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Abstract. Anticipating risks related to climate extremes often relies on the quantification of large return levels (values exceeded
with small probability) from climate projection ensembles. Current approaches based on multi-model ensembles (MMEs)
usually estimate return levels separately for each ehain—climate simulation of the MME. By contrast, using MME obtained
with different combinations of general circulation model (GCM) and regional climate model (RCM), our approach estimates
return levels together from the past observations and all GCM-RCM pairs, considering both historical and future periods. The
proposed methodology seeks to provide estimates of projected return levels accounting for the variability of individual GCM-
RCM trajectories, with a robust quantification of uncertainties. To this aim, we introduce a flexible non-stationary generalized
extreme value (GEV) distribution that includes i) piecewise linear functions to model the changes in the three GEV parameters
i) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with
respect to the GEV distribution of the past observations. Our application focuses on snow load at 1500 m elevation for the 23
massifs of the French Alps;—which-is-of-major-interestfor-the-structural-design-ofroofs. Annual maxima are available for 20
adjusted GCM-RCM pairs from the EURO-CORDEX experiment, under the scenario RCP8.5. Our results show with a model-
as-truth experiment that at least two linear pieces should be considered for the piecewise linear functions. We also show, with a
split-sample experiment, that eight massifs should consider adjustment coefficients. These two experiments help us select the
GEV parameterizations for each massif. Finally, using these selected parameterizations, we find that the 50-year return level
of snow load is projected to decrease in all massifs, by -2.9 kN m~2 (-50%) on average between 1986-2005 and 2080-2099 at
1500 m elevation and RCP8.5. This paper extends te-climate-extremes-the recent idea to constrain climate projection ensembles

using past observations of climate extremes.

1 Introduction

Climate-modelsimulationis-ene-of The use of climate model simulations is the main scientific paradigms-paradigm to anticipate
extreme climate events. In particular, multimodel GCM-RCM ensembles are widely used to quantify the changes in climate
extremes and their uncertainties (HPEE;2649)(IPCC, 2021). General circulation models (GCMs) represent key processes of
the climate system relevant at the global scale, and provide input for regional climate models (RCMs) used to downscale and

refine the climate projections at the local to regional scale.
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Climate extremes are usually-often assessed within the statistical framework of extreme value theory (EVT), by focusing
either on annual maxima or on values exceeding a high threshold (Coles, 2001). EVT makes it possible to rebustly-estimate
return levels, i.e. extreme quantiles that occur on average once every 1’ years, where 7' is the corresponding return period.
Return levels play a key role in the design of structures (dams, protections, roofs) to withstand the effects of natural hazards
(floods, avalanches, wildfires, snow loads), see e.g. Rao and Hamed (2000); Eckert et al. (2008); Evin et al. (2018); Le Roux
et al. (2020).

Most approaches using EVT to study climate extremes from multi-model ensembles (MMESs) rely on stationary generalized
extreme value (GEV) distributions estimated separately on each ehain-climate simulation of the MME, i.e. with each ensemble
member (Kharin et al., 2007; Beniston et al., 2007). Specifically, for each ensemble member, annual maxima are assumed
stationary for two time shees-periods of 20/30 years: one in the historical period representing the late 20th century climate,
and one in the future period. For instance, Fowler et al. (2007) opted for two 30-year time steesperiods: 1961-1990 and
2071-2100, a 30-year time window corresponding to the usual duration which is used to describe the statistical properties
of a climate according to World Meteorological Organization (WMO) standards. Next, stationary 20/30-year return levels
are estimated for each time shiee-period with a GEV distribution. Finally, average changes, i.e. differences of return levels
between time stees-periods averaged on all ensemble members, are usually reported (Kharin et al., 2013; O’Gorman, 2014).
However, such approaches based on stationary GEV distributions have several drawbacks. First, the assumption of stationarity
for 20/30 consecutive annual maxima can be debatable, and the possibility of a trend within the 20/30 years time skees-periods
is often not checked (Kharin and Zwiers, 2004). Then, the choice to rely only on 20/30 maxima implies that the estimated GEV
parameters have large uncertainties due to the small number of values used. In this case, large return levels, e.g. 50-year (or
even larger) return periods which are usually considered to design structures (see e.g., Tab.1 of Cabrera et al., 2012), can be
highly uncertain.

Temporal non-stationary GEV approaches address these limitations by taking into account all the available annual maxima
for each ensemble member, i.e. all the historical and future annual maxima are fitted with a single statistical model (Kharin
and Zwiers, 2004). Such approaches combine a stationary random component (a fixed extreme value distribution) with non-
stationary deterministic functions that map each temporal covariate (such as the years or the global mean temperatures) to the
changing parameters of the distributionfMentanari-andIoutsoyiannis; 2044). Another advantage of temporal non-stationary
approaches is that they allow return levels to be estimated conditionally on each temporal covariate (Kharin et al., 2013).

A majority of temporal non-stationary approaches for MME:s rely on the GEV distributions estimated separately with each
ehain—climate simulation of the MME (Tab. 1), with some exceptions (Caires et al., 2006; Kysely et al., 2010; Roth et al.,
2014; Winter et al., 2017), and report return levels (conditionally on a given covariate) averaged on all ensemble members.
We believe that such approaches are sub-optimal because they estimate one non-stationary GEV distribution with each ehain

climate simulation of the MME, i.e. with roughly less than 200 maxima values, which often implies a simple parameterization

(linear) for the non-stationary functions (Tab. 1).

OurstudyfoHows-The present study introduces an alternative approach which relies on a temporal non-stationary GEV
distributions-fitted-together-on-model fitted to all ensemble members. This approach enables us to rebustly-quantify uncertain-
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ties using standard tools from non-stationary extreme value analysistAghaKeuchak-et-al52642). Such an approach has mainly
been proposed for initial condition ensembles (Tab. 1), i.e. ensemble members that consist of replicates from the same GCM-
RCM pair (or same GCM for GCM ensembles) simulated with different initial conditions. For initial condition ensembles,
this alternative approach estimates a single non-stationary distribution on all ensemble members by assuming that they are
independent and identically distributed (iid).

However, this alternative approach is inadequate for GCM-RCM ensembles with several GCMs because the iid assumption,
i.e. that all GCM-RCM pairs follow the same non-stationary distribution, is unlikely to hold in all the cases.

