
Comments from Referee #1 

The paper raises a very important issue: in order to obtain robust estimates, especially in a 
nonstationary setting, we need to use a multitude of available information sources. However, 
it is a challenge to connect properly these different information sources and requires a lot of 
scientific effort. I consider this paper to be one of the initial steps in the right direction 
regarding the quantification of changing extreme events due to global warming. The paper 
has a clear structure, the language is understandable despite the many technical details and 
steps, the figures are illustrative. I appreciate a lot that the authors discuss critically the 
drawbacks of their method in Sec. 5.2, and that they provide a clear and concise overview of 
related studies and how this work is embedded in the current scientific literature. Another 
strength of this work is that a range of possible parametrisations is explored and the optimal 
one is chosen in an objective way, based on a mean logarithmic score. I tend to suggest the 
manuscript to be accepted for publication, but only after a few very important issues are 
clarified. 

We thank the reviewer #1 for this positive feedback and these useful comments on our 
manuscript. Please find below a detailed response to individual comments and questions. 

Main comments: 

RC1#1. My main criticism is that the authors use a non-stationary GEV setting without 
showing that the annual maxima of snow load are properly estimated by a GEV distribution. 
The authors write that “...due to these theoretical justifications, the GEV distribution enables 
a robust estimation of return levels”. Yes, the GEV distribution enables (under certain 
conditions) a robust estimation, but only if: 

1) the chosen block size � is large enough, as the theory applies for �→∞. The block 
size of one year is not automatically large enough (one might need 2 years or 10 
years or even longer)–it has to be shown that the annual maxima can be reliably 
estimated based on a GEV distribution (see convergence plots and diagnostic plots 
in Coles, 2001). 

2) the auto-correlation is weak enough -the stronger the auto-correlation, the larger the 
smallest block size for which the GEV limit is valid. These convergence issues are 
discussed extensively in Galfi et al.(2017, Complexity). 

I ask the authors to show that the convergence to the GEV distribution is good enough for 
the chosen block size, i.e. that the annual maxima are properly modelled by a GEV 
distribution. This should be done before building up the non-stationary framework. If this 
cannot be shown, I’m afraid that the whole experimental setup described in the paper is 
useless, as it is a necessary condition. In the theoretical description of the GEV distribution 
in Section 3.1 more emphasize is needed to underline the asymptotic nature of the theory. 

We agree with the reviewer that we make the strong assumption that annual maxima follows 
a non-stationary GEV distribution whereas our block size is limited to one year. As done in 
many studies on climate extremes, the choice of annual blocks represents a compromise 
between having sufficiently large blocks in order to obtain maxima on a large number of 
values (365 days), and not too large in order to have enough blocks to avoid very uncertainty 
GEV parameter estimates (which would be the case with a 10-year block size, leading to 
very small samples). The revised version of the manuscript will clarify this pragmatic choice, 
and recognize that we may still  not totally fulfill the convergence conditions, but that 
according to the data our model choice appears to be sensible. 



In detail we will further present a quantitative evaluation of the goodness of fit. We will rely 

on the Anderson–Darling statistical test, which is the most powerful test for the Gumbel 

distribution (Abidin et al., 2012), similarly to what was proposed in Le Roux et al. (2021). 

This test assesses if the residuals follow a standard Gumbel distribution (see the Appendix A 

of our article for a definition of these residuals). For every selected model, the p-value of this 

test was computed for each GCM-RCM pair separately (and the observations) for each 

massif. In the Figure below, we observe that the test is rejected for 20% of the 483 cases (23 

massifs x 21 time series). This relatively high number seems to be mainly explained by the 

small values reached at the end of the century for many GCM-RCM runs. Indeed, the same 

tests applied at an elevation of 2700 m (see Figure 2 below) show a much smaller 

percentage of rejections (7%) and larger p-values. The inadequacy of the selected GEV 

model to represent these zero values will be discussed in the revised version of the 

manuscript. 

The fact that snow loads maxima reach a lower bound at the end of the century is clearly a 

major challenge for this application, and is related to the difficulties in adjusting the shape 

parameter (see Section 4.2). However, we emphasize the fact that this application can be 

considered as a non-trivial example of the proposed methodological approach, which also 

illustrates its limitations. An application to unbounded variables (e.g. annual maxima of 

temperatures) would be easier to present but would be less innovative in terms of specific 

application, and would fail to illustrate these challenges. All in all, we firmly believe that these 

results are sufficient to support our modeling choices with regards to our application, and to 

illustrate the potential of the framework we propose for many applications. 

 



Figure 1: Distribution of p-values for the Anderson-Darling test for the elevation 1500 m.  
For every selected model, a p-value was computed for each GCM-RCM pair separately. 

