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Abstract. Global cloud cover represents a critical component of the climate system, with a considerable impact on the Earth's 

radiation budget. Small changes in clouds properties have a significant climatological impact because of the feedbacks that 

they generate, thus it is difficult to simulate the global cloud cover evolution in general circulation models. Observational 

investigations of cloud processes are constrained either by limited temporal and spatial extension of ground-based 

measurements or by imperfections in satellite data, like changes in geostationary satellite zenith angle, equatorial crossing 15 

time, or calibration. In this study, we used the Empirical Orthogonal Functions method to separate global patterns of total 

cloud cover variability in two satellite datasets from the International Satellite Cloud Climatology Project and the Pathfinder 

Atmospheres–Extended projects, each corrected for specific errors, and in the ERA5 Reanalysis. The first two modes explain 

most of the variance from what could be considered “signal” in both satellite data. Through Canonical Correlation Analysis, 

they are associated in a physically consistent manner with two different types of El Niño-Southern Oscillation (ENSO), namely 20 

the canonical ENSO which manifests itself in the eastern tropical Pacific and the El-Niño Modiki which manifest itself in the 

central Pacific. This work provides a comprehensive picture of the relationship between global total cloud cover and the 

tropical Pacific processes and indicates that cloud cover in the Indo-Pacific sector plays a significant role in the Earth radiative 

budget at interannual to decadal time scales. The similarity of the results across satellite and reanalysis data indicate that the 

both the observed and reanalysis cloud data sets contain consistent and valuable information related to global climate 25 

variability.  

1 Introduction 

Clouds have a complex influence on Earth’s radiation budget. Whereas high clouds tend to warm the surface by restricting the 

emission of longwave radiation emitted by Earth’s surface to space, low clouds tend to cool the surface by reflecting shortwave 

radiation coming from Sun, back to space (Ramanathan et al., 1989; Bony et al., 2004). Under these circumstances, predicting 30 

the behaviour of total cloud cover on a global scale is problematic and generates uncertainties in most climate projections 

(Cess et al., 1990; Dufresne and Bony, 2008; Zelinka et al., 2018), thus analysing observational cloud data is of great 
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importance. Ground based data are restricted both at temporal and spatial scale, thus most recent studies of cloud cover rely 

on satellite data. However, these are also not perfect and issues affecting satellite cloud measurements are numerous, including 

biases from top-down viewing angles (Campbell and Holmlund, 2004), artificial trends connected to instrument degradation 35 

and orbital decay (Norris 2005), changes in the number of observing satellites (Evan et al., 2007), data intercalibration issues 

(Norris and Slingo, 2009), cloud overlap (Pallé, 2005) and biases connected to changes in viewing times and the diurnal cloud 

cycle (Jacobowitz et al., 2003).  

Sea surface temperature (SST) and clouds are strongly linked through a variety of physical processes and feedbacks, making 

SST an important factor for cloud formation and behaviour (Ramanathan and Collins, 1991; Bony et al., 2015; Zhou et al., 40 

2016). Furthermore, global climate sensitivity is essentially linked to Pacific SST and clouds variations (Silvers et al., 2017; 

Andrews and Webb, 2018). Previous studies linked changes in low cloud cover with the El-Niño-Southern Oscillation (Marsh 

and Svensmark, 2003) and with the Pacific Decadal Oscillation (Clement et al., 2009), whereas high cloud variations were 

associated with the 11-years solar cycle (Dima and Voiculescu, 2016) and with the Atlantic Multidecadal Oscillation 

(Vaideanu et al., 2017). 45 

The El-Niño Southern Oscillation (ENSO) (Philander, 1990; McPhaden et al., 2006) is the most prominent mode of inter-

annual variability in the climate system. Although significant progress has been made in understanding the dynamics and 

impact of the ENSO phenomenon, it’s diversity and complexity is still a current and intriguing topic in the climate community 

(e.g.: Timmermann et al., 2018; Yeh et al., 2018). During the last decade, an increasing number of studies focused on two 

types of ENSO: 1) the conventional, canonical or Eastern Pacific (EP) ENSO, for which the maximum SST variability manifest 50 

in the eastern tropical Pacific (Rasmusson and Carpenter, 1982)  and 2) the Central Pacific El-Niño (Yeh et al., 2009), known 

also as the El-Niño Modoki (Ashok et al., 2007), Warm Pool El-Niño (Kug et al., 2009), or date line El-Niño (Larkin and 

Harrison, 2005), with the maximum SST variability located over the central Pacific. In this study, we use the generic term CP 

ENSO to refer to the latter. It has been proposed that the EP-type and the CP-type of ENSO have distinct impacts on regional 

temperature, precipitation and storm track activity (Ashok et al., 2009; Feng and Li, 2011). The CP ENSO was observed to 55 

occur more frequently in recent decades, but its duration is shorter than that of the EP ENSO (Yu et al., 2010). This recent 

increase in the CP ENSO frequency, very likely higher than any other similar period over the last 400 years (Freund et al., 

2019), was attributed to climate change (Yeh et al., 2009) and, as anthropogenic warming will intensify, it is argued that these 

events will become more frequent, in the detriment of the EP ENSO (Ashok and Yamagata, 2009; Timmermann et al., 2018).  