Our study fills this gap with a novel non-stationary extreme value approach inspired by the recent trend of statistical meth-

ods that constrain climate projections using past observations (Brunner et al., 2020). We propose to fit a non-stationary GEV
distribution togetherfrom-the-to past observations and all GCM-RCM pairs, without necessarily assuming that all GCM-
RCM pairs follow the same distribution. To this end, we introduce adjustment-coefficientsparameters (so-called adjustment
g\)/evf\ﬁg\lgg\sl for the location and scale parameters of the GEV distribution tefepfeseﬂkfhewmbt}&yef-ehmafe—&ajeeteﬂe&

that can account for systematic
differences between the different climate trajectories. Different parameterizations of these adjustment coefficients are tested in
order to describe the variability between the climate trajectories, the best parameterization being selected using split-sample
tests on past observations.

Besides, non-stationary GEV based approaches for climate projections ensembles usually consider linear functions for the
non-stationary functions, with the exception of Um et al. (2017) that uses nonlinear functions (Tab. 1). In this study, we extend

these approaches by considering piecewise linear functions for the non-stationary functions.

oac-We illustrate the

proposed methodology with an application to snow load data, which corresponds to the pressure exerted by accumulated snow
on the ground (proportional to the snow water equivalent)whieh-. The probabilistic assessment of ground snow load is of major
interest both-for-for the structural design of buildings (Croce et al., 2018), water resource management (Marty et al., 2017)and
for-the struetural-design-of buildings{Croce-etal2018):, or for the prevention of large-scale environmental or infrastructure
damages caused by snow storms (e.g. damages to forests, transportation networks, electricity networks). Since annual means
of snow loads are expected to decrease under future climate change, it could be expected that extreme snow load would also
decrease. However, in cold regions (high elevation regions for instance) extreme snowfall is expected to increase with climate
change (O’Gorman, 2014), and this increase of extreme snowfall can possibly lead to an increase of extreme snow load. This
application verifies if snow load extremes are expected to decrease in the French Alps, a quantification of these decreases being.
of prime interest to study compounds extremes, e.g. extreme snow load combined with extreme wind, or to adapt structures
standards, e.g. to decrease the constraints used to design new structures (Le Roux et al., 2020).
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Ensemble

Reference

Adjustment coefficients

Non-stationary

Extreme variable

members for the GEV parameters  functions for the
are fitted of ensemble members GEV parameters
Fowler et al. (2010) X Linear Precipitation
Hanel and Buishand (2011) X Linear Precipitation
Kharin et al. (2013) X Linear Temperature & Precipitation
Separately
Brown et al. (2014) v Linear Temperature & Rainfall
Um et al. (2017) X Nonlinear Precipitation
Tramblay and Somot (2018) X Linear Precipitation
Kharin and Zwiers (2004) X * Linear Temperature & Precipitation
Wang et al. (2004) X * Linear Significant wave height
Aalbers et al. (2018) X * Linear Precipitation
Together
Fix et al. (2018) X * Linear Precipitation
Wehner (2020) X Linear Temperature & Precipitation
Our approach v Piecewise linear ~ Snow Load

Table 1. Temporal non-stationary GEV based approaches for GCM ensembles and GCM-RCM ensembles. The symbol "*" means that the

ensemble is an initial condition ensemble, i.e. each ensemble member consists of the same GCM-RCM pair with different initialisation.

Section 2 presents our data, i.e. the 20 GCM-RCM pairs for RCP8.5 adjusted from EURO-CORDEX, and the S2M reanalysis

set as the reference observational dataset (Vernay et al., 2019, 2021). In Section 3, we detail our statistical methodology. Finally,

results, discussions and conclusions are introduced in Sects. 4, 5 and 6 respectively.
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2 Data

Our application reli

snow loads at 1500 m fer-elevation in the 23 massifs in-of the French Alps, i.e. between Lake Geneva to the north and the
Mediterranean Sea to the south (Fig. 1). This region, home to the largest ski areas-resorts in the world, is prone to snow-related
hazards such as avalanches (Favier et al., 2016; Dkengne Sielenou et al., 2021) which are heavily impacted by ongoing warming
(Eckert et al., 2013; Castebrunet et al., 2014). This study estimates potential changes in snow load (i.e. the pressure exerted by
the snow) hazard for a high emission scenario (RCP8.5) as a case study, although it could also be applied to other scenarios
and variables. Snow load can be defined as the gravitational acceleration (g = 9.81 m s”?) times the snow water equivalent (in
kg m™?) and has often the units of KN/m”. Snow water equivalent corresponds to the mass of snow per unit surface area, which
also corresponds to the observed depth of accumulated snow (in m) multiplied by the snow density (in kg m~?). Following the
block maxima approach to estimate the hazard of snow load (Sect. 3.1), we compute annual maxima of daily snow load at 1500
m centred on the winter season, €.g. an annual maximum for the year 1959 is the maximum from the 1st of August 1958 to the
31st of July 1959 (Fig. 1).
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Figure 1. (a) Topography and delineation for the 23 massifs of the French Alps, e.g. the Vanoise massif corresponds to the purple region

(Durand et al., 2009). (b) Time series of annual maxima of daily snow load from 1951 to 2100 for the Vanoise massif at 1500 m elevation.

Annual maxima from the S2M reanalysis (1959-2019) are displayed in black, while annual maxima from the 20 adjusted GCM-RCM pairs

(1951-2100) under an historical and a high emission scenario (RCP8.5) are displayed with brighter colors.
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The S2M reanalysis (Durand et al., 2009; Vernay et al., 2019, 2021) combines large scale reanalyses and forecasts with
in situ meteorological observations to provide daily values of snow load from 1959 to 2019. The S2M reanalysis has been
both evaluated with in situ temperature and precipitation observations (Durand et al., 2009) and with various snow depth
observations (Vionnet et al., 2016; Quéno et al., 2016; Revuelto et al., 2018; Vionnet et al., 2019; Vernay et al., 2021). The
S2M reanalysis focuses on the elevation dependency of meteorological conditions. Indeed, this reanalysis is not produced on a

regular grid, but provides data for each massif every 300 m of elevation between 600 m and 3600 m.

