
Author Response to Referee # 1  ESD 

https://doi.org/10.5194/esd-2021-80-RC1 

We thank the reviewer for the positive evaluation and valuable comments. We provide a point-by-point 
response to each comment, with reviewer’s comments in black, and author’s responses in purple. The 
modified manuscript text is shown in quotation marks and italic, and we indicate the line numbers of the 
revised manuscript.  

This work compares different estimates of ocean mass contributions to sea level rise. 
These contributions are themselves derived from different estimates of contributions to 

ocean mass (ice sheets, glaciers, land water storage) which are propagated to SL 

fingerprints using the SLE. This work in itself, and a comprehensive documentation of 
resulting ocean mass trends and discrepancies between estimates at the regional level, 

would deserve a publication. The authors also derive uncertainties on ocean mass trends 
which they separate into temporal uncertainty (the amount of uncertainty coming from 

the natural variability in records), spatial-structural (coming from the fact that the position 

of sources is not exactly known) and intrinsic (uncertainty in the data itself, the way we 
measure it for example). This represents a large part of the paper (methods are well 

documented and the results well presented).  

Thank you for these positive comments. 

My main concern about this paper is that the representativity (or accuracy) of these 
uncertainties is not discussed, despite what appears (to me at least) to be inconsistencies 

across datasets.  

Thank you for calling attention to the lack of discussion about the uncertainties representativity. We have 
incorporated your remarks below, leading to a better discussion of the uncertainties.  

I'll try to give a few examples below:  

* Section 3.1 and Figure 2 are dedicated to the noise model selection. No information is 

provided about the goodness of fit of the selected (optimal) noise model. As far as we are 
told, all models could largely fail at representing the variability in the records (I'm pretty 

sure this is not the case, but please provide a metric). This could help with the 

interpretation of Figure 2 where discrepancies between noise models fitted to different 
datasets are striking: to me this means that the datasets are unable to observe the same 

processes, even between two GRACE based datasets.  

The goodness of the fit was assessed by using the modified Bayesian Information Criterion, as explained in 
lines 172-174. We have clarified this by adding the following information to the methods section 2.2.2   (Lines 
174-178) and the histogram as Figure A2  in the Appendix: 

“Since these criteria are relative values, they can not be compared between different data sets. Thus, we 
compare the criteria of different noise models for each data set and each grid point separately.   The best 
noise model is the one that minimizes these criteria. Since these criteria are relative values, they can not 
be compared between different data sets. Thus, we compare the criteria of different noise models for each 
data set and each grid point separately. To select the best noise model, we compute the relative likelihood 
of the BICtp, and select the model with values smaller than 2 (Burnham and Anderson, 2002; Camargo et 
al., 2020). Note that all noise models reasonably capture the variability of the time series (Figure A2), as 
their scores are always within a similar range. “ 
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Figure 1. Histograms of the BIC_tp score for each dataset, used to select the optimal noise models. x-axis shows the BIC 

score, and y-axis the number of grid points (count). Note that all models have scores within the same range, showing that no 

model fails in capturing the signal of the observation. However, some models have a slighter lower score, and those will be 

the ones selected as the optimal noise model. (included in Appendix as Figure A1) 

 

A synthetic table of datasets resolution/content could be useful here (rather than having 

the refer to Appendix A).  

We have added an extra column to Table 1 in the main text, which now includes the information of the 
spatial resolution in the dataset. However, we prefer to keep the more detailed information in Appendix 
A, for clarity.   

* Section 2.2.2 describes the uncertainty propagation rules used in the paper. I'm 

concerned by two points here:  

1. When considering spatial-structural uncertainties the authors scale the fingerprints to 

1 mm/yr amplitude to avoid too much spread across an ensemble of only 4 members. How 

much uncertainty reduction does this scaling provide? This should be documented.  