The goal of this paper is to identify the dominant modes of total cloud cover variability on a global scale and to separate and 60 

quantify the impact of the EP ENSO and the CP ENSO on their evolution. This is achieved through multivariate statistical 

analysis based on two distinct sets of observational cloud data, each corrected for specific errors (Norris and Evan, 2015) and 

on latest reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA5R). Section 2 includes a 

description of the observational data and of the statistical methods used in this study. In the third section the main results of 

this study are presented. Discussions and conclusions are presented in section 4.  65 
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2 Data and Methods 

2.1 Data 

Oscillatory modes in total cloud cover (TCC) are identified in two datasets of satellite measurements: i) The International 

Satellite Cloud Climatology Project (ISCCP) (Rossow et al., 1996; Rossow and Schiffer, 1999) and ii) the Pathfinder 

Atmospheres–Extended (PATMOS-x) fields (Heidinger et al., 2012; Heidinger et al., 2014). The ISCCP and PATMOS-x 70 

datasets have been used in many studies on causes and mechanisms of cloud changes (Zelinka and Hartmann, 2011; Klein et 

al., 2013). However, as with many retrieval fields, these datasets are accompanied by uncertainties. These are related to changes 

in geostationary satellite zenith angle (Evan et al., 2007), to low cloud cover masked by overlapping high clouds (Pallé, 2005), 

to changes in equatorial crossing time, (Jacobowitz et al., 2003; Heidinger et al., 2014) and to changes in calibration (Norris 

and Slingo, 2009). These artifacts in the ISCCP and PATMOS-x data have been addressed and corrected by Norris and Evan 75 

(2015), who produced an adjusted version for both TCC data. In this paper, we used these adjusted versions of the IPSCC and 

PATMOS-x TCC fields, distributed on a 2.5 º x 2.5 º global grid and extending over the 1984 –2009 period. The corrected 

versions of the ISCCP and PATMOS-x total coud cover data were obtained from the Research Data Archive at NCAR at 

https://rda.ucar.edu/datasets/ds741.5/ . 

To compare the results obtained with the ISPCC and PATMOS-x satellite TCC data, we also make use the total cloud cover 80 

data from the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5R) 

(Hersbach et al., 2020), extending over the 1979-2020 period. From the ERA5R we also used the sea level pressure (SLP) and 

10m-wind global fields on a 1º x 1º resolution. The ERA5 Reanalysis project is the latest reanalysis from the ECMWF and 

provides a variety of atmospheric and climate variables. It uses state-of-the-art modelling and data assimilation system based 

on a large variety of historical observations of pressure, temperature, humidity and other variables (Hersbach et al., 2020). 85 

Compared to ERA-Interim, ERA5R has many improvements regarding parametrization and assimilation and could provide a 

more realistic representation of cloud physical processes (Hersbach et al., 2020). The ERA5R data are available at 

https://apps.ecmwf.int/data-catalogues/era5/?class=ea . 

The sea surface temperature (SST) field is provided by the United Kingdom Met Office’s (UKMO), through the Hadley Centre 

Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et al., 2003), on grid with a 1º x 1º resolution, extending 90 

from 1870 to 2020. The variability of the global SST field is dominated by the spatially quasi-uniform warming trend which 

could mask the internal modes. Therefore, trends are removed in a preliminary stage, by subtracting from each grid point the 

annual global average. Interestingly, similar results are obtained if the warming trend is not removed from the global SST 

field. The HadISST data are available at https://www.metoffice.gov.uk/hadobs/hadisst/ . 

For the observed total precipitation rate (TPR) field, we used the Combined Precipitation Data Set, provided by the Global 95 

Precipitation Climatology Project (GPCP) (Adler et al., 2003) distributed on a 1.5 º x 1.5 º grid, extending over the 1979 – 

2020 period, available at https://psl.noaa.gov/data/gridded/data.gpcp.html . 
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As a measure of the EP ENSO evolution, we used the Niño3 index. The Niño3 and the Niño4 time series are highly correlated 

(r>0.8). There is still no consensus about the proper index to describe CP ENSO evolution (Ashok et al., 2007; Ren and Jin, 

2011; Jeong and Ahn, 2017). In this study, we used the Trans-Niño Index (TNI), which is defined as the difference of the 100 

normalized SST anomalies from the Niño 4 and the Niño 1+ Niño 2 regions (Trenberth and Stepaniak, 2001). The low 

correlation between TNI and the Niño3 Index (r<0.15) supports the idea that these two-time series are describing distinct 

evolutions of these two types of ENSO-like events. The Niño3 Index, and the TNI Index are obtained from 

http://www.esrl.noaa.gov/psd/data/climateindices/list/ .  For all datasets, monthly anomalies from the annual cycle are 

calculated and then annual means are computed. 105 

 

2.2 Methods 

The dominant modes of TCC are derived by using the Empirical Orthogonal Functions (EOF) method (Lorenz, 1956). This 

technique uses an orthogonal transformation to transform a set of observations of correlated variables into a set of values of 

non-correlated linear variables. The uncorrelated variables represent linear combinations of the initial ones. The first main 110 

component explains the maximum amount of the variance from the original variables; the second one explains the maximum 

amount of the remaining variance, not explained by the first component, and so on. As it is essentially based on pattern 

separation, the EOF analysis is an efficient method to investigate the spatial and temporal variability of time series, extending 

over relatively large areas.  