Quantile-mapping-method ADAMONT(Verfaillie-et-al52017)-ADAMONT (Verfaillie et al., 2017) is a bias-correction and
downscaling method which aims at adjusting daily climate projections from a regional climate model against a regional

reanalysis of hourly meteorological conditions using quantile mapping. This method was used to adjust the EURO-CORDEX
dataset (Jacob et al., 2014) against the S2M reanalysis to provide daily values of snow load that spans historical (1951-2005)

and future (2006-2100) time periods. Specifically, the EURO-CORDEX dataset consists of RCMs forced over Europe by
GCMs from the CMIP5 ensemble (Taylor et al., 2012) for the historical and several representative concentration pathways
(RCP) scenarios (Moss et al., 2010). We focus on the RCP8.5 emission scenario, and consider a total of 20 GCM-RCM pairs,
with 6 GCMs and 11 RCMs (see Supplement, Tab. S1). Finally, every 300 m of elevation for each massif, adjusted EURO-
CORDEX meteorological data are used as input to €roets-to-provide-snow cover model Crocus (Vionnet et al., 2012). This
provides estimates of the time evolution of the snow cover (Verfaillie et al., 2018), enabling us to compute the maximum annual
value of snow load at 1500 m elevation. For simplicity, we often refer to the S2M reanalysis as our observation reference. We
note that we discard the two most southern massifs because many projected annual maxima are equal to zero.

The anomaly of global mean surface temperature (GMST) w.r.t. the pre-industrial period (1850-1900) is chosen as the tem-
poral covariate for our statistical methodology. In practice, we smooth this anomaly with cubic splines to obtain a covariate
that does not depend on the internal variability of GMST (Fig. 2). For each GCM-RCM pair we rely on the GMST correspond-
ing GCM as covariate, while we rely on GMST from HadCRUTS5 (Morice et al., 2021) as covariate for the observations. For
simplicity, we refer to +1 degree-°C of smoothed anomaly of GMST as +1 degree of global warming.
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Figure 2. Raw output (dotted lines) and smoothed output (plain lines) for the anomaly of global mean annual temperature with respect to
industrial levels (1850-1900). For the 6 GCMs, we show the anomaly of global mean surface temperature using historical emissions until

2005, and projected emissions (RCP8.5). Years correspond to the year centered on winter.

3 Statistical methodology
3.1 Generalized extreme value distribution

Following the block maxima approach of extreme value theory (Coles, 2001), we model annual maxima with the GEV distribu-

tion. Indeedtheoretically;-as-, similarly to the central limit theorem meotivates-asymptotically-sample-means-medeling-with-the
that motivates to model means obtained from different samples using a normal distribution, the Fisher—Tippett—Gnedenko the-

orem (Fisher and Tippett, 1928; Gnedenko, 1943) encourages asymptotically-sample-maxima-medeling-with-to model maxima
using the GEV distribution. In practice, if Y represents an annual maximum, we-can-assume-that-a natural choice to model the

distribution of Y is Y ~ GEV(u, 0, &), which implies that:

_1
exp[—(1+E&%E), ]if £ # 0 and where u denotes max (u,0),
exp [—exp (— L) if =0,

[ea

PY <y)= ey

where the three parameters are: the location p, the scale o > 0, and the shape £. Three subfamilies of distribution (reversed

Weibull, Gumbel, Fréchet) can be derived depending on the sign of the shape parameter (£ < 0, £ =0, £ > 0) respectively.



145 Due-to-these- theoreticaljustificationsln theory, the GEV distribution
is adequate when maxima are computed over blocks of infinite size. In practice, the GEV distribution is usually applied to
annual maximal and has been shown to provide reliable estimates of return levels in many hydrometeorological applications
(Coles, 2001; Katz et al., 2002; Cooley, 2012; Papalexiou and Koutsoyiannis, 2013). The T-year return level, which is defined

as a daily value y, exceeded each year with probability p = %, corresponds to the 1 — p quantile of the GEV distribution
150 P(Y <y,)=1-pery,=p—¢[l—(—log(l— p))~¢]. In this study, we set p = Z5 as it corresponds to the 50-year return
period that is widely used for the design working life of building (Cabrera et al., 2012) notably for the building standard against

snow load (Croce et al., 2019).
3.2 Non-stationary distribution

Let Y denote an observed annual maximum for the year ¢ between 1959 and 2019, and T represent the smoothed anomaly
155 of global mean surface temperature (GMST) from HadCRUTS5 for the same year ¢ (Sect. 2). We rely on a non-stationary
distribution where each GEV parameter is a piecewise linear function of 7', the smoothed anomaly of GMST. We note that we

rely on a log link function for the scale parameter to ease the numerical optimization.

w(T) = o+ 21y i X (T = ki) 4,
Y0 ~ GEV(u(T7™), 0 (T7™),&(T7™))  with  logo(T) =00+ S0, 03 x (T — ki), 2)
&(T) =&+ & x (T — k)4,

where 0 is a-vectorofecoefficientsthe vector of parameters

160 1 < L <4 corresponds to the number of linear pieces x; = Tyin + (i_l)x(i—m“_T‘“‘"), and T, and Th.« are the minimum and

., L} for the piecewise-linear functions p(.),o(.),&(.),

maximum smoothed anomaly of GMST for the period 1951-2100 (Fig. 2). In other words, #oy—=#+r=rFKz2,..., 57, are fixed and
equally spaced between T, and Ti.x and correspond to the L — 1 anomalies of smoothed GMST where the line breaks, i.e.
where the slope of the piecewise linear functions changes.

Le{—}tpu&For a GCM-RCM pair k between 1 and 20, let Y,* represent an annual maximum of the GEM-RCM-pairfor
165 the year ¢ between 1951 and 2100, and f“#“lt’i represent the smoothed anomaly of global-mean-temperature-GMST (Sect.

2) for the GEM-of- GEM-REMpair-k(with-k-betweent-and-20)—corresponding GCM.

VP EE|© ~ GEV (T, GEMP E REMPEE) iy, o (T, GEMP E REMITEE )+ G (TMEF)), (3)

where the

; . , 7 _GCN ,
20 denotes the set of parameters € and of additional parameters /i;, and 7, and where £(.) is given in Eq. 2. For-the206-The
170 parameters fi; and 0y correspond to different adjustment coefficients defined in Table 2. For the K = 20 GCM-RCM pairs,

we-consider-adjustmenteoefficients-these adjustment coefficients are considered for the location and scale parameters that-and
aim at adjusting the distribution of the GCM-RCM pairsw-:t- istributi 3 3 RS i i

t )




