasons: in general the winter season is projected to become wetter and the summer drier 

(Kendon et al., 2021). Importantly, there are also changes in the underlying intensity and frequency of precipitation (e.g. 380 

significant increases in days_P>10mm and var_P in the Foundation phase, Figure 7), which are not evident from simply 

looking at trends in annual mean precipitation.   
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3.5 Seasonal projections of future wheat-growing conditions and crop yields  

When considering UKCP Local projections by wheat growth stages (instead of at the annual scale), clearer patterns become 

apparent (Figure 3). We expect to find spatial differences in the climate projections, as they exhibit north-south gradients in 385 

changes across the UK.  Even in a single ensemble, there are gradients in the future changes in rainfall which differ from 

present-day climatology and relate to regional differences in increases in moisture availability as well as changes in circulation 

patterns. The question of compound climate change – i.e. the joint impacts of temperature and rainfall, or moisture availability 

– is important for future crop yields.  

Contrary to global expectations of declining yields under climate change, the multiple regression model indicates that 390 

projections of future temperature and precipitation change are likely to contribute to a continued growth of future wheat yields 

in the UK (Figure 6). These projections rely on broad estimates of changing night/day temperature extremes as well as total 

rainfall in the Foundation and Production stages. It is possible that more data may provide greater information on changing 

water availability, atmospheric vapour demand, and plant stress; however with the existing observations our data-driven 

approach highlights that a changing climate may not be entirely negative for wheat yields. This can be explained as follows. 395 

For the Foundation phase (October to early April), all regions can expect to see progressively warmer, wetter conditions in the 

coming decades according to the UKCP simulations. Significant projected increases in max_minT, max_maxT, and total_P are 

evident in all three regions (Figure 7). Such conditions might not necessarily adversely affect wheat production (Figure 4), 

and are likely to be beneficial in decreasing the risk of frost damage (Table 2). When considering max_minT and total_P, the 

projections indicate that there is a good chance of seeing more temperate winters similar to the one preceding year 2015, where 400 

Foundation conditions were warm and not too wet, resulting in high crop yields (Figure 4a); however, the significant projected 

increases in total rain, heavy rain, and rainfall variability (total_P, days_P>10mm and var_P; Figure 7) in all three regions 

may equally prove problematic beyond certain thresholds. In very wet years, the UK may also experience winters more like 

those of 2001 and 2020, which led to low yields across the UK (Figure 4a), especially in EMYH/SEE (Figure 5a).  

Projections for the Construction phase (mid-April to mid-June) are not included in the multiple regression model, due to the 405 

lack of significant associations between climate and wheat yields (Table 2). During this phase, the projections indicate 

significant decreases in total_P in EMYH and SEE, but not SNE (Figure 7). There are no evident changes in heavy rain 

(days_P>10mm; Figure 7), and we find considerable overlap with both good and poor yields in the historical data (Figure 

4b). These findings suggest that the Construction phase may not necessarily be the most at-risk in terms of the impacts of 

changing UK climate to crop yields. Although precipitation may not change much, there is still warming, which will increase 410 

atmospheric vapour demand (all else being equal). Thus, understanding the effects of compound change such as heat waves 

and drought (Zampieri et al., 2017) or the evaporative role of temperature (Lobell et al., 2013) is important to help provide 

more robust conclusions about the future.  
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In the Production phase (mid-June to end of July), UKCP simulations project both much warmer and drier conditions (Figure 

3, Figure 7). The drying signal is relatively similar across the three regions and becomes more apparent in the later simulations 415 

towards the end of the century. It is important to note that the UKCP Local projects stronger drying than CMIP5-6 models. 