To identify the coupled cloud cover and the global SST patterns, we employed Canonical Correlation Analysis (CCA) (von 115 

Storch and Zwiers, 1999). The CCA is a powerful multivariate technique used to identify pairs of patterns with maximum 

correlation between their associated time series. In other words, CCA determines the extent to which two phenomena, each 

described by a variable or a set of variables, are linked. Mathematically, CCA transforms pairs of originally centered vectors 

X0 and Y0 into sets of new variables, called canonical variables. The canonical correlations are determined by solving the 

eigenvalue equations: 120 

 

{
 [𝐶𝑥𝑥]−1[𝐶𝑥𝑦][𝐶𝑦𝑦]−1[𝐶𝑦𝑥] 𝑊𝑥 = ρ2𝑊𝑥

[𝐶𝑦𝑦]−1[𝐶𝑦𝑥][𝐶𝑥𝑥]−1[𝐶𝑥𝑦] 𝑊𝑦 = ρ2𝑊𝑦

                      (1) 

Where: Cxx and Cyy are the matrices of covariance for x and y respectively,  

Cxy=C-1
yx is the between-sets covariance matrix,  

ρ2 eigenvalues are the squared canonical correlations, and the eigenvectors, 125 

Wx and Wy are the normalized canonical correlation basis vectors. 

As the core constraint of the method is the maximization of correlation between time components, the corresponding patterns 

are provided by the method even if they do not explain a large amount of the variance in their fields, which means that the 

patterns explaining largest percent of variance do not necessarily appear in the first pairs.  
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The statistical significance of correlations and regressions are examined in relation to the (two-tailed) probability (p) value to 130 

obtain a similar correlation value by chance. Because the significance is affected by the autocorrelation of each time series, 

the effective number of degrees of freedom used to calculate is computed with the relation):  Nef = N (1 - R1R2)/ (1 + R1R2), 

in which N is the number of values of the time series and R1, R2 represent the lag-one autocorrelation of each record (Bretherton 

et al., 1999). 

2.3 Strategy 135 

Generally, the EOF allows us to reduce the size of the data for a compact and optimal description of them, thus increasing the 

signal to noise ratio. However, it does not provide information about a specific forcing since a mode could be influenced by 

several different forcing factors. Unlike EOF, which is based on the distinction between patterns (they are orthogonal), CCA 

is based on the distinction between time evolution of patterns (the time series of consecutive pairs are uncorrelated). Therefore, 

CCA can be used to determine the footprint of a forcing factor on a given field when distinct forcing factors are characterized 140 

by different temporal evolutions. The distinction between the TCC spatial structures associated with the EP ENSO and the CP 

ENSO in pairs derived through CCA is emphasized based on their specific SST footprint and also on their specific temporal 

evolution. The final assessment of the significance of the identified coupled patterns relies on their physical consistency. In 

order to validate the results across different statistical methods and to infer the physical relevance of the identified coupled 

patterns, the SLP, 10m-Wind and TPR fields are regressed on the time series of the associated pairs resulted from the CCA.  145 

The observed TCC data include all physical processes involved in cloud formation. However, they are accompanied by 

different types of uncertainties and have been corrected trough different methods. The reanalysis data are less sensitive to 

measuring errors, but their accuracy is limited by model imperfections and by the finite number of processes considered in the 

numerical simulations. Thus, using two sets of satellite cloud data, each corrected for specific errors, together with data from 

state of the art ERA5 Reanalysis, we attempt to identify the biases associated with observational cloud data, on one hand, and 150 

to assess the accuracy of the ERA5R TCC data, on the other hand.  

3 Results 

3.1 Dominant modes of global total cloud cover variability  

The first two modes of TCC variability, derived through the EOF analysis of the annual TCC anomalies from ISCCP, 

PATMOS-x datasets extending over the 1984–2009 period, and ERA5 Reanalysis over the 1979–2020 period, are shown in 155 

Fig. 1.  

The spatial structures of EOF1, identified in ISCCP (Fig. 1a), PATMOS-x (Fig. 1c) and ERA5 (Fig. 1e), are qualitatively and 

quantitatively similar over most of the globe. They have the highest loadings in the tropical Pacific and can be characterized 

by a band of positive TCC anomalies extending from the west coast of Peru toward the central Pacific and negative loadings 

in the Central, North East and South East Pacific. They also include positive anomalies over most of the North America, 160 
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Central Asia and the North Atlantic, more prominent in the ERA5 pattern (Fig. 1e) and less intense in the PATMOS-x data 

(Fig. 1c), but also negative values over the tropical Atlantic, extending over the north-eastern part of South America. 

Differences between the observed and reanalysis EOF1 patterns are noted over parts of Australia, north western part of South 

America and the South Atlantic. The three associated time series (PC1, Fig. 1g) are dominated by interannual variability and 

are highly correlated (r ~0.9, significant at the 99% level). 165 
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Figure 1: Global modes of total cloud cover variability in observations and ERA5 Reanalysis data  

Left column: The spatial structure of the dominant mode (EOF1) of TCC variability (%) based on ISCCP (a), PATMOS-x (c) 

and ERA5 Reanalysis (e) data with their associated time series (g). Right column: The second empirical orthogonal function 

(EOF2) of TCC variability (%) based on ISCCP (b) and PATMOS-x (d) data and the third EOF from ERA5 Reanalysis (f) 170 

data, with their associated time series (h). 