We perform the normalization to isolate the uncertainty due to the spatial pattern of the mass change 
which is fed into the sea-level equation. If we would take the unscaled standard deviation of the datasets 
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instead, the result would represent more than just uncertainty due to the spatial pattern because each 
data set has a different magnitude.  

We illustrate the difference between normalizing and not normalizing in the figure below (right panel is 
Figure 4 of the manuscript). This shows that the normalization highlights the differences close to the mass 
change source, while without the normalization the differences in the far field are highlighted, as a result 
of the different global mean values in each dataset.  

 
Figure 2. Structural uncertainty without the normalization (left) and with normalization (right, figure 5 in the revised 

manuscript).  

We have adjusted the Methods Section (Lines 181-187) to clarify the aim of the normalization, as follows: 

“To isolate the effect that the spatial distribution of the terrestrial mass change has on the fingerprints, we 
compute the spatial-structural uncertainty by estimating the standard deviation for each contribution 
based on normalized fingerprints. The latter means that the sum of the regional SLC for each contribution 
is equal to 1 mm.year−1 of SLC. By using normalized fingerprints we remove the weight that the different 
central estimates (mean) have on the spatial standard deviation. We then take the standard deviation 
across the four normalized datasets for each mass source contribution, obtaining four normalized spatial-
structural uncertainties, which reflects the uncertainty associated with the different spatial resolutions and 
location of mass change of the datasets.” 

2. Regarding the intrinsic uncertainty propagation, the authors use a no-covariance 

hypothesis. There are many ways error covariances could affect GRACE/GRACE-FO 
measurements (instrument ageing, operation mode switches). I understand the scope of 

the paper is not to revisit GRACE error characterization but this could be mentioned ?  

Indeed, instrument ageing and switches on operation mode will influence the signal of GRACE/GRACE-Fo 
measurements. However, the intrinsic uncertainties discussed here represent the errors in the monthly 
GRACE gravity field solutions, arising from measurement, processing and aliasing errors. We have added a 
comment to clarify what the intrinsic uncertainties represent.  

These errors will exhibit covariances, which were not included previously, as pointed out by both reviewers. 
We have therefore modified the intrinsic uncertainty computation to now include error covariance. The 
intrinsic uncertainty is propagated by perturbing the time series with random noise multiplied by the 
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uncertainty for 1000 times. We then compute the trend for each time series, and use the 95% confidence 
interval of the distribution as the intrinsic uncertainty.  

We added a comment about the GRACE errors and adjusted the intrinsic computation methods as follows 
(Lines 200-216):   

“The final type of uncertainty considered in our assessment is the intrinsic uncertainty, which represents 
the formal errors and sensitivities in the measurement system and needs to be provided with the 
observations/models by the data processor/distribution centre. The intrinsic uncertainty was only provided 
with the JPL and IMBIE datasets. For all other datasets, our uncertainty budget does not include the intrinsic 
uncertainty. The uncertainties provided with the JPL Mascons represent the scaling and leakage errors from 
the mascon approach (Wiese et al., 2016), and, over land, are scaled to roughly match the  formal GRACE 
uncertainty of Wahr et al. (2006). The latter represent errors in monthly GRACE gravity solutions, encom- 
passing measurement, processing and aliasing errors (Wahr et al., 2006). While the mascons have been 
corrected for mass changes due to glacial isostatic adjustment (GIA) with the ICE6G-D model (Peltier et al., 
2018), the intrinsic uncertainties of the JPL mascons do not represent the uncertainties from the GIA 
correction, which can be large depending on the region (Reager et al., 2016; Wouters et al., 2019). For 
example, the choice of the GIA model used for the correction could lead to uncertainties representing up 
to 19% of the signal in Antarctica, but less than 1% in Greenland (Blazquez et al., 2018). Given that estimating 
GIA uncertainties is in itself an open issue (Caron et al., 2018; Simon and Riva, 2020), we could not propagate 
full GIA uncertainties into the fingerprints. Since the intrinsic uncertainty represents systematic errors and 
instrumental noise, which might be serially correlated, we assume that the errors can be approximated by 
a random walk. We therefore generate an ensemble of 1,000 time series by perturbing the original rate with 
random normal noise multiplied by the uncertainty time series. We then compute the trend for each 
ensemble member. We use half of the width of the 95% CI as input in the SLE model to show how the mass 
associated with the intrinsic uncertainty is distributed over the oceans. ” 

* It is unclear to me if all datasets are consistent within the estimated uncertainties of if 

there remains regions where this is not the case ?  