Projected trends also indicate significant, strong increases in max_minT, max_maxT, and equally in temperature variability 

(var_dailyT and var_maxT; Figure 7). A simple analogue approach suggests we may see more Production phases similar to 

years 2006, 2015 and 2019 in the EMYH/SEE regions, conducive to high yields (Figure c). Both the national and the regional 

data suggest all regions may benefit from a warmer and drier Production phase (Figure 4c-5c). The projected trends reveal 420 

significant decreases in rainfall total and variability (total_P and var_P) in all three regions but no apparent decreases in heavy 

rain (Figure 7). However, individual anomalous years with poor yields and warm dry conditions remain plausible, such as 

year 1976 at the national scale (Figure 4c), and 2013 in the SNE and SEE areas (Figure 5c). Because the projected high-

temperature conditions are outside those experienced in the historic period, there is also a risk that the positive association 

between hotter, drier Production phases and enhanced yield found in the historical observations will no longer hold. This is 425 

especially true since temperature could have non-linear impacts (e.g. sterility or abortion of formed grains) through the 

physiological effects of frost and heat shock (Barlow et al., 2015). Droughts and heatwaves severe enough to have a substantial 

impact on yield are rare in the historic data (Knight et al 2012), and so we have little data by which to determine at what 

thresholds temperature and dryness cease to be beneficial for wheat and begin to have negative impacts. However, the 

anomalous years (e.g. 1976 and 2013) suggest that this can occur, and recent research indicates that days exceeding heat stress 430 

temperatures for wheat are likely to increase under climate change (Arnell et al., 2021).   

Overall, projections of future temperature and precipitation conditions suggest a continued increase of future wheat yields 

when relying on max_minT, max_maxT and total_P (Figure 6). The higher yields are found in the far-future period (2061-

2080) partly due to the effect of warming conditions and thus reduced frost risk in the Foundation phase. These beneficial 

impacts may however be offset by the significant increases in heavy rainfall (and rainfall variability) projected in the 435 

Foundation phase and enhanced meteorological drought conditions in the Production phase (Figure 7). The offsetting between 

climate effects, e.g. the interactions between temperature and precipitation, is an important mechanism and uncertainty both 

in the climate and in terms of their implications for crops. For instance, very hot conditions in the UK can often only be reached 

with a dry land surface (visible as apparent negative temperature-precipitation correlations during the Production stage, 

Figures 4-5). Drought and heatwaves are believed to self-intensify and propagate due to feedbacks between the land and 440 

atmosphere (Miralles et al., 2019). Cool and wet conditions could also be linked physically (e.g. Production phase in 2007 and 

2012), with implications for crop yields. This raises questions about joint heat and moisture impacts and how their 

interdependence might evolve into the future as greenhouse gases rise. 

Lastly, the impact of rising atmospheric CO2 on crop water use is an important uncertainty which is hard to model via our 

statistical approach and likely to impact future crop growth (Ewert et al., 2002; Swann et al., 2016), but is not considered 445 

herein. Overall, our approach suggests that, on average, climate change is likely to have more positive impacts on UK wheat 
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yields than previously considered.  However, against this background of average positive change, our work illustrates that we 

are likely to move outside of the climatic envelope which wheat farming in the UK has previously adapted to. Thus, the new 

weather conditions generated by the effects of rising temperatures (including intense local thunderstorms) are only likely to 

increase the degree to which farmers may struggle to mitigate against climate impacts. 450 

4 Conclusions  

Mean UK crop yields saw a rapid growth in the 1950s followed by a plateau in the 1990s, then substantial increases in the 

inter-annual variability of yields. This acceleration has been challenging for UK wheat farmers, since crop yields over the past 

two decades (2000-2020) have been significantly more volatile than over the previous century (Figure 1).  