The spatial pattern of the second EOF derived using the ISCCP (Fig. 1b) and the PATMOS-x (Fig. 1d) TCC data, 

and the third EOF from ERA5 (Fig. 1f), are similar over most of the globe, being characterized by an equatorial dipole of TCC 

anomalies in the equatorial Pacific, with intense positive loadings in the central part and negative anomalies in the eastern 

sector. They also include an increase in cloudiness in the north-eastern part of South America extending in the Tropical 175 

Atlantic, and a decrease in cloudiness over most of the North Atlantic. The associated PCs (Fig. 1h) have no increasing trend 

and their correlation coefficient is ~ 0.77 (significant at the 99% level). The second EOF derived using the ERA5R TCC data 

(Supp. Fig. 1) is not of interest for our study due to its temporal characteristics. 

The maximum TCC positive anomalies of spatial structures for both EOFs are located in the Tropical Pacific, and their PCs 

are dominated by interannual variability. The combined variance explained by the first two modes, is 35 % in ISCCP (Fig.1a 180 

and b), 32 % in the PATMOS-x fields (Fig. 1c, 1d). A large part of the distribution of the rest of the observed EOFs variance 

(about 55%), is quasi-equally shared by a large number of modes, each explaining less than 5% of variance (Supp. Table 1), 

which suggests that these are associated with noise. Therefore, the first two modes identified in satellite observations explain 

two thirds from the approximately 45% of variance which can be considered “signal” in both satellite cloud data. 

3.2 Observed coupled SST-TCC patterns associated to interannual Pacific climate variability 185 

In order to identify global observed SST-TCC pairs, two CCAs were performed for 1984 – 2009 using the observed SST: one 

using corrected TCC anomalies from ISPCC data and the other using TCC data from PATMOS-x. The results shown in Fig. 

2 (for ISCCP) and Fig. 3 (for PATMOS-x), respectively and are summarized in Table 1. 

Table 1: The variances explained by the EP ENSO and the CP ENSO SST/TCC patterns from ISPCC (Fig.2), PATMOS-x 

(Fig.3) satellite observations and ERA5 Reanalysis (Fig.4). 190 

 

CCA 

Explained 

variance 

(SST) 

Explained 

variance 

(TCC) 

Correlation 

coefficient 

PCs 

 

Footprint 

Correlation 

with the 

associated 

index 

Projection on 

EOF1 

1 = identical 

projection 

Projection on 

EOF2 

1 = identical 

projection 

Projection on 

decadal 

variability 

max value = 1 

ISPCC  

3rd pair 

20 % 22 % 0.98 EP ENSO 0.84 0.94 0.03 0.35 

ISPCC  

4th pair 

7%       7% 0.97 CP ENSO 0.67 0.04 0.89 0.26 

PATMOS-

x 3rd pair 

16% 17% 0.99 EP ENSO 0.8 0.79 0.02 0.29 
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The spatial structures of the first two pairs identified through the two CCAs explain less than 6% of variance (Supp. Table 2) 

and are not of interest in our study. This is not totally unexpected, since the CCA method ordinates the pairs based on the 

correlation between the temporal evolutions of the associated spatial structures and not based on the percentage of explained 

variance. 195 

The third and fourth coupled SST-TCC pairs, derived through CCA using the ISPCC TCC fields are shown in Fig. 2. The SST 

spatial structure of the third pair, (Fig. 2a) explains 20%/ of the total variance and is dominated by a band of positive anomalies 

located in the eastern tropical Pacific, surrounded by negative values, which is a typical structure for the positive phase of the 

EP-ENSO (e.g. Philander, 1990; Ashok and Yamagata, 2009). The associated TCC pattern (Fig. 2e) is characterized by positive 

anomalies in the eastern-central Pacific and over the North and the South Atlantic, and negative anomalies in the western-200 

central Pacific, the north-east (NE) and the south-east (SE) Pacific. The TCC spatial structure explains 22% of the total cloud 

cover variance and projects strongly on EOF1 (Fig. 1a) (projection coefficient of 0,94, where r =1 is the maximum value and 

represents identical projection) (see Table 1). The corresponding time series (Fig. 2c) are dominated by inter-annual variability 

are significantly correlated with the Niño3 Index (r=0.84) and have the maximum amplitude in 1997-1998, when a strong EP 

ENSO event was recorded (Yu and Kim, 2013). The SST structure of the fourth pair (Fig. 2b) explains 7% of the total variance 205 

and can be described by the following features: i) the highest positive values are located in the central tropical Pacific; ii) a 

horizontal V-shaped anomaly structure with positive values, starting from the central tropical Pacific and extending toward the 

subtropics in both hemispheres; iii) negative SST anomalies near the northwest coast of South America. These characteristics 

were identified as the SST signature of CP ENSO in previous observational and numerical studies (Ashok et al., 2007; Ashok 

and Yamagata, 2009; Kao and Yu, 2009; Yeh et al., 2009; Yu et al., 2010). The associated TCC spatial structure (Fig. 2f) has 210 

the highest loadings in the central Pacific, with positive values in the central tropical Pacific and negative TCC anomalies in 

the eastern tropical Pacific, surrounded by positive TCC values in the subtropics. This feature is significantly distinct from any 

characteristic associated with the EP ENSO (Fig. 2e). The TCC spatial structure explains 7% of the total variance and projects 

strongly on EOF2 (Fig. 1b) (r =0,76, where r =1 is the maximum value and represents identical projection). The association of 

the TCC structure with CP ENSO is supported also by the associated PC-s of this pair (Fig. 2d) which are significantly 215 

correlated (r=0.67, significance level >95%) with the TNI Index, which is a very good measure for CP ENSO events (Trenberth 

and Stepaniak, 2001).  