We are not sure what the reviewer means with this comment. For a given contribution, the estimated 
trends based on different datasets agree within their respective uncertainties.  Regarding the temporal 
uncertainties, even when using different noise models (Figure 2), the uncertainties are consistent for each 
dataset When comparing the different contributions (datasets), then the LWS was much higher than the 
uncertainties of AIS, GIS and GLA, for the 3 types of uncertainties considered here. But within a contribution 
(e.g., LWS), the uncertainties of the different datasets (CSR, JPL, WGP, GWB) were consistent. We hope this 
answers the reviewer’s question.  

* I have the feeling that the uncertainty estimation presented here is likely a lower bound 

to the true uncertainty on the ocean mass contribution to SL. Could you comment on that 

?  

We would actually argue that the uncertainties presented here are an upper bound, although there is no 
straightforward way of knowing the true uncertainty of ocean mass contribution to sea-level change. Most 
studies include only one type of uncertainty ( intrinsic, temporal or structural). The objective of our work 
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was to characterize all of these types of uncertainties, and thus we find larger uncertainties than other 
studies.  Nonetheless, we did assume independence of the different types of uncertainty, and did not 
propagate GIA uncertainties into our fingerprints. Hence, while we do not know the true barystatic 
uncertainty, and have in general higher estimates than the ones published so far, it is possible that we are 
still underestimating the true uncertainty on the ocean mass contribution to sea-level change.  
 
We have added a comment about it in the discussion (Lines 430-432): 

“The true uncertainty of ocean mass contribution to sea-level change is difficult to determine. Our approach 
of quantifying this uncertainty is to some extent conservative, as it results in larger uncertainties than in 
previous studies (e.g., Horwath et al. (2021)). Nonetheless, we did assume independence of the different 
types of uncertainty, and did not propagate GIA uncertainties into our fingerprints, which could lead to 
even larger uncertainties ” 
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Review of ‘Trends and Uncertainties of Regional Barystatic Sea-level Change in the Satellite Altimetry Era’  

In this manuscript, the authors have collected a large dataset of the sources of barystatic sea-level changes, 
computed the associated GRD fingerprints, and discuss the sources of uncertainty in the resulting GRD 
pattern. I think this dataset will be very useful for many applications in sea-level and climate research, and 
I’m convinced this work is a worthy contribution to the literature on this topic.  

Nevertheless, I have a few technical and philosophical remarks and questions. I start with some general 
remarks, followed by line-by-line comments.  

Thomas Frederikse  

We thank the reviewer for the positive evaluation and valuable comments. We provide a point-by-point 
response to each comment, with reviewer’s comments in black, and author’s responses in purple. The 
modified manuscript text is shown in quotation marks and italic, and we indicate the line numbers of the 
revised manuscript.  

General remarks  

GR1 Intrinsic uncertainties: 
The reported uncertainties from the individual data sets are assumed to be uncorrelated. Therefore, the 
trends are subsequently estimated using ordinary least squares with the uncertainties on the diagonal of 
the co- variance matrix. I don’t think that this is the right approach to estimate the trend uncertainties 
due to intrinsic errors. For many estimates the uncertainties will be serially correlated, for example due to 
uncertainties that affect the trend. Like if the uncertainty in a GRACE time series is fully due to GIA 
uncertainties that only affect the trend, the aforementioned assumption doesn’t hold, and the resulting 
errors are an underestimation. For estimates where the rates and their uncertainties are available, an 
approximation that often works well is to assume that the rate errors are uncorrelated, which is equal to 
assuming random walk. Then you can generate an ensemble of time series by perturbing the rate with 
random normal noise, and then integrate the rates to obtain the time series. A good way to verify the 
results is to compare the barystatic trend uncertainties in Gt/yr or mm/yr with those reported in the 
papers where the data sets came from.  