Brown et al. (2014), we assume that these adjustment coefficients are constant, i.e. the same for historical and future climates.
175 We consider five parameterizations: zero adjustment coefficients, one adjustment coefficient for all GCM-RCM pairs, one for
each GCM, one for each RCM, and one for each GCM-RCM pairtFab—2)—Fetewing Brown-etal (2644 )-we-assume-that-,
Figure 3 illustrates this concept for a fictive ensemble composed of 4 different GCM/RCM pairs with 2 different GCMs and 2
different RCMs. The right column shows how these adjustment coefficients ¢ istor
ehimatesimprove the agreement between the different climate simulations with respect to the observations by removing these
180  first-order discrepancies. Obviously, the parameterization with one additional adjustment coefficient for each GCM-RCM pair
leads to a better agreement, but at the cost of a much higher number of parameters.
In—Table-2;—we-show-Finally, the size of the ¥ - tents—6—+
m&%m%wmmmmmmmmwmm
for the intercepts (10,00,%0), 3 % L parameters for the piecewise linear functions describing the temporal evolution of the 3
185 GEV parameter (see Eqg. 2), and .S parameters corresponding to the linearpieces-coefficients;-and-the-adjustment coefficients
(see Table 2).
We did not consider adjustment coefficients on the shape parameter because it sometimes leads to prediction failures. This

situation can happen when £(1') < 0, which means that the predictive distribution has an upper bound, and when some future

annual maxima lies above this upper bound.

P )

Parameterization of the Adjustment coefficient for a pair k& Size-of-the-veetorNumber of adjustment

adjustment coefficients EF-GEMEREM Iy, logo(T-GEM-REM;)-G), | ofcoefficients-O-coefficients S

Zero EEy Dz 330 LQ

One for all GCM-RCM pairs | {4 ——ptarfi_ lego{F)—+oard. 33422

One for each GCM I toomi g leg o () +ocom g BH3xL1-2xFHGEMs# GCMs

One for each RCM ) —prev by togo{ ) +orRem; Ty B+3xL+-2xH#REMs# RCMs

One for each GCM-RCM pair | #(F)—+pioovrrewjly . toge(T)+ooommrem 0k | 3+3F2xFHGEM-REM-pairs#£ GCM-RCM pairs

Table 2. The five parameterizations of the adjustment coefficients fiy _and &4 considered for the location and scale parametersef-ensemble

members, respectively. For-each-parameterizationWhen there is only one coefficient for all GCM-RCM pairs k, we-detail-the-non-stationary
fanetionsfiy = 1 and G = & for any pair k. &—represents-When there is one coefficient per GCM (respectively per RCM), i, = i, and
0 iy and 5 = 0,), where g and r are subscripts referring to the aumber-GCM and RCM of tinear-piecesthe pair

=a
Wm “#'means—The notation # refers to the number of “elements for the corresponding set.

190 3.3 Maximum likelihood estimation

For each massif, a temporal non-stationary GEV distribution, parameterized by a vector of coefficients 80, is estimated using

1 air | air 20 air 20
the past observations and all GCM-RCM pairs. Let =905 /90 abar L___pbiir L pard0 20y gy — (9080 S oyt

represent a vector with all annual maxima of a given massif, i.e. annual maxima from the observations and from the 26-K = 20

GCM-RCM pairs (Sect. 2). The maximum likelihood method makes it possible to estimate the most likely coefficients @@
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(a) location parameter p(T) (b) location parameter
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Figure 3. Illustration of the evolution of the location parameter 1(7") on the y-axis as a function of the global warming 7" on the x-axis for

the different options of adjustment coefficients, for a fictive ensemble composed of 4 different GCM/RCM pairs with 2 different GCMs and
2 different RCMs. (a) location parameter u (1) if the GEV model was fitted individually to each trajectory. (b) location parameter u(7") + fix,

using adjustment coefficients.

with y. We obtain the maximum likelihood estimator 61@\ together from the past observations and all GCM-RCM pairs by

maximizing the likelihood #{y{8)p(y|@):

R 2019 2100 20 p(y0) = 2

© = argmaxpep(y|©) VXBELCAQ(ZA@) = H P(Y5™]0) X 20 GEM-RCM pairs H HP(yf|@)2o GCM-RCM pairs, Where- with ; o
t=1959 t=1951 k=1 T p(yi|©) = =
| S S—

past observations

“)

10



3.4 Evaluation experiments

Our first evaluation experiment is a model-as-truth experiment, a.k.a. perfect model experiment, which evaluates long-term

200 predictive performances using future projections (Abramowitz et al., 2019). The observations from the S2M reanalysis (Sect.
2) are discarded for this experiment. Instead, ene-a simulation from a GCM-RCM pair is chosen as pseudo-observationsfer-the
calibration-of-thenon-stationary-GEV-distribution. The calibration set contains the "historical" data (1959-2019) of the GCM-
RCM pair chosen as pseudo-observations, and the 19 remaining GCM-RCM pairs (1951-2100). The predictive performance is
evaluated on an evaluation set that contains the future data (2020-2100) of the GCM-RCM pair chosen as pseudo-observations.

205 In detail, each GCM-RCM pair is successively regarded as being pseudo-observations. Thus, a model-as-truth experiment can
be roughly regarded as a leave-one-out cross-validation w.r.t. to GCM-RCM pairs. We note that for GCM-RCM pairs with the
GCM HadGEM2-ES starts in 1982, while the pairs with the RCM RCAA4 starts in 1971. Therefore, we successively regard as
pseudo-observations the 12 GCM-RCM pairs (out of 20) that start before 1959, i.e. that have annual maxima for the period
1959-2019.

210 Our second evaluation experiment is a split-sample experiment, a.k.a. calibration—validation experiment, which enables us to
estimate the short-term predictive performance of each parameterization. Specifically, for the calibration of the non-stationary
GEV distribution, we rely on the oldest observations from the S2M reanalysis (Sect. 2) and all the GCM-RCM pairs. We
validate the predictive performance on the most recent observations. For instance, if we choose to keep 80% of the observations
for the calibration (1959-2007), then the remaining 20% of the observations are held-out for the evaluation (2008-2019).