 

 

 220 

PATMOS-

x 4th  pair 

9% 8% 0.98 CP ENSO 0.73 0.01 0.71 0.21 

ERA5   

3rd pair 

16% 13% 0.98 EP ENSO 0.91 0.95 0.02 0.25 

ERA5   

5th  pair 

7% 7% 0.97 CP ENSO 0.72 0.06 0.81 0.17 
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Figure 2: The EP ENSO (left) and the CP ENSO (right) footprints on global SST-TCC  fields identified through CCA using 

ISPCC total cloud cover data extending  over 1984 – 2009  period. Left column: The third coupled SST (°C) - TCC (%) pair: 

the SST pattern (a), explaining 20 % of variance, the TCC structure (e), explaining 19 % and the associated time series (c) 225 

with TCC (blue line), SST (red line). The corelation with the Nino3 Index (green line) is 0.81 Right column: The forth coupled 

SST (°C) -  TCC (%)  pair: the TCC pattern (a), explaining 7 % of variance, the SST structure (c), explaining 7 % and the 

associated time series (e) with TCC (blue line), SST (red line). The corelation with the TNI Index (green line) is 0.61. 

 

A similar CCA was performed using the PATMOS-x total cloud cover data (Fig. 3). The ISPCC and the PATMOS-x satellite 230 

data, each have specific errors which have been corrected trough different techniques (Norris and Evan, 2015). Therefore, it is 
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very likely that common features captured in both of them reflect real phenomena and are not the effect of imperfections and 

possible biases existent in satellite cloud data. The associated temperature (cloud) pattern of the third SST-TCC (PATMOS-

x) pair explains 16% (17%) of the total variance, whereas temperature (cloud) spatial structure of the fourth pair explains 9% 

(8%) of the total variance (Table 1). The SST pattern of the third pair (Fig. 3a) is characteristic for the EP ENSO, with intense 235 

positive SST's in the Eastern tropical Pacific. The corresponding time series (Fig. 3c) follow closely the Niño3 index (r=0,8, 

significance level >95%). The associated TCC structure (Fig. 3e) includes positive anomalies in the eastern tropical Pacific, 

in the North Atlantic and over most of the North America, and intense negative anomalies in the central-western Pacific, 

similar with the EP ENSO footprint obtained using the ISPCC data (Fig. 2e). Differences between the two observed TCC 

spatial structures associated to the EP ENSO are observed over Australia, parts of South America and Africa.  240 
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Figure 3: The EP ENSO (left) and the CP ENSO (right) footprints on global SST-TCC fileds identified through CCA using 

PATMOS-x total cloud cover data extending over 1984 – 2009 period. Left column: The third most coupled SST (°C) - TCC 

(%) pair: the SST pattern (a), explaining 16% of variance, the TCC structure (e), explaining 17% and the associated time series 

(c) with TCC (blue line), SST (red line). The corelation with the Nino3 Index (green line) is 0.79. Right column: The fourth 

most coupled SST (°C) -  TCC (%) pair: the TCC pattern (b), explaining 9% of variance, the SST structure (f), explaining 8% 245 

and the associated time series (d) with TCC (blue line), SST (red line). The corelation with the TNI Index (green line) is 0.73. 

 

The SST and the TCC spatial structures of the fourth pair (Fig. 3b and f) can be characterized by an east-west dipole of 

SST/TCC anomalies located in the tropical Pacific, with positive values in the central Pacific and negative loadings in east, 

more prominent than in the CP ENSO pair obtained using the ISPCC data (Fig. 2b and f). Their associated time series (Fig. 250 

3d) have a correlation coefficient of 0.73 (significant over 95 % confidence level) with the TNI Index further supporting the 

association of this pair with the CP ENSO.  

Both the ISCCP and the PATMO-x datasets capture the main features of the EP ENSO and the CP ENSO modes over the 

oceans, but the results obtained using the PATMOS-x data are more consistent with previous regional studies over the North 

America (Chiodi and Harrison, 2013), the South America (Garreaud et al., 2009) and Australia (King et al., 2015), indicating 255 

that this dataset is more suitable for regional investigations regarding the ENSO (Supp. Fig. 2). Together, the two global TCC 

spatial patterns explain more than 25 % of the global cloud cover variance or ~ 60% of the “signal”, considering the level of 

noise in both TCC datasets (Supp. Table 2). In the tropical Pacific, a positive correlation between SST and TCC anomalies is 

observed in all analysed pairs while in the NE and the SE Pacific, a negative SST-TCC correlation is observed, more prominent 

in the results obtained using the ISPCC fields. Both TCC patters associated with the CP ENSO (Fig. 2e and Fig. 3e) project 260 

strongly on EOF1, while the TCC spatial structures associated with the CP ENSO (Fig. 2f and Fig. 3f) project strongly on 

EOF2 (Table 1), indicating that the two ENSO modes dominate the evolution of global total cloud cover variability. 