Thank you for pointing this out. This was also noted by Reviewer #1. Indeed, we assumed intrinsic 
uncertainties to be uncorrelated, but we agree with the reviewers that this assumption may not be valid 
in this case. We have therefore modified the intrinsic uncertainty computation by perturbing each time 
series with normal noise for a 1000-member ensemble. We then take the trend for each ensemble member, 
and compute the 95% confidence interval of the trend distribution. We use the half width of the 95% 
confidence interval as the rate uncertainty. An example of the new rates are shown in Figure 1 for the GMSL 
contribution from the AIS and the GIS based on the IMBIE datasets. We note, however, that these 
uncertainties are still smaller than the ones reported by IMBIE (Shepherd et al., 2018, 2020), as the reported 
uncertainties include both the intrinsic and temporal components. 
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Figure 1. Mass change rates and improved intrinsic uncertainties. Gray lines on the top panels represent the 1000 ensemble 

members of the original time series (black) perturbed with random noise and the uncertainty time series (red). Histograms 

on the lower panels represent the trends of the 1000 ensemble members. We take the 95% confidence interval of the trend 

distribution, and use the largest difference between the mean and the CI as the rate uncertainty.  

We adjusted the intrinsic computation methods as follows (Lines 200-216):   

“The final type of uncertainty considered in our assessment is the intrinsic uncertainty, which represents 
the formal errors and sensitivities in the measurement system and needs to be provided with the 
observations/models by the data processor/distribution centre. The intrinsic uncertainty was only provided 
with the JPL and IMBIE datasets. For all other datasets, our uncertainty budget does not include the intrinsic 
uncertainty. The uncertainties provided with the JPL Mascons represent the scaling and leakage errors from 
the mascon approach (Wiese et al., 2016), and, over land, are scaled to roughly match the  formal GRACE 
uncertainty of Wahr et al. (2006). The latter represent errors in monthly GRACE gravity solutions, encom- 
passing measurement, processing and aliasing errors (Wahr et al., 2006). While the mascons have been 
corrected for mass changes due to glacial isostatic adjustment (GIA) with the ICE6G-D model (Peltier et al., 
2018), the intrinsic uncertainties of the JPL mascons do not represent the uncertainties from the GIA 
correction, which can be large depending on the region (Reager et al., 2016; Wouters et al., 2019). For 
example, the choice of the GIA model used for the correction could lead to uncertainties representing up 
to 19% of the signal in Antarctica, but less than 1% in Greenland (Blazquez et al., 2018). Given that estimating 
GIA uncertainties is in itself an open issue (Caron et al., 2018; Simon and Riva, 2020), we could not propagate 
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full GIA uncertainties into the fingerprints. Since the intrinsic uncertainty represents systematic errors and 
instrumental noise, which might be serially correlated, we assume that the errors can be approximated by 
a random walk. We therefore generate an ensemble of 1,000 time series by perturbing the original rate with 
random normal noise multiplied by the uncertainty time series. We then compute the trend for each 
ensemble member. We use half of the width of the 95% CI as input in the SLE model to show how the mass 
associated with the intrinsic uncertainty is distributed over the oceans. ” 

GR2 Trend uncertainties: 
I think the paper could use some more discussion on the meaning of the trend uncertainties, because 
their meaning is not trivial and explaining the meaning of these trend uncertainties is important for data 
users to correctly apply them. This is a bit of a philosophical point, but the auto-correlated residuals after 
estimating the trend are not per se due to measurement errors, but they could represent a real signal. An 
example is the drop in GMSL during the 2010/2011 La Nina event, and the acceleration in ice-sheet mass 
loss. Let’s assume now that someone downloads the regional data as well as some altimetry data of 
regional sea level. Then the uncertainty in the unexplained residual (Local altimetry – local ocean mass) 
should not contain the trend uncertainty given here. Altimetry will also see the acceleration and La Nina-
like bumps and throughs and the difference probably shows much less interannual variations and thus 
has a lower trend uncertainty. However, when this user just uses the provided trend uncertainty and adds 
it in quadrature to some other errors, he or she will overestimate the uncertainties of the just computed 
difference. Some guidance could help here.  