215 In these two evaluation experiments for GCM-RCM ensembles, we calculate the mean logarithmic score (LS) on the eval-

uation set, the lower the better, to assess the out-of-sample skill of a non-stationary distribution parameterized with 8—the

arameter set © obtained with the calibration set. The logarithmic score is a proper score that can be used to evaluate the
redictive performance of the fitted model (Gneiting et al., 2007) For N held-out observations yg};;rl ,y;!g;r , we have that

obs| @) — OP"<y(©

220 3.5 Workflow

First, for a set of past and projected annual maxima, we select one parameterization of the GEV distribution (number of
linear pieces, parameterization of the adjustment coefficients) using a two-step selection method: i) we select the number of
linear pieces with a model-as-truth experiment using zero adjustment coefficients for the GEV parameters ii) we select the
parameterization of the adjustment coefficients with a-three split-sample experiment-experiments where the calibration set
225 is composed of 60%,70%, and 80% of the observations, using the number of linear pieces selected in the model-as-truth
experiment. Then, we study trends in the 50-year return level of snow load. For each massif we rely on the parameterization of
the GEV distribution selected using the two-step selection method. We report RL50, the 50-year return level that corresponds to
Eq. 2, i.e. to the 50-year return level of the observations and their adjusted projections w.r.t. GCM-RCM pairs. In other words,
if the selected parameterization has adjustment coefficients, we do not add these coefficients to compute RL50is-computed
230 withoutthese-adjustmentecoefficients-sinee-using-, since adding these coefficients would provide the 50-year return level of the
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GCM-RCM pairs. The 90% uneertainty-confidence interval is computed using a semi-parametric bootstrap resampling method
adapted to non-stationary extreme value distributions (Appendix A). For every anomaly of global mean temperature 7', we

have that the 56-return-50-year return level RL50(T) is:

RLSO(T) =y 1 (T) = u(T) — ‘;g)) [1 _g( —log(1— %))log (1- %))%m] )
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235 4 Results
4.1 Selection of one parameterization of the GEV distribution for each massif

In Figure 4a, for each massif, we illustrate the selected parameterization of the GEV distribution (number of linear pieces,

parameterization of the adjustment coefficients). Next,-we-detail-the-design-of-our-Among the 23 massifs, Figs. 4b-c highlights
the preferred parameterizations after the application of the two-step selection method.

90

801 (b)

Percentage of massifs (%)
N w B (% o ~
o o o o o o
!

—
o
L

o
I

1 2 3 4
Number of linear pieces that minimizes the mean log score

60 - (C)

50 4

40 1

Percentage of massifs (%)

Zero adjustment coefficient

One adjustment coefficient for all GCM-RCM pairs
One adjustment coefficient for each GCM

One adjustment coefficient for each RCM

One adjustment coefficient for each GCM-RCM pair

10 A

Parameterization that minimizes the mean log score

Figure 4. (a) Map of the selected parameterization of the GEV distribution at 1500 m. The selected parameterizations of the adjustment
coefficients are illustrated with colors, while the selected numbers of linear pieces are written on the map. (b) Distribution of the selected

number of linear pieces. (¢) Distribution of the selected parameterization of the adjustment coefficients.

240 In the first step, we select the number of linear pieces that minimizes the mean logarithmic score of a model-as-truth ex-
periment using zero adjustment coefficients for the GEV parameters. The mean logarithmic score is averaged on the held-out
pseudo-observations (2020-2100) for each of the 12 GCM-RCM pairs (which are set as pseudo-observations, see Sect. 4.1).
We find that the parameterization with three linear pieces minimizes the mean logarithmic score for 80% of the massifs, see
Fig. 4b. The parameterization with two linear pieces is selected for one massif, and the one with four linear pieces is selected

245 for two massifs. Thus, at least two linear pieces are selected for the piecewise linear functions.
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In the second step, we select the parameterization of the adjustment coefficients (Tab. 2) that minimizes the mean logarithmic
score for a split-sample experiment using the number of linear pieces selected in the model-as-truth experiment. The mean
logarithmic score is averaged on the evaluation observations for three split-sample experiments, where the calibration set
corresponds to 60%, 70%, and 80% of the observations. Indeed, we observe that the split-sample experiment is quite sensitive
to the size of the calibration set. Thus, we choose to average the mean logarithmic score on three split-sample experiments to
obtain more robust results. We find that the parameterization with zero adjustment coefficients minimizes the mean logarithmic
score for two thirds of the massifs, see Fig. 4c. Otherwise, the parameterization with one adjustment coefficient for all GCM-
RCM pairs is selected for two massifs, the parameterization with one adjustment coefficient for each GCM is selected for two
massifs, the parameterization with one adjustment coefficient for each RCM is selected for one massif, and the parameterization
with one adjustment coefficient for each GCM-RCM pair is selected for three massifs. Thus, for two thirds of the massifs,
adjustment coefficients do not lead to a better predictive performance on the validation periods. This is presumably due to the
fact that GCM-RCM pairs have already been statistically adjusted.

For a detailed analysis of the mean logarithmic scores of each parameterization for each massif, see Supplement, Part C.
4.2 Trends in the 50-year return level of snow load

In this section, for each massif we rely on the parameterization of the GEV distribution selected in Sect. 4.1.
In Figure 5, we illustrate changes in the 50-year return level between +1 and +4degrees—°C of global warming for four
massifs where the selected parameterization is composed of three linear pieces with one adjustment coefficient for all GCM-

RCM pairs (Fig. 5a), one coefficient for each GCM (Fig. 5b), one coefficient for each RCM (Fig. 5c), or one coefficient

for each REM-REM-GCM-RCM pair (Fig. 5d). In addition, we also perform individual fitting to each GCM/RCM pair, the

corresponding return levels being shown with thin gray lines. Note that these estimates are shown for illustrative purposes onl
and do not contribute to the final return level estimates indicated with warm colors.

All 50-year return levels (for the non-stationary GEV distribution fitted on the observations, on each GCM-RCM pair, and
on the observations and all GCM-RCM pairs) are decreasing with the anomaly of global mean temperature. We observe that
RL50 with adjustment coefficients (shown in a warm color) is closer to the 50-year return level of the observation (in dark grey)
than RL50 without adjustment coefficients (in cyan). This figure also shows how adjustment coefficients adjust the distribution
toward the distribution of the observations by illustrating the probability density functions (with and without adjustment) at
+1 degree of global warming. Nevertheless, we note that adjusted distributions do not perfectly match the distributions of the
observation, which entails that the adjusted RL50 do not match the 50-year return levels of the observation. This is probably
because we do not consider adjustment coefficients on the shape parameter. For instance, in Figure Sc, we observe that the shape
parameter is negative for the distribution of the observation (because the density has an upper bound), while the shape parameter
is positive for the adjusted distribution in orange. We choose to not consider adjustment adjustmentfor the shape parameter
because it enables us to constrain predictive distributions on the future period, and to avoid prediction failures (Sect. 5.2).
Besides, the 90% uneertainty-confidence interval of RL50 is computed using a semi-parametric bootstrap resampling method
adapted to non-stationary extreme distributions (Appendix A). We note that ureertainty-confidence intervals are widening at
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280 the nodes of the piecewise linear functions, i.e. at the anomaly of global temperature where the slope of the GEV parameters
changes (x; in Eq. 2). This is presumably due to the fact that the variability of the three GEV parameters is more important at