 

 

 

 

 

Figure 2: Distribution of p-values for the Anderson-Darling test for the elevation 2700 m.  
For every selected model, a p-value was computed for each GCM-RCM pair separately. 

RC1#2. It is a bit disappointing that even after performing the adjustments and applying the 
complex methodology, the results still do not follow the observations, as shown by Fig. 4 and 
discussed shortly in the text. One reason for this could be that, as the authors explain, the 
evaluation set for adjustment parametrization contains only a few (24, 17,10) maxima, thus 
the selection of the optimal parametrisation might be misleading. I believe a more thorough 
discussion is needed here. It is also not clear for me how to overcome the issue regarding 
the estimation of the shape parameter: in case of no adjustment, the model results do not 
follow the observations, in case it is adjusted it can lead to prediction failures. The authors 
do not suggest any solution for this, although it would be crucial for the applicability of the 
method in future studies. 

It is true that this issue is particularly challenging and open to discussion. On the one hand, 
we can imagine some applications where it seems reasonable that the model follows the 



observation betters, for example if a long series of past observations is available or if it is 
assumed that only past observations provide a relevant information about the tail of the 
distributions (i.e. if it is assumed that climate simulations are not able to simulate reliable 
climate extremes). A simple solution for doing this could be to put more weight on the 
observations in the likelihood (Eq. 4) in comparison to the climate simulations. However, this 
approach has not been tested thoroughly. 

RC1#3. It is not totally clear for me why is it important to know return levels of a variable 
whose extremes are expected to decrease with global warming (assuming a simple direct 
relationship between them), thus becoming less extreme? I think the authors should put 
more emphasize to show the relevance of this subject. 

Thanks for this question. Beyond the methodological contribution of our submission, our 
second objective is to check whether return levels are expected to increase or decrease. 
Indeed, the literature points to a decrease of mean winter SWE (IPCC 2019), i.e. to a 
decrease of mean winter snow load. However, to the best of our knowledge, projected 
trends in extreme snow loads have never been studied before.  

Since annual means of snow loads are expected to decrease, our first hypothesis was that 
extreme snow load would also decrease. However, in cold regions (high elevation regions 
for instance) we expect extreme snowfall to increase with climate change (O’Gorman 2014), 
thus our second hypothesis was that this increase of extreme snowfall can lead to an 
increase of extreme snow load. According to our results, the former hypothesis is the most 
likely hypothesis in the French Alps. 

Even if extremes are expected to decrease, a quantification of these decreases are of prime 
interest: 

● to study compounds extremes, e.g. extreme snow load combined with extreme wind, 
● to adapt structures standards, e.g. to decrease the constraints used to design new 

structures, which may reduce the construction cost. 

These motivations will be added to the manuscript. 

Specific comments: 

RC1#4. L93 Are the time periods “historical” 1951-2005 and “future” 2006-2100 correct? 

Yes, these are the standard historical and future time periods used in the EUROCORDEX 
experiment obtained from a CMIP5 ensemble, the RCP scenarios prescribing greenhouse 
gas concentration trajectories from 2006. 

RC1#5. Eq.4 There should be two equations here: 𝜃̂=argmax(�(�|�))and �(�|�)=∏... 

Thank you for this remark, this was a mistake. We will modify this equation. 

RC1#6. L177-L178 It is not totally clear what “RL50” stands for because it is written that “is 
computed without adjustment coefficients”, but later in Figure 4 it is used also for the case 
with adjustment coefficients. 

Thanks for this remark. Whether or not the model has adjustment coefficients, RL50 
corresponds to the 50-year return level computed without adding the adjustment coefficients. 

To clarify that, this paragraph “In other words, if the selected parameterization has 
adjustment coefficients, RL50 is computed without these adjustment coefficients since using 



these coefficients would provide the 50-year return level of the GCM-RCM pairs.” will be 
replaced by “In other words, if the selected parameterization has adjustment coefficients, we 
do not add these coefficients to compute the RL50.” 

RC1#7. Figure 4: I think that in case of the line with the “warm” colours the legend should be 
different for the 4 subplots –the legend is the same for each subplot, although the text and 
the figure caption suggest the opposite. 

The legend is not exactly the same for each subplot. Indeed, at the end of the line with the 
“warm” colors it is either written ‘all GCM-RCM pairs’, ‘each GCM’, ‘each RCM’, or ‘each 
GCM-RCM pair’. 

RC1#8. Figure 5: To which year or period do these return levels refer? 

As indicated in the legend of Figure 5, these return levels correspond respectively to the 50-
year return levels for T=+1, T=+2, T=+3 and T=+4 degrees of global warming. 
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