A first question is thus our ability to explain such changes, and assess whether statistically significant associations exist 455 

between observed temperature/precipitation metrics and historical wheat yields during the three crop growth stages, in the 

three main wheat-growing regions of the UK. While the plateau in yields can be explained by a variety of technological and 

agronomic factors (Knight et al., 2012), we find some evidence that yields over the last 30 years can be partially explained by 

climate metrics such as warm night temperatures and heavy rainfall days in the Foundation phase (principally in the EMYH 

region), or maximum daily temperatures, daily temperature variability and total precipitation in the Production phase (Table 460 

2; with correlation strength and significance varying regionally). Significant statistical associations are found principally in 

the Foundation and Production phases and for regions EMYH and NAT. Yields are more fully explained when considering a 

multiple regression model (Figure 6) characterising additive and offsetting impacts of climate across growth phases (e.g. 

detrimental impact of very cold temperatures in Foundation phase followed by very high precipitation in the Production phase). 

However, it is unclear whether the added explanatory power of the regression model is from inter-stage compensation, or 465 

compensation between variables within a single growth stage. This would be an area for further research. The data-driven 

regression could additionally be refined by including various thresholds (e.g. considering the beneficial impacts of a warm and 

dry Production phase only up to certain limits relevant to plant stress). We find the association between historical climate and 

crop yields is most evident in years which saw compound extremes (Zscheischler et al., 2020), i.e. climate anomalies across 

multiple growth stages (e.g. 2007, 2012, 2020, Figures 4-5), ‘escaping’ the ability of farmers to adapt through agronomic 470 

means. Outside these combined extremes, the data indicate a strong inter-annual resilience of wheat production, implying that 

at present farmers can, and do, successfully utilise crop husbandry to maintain yield levels.  

Our second question seeks to understand how projections of compound temperature and precipitation extremes might impact 

future crop yields under a high-emissions climate scenario. Overall, the data provides a surprisingly favourable outlook of 

climate conditions for future crop yields. During the Foundation phase, high seasonal values of night temperatures (max_minT) 475 

are correlated positively and significantly with crop yields in EMYH and nationally (Table 2), suggesting that the significant 

future increases projected by the UKCP Local simulations (Figure 7) are likely to provide more beneficial growing conditions 
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during the winter. These positive temperature impacts may be offset by the significant projected increases in rainfall total, 

heavy rainfall, and rainfall variability in all three regions (total_P, days_P>10mm, and var_P, Figure 7), since heavy rainfall 

is detrimental to wheat yields (in EMYH especially; Table 2). Later in the year during the Production phase, when high day 480 

temperatures are significantly and positively associated with wheat yields in EMYH and nationally (Table 2), the UKCP local 

simulations also project significantly warmer and drier mean conditions (Figure 7), which may be conducive to positive yields, 

similar to the years 2015 and 2019 (Figure 4). Since high rainfall totals in the Production phase adversely affect growing and 

production conditions (total_P is negatively and significantly associated with crop yields in EMYH and nationally, Table 2), 

the projected significant decreases in future rainfall (which are stronger in UKCP Local than in CMIP5 and 6) could equally 485 

be beneficial to wheat yields (total_P, Figure 7). Future anomalous years similar to 2020, with a wet crop Foundation phase 

and a much drier Construction phase that significantly suppressed yields (Figure 4), are a possibility (Figure 7). It seems 

plausible that the farming community may also face increased inter-annual variability in the future, e.g. a sequence of dry years 

(similar to 2019) followed by very wet years (2001, 2012) against a backdrop of warmer and wetter/drier conditions. Further 

analyses could equally assess whether the optimal time and place to grow wheat is changing, or the effects of changes in 490 

rainfall patterns at the local (rather than regional) scale.  

In summary, this work provides evidence that wheat yields over the last 30 years are associated with combined temperature 

and precipitation extremes, especially across the crop Foundation and Production phases, in the EMYH region and nationally 

(Table 2). Although the climate projections provide a generally positive outlook for future yields across the UK, it is important 

to note that the relationships between past wheat yields and historic climatic conditions may not be adequate guides to the risks 495 

associated with projected future conditions, as future temperature extremes and rainfall lie outside the range of conditions that 