the nodes than between them.
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Figure 5. Estimated 50-year return levels between +1 and +4degrees—C of global warming at elevation 1500 m under RCP8.5 for four
massifs with different preferred parameterizations for providing the adjustment coefficients: (a) one coefficient for all GCM-RCM pairs (b)

one coefficient for each GCM, (c) one coefficient for each RCM, and (d) one coefficient for each REM-REM-GCM-RCM pair. RL50 (Eq. 5)

without adjustment coefficients are shown in cyan, and with adjustment coefficients in a warm color. 90% uneertainty-confidence intervals
are shaded. The 50-year return levels computed for each GCM-RCM pair (using for each GCM-RCM pair a non-stationary GEV distribution
with the selected number of linear pieces) and for the observation (using a non-stationary GEV distribution with one linear piece and a
constant shape parameter) are displayed with thin gray lines and thick dark lines, respectively. The probability density functions at +1, +2

and +3degrees-°C exemplify how adjustment coefficients can adjust the distribution.

Figure 6 illustrates RL50 for the 23 massifs of the French Alps at 1500 m elevation for +1, +2, +3, and +4degrees°C of

global warming, i.e. of smoothed anomaly of global mean surface temperature. The return levels are larger in the northwest
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285 of the French Alps, and this pattern persists with global warming. Over the whole French Alps, the average RL50 equals 5.7
kN m~2 at +1degrees-"C of global warming, and 3.3 kN m~ 2 at +4degrees”C.

+1°C +2°C

50-year return levels at +1°C (kN m~?)
50-year return levels at +2°C (kN m~?)

(=] [ee] o
(=)} [ee] o

50-year return levels at +3°C (kN m~?)
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T
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50-year return levels at +4°C (kN m~2)

0 0

Figure 6. 50-year return levels (RL50) of snow load at 1500 m for +1, +2, +3, and +4degrees-"C of global warming under RCP8.5.

Figure 7 details the relative change of RL50 for +2, +3, and +4degrees-°C of global warming at 1500 m elevation w.r.t.
+1degrees°C, which corresponds roughly to the current level of global warming above industrial levels (see Fig. 2). Over the
French Alps, the average change of RL50 is equal to —0.6 kN m~2 (—10%), —1.5 kN m 2 (—27%), —2.5 kN m~2 (—43%) for

290 +2, +3, and +4degrees—°C of global warming, respectively. These relative changes are different for other elevations, a smaller
relative decrease being obtained at 2100 m of elevation, and a larger relative decrease at 900 m of elevation (see Supplement,

Part B). This result is consistent with the literature (Fig. 2.3 of IPEE-20+9Hock et al. 2022). At 1500 m, the relative decrease is
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less-impertantlower in the center east side of the French Alps. For instance, for +4degrees-°C of global warming, the relative
decrease roughly ranges between —33% and —38% in the center east side, while it ranges between —40% and —54% in the

rest of the French Alps.

+2°C/+1°C +3°C/+1°C +4°C/+1°C
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relative changes of 50-year return levels between +1°C and +3°C (%)

relative changes of 50-year return levels between +1°C and +4°C (%)

Figure 7. Relative changes in 50-year return levels (RL50) of snow load at 1500 m for +2, +3, and +4degrees-°C of global warming under
the scenario RCP8.5 w.r.t +1degrees-°C of global warming.

For each massif, it is also possible to compute the average 50-year return level for several time skieesperiods: 1986-2005,
2031-2050, and 2080-2099. For instance, for the time shee-period 1986-2005, the average return level equals the average of
the return level found for the years 1986, 1987, ..., 2005. In order to compute the return level of a given year, e.g. 1986, we
rely on the relationship between the anomaly of global mean surface temperature (GMST) and the years (Fig. 2). Specifically,
we rely on the anomaly of GMST averaged on the six GCMs to compute this relationship. Following this method, we find that
on average the 50-year return level is projected to decrease by -0.8 kN m ™2 (-14%) between 1986-2005 and 2031-2050 and by
2.9 kN m~? (-50%) between 1986-2005 and 2080-2099 under the scenario RCP8.5. Note that this method could also provide

the rate of change of other RCPs for various lead times, using their corresponding global temperature values.

5 Discussion
5.1 Comparison of our results with the projected trends at the scale of the European Alps

In Table 3, we compare our results with the Fig. 2.36f HPEE2649)-! of Hock et al. (2022) that provides the trends in winter
mean snow water equivalent (SWE) at the scale of the European Alps between 1000 m and 2000 m under the scenario RCP8.5.

Thttps://www.ipcc.ch/srocc/chapter/chapter-2/2- lintroduction/ipce-srocc-ch_2_3/
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As detailed in Sect. 2, the snow load is proportional to the SWE, as it is equal to the SWE times the gravitational acceleration

(g2=9.81ms™?).

Source Variable Indicator Location Reference period  Future period  Trend
HPEe2649)-Hock et al. (2022) SWE Mean (Dec to May) European Alps, 1000-1500 m 1986-2005 2031-2050 A2 -35
2080-2099 ~ -75

European Alps, 1500-2000 m 2031-2050 R -25

2080-2099 ~ -7C

Our results Snow Load  Mean annual maxima French Alps, 1500 m 1986-2005 2031-2050 -30%
2080-2099 -69%

50-year return level French Alps, 1500 m 1986-2005 2031-2050 -14%

2080-2099 -50%

Table 3. Projected trends in snow water equivalent (SWE), and snow load under the scenario RCP8.5 using the EURO-CORDEX experiment.
In the first four rows of the Table, we specify that the result is approximated because the trend was read from the Figure 2.3. of HPCE2619)

For the 23 massifs, the average return level for several time skees-periods 1986-2005, 2031-2050, 2080-2099 can be obtained
as explained in Sect. 4.2. Likewise, with a similar methodology, the mean annual maxima can be expressed as the expectation
of the non-stationary GEV distribution averaged for each year of the time shieesperiods. We find a decrease of mean annual
maxima of snow load by -30% and -69% for the future periods 2031-2050 and 2080-2099 compared to the reference period
1986-2005.