We agree that the residuals could actually represent a real signal, hence the importance of using the noise 
models to better represent these uncertainties. As noted by the reviewer, depending on the source of this 
uncertainty, the signal will be present in both the observed mass contributions as well as in altimetry (and 
also in other components of the sea-level budget). Consequently, summing up the uncertainties of 
different sources can lead to an overestimation of the uncertainty. We have added a comment about this 
in the discussion (Lines 387-392):  

“The temporal uncertainties associated with the trend may represent real climatic signals, and not only 
measurement errors. For example, the variability due to climatic oscillations, such as El Niño Southern 
Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), may be reflected in the residuals of the time 
series, affecting the trend and its temporal uncertainties (Royston et al., 2018). As such climatic events 
influence not only mass change, but also other drivers of sea-level change (e.g., thermal expansion), caution 
must be taken when using and comparing these uncertainties with those from other sea level contributors.” 

GR3 Barystatic sea level: 
How do the global-mean time series and uncertainties look like? A simple plot with the global-mean time 
series from each component and the total might be a nice addition. That could also help verifying the 
1993-2016 time series from models: do they show similar trends and variability as GRACE? For TWS, 
Scanlon et al. (2018) show some discrepancies between models and GRACE for TWS. Might be interesting 
to see whether estimates from WaterGAP and PCR-GLOBWB now perform better.  
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We have added a figure of the global-mean time series in the main text (Figure 1 on revised manuscript), 
and have included a table with global mean barystatic trends and uncertainties in the appendix (Table A1 
on revised manuscript), as the focus of this study is on regional variations.  

GR4 The term ‘regional barystatic’: 
After Gregory et al. (2019), barystatic sea level should only refer to global-mean sea-level changes, and 
not to regional patterns. I’d remove the term ‘regional barystatic’ and replace it with ‘Barystatic sea level 
and associated GRD patterns’ or something like that. 

For brevity, we replace ‘regional GRD-induced patterns associated with barystatic sea-level change’ by 
‘GRD-induced sea-level change’. We define the term at the end of the introduction (Lines 76-77):  

“Throughout this paper, we use ‘GRD-induced SLC’ when referring to the GRD-induced regional pattern 
associated with barystatic SLC.” 

GR5 Glaciers and ice sheets: 
A nasty problem when working with GRACE data for glaciers is that the GRACE resolution is pretty coarse 
compared to the size of some glaciers. Therefore, it’s hard to separate the mass loss from peripheral 
glaciers in Greenland and Antarctica from the nearby ice sheets. The same goes for small glaciers in for 
example Asia, where mass changes from nearby TWS changes leak into the glacier mass change 
estimates. Did the authors take this into account? A possible way out is the method described in the 
supporting information of Reager et al. (2016): for the RGI regions where glacier mass loss dominates the 
GRACE mass change estimates, use GRACE, for the ice sheets, treat the glaciers as part of the ice sheets, 
and for the other regions, use another dataset (for example Malles & Marzeion, 2021 or Hugonnet et al. 
2021) to separate glaciers from TWS.  