UK agriculture has so far experienced. Further, this work studies climate extremes at the regional scale, but not local changes 

in rainfall intensity and variability, which are beyond the scope of the paper (e.g. drier average regional conditions may hide 

less frequent but more intense local thunderstorms). Out of caution, therefore, a priority is to continue developing resilient 

agricultural systems to emerging climate patterns, as the global demand for wheat and other crops has been projected to double 500 

from 2005 to 2050 (Tilman et al., 2011). As higher-resolution crop yield data become available, further research into robust 

process-based or AI-informed crop models, alongside improved collaboration across spatial, governance and supply-chain 

scales (Holman et al., 2021), will be required to help farmers adapt to evolving climate conditions and maintain the security 

of wheat production. 
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Table 1: Three standardised wheat growth stages, modified by one day to avoid overlap across stages (AHDB, 2018). 

Growth Stage 
Benchmark 

start date 

Benchmark 

end date 
Potential climate impacts on the crop 

Foundation phase 1st October 9th April Crop is germinating and growing slowly. Susceptible to 

waterlogging and frost damage  

Construction phase 10th April 10th June Crop is green and growing rapidly.  Needs adequate light, 

can be affected by late frosts 

Production phase  11th June 26th July Period of post-flowering to harvest, grains fill and 

ripen. Susceptible to drought and waterlogging   

 680 
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Table 2: Association between observed climate metrics and wheat yields in each crop growth stage and region. Table indicates 

Pearson’s correlation coefficients and their p-values (*** indicates p<0.01, ** p<0.05, * p<0.10). National data is tailored to the same 

time period as regional data here (31 years between 1990-2020) for comparability.  Note: total_P and mean_dailyP are equivalent. 

Some of the most relevant metrics with relatively consistent sign are indicated in bold font (see Figure 7 for trends in these metrics). 685 

   
Foundation Construction Production 

     SEE EMYH SNE National SEE EMYH SNE National SEE EMYH SNE National 

Maximum 

daily 

temperatures 

Quantiles of the region-

averaged maximum daily 

temperature across the 

phase/year (e.g. max_maxT 

is the highest daily 

maximum temperature) 

max_maxT 0.01 0.01 0.10 0.03 0.11 -0.27 -0.11 -0.19 0.26 0.42** 0.22 0.42** 

mean_maxT 0.08 0.05 0.16 0.08 -0.06 -0.09 0.09 -0.10 0.14 0.22 0.24 0.20 

min_maxT 0.17 0.01 0.01 0.04 0.05 0.09 0.14 0.00 0.06 -0.06 0.09 -0.01 

Mean daily 

temperatures 

Quantiles of the region-

averaged mean daily 

temperature across the 

phase/year (e.g. 

max_meanT is the highest 

daily mean temperature) 

max_meanT 0.24 0.21 0.12 0.24 0.23 -0.16 -0.26 -0.11 0.23 0.41** 0.14 0.46*** 

mean_meanT 0.06 0.05 0.16 0.09 -0.03 -0.07 0.07 -0.07 0.07 0.11 0.16 0.11 

min_meanT. 0.30* 0.02 -0.03 0.09 -0.08 -0.21 0.07 -0.23 0.17 -0.03 0.07 -0.01 

Minimum 

daily 

temperatures 

Quantiles of the region-

averaged minimum daily 

temperature across the 

phase/year (e.g. max_minT 

is the highest minimum 

temperature) 

max_minT 0.29 0.30* 0.15 0.35* -0.06 -0.19 -0.16 -0.14 0.18 0.28 0.05 0.27 

mean_minT 0.03 0.05 0.16 0.09 0.02 -0.03 0.05 -0.03 -0.07 -0.11 -0.01 -0.08 

min_minT 0.31* 0.11 -0.01 0.07 0.00 -0.26 -0.02 -0.24 0.18 0.00 0.02 0.12 

 

Daily 

temperature 

variability 

 