Figure 2.3 of BPEC(2049)Hock et al. (2022) relies on the raw (without adjustment) EURO-CORDEX data. They also find
decreasing trends. For instance, between 1500 m and 2000 m of elevation, the mean winter SWE (proportional to the mean
winter snow load) is expected to approximately decrease by -25% and -70% for the periods 2031-2050 and 2080-2099, re-
spectively (Tab. 3). We observe that our mean annual maxima of snow load has a decreasing rate comparable to the decreasing
rate of the mean value of snow load. These comparable rates may stem from the fact that i) both approaches rely (directly or
indirectly) on the EURO-CORDEX data, ii) the annual maxima of snow load results from an accumulation during the winter
(Dec to May), which implies that we can expect that the mean value will roughly decrease with the same rate as the mean

annual maxima.
5.2 Methodological choices, assumptions and limitations

For the non-stationarity of the GEV parameters, we choose piecewise linear functions because they can approximate more
complex functions with few parameters. This makes our methodology widely applicable. One limitation is that the nodes of
the piecewise linear functions are fixed. Yet, we are confident that these functions are well-estimated owing to the high amount
of maxima: each of the 20-K = 20 GCM-RCM pairs provides more than 100 maxima. Otherwise, we rely on the anomaly of

global mean temperature as covariate (Sect. 2), like a majority of references cited in Table 1. Indeed, this anomaly is often
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thought as a good proxy to measure the level of climate change (Fix et al., 2018) which helps strengthen the global response
to this threat (Masson-Delmotte et al., 2018). We choose to focus on the scenario RCP8.5 to have the broadest spectrum
of potential changes for the 50-year return level of snow load. Also, to obtain Eq. 4 we assume that all annual maxima are
conditionally independent given the vector of parameters 8-© which is a classical hypothesis. Following the principle of
parsimony, we assume that the adjustment coefficients are constant, i.e. the same for historical and future climates. Besides,
as mentioned in Section 3.2, we did not consider adjustment coefficients for the shape parameter because it sometimes leads
to prediction failure, i.e. the predictive distribution gives a null probability to some future annual maxima. It can happen when

T) < 0, which means that the predictive distribution has an upper bound, and when some future annual maxima lies above

this upper bound. This illustrates the trade-off between i) in

observations and ii) having assumptions that help to constrain the predictive distribution on the future period.

For the two-step selection method, we first rely on a model-as-truth experiment to select the number of linear pieces. It
assesses the optimal number of linear pieces to predict annual maxima of the pseudo-observations for the evaluation set (2020-
2100), i.e. to find a good trade-off between underfitting and overfitting for the calibration set. In this first step, adjustment
coefficients are not considered, such that this experiment does not depend on a specific parameterization.

Then, the best parameterization of the adjustment coefficients is selected with a split-sample experiment. It assesses whether
applying adjustment coefficients helps to predict observations of the evaluation set, i.e. whether it is reasonable to assume
that the observations do not follow the same distribution as the GCM-RCM pairs. The evaluation score is average for three
split-sample experiments where the evaluation set corresponds to the last 40%, 30%, and 20% of the observations (Sect. 4.1).
Thus, evaluation sets of the three split-sample experiments contain 24, 17, 12 annual maxima, respectively, which is a limited

amount to-rebustly-of information to select the best parameterization of the adjustment coefficients. As shown in Fig. 4, it

tends to favor the most parsimonious parameterization with no adjustment coefficient. Observed maxima have also a limited
effect on the estimated parameters since one observed maxima has the same weight than a maxima from a climate model in
the likelihood (4). As models are fitted to 61 observed maxima and 20 x_150 maxima from the different climate models, the
selected non-stationary models mostly represent the distribution of the maxima simulated by the climate models. However,
it can also be argued that 61 years of past observations has a limited predictive power for long-term horizons where the
different trajectories shown by the climate projections can possibly show a great variety of evolution after the observed period.
As a comparison, the recent study by Ribes et al. (2021) relies on 170 years of past observations to constrain future climate
projections at the global scale. In addition, the methodology proposed in Ribes et al. (2021) has been shown to perform well on

temperature projections, but the application to other surface variables (e.g. precipitation, snowfall) needs to be demonstrated.
The 90% uneertainty-confidence intervals of return levels (Fig. 5) account both for the sampling uncertainty (Appendix A)
and the climate model uncertainty (distributions are fitted together from the past observations and all GCM-RCM pairs). In
contrast, approaches that estimate return levels separately for each ensemble member usually do not account for the sampling
uncertainty, i.e. the sampling uncertainty of return levels estimated on each ensemble, even if this uncertainty can be large

because return levels are estimated with only one ensemble member. One limitation of our approach is that, contrary to the
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climatological expectations, the width of uneertainty-confidence intervals does not increase with global warming (Fig. 5). This

is presumably a consequence of assuming constant adjustment coefficients.

The goodness-of-fit of the selected models has been tested with the application of the Anderson-Darling test (see Appendix
A) to each GCM-RCM pair separately and the observations, for each massif. The test is rejected for 20% of the 483 cases

at a significance level of 5% (23 massifs x 21 time series). This relatively high number seems to be mainly explained by the

small values reached at the end of the century for many GCM-RCM runs. Indeed, the same tests applied at an elevation of
2700 m show a much smaller percentage of rejections (7%) and larger p-values. The inadequacy of the selected GEV models
to represent these small values can be related to the high proportion of zero snow load values at the end of the century. In these
cases, as annual maxima represent maxima of a limited number of positive values, the asymptotic nature of the extreme value
theory might not be respected. One alternative could be to consider larger block sizes (maxima over several years). However,
smaller sample sizes would lead to more uncertain parameter estimates. The application of extreme value models to bounded
variables thus remains a substantial challenge, especially in a context of climate change where this issue only affects a small
part of the dataset.

5.3 Related works

First, our methodology based on adjustment coefficients can be seen as an extension of Brown et al. (2014), which estimates
non-stationary GEV distribution simultaneously with both observations and a single GCM-RCM pair, and introduces constant
bias terms for each GEV parameter. There also exists some links with a debiasing method proposed for annual maxima from
GCM-RCM projections (Fontolan et al., 2019). For the location parameter we consider additive adjustment coefficients that can
be seen as bias terms, while the adjustment coefficients of the scale parameter that are multiplicative (due to the log link func-
tion) can be viewed as bias correction factors (Hosseinzadehtalaei et al., 2021). In this paper, we choose the name "adjustment
coefficients" because we introduce them to improve the statistical adjustments. Our idea to add adjustment coefficients for each
GCM/RCM or GCM-RCM pairs into the non-stationary extreme value distributions (Tab. 2) comes from the ANOVA frame-
work, which can be applied to partition the uncertainty of GCM-RCM projections by identifying GCM/RCM main effects, or
GCM/RCM interactions (Hawkins—< - e s Hawkins and Sutton, 2009; Evin et al., 2019, 2021).
Then, our approach based on piecewise linear functions for the non-stationarity of the GEV parameters can be viewed as
using linear splines. In the literature, there exists many extreme value theory approaches using splines. For instance, linear
splines have been applied to model the temporal non-stationarity (Wilcox et al., 2018), while cubic splines are often considered

to model spatial extremes (Chavez-Demoulin and Davison, 2005; Gaume et al., 2013).