3.3 Coupled SST- Reanalysis TCC patterns associated to interannual Pacific climate variability 

In order to test the robustness of the results on a different time frame, we performed also a CCA using the ERA5 Reanalysis 

total cloud cover data, extending over the 1979–2020 period, with the results shown in Fig.4. 265 

The SST spatial structure of the 3rd pair (Fig. 4a) explains 16% of variance and resembles the EP ENSO, with a band of intense 

positive SSTs in the Eastern tropical Pacific, flanked by negative loadings, positively correlated with the associated TCC 

structures. The reanalysis TCC spatial structure associated to the EP ENSO (Fig. 4e) includes positive loadings in the eastern 

tropical pacific, over most of North America and the North Atlantic, while negative anomalies are present over the western 

Pacific, over the NE and the SE Pacific, and over the tropical Atlantic. The reanalysis EP ENSO TCC footprint is quantitative 270 

and qualitative similar over most of the globe with both the ISPCC (Fig. 2e) and PATMOS-x (Fig. 3e) footprints but resembles 

more the one obtained using ISPCC data over the continents. The associated time series (Fig. 4e) are significantly correlated 

with the Niño3 Index (r=0.91. >95% significance level). The SST structure of the 5th coupled pair (Fig. 4d) is dominated by a 

https://doi.org/10.5194/esd-2021-75
Preprint. Discussion started: 20 October 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

dipole of anomalies in the Atlantic basin, with intense positive loadings in the Central Pacific, a structure typical for the CP 

ENSO. The coupled TCC pattern include negative anomalies in the Eastern tropical Pacific and positive anomalies in the 275 

Central Pacific, in very good agreement with the TCC pattern associated to the CP ENSO using the ISPCC (Fig. 2f) and 

PATMOS-x (Fig. 3f) data. The time series associated to the coupled patterns (Fig. 4f) are significantly correlated with the TNI 

index (r=0.72, >95% significance level). 

 

 280 
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Figure 4: The EP ENSO (left) and the CP ENSO (right) footprints on global SST-TCC fields identified through CCA using 

ERA5 total cloud cover data extending over the 1979 - 2020 period. Left column: The third most coupled TCC SST (°C) - 

TCC (%) pair identified through CCA using ERA5 TCC data: the TCC pattern (a), explaining 16 % of variance, the SST 

structure (c), explaining 13 % and the associated time series (e) with TCC (blue line), SST (red line). The corelation with the 

Nino3 Index (green line) is 0.89. Right column: The fifth most coupled SST (°C) - TCC (%) pair: the TCC pattern (b), 285 

explaining 7 % of variance, the SST structure (f), explaining 7 % and the associated time series (d) with TCC (blue line), SST 

(red line). The corelation with the TNI Index (green line) is 0.71. 

 

Both TCC structures presented in Fig. 4 are similar with the corresponding TCC structures in ISPCC (Fig. 2) and PATMOS-

x (Fig. 3) associated to the EP ENSO and the CP ENSO. This indicates that the ERA5 Reanalysis reproduces fairly well the 290 

formation and evolution of total cloud cover on a global scale. The close similarity between the TCC structures derived from 

satellite observations and reanalysis indicate that the observed results are relevant for the global TCC variability on various 

time-scales. 

 

3.4. Coupled SST-TCC patterns associated to decadal Pacific variability 295 

In order to facilitate the identification of the impact of decadal SST variability on the evolution of global cloud cover, three 

CCAs were performed between SST and TCC from ISPCC, PATMOS-x and ERA5 Reanalysis, filtered with a 5-year running 

mean, with the pair of interest from each analysis shown in Fig.5.  

All three SST structures (Fig. 5a, b, and c) can be characterized by a horseshoe like structure in the North Pacific with negative 

anomalies in the north-west surrounded by positive loadings, and an El-Niño like structure in the tropical Pacific. These 300 

features have been attributed previously to the positive phase of the Pacific Decadal Oscillation (Mantua et al., 1997; Deser et 

al., 2010), the Interdecadal Pacific Oscillation (Trenberth and Hurrell, 1994) or the North Pacific Gyre Oscillation (Di Lorenzo 

et al., 2008). The TCC pattern from the first pair obtained using ISCCP data (Fig. 5a) is dominated by positive anomalies 

located in the central Tropical Pacific, and negative anomalies extending westward, positively correlated with the SSTs 

anomalies. Negative anomalies which are anti-correlated with the SSTs anomalies are observed in the north-east and south-305 

east Pacific. These features have been previously associated with Pacific decadal SST variability (Clement et al., 2009). The 

same characteristics can be observed in the TCC spatial structure obtained using PATMOS-x (Fig. 5h) and ERA5 (Fig. 5i) 

data, but the negative anomalies are less prominent in the eastern and southern Pacific. The ISCCP - TCC pattern (Fig. 5a) 

includes positive anomalies over the southern part of North America and the south-eastern part of South America while 

negative loadings are observed over most of the northern South America and north of Australia. These features were previously 310 

associated with positive decadal SST variations in the North Pacific (Garreaud et al., 2009, Newman et al., 2016) and are not 

captured so well in the pair obtained using the PATMOS-x and ERA5 data. Both the EP ENSO and the CP ENSO project on 

the evolution of decadal TCC variability in the Pacific basin (Table 1), with the EP ENSO being more prominent. This is in 
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good agreement with previous studies showing that both eastern and central expressions of ENSO are playing significant roles 

modulating Pacific decadal variability (Di Lorenzo et al., 2010; Furtado et al., 2012). 315 

 