Mean daily temperature 

variability (daily maximum 

- minimum) over the 

phase/year 

var_dailyT 0.13 0.03 0.06 0.02 -0.10 -0.11 0.07 -0.11 0.22 0.36** 0.34* 0.32* 

Seasonal 

temperature 

variability 

Intra-phase/annual 

variability (max-min) of 

the max, mean or minimum 

daily temperatures (e.g. 

difference between the 

highest/lowest maximum 

daily temperature) 

var_maxT -0.10 0.00 0.07 0.00 0.05 -0.29 -0.20 -0.14 0.21 0.42** 0.16 0.41** 

var_meanT -0.06 0.13 0.09 0.09 0.22 0.06 -0.25 0.11 0.09 0.36** 0.08 0.41** 

 var_minT -0.05 0.09 0.09 0.17 -0.04 0.06 -0.10 0.08 -0.05 0.25 0.02 0.10 

Precipitation 

magnitude 

Total region-averaged 

precipitation (P) over the 

phase/year 
total_P -0.20 -0.28 0.12 -0.14 0.06 0.08 0.03 0.08 -0.27 -0.45** -0.27 -0.39** 

Quantiles of daily 

precipitation computed 

across the phase/year (e.g. 

max_dailyP is the highest 

daily precipitation) 

max_dailyP. 0.08 -0.44** 0.17 -0.18 0.07 0.07 0.07 0.16 0.02 -0.34* -0.19 -0.16 

mean_dailyP. -0.20 -0.28 0.12 -0.14 0.06 0.08 0.03 0.08 -0.27 -0.45** -0.27 -0.39** 

Seasonal 

precipitation 

variability 

Intra-phase/annual 

variability of daily 

precipitation 

varP_ 

Q0.95-Q0.05 
-0.15 -0.32* 0.04 -0.17 0.11 0.12 0.02 0.19 -0.19 -0.36** -0.2 -0.15 

Precipitation 

frequency 

Number of days in the 

phase/year where P 

exceeds 10 mm (less than 

0.01 mm) 

days_P  

>10 mm 
-0.23 -0.41** 0.13 -0.18 0.00 0.05 -0.01 -0.02 -0.30 -0.31* -0.25 -0.16 

days_P  

<0.01 mm 
-0.01 -0.10 -0.07 -0.27 -0.27 -0.20 -0.06 -0.27 0.14 0.23 0.19 0.13 
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Table 3: Bias correction factors for region-averaged total daily precipitation and minimum/mean/maximum daily temperature for 690 
each of the three regions (columns) and each of the 12 UKCP ensemble members (rows) relative to HadUK observed data. These 

are the complete data (ensembles 02, 03, and 14 do not exist in the UKCP Local dataset). Bias correction is performed using daily 

data over the common historical period 1980-01-12 to 2000-30-11. The bias correction factors are multiplicative for precipitation 

and additive for temperature.  