This is a good point. Up to now, we used the RGI regions to isolate the signals of glaciers from GRACE, and 
peripheral glaciers to Greenland and Antarctica were included with the ice sheets. However, we had not 
explicitly considered the LWS leakage into glacier mass change of other regions. Following the suggestion 
of the reviewer, we have added the LWS-GLA correction, using the glacier estimates of Hugonnet et al 
(2021), which are not affected by LWS variations, since it is based on satellite and airborne elevation 
measurements. We decided to use the estimates of Hugonnet et al (2021) instead of the geodetic and 
glaciological measurements from Zemp et al. (2019) to ensure that the glacier estimates between the 4 
datasets used here remain as independent as possible. Another possibility would have been to use the 
model glacier estimates of Malles & Marzeion (2021), however this is an updated glacier model version of 
the one incorporated in WaterGap, which would introduce some circularity.  

We adjusted the methods section accordingly, as follows (Lines 106-118): 

“Considering the size of glaciers, the resolution of the GRACE signal is not high enough to (i) separate the 
peripheral glaciers from the ice sheets, and (ii) to separate the signal of glaciers and LWS in regions with 
small glacier coverage and large LWS contribution. Thus, to isolate the glaciers signals from the mascons 
we follow the method described in Reager et al. (2016) and Frederikse et al. (2019): (1) peripheral glaciers to 
Greenland and Antarctica are included with the ice sheets mass changes; (2) regions where glaciers 
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dominate the mass changes are considered ‘full’ glaciers, that is, the land signals in those regions are purely 
denoted as glacier mass change. These include the RGI regions of Alaska, Arctic Canada North, Arctic 
Canada South, Iceland, Svalbard, Russian Arctic Islands and Southern Andes; (3) for the remaining glaciated 
regions, we assume that the mass change is partly due to glacier mass change, and partly due to LWS (‘split’ 
glaciers). In these regions the glacier mass changes are known to be small and mass changes are dominated 
by LWS. We use the glacier estimates of Hugonnet et al. (2021), which are based on satellite and airborne 
elevation datasets as our glacier estimates in these regions. Unlike gravimetry observations, the estimates 
of Hugonnet et al. (2021) do not include the hydrological ’contamination’. To isolate the glacier from the 
LWS signal, we subtract the corrected glacier estimates from the total mass change in the mascons. The 
remaining signal is then added to the LWS contribution.” 

GR6 Used datasets. 
The authors have collected a large and diverse set of sources for their barystatic estimates. I’ve listed 
below a few other data sets that could be added as well. Since new data sets appear all the time, this list 
isn’t exhaustive and should be seen more as an idea rather than a demand to incorporate them in this 
manuscript.  

Thank you for the suggestions of new datasets. Most of these were not available at the time of preparing 
the manuscript and could therefore not be included at the time, while others were available but were not 
suited for the purpose of this study. As mentioned by the reviewer, new datasets become available all the 
time, so this will always be a moving field. At the moment, four datasets are used for each of the 
contributions, which encompass a wide range of possibilities giving a robust estimate. We have therefore 
decided to not expand the number of datasets for now.  

Line-by-line comments  

L10: the trend ranges, do they refer to the 95th percentile of the gridded field? I’d think the minimum trend 
will be lower very close to the ice sheet edges  

These ranges refer to the 5th to 95th percentile range across all grid cells. The minimum values close to the 
ice sheet are much lower indeed. For example, from 2003-2016 period the minimum values are around -4.5 
mm/yr. We have clarified it in the abstract (Line 12), and in the main text (Lines 330-332): 

“To illustrate the distribution of the regional trends and uncertainties around the world, we report the 5th 
to 95th percentile range across all ocean grid cells (Figure 7, histograms below the maps), and refer to it 
as the 90%-range of the field.” 

L63-L64: “The structural uncertainty is related to the use of different datasets of the same process”. The 
structural and intrinsic uncertainties, are they independent? I can imagine that for example in GRACE, 
there’s an uncertainty in some atmospheric correction, and product A uses estimate A and product B uses 
estimate B for that process. Then parts of the intrinsic uncertainties also end up in the structural 
uncertainties.  
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Indeed, depending on the source of the intrinsic uncertainty it can reflect the structural uncertainty We 
have added a comment about this in the introduction (Lines 67-68) and also in the methodology (Lines 
222-224): 

” Note that, if different datasets use the same product for corrections, calibrations and/or validation, the 
intrinsic and structural uncertainties could be partially correlated.” 