Figure 5: Pacific decadal SST variability footprint on global SST-TCC fields identified through CCA using ISPCC, PATMOS-

x, and  ERA5 total cloud cover data filtered with a 5yr mean. Left column: The first coupled TCC (%) – SST (°C) pair identified 

through CCA using ISPCC TCC data: the SST pattern (a), explaining 14% of variance, the TCC structure (g), explaining 13% 

and the associated time series (d) with TCC (blue line), SST (red line). Mid column: The first coupled TCC (%) – SST (°C) 320 

pair identified through CCA using PATMOS-x TCC data: the SST pattern (b), explaining 13% of variance, the TCC structure 

(h), explaining 16% and the associated time series (e) with TCC (blue line), SST (red line). Right column: The third coupled 

TCC (%) – SST (°C) pair identified through CCA using ERA5 TCC data: the SST pattern (c), explaining 10% of variance, the 

TCC structure (f), explaining 14% and the associated time series (i) with TCC (blue line), SST (red line). 
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3.5 Associated physical processes 325 

In order to investigate the physical mechanisms linking the SST-TCC anomalies and to test the robustness of the EP ENSO 

and the CP ENSO footprints identified through CCA, we regressed the sea level pressure (SLP), 10m-Wind and total 

precipitation rate (TPR) fields on the time components (PCs) associated through CCAs with the CP ENSO (Fig. 3c), the EP 

ENSO (Fig. 3d) and the pacific decadal variability (Fig. 5d), with the results shown in Fig. 6. The regression analysis is 

restricted to the Tropical Pacific (30°S-30°N) for the first two ENSO modes, and to the North Pacific (0°–60°N) for the maps 330 

associated with the decadal variability. The highlighted areas correspond to a statistical significance level above 95%. Similar 

results are obtained for the PCs derived through CCAs using the PATMOS-x and the ERA5 Reanalysis TCC data (not shown). 

The regression map of the SLP field on the time component derived through CCA associated with the EP ENSO (Fig. 6a) is 

dominated by the Southern Oscillation dipole, which is the atmospheric component of a typical El-Nino event (Philander, 

1990). The associated TPR structure (Fig. 6b) presents positive anomalies from the eastern to the central tropical Pacific and 335 

negative loadings near Indonesia, regions where the most intense TCC anomalies from the CCA pair linked to this mode are 

located (Fig. 3e). The 10m-Wind (Fig. 6c) is convergent in the warm SST region which, together with the SLP and TPR 

structure, is consistent with changes in the Walker Circulation associated with the EP ENSO (Bjerknes, 1969; Wang et al., 

2016). Unlike the EP ENSO, which includes variations in thermocline, the CP ENSO is a more local air–sea coupling 

phenomenon located mainly in the central tropical Pacific, which interacts more with Hadley Circulation and is not dependent 340 

of changes in the thermocline circulation (Hu et al., 2012).  
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Figure 6: The regression maps of SLP (%/ hPa) (left, a, d, g), TPR (%/mm/day) (middle, b, e, h) and 10m-Wind (streamline) 

(right, c, f, i) fields on the time series of CCA pairs associated to: EP ENSO (top row), CP ENSO (middle row) and decadal 

variability (bottom row) extending over 1984 -2009 period. The associated statistical significance in the highlighted areas is 

above 95 %. 345 

 

The SLP regression map (Fig. 6d) associated with CP-ENSO, is dominated by a negative V-like structure starting from central-

western Pacific and extending in the subtropics, where the positive SST anomalies from the CCA pair associated with the CP 

ENSO are located (Fig. 3b). The TPR regression map (Fig. 6e) has a dipole in Central Pacific with the most intense positive 

values in central-western Pacific, where positive TCC anomalies from the pair associated with the CP ENSO located Fig. 3f). 350 

These changes in TPR are related to variations of the intertropical convergence zone (ITCZ) position, generated by CP ENSO 

(Yu and Kao, 2010).  The TPR regression map (Fig. 6h) of the PC from the CCA pair associated with decadal variability (Fig 

.6d) has positive values in the tropical band, where the positive areas of SST (Fig. 5a) and TCC (Fig. 5g) are located. Negative 

anomalies are seen in the western extra-tropical Pacific, coincident with negative loadings of SST and TCC. In the western 

extra-tropical Pacific, where a decrease in ocean temperature and cloudiness was identified (Fig. 5g), negative TPR anomalies 355 

are recorded. The SLP regression map associated with decadal variability (Fig. 6g) is dominated by negative anomalies in the 

subtropical North Pacific and positive anomalies over Alaska and around Indonesia. These features, together with the 

precipitation and 10m-Wind spatial structures have been previously associated to decadal variations in the Pacific basin 

(Mantua et al., 1997; Di Lorenzo et al., 2010).    

The 10m-Wind, TPR and SLP structures associated with the CP ENSO (Fig. 6d, e, and f) are totally distinct from those 360 

associated with the EP ENSO (Fig. 6a, b, and c) and are in good agreement with previous studies investigating the impact of 

CP ENSO on these fields. Of specific importance is the distinct relation between SST and TCC anomalies, in the tropics and 

in subtropics. In the deep tropics and in some areas in the subtropics, there is a positive correlation between the SST and TCC 

anomalies for both modes. This reflects a positive feedback in which relatively warm surface waters increase convection and 

clouds formation, mainly at high atmospheric levels (Arking and Ziskin, 1994; Back and Bretherton, 2009). In turn, high 365 

clouds increase the temperature in the levels below through longwaves absorption and further contribute to the warming of the 