 Precipitation Minimum temperature Mean temperature Maximum temperature 

ensemble EMYH SEE SNE EMYH SEE SNE EMYH SEE SNE EMYH SEE SNE 

01 0.82 0.88 0.88 -0.30 -0.54 0.17 0.35 0.18 0.73 0.97 0.89 1.38 

04 0.79 0.80 0.91 0.12 -0.12 0.54 0.82 0.69 1.11 1.47 1.47 1.75 

05 0.84 0.91 0.9 -0.14 -0.28 0.17 0.57 0.51 0.76 1.24 1.27 1.43 

06 0.87 0.96 0.92 -0.03 -0.22 0.35 0.57 0.42 0.88 1.18 1.06 1.53 

07 0.88 0.95 0.94 0.13 -0.10 0.62 0.69 0.51 1.08 1.25 1.14 1.65 

08 0.81 0.85 0.86 -0.51 -0.70 -0.17 0.08 -0.05 0.37 0.64 0.59 0.97 

09 0.97 1.06 0.97 0.26 0.10 0.68 0.69 0.55 1.05 1.13 1.02 1.55 

10 0.87 0.95 0.92 0.03 -0.18 0.39 0.47 0.29 0.78 0.91 0.75 1.28 

11 0.80 0.84 0.89 -0.13 -0.36 0.26 0.58 0.42 0.86 1.22 1.15 1.52 

12 0.89 1.00 0.93 1.08 0.75 1.73 1.66 1.42 2.21 2.27 2.10 2.84 

13 0.85 0.94 0.87 -0.67 -0.87 -0.27 -0.13 -0.31 0.24 0.39 0.26 0.82 

15 0.82 0.89 0.85 -1.14 -1.36 -0.7 -0.6 -0.79 -0.16 -0.13 -0.27 0.39 

mean 0.85 0.92 0.90 -0.11 -0.32 0.31 0.48 0.32 0.83 1.05 0.95 1.43 

 695 

 

 

 

Table 4: Statistics of the multiple linear regression model (Equation 1) for each region and nationally (historical observed data, 

1990-2020). The low R2 values can be explained by the fact that climate is only one of the mechanisms driving crop yields alongside 700 
agronomic management, as discussed in section 3.3. Significance of the coefficients is indicated with stars (*** indicates p<0.01, ** 

p<0.05, * p<0.10). We use these model fits to drive climate-based projections of future crop yields using the UKCP Local ensemble 

simulations (Figure 6), assuming no future changes in agronomic management practices. The predictions issued by the regional 

models are similar to those issued by the national model (Figure 6). 

 
n 

years 
p-value  R2 

Adjusted 

R2  

𝛽0 

(Intercept) 

t/ha 

𝛽1 

(Foundation 

max_minT) 

t/ha/°C 

𝛽2 

(Foundation 

total_P) 

t/ha/mm 

𝛽3  

(Production 

max_maxT) 

t/ha/°C 

𝛽4 

(Production 

total_P) 

t/ha/mm 

EMYH 31 0.032 0.324 0.220 5.9990*** 0.1066 -0.0013 0.0513 -0.0031 

SEE 31 0.043 0.306 0.199 3.8128** 0.1480* -0.0001 0.0753 -0.0014 

SNE 31 0.506 0.116 -0.020 5.3988*** 0.0703 0.0006 0.0661 -0.0013 

NAT 31 0.010 0.390 0.296 3.9199** 0.1404** -0.0001 0.0921* -0.0015 

 705 
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Figure 1: UK national and regional wheat yields. (a) National wheat yields are shown as grey circles and locally weighted scatterplot 

smoothing (loess) curve as a red line. Green labels indicate examples of years with anomalously high yields; brown labels indicate 

examples of years with anomalously low yields. (b) Same as (a) for three main wheat-growing regions (data only available for 1990-710 
2020 at regional scale). (c) Anomalies of wheat yields computed by subtracting the Loess moving mean from the annual values. (d) 

Map of the three wheat-growing regions. Green indicates North Eastern Scotland, Eastern Scotland, and the North East English 

region (SNE); blue indicates East Midlands, Yorkshire and the Humber regions (EMYH); red indicates the South East and Eastern 

regions (SEE).  

 715 
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Figure 2: Bias-correction of each UKCP 2.2km ensemble member, for (a-c) the minimum, mean and maximum daily temperature 

(mean_minT, mean_meanT and mean_maxT), respectively; and (d) total precipitation (total_P), in each year, for each of the three 720 
regions (top row: SNE, middle row: EMYH, bottom row: SEE). Red (blue) boxplots and rectangles indicate the range of observed 

temperature (precipitation) over the first period (1981-2000), based on the HadUK dataset. Grey boxplots indicate projections (one 

for each of the 12 UKCP Local ensembles) for three periods (historical – 1981-2000; future – 2021-2040; 2061-2080) using RCP8.5. 