“Whereas the trends are added together linearly, we add the uncertainties in quadrature, assuming they 
are independent and normally distributed. We acknowledge that this is an important assumption, as it is 
possible that the intrinsic uncertainty will be reflected in the temporal and structural uncertainties. ” 

L131: More of an idea than a comment: there’s a lot of people looking for fingerprints to analyze altimetry 
data, so there might be quite some interest in complementary geocentric sea-level fingerprints.  

Thanks for the suggestion. We will make the geocentric fingerprints available with the dataset on 4TU 
(https://doi.org/10.4121/16778794, currently reserved). 

L166 Average – typo  

Corrected 

L179 The JPL mascon uncertainties do not represent the uncertainties due to the GIA correction. This 
uncertainty is actually pretty large, but a bit cumbersome to propagate into the final GRD patterns. It can 
be done by using uncertainty estimates from for example Caron et al. (2018) and Simon & Riva (2020, I’m 
sure some of the authors are aware of this study). Propagating the full GIA uncertainties into the 
fingerprints might be a bit too far-fetched for the current manuscript, but it’s a good idea to mention that 
there’s additional uncertainty related to GIA in these GRACE estimates.  

Agreed. We have added a comment about this in the manuscript, when describing the intrinsic 
uncertainties of JPL mascons (Lines 206-212), and also a comment in the discussion (Lines 431-433). 

“While the mascons have been corrected for mass changes due to glacial isostatic adjustment (GIA) with 
the ICE6G-D model (Peltier et al., 2018), the intrinsic uncertainties of the JPL mascons do not represent the 
uncertainties from the GIA correction, which can be large depending on the region (Reager et al., 2016; 
Wouters et al., 2019). For example, the choice of the GIA model used for the correction could lead to 
uncertainties representing up to 19% of the signal in Antarctica, but less than 1% in Greenland (Blazquez et 
al., 2018). Given that estimating GIA uncertainties is in itself an open issue (Caron et al., 2018; Simon and 
Riva, 2020), we could not propagate full GIA uncertainties into the fingerprints.” 

“Our approach of quantifying this uncertainty is to some extent conservative, as it results in larger 
uncertainties than in previous studies (e.g., Horwath et al. (2021)). Nonetheless, we did assume 
independence of the different types of uncertainty, and did not propagate GIA uncertainties into our 
fingerprints, which could lead to even larger uncertainties ” 

https://doi.org/10.4121/16778794
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Figure 2 It looks like the glacier mass balance from the CSR and JPL mascons has been estimated by splitting 
up some of the mascons. This is a bit tricky: for some regions, the mass changes of the whole mascon are 
dominated by small glaciers, and taking a part of the mascon induces an error. The opposite also happens. 
I’d recommend to not split mascons into smaller pieces. See also GR5 for a possible way out.  

We followed the reviewer’s suggestion in GR5 for splitting up the mascons (see Author Response for GR5). 
We acknowledge that there might be errors introduced to the contributions by splitting up the mascons, 
but this is a known limitation inherent to GRACE resolution.   

L255: Just out of curiosity: does the UCI dataset show any mass gains in East Antarctica?  

Yes, the UCI dataset shows mass gains in East Antarctica, but they are very small. For details, the reviewer 
is referred to Rignot et al. (2019). 

L264: as a rule of thumb, the individual mascons from the JPL solution are all independent and agree more-
or- less with the spatial resolution of the GRACE measurements. For other mascons, like GSFC and CSR ones 
that have a much higher resolution, the individual mascons are not fully independent of each other.  