6 Conclusions and outlooks

Following the recent trend of statistical methods that constrain climate projections using past observations (Brunner-et-al52020)

Brunner et al., 2020; Ribes et al., 2021), we propose a novel non-stationary-extreme-valae-approach for GCM-RCM ensem-
bles that estimates—a-aims at fitting a single non-stationary GEV-distribution-from-both-the-generalized extreme value (GEV
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distribution to past observations and al-to the ensemble of GCM-RCM pairs-togetherprojections. Specifically, we rely on a
flexible-non-stationary generalized-extreme-value(GEV—H-GEYV distribution with i) piecewise linear functions to model the
changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to—adjust-the-GEV

Mo e e e e e e s e s e v.e-
the GEV model is adequate for the climate projections and the past observations up to systematic shifts for these two GEV
arameters. This wide set of GEV models aims at providing a more flexible framework. In particular, piecewise linear functions

can represent many possible future changes of the GEV parameters, and include linear trends as special cases.
In order to select ene-the best parameterization of the GEV-distributionnon-stationary GEV model (number of linear pieces,

parameterization of the adjustment coefficients) we design a two-step selection procedure based on two evaluation experi-

ments for GCM-RCM ensembles: a model-as-truth experiment and a split-sample experiment. The model-as-truth experiment

is first applied to select the number of nodes which are required to adequately represent the evolution of the GEV parameters.
The split-sample experiment evaluates the added-value provided by the adjustment coefficients, for the different possible

In this article, as a case study, the proposed approach is applied to snow load in the French Alps at 1500 m of elevation,

using 20 GCM-RCM pairs statistically adjusted from the EURO-CORDEX experiment under the scenario RCP8.5. More

generally, the proposed approach could also be applied to other scenarios, climate variables, and climate projection ensembles.

In contrast with most applications of non-stationary GEV models in the literature which consider linear trends, the piecewise
linear functions proposed in our approach are well suited to non-monotonic trends.

Many extensions of this work could be considered. First, if adjustment coefficients are not included, our parameterization of
the GEV distribution-cannot-account-for-differentchanges-of distributions-among-the-model considers the same non-stationary
GEYV distribution for the different GCM-RCM pairs. Indeed;-Even in the case where a-parameterization-of the- GEV-distribution
witheutadjustmentcoeffieientsis-adjustment coefficients are selected, the distributions corresponding to the GCM-RCM pairs

coefficients-isseleeted - GEM-RCEMpairs

have the same changes with global warming because adjustment coefficients are constant. In future works, to better account

s-are still constrained to

for different changes of distributions among the GCM-RCM pairs, we could imagine adjustment coefficients that vary with
global warming. A second potential extension of this work could be to improve the parameterization of the GEV distribution
by adding weights for each GCM-RCM pair. In our methodology, GCM-RCM pairs are currently considered as equally plau-
sible even though it is known that for each application some of them can have a better agreement with the past observations.
Following the intuition of weighting schemes for climate ensemble (Knutti et al., 2017), we could design a parameteriza-
tion of the GEV distribution that assigns more weights, i.e. more confidence, to climate models that agree more with the

observationobservations.

Finally, further work is needed to obtain a better agreement between the non-stationary GEV model representing the
ensemble of maxima from climate projections and past observed maxima. Indeed, observed maxima are mainly used to identif’
and correct strong disagreements between the observed and simulated maxima, using adjustment coefficients, and the fitted
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non-stationary GEV model is not really constrained to represent observed maxima. A Bayesian approach representing the

redictive distribution of climate projections conditional on historical observations (Ribes et al., 2021) could be a possible

solution to better constrain a GEV model. However, it would require i. long series of past observations to identify the

relationships between the forced climate responses to greenhouse gases obtained from the climate models and from the
observations. ii. an adaptation of the Gaussian framework in order to comply with the distribution of extreme values (i.e.

GEV distributions).
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Appendix A: Uncertainty estimationassessment and goodness-of-fit test

We estimate the uncertainties resulting from in-sample variability with a semi-parametric bootstrap resampling method adapted
to non-stationary extreme distributions (Efron and Tibshirani, 1993; Kharin and Zwiers, 2004). This method relies on a transfor-
440 mation fGEv s Standard Gumbel tO the standard Gumbel distribution. Indeed, if Y, ~ GEV (u(z),0(z),&(x)), then fGEv—sStandard Gumbel (Yz) =
%bg(l +£(x)y’%;‘§r)) ~ Gumbel(0,1). Let y = (y1,...,ys) denote a vector of annual maxima, with S the size of the
vector. The transformed ebservations;—ak-a—residuals—variates are computed as €, = fGEvV— Standard Gumbel (Ym ), using @ for
n(@),o(x),E(x).
We generate B = 1000 bootstrap samples with a four steps procedure. First, we compute the residual-vector € = (e, ...€g).
445 Then, for each bootstrap sample 7, from these residuals-transformed variates we draw with replacement a sample of size S
Ngi), ves Eg). Further, we transform these bootstrapped restduals-variates into bootstrapped annual maxima as fol-
~ (i)

lows: Vm, gy, = nglv _, Standard Gumbel(%,(q?). Finally, we estimate the GEV parameter 6 with the bootstrapped annual maxima

denoted as

¥4,...,J. To sum up, this bootstrap procedure provides a set {5(1), ...,HA(")7 e 5(3)} of B GEV parameters that represents
the in-sample variability.
statistical test (Abidin et al,, 2012). If the non-stationary GEV model is adequate, this test assumes that the transformed variates

€ are drawn from a standard Gumbel distribution. Let Fy,, and F) denote the cumulative distribution functions of the

empirical and standard Gumbel distributions, respectively. The Anderson-Darling test is based on he following distance:

A= S [ (Funpla) = Fpun (@) w(@)dFyun (0

21 —1
55 ~-3 ZS {10g [Fyum (€:)] +log [17Fgum(65+1_i)]}75,
=1

where w(x) assigns more weight on the tail of the standard Gumbel distribution (see Abidin et al., 2012, for more details).
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