SSTs, which could lead to an amplification of both ENSO modes (Rädel et al., 2016). In the NE and the SE Pacific, where 

total cloud cover is dominated by low level marine stratiform clouds, when the SLP is low, positive SSTs are accompanied by 

negative TCC anomalies. This reflects a distinct feedback, in which reduced cloud cover, associated with weak stability, 

increase the shortwave radiation fluxes toward ocean surface and result in positive SST anomalies which in turn, reduce low 370 

level cloudiness (Clement et al., 2009). This feedback has been confirmed in more recent studies using numerical simulations 

(Myers and Norris, 2016; Andrews and Webb, 2018) and could extend over the entire planetary ocean, not only in the regions 

dominated by stratocumulus clouds (Silvers et al., 2017). From this perspective, the persistence of decadal SST anomalies in 

the NE and SE Pacific is more related to a change in the amount of solar radiation received by the ocean due to a change in 

cloud cover, than to ocean dynamics, a mechanism also confirmed by Dima and Voiculescu (2016). 375 
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4 Discussion and conclusions 

The most important modes of observed and reanalysis global TCC variability, were identified as EOF1 and EOF2 in the global 

ISPCC, PATMOS-x (1984-2009) and the ERA5 Reanalysis (1979-2020) data. Both EOFs in all three datasets have the most 

intense values in the Pacific basin and their associated temporal evolution do not present any increasing trend. Together, the 

two global TCC spatial patterns (EOF 1 + EOF 2) explain two thirds of the total of 45% of variance which can be considered 380 

“signal” in the global observed and reanalysis TCC data. 

Through a single CCA applied to each of the three TCC datasets, we identify two coupled SST-TCC pairs of spatial structures 

which were attributed to distinct variations of ENSO, based on their spatial and temporal properties. These associations are 

also supported by corresponding SLP, 10m-Wind and TPR regression maps on time components from TCC structures 

identified through CCA. The EP ENSO and the CP ENSO modes are not totally independent from each other, and they can 385 

co-exist (Hu et al., 2012; Yu and Kim, 2013). Both, the observed and the reanalysis TCC patterns associated with EP ENSO 

project strongly on EOF1, while the observed and reanalysis TCC spatial structures associated with the CP ENSO project 

strongly on EOF2, indicating that the two ENSO modes dominate the evolution of global cloud cover variability. The 

identification of the EP ENSO and the CP ENSO TCC footprints in the same CCA analysis provides a better perspective 

regarding the concurrent percentages of global SST and TCC variance explained by these two modes and also allows an 390 

estimation of the impact these two modes have on decadal variability. In good agreement with previous investigations, our 

results suggest that both, the EP ENSO and the CP ENSO, project strongly on Pacific decadal SST and TCC variability. This 

indicates that, although not perfect, satellite cloud cover data can be used to investigate both the inter-annual and the decadal 

climate variability.  

The Pacific sector in the ISPCC (Fig. 2e and f), the PATMOS-x (Fig. 3e and f) and the ERA5 Reanalysis (Fig. 4e and f) TCC 395 

patterns looks almost identical, indicating a robust structure associated with the EP ENSO and the CP ENSO modes, regardless 

of the data set or the period analysed. Over the continents, the PATMOS-x data captures better the impact of the EP ENSO 

and the CP ENSO over the North America, South America and Australia, making them more suitable for future regional 

analyses. Opposing, the ISCCP data seem to be more reliable for identifying decadal Pacific variations. There are many indices 

that have been proposed and used to identify different ENSO types, based on ocean surface temperature (Ashok et al., 2007; 400 

Kug et al., 2009), on ocean salinity (Qu and Yu, 2014) or on outgoing longwave radiation (Chiodi and Harrison, 2015). Our 

approach, through multivariate statistical analyses, provide two independent continuous ENSO indices based entirely on total 

cloud cover anomalies.   

The positive correlation between the SST and TCC anomalies together with the negative SLP over the tropical Pacific, which 

is dominated by high clouds, indicate that the TCC anomalies are induced by changes in SST through convection. On the other 405 

hand, high clouds could provide positive feedback to SST in these regions through their impact on the radiative transfer (Bony 

et al., 2015). The negative SST/TCC correlation observed in the NE and the SE Pacific, where total cloud cover is dominated 

by low level marine stratiform clouds suggests that another positive feedback between clouds and SST exists (Clement et al., 
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2009). Therefore, the amplitudes of the highest TCC anomalies, which are located in the tropics and in subtropics, appear to 

be related to these two distinct feedbacks. However, the fact that these feedbacks manifest in the same manner (with regard to 410 

the sign of the correlation between SST and TCC anomalies) for both of the ENSO types, indicates that they are not responsible 

for the different manifestations of the EP ENSO and the CP ENSO modes. A consensus regarding the physical mechanism 

describing the CP ENSO has not been yet reached, with ocean advection processes (Kug and Ahn, 2009) or changes in 

equatorial easterly and westerly anomalies (Ashok et al., 2007; Hu et al., 2012) being proposed as the main drivers in generating 

this phenomenon.  415 

The large amount of cumulative variance explained by the two ENSO modes in the observed and reanalysis global TCC field 

and their connections with the two positive feedbacks, which can act to amplify the mechanisms of both modes, imply that 

they are playing a critical role in the global radiative balance, especially in the context of climate change. Such a decomposition 

of the global total cloud cover field based on a linear combination of coupled SST-TCC pairs (as derived through CCA) and 

of eigenmodes (derived through EOF analysis) could provide a reference against which one could validate the performance of 420 

general circulation models in simulating global cloud cover variability. 
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