Indeed, the JPL mascons are defined on an equal-area of 3x3 degrees, while CSR and GSFC are defined o a 
1x1 degree cap. Considering the native resolution of GRACE observations of about 300km half-width at the 
equator, the JPL mascons will have independent solutions at each mascon centers, with uncorrelated 
errors, while the mascons with higher resolution will not be fully independent and is expected to contain 
spatially correlated errors. We have added a comment about the mascons resolution in section 2.1 (Lines 
95-102), when introducing the datasets used.  

“We use GRACE mass concentrations (mascons) over land as estimates of changes in AIS, GIS, glaciers and 
LWS. To avoid methodological biases, we use mascon solutions from two different processing centres: 
RL06 from Center for Spatial Resarch (CSR) (Save et al., 2016; Save, 2020) and RL06 v02 from Jet Propulsion 
Laboratory (JPL) (Watkins et al., 2015; Wiese et al., 2019) (Table 1). JPL and CSR mascons are provided on a 
0.5◦ and 0.25◦ lon-lat grid, respectively, but they actually are resampled from the native 3◦x3◦ and 1◦x1◦ 
equal-area grids (Save et al., 2016; Watkins et al., 2015). Considering the native resolution of GRACE 
observations of about 300km at the equator (Tapley et al., 2004), the JPL mascons should have independent 
solutions at each mascon centres, with uncorrelated errors, while the CSR mascons are not fully 
independent of each other and are expected to contain spatially correlated errors.” 

In this specific line where the reviewer made the comment, we actually wanted to highlight the spatial 
difference between GRACE observations and the IMBIE and UCI ones, despite the resolution of the mascon 
solution. Thus, we have rewritten as follows (Lines 296-298):  

“Over the ice sheets, for instance, IMBIE provides one time series for the entire Greenland Ice Sheet, which 
is subdivided into dynamic and surface mass balance changes, and the Antarctic Ice Sheet is divided into 
three drainage basins. GRACE products, on the other hand, have a native resolution of about 300-km at the 
equator (Tapley et al., 2004).” 
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Figure 4: This is a very interesting figure! I discovered a lot of intriguing phenomena when looking at it.  

Thanks  

Figure 5: also related to GR1. If you check the uncertainties listed in Table 1 from the IMBIE Antarctic paper, 
the reported uncertainties, which are about 50 Gt yr-1 for 5-year periods, seem to be much higher than 
reported here. This is probably related to the assumption of uncorrelated uncertainties. Using the 
rates+uncertainties procedure from GR1 might solve this difference.  

Using the ‘ensemble perturbation’ method, as suggested by the reviewer in GR1, we obtained higher 
intrinsic uncertainties than before, but they are still smaller than the ones reported in the IMBIE reports. 
This is because their reported uncertainties represent not only the intrinsic uncertainty, but also the 
temporal uncertainties. We have added a comment about this in the manuscript (Lines 317-319):  

“Note that these uncertainties are smaller than those originally reported in the IMBIE studies (Shepherd et 
al., 2018, 2020), which include not only intrinsic, ut also structural and temporal uncertainties.” 

L375: Check the paper from Humphrey and Gudmundsson (2019), who provide some centennial estimates 
of TWS changes.  

Thank you for the literature suggestion. Humphery and Gudmudsson (2019) discuss deseasonalized and 
detrended time series, and their work focuses on the validation of their variability dataset instead of the 
discussion of the results, so it actually can’t be used in our discussion of trends. However your suggestion 
did lead to another work by the same authors which was useful for the discussion here and is added to 
Section 4 (Lines 426-428).  

“Nonetheless, the LWS uncertainties related to the trend are still very high, suggesting that a period of 25 
years (1993-2016) might still be too short to solve the low frequency natural variability of LWS, particularly 
on (multi)-decadal timescales. Indeed, Humphrey et al. (2017) showed that removing the short-term 
climate-driven variability of the LWS signal yields in a more robust long-term (>10 years) trend, with 
reduced uncertainties.” 

L381: Antarctica Ice Sheet typo  

Corrected 

L429 Individuals typo  

Corrected 

 

 