Boxplot hinges represent 25th and 75th percentiles, and horizontal bar indicates the median. Whiskers extend to the largest value 

no further than 1.5 times the interquartile range (distance between 25th-75th percentiles) from the hinge.      725 
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Figure 3: Bias-correction of each UKCP 2.2km ensemble member, for (a-c) the minimum, mean and maximum daily temperature 

(mean_minT, mean_meanT and mean_maxT), respectively; and (d) total precipitation (total_P), within each phase, for each of the 

three regions (SNE, EMYH, SEE). Red (blue) boxplots and rectangles indicate the range of observed temperature (precipitation) 

over the first period (1981-2000), based on the HadUK dataset. Grey boxplots indicate projections (one for each of 12 UKCP Local 730 
ensembles) for three periods (historical – 1981-2000; future – 2021-2040; 2061-2080) using RCP8.5. Boxplot hinges represent 25th 

and 75th percentiles, and horizontal bar indicates the median. Whiskers extend to the largest value no further than 1.5 times the 

interquartile range (distance between 25th-75th percentiles) from the hinge.       
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 735 

 
Figure 4: Association between observed wheat yields and climate during the three wheat-growing phases. Anomalies of observed 

UK wheat yields are shown for total area-averaged precipitation (total_P) and the maximum of area-averaged minimum/maximum 

daily temperature within each phase (i.e. the metrics total_P, max_minT, and max_maxT, chosen for their associations with crop 

yields; Table 2), alongside UKCP projections. Columns: Foundation phase (01st October to 09th April); Construction phase (10th 740 
April to 10th June); Production phase (11th June to 26th July). Yield time series are shown for the national scale here (longer than 

regional time series, see Figure 1a vs 1b) and are the same in the three panels. Small green circles indicate positive yield anomalies 

for individual years; small brown circles indicate negative yield anomalies for individual years. Large green crosses indicate the 

mean for all the years with positive wheat yield anomalies; large brown crosses indicate the mean for all the years with negative 

wheat yield anomalies. Grey diamonds indicate UKCP Local projections of temperature and precipitation for the historical (circle: 745 
1981-2000) and future (square: 2021-2040; diamond: 2061-2080) periods, where each symbol indicates one of the 12 ensemble 

members. Specific years mentioned in the main text are labelled.  
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Figure 5: Association between wheat yields and climate during the three wheat-growing phases and in each of the three UK wheat-

growing regions. Anomalies of observed UK wheat yields are shown for total area-averaged precipitation (total_P) and the area-755 
averaged minimum/maximum daily temperature within each phase (i.e. the metrics total_P, max_minT, and max_maxT, chosen for 

their associations with crop yields; Table 2), alongside UKCP projections. Columns: same as Figure 4. Rows: SNE, EMYH, SEE. 

Yield time series are shorter at regional scale than national (see Figure 1b). Small green circles indicate positive yield anomalies for 

individual years; small brown circles indicate negative yield anomalies for individual years. Symbology is the same as Figure 4.  
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 760 

Figure 6: Temporal trends in wheat yields (tonnes/hectare): observations and future projections. The observations (black circles, 

1990-2020) are the same as in Figure 1. The projections (grey circles; 12 members per year) are obtained by forcing a multiple linear 

regression model (Equation 1; Table 4) obtained for each region with the UKCP Local projections of the same climate variables in 

each growth stage (see Methods section 2.5). Grey lines indicate the linear regressions between the ensemble of projected values and 

time (the regression equation, adjusted R2, and p-value are indicated on each panel).  765 
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Figure 7: Trends in key climate metrics for the three growth stages (columns) and three regions (rows). Metrics are selected from 770 
(and defined in) Table 2: max_minT, max_maxT, var_dailyT, var_maxT, total_P, days_P>10mm  and var_P. Dark grey circles indicate 

observations; color ribbons are the 12 UKCP Local members (5th-95th percentile in orange, 25th-75th percentile in red, and the 

median as a white line). Linear trend lines for the UKCP simulations are shown as dashed black lines, along with the regression 

equation and p-value on each panel. 


