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Abstract. We propose a conceptual model comprising a cascade of tipping points as a mechanism for past abrupt climate

changes. In the model, changes in a control parameter, which could for instance be related to changes in the atmospheric cir-

culation, induce sequential tipping of sea-ice cover and the ocean’s meridional overturning circulation. The ocean component,

represented by the well-known Stommel box model, is shown to display so-called rate-induced tipping. Here, an abrupt resur-

gence of the overturning circulation is induced before a bifurcation point is reached due to the fast rate of change of the sea-ice.5

Because of the multi-scale nature of the climate system, this type of tipping cascade may also be a risk concerning future

global warming. The relatively fast time scales involved make it challenging to detect these tipping points from observations.

However, with our conceptual model we find that there can be a significant delay in the tipping, because the system is attracted

by the stable manifold of a saddle during the rate-induced transition before escaping towards the undesired state. This opens up

the possibility for an early warning of the impending abrupt transition by detecting the changing linear stability in the vicinity10

of the saddle. To do so, we propose to estimate the Jacobian from the noisy time series. This is shown to be a useful generic

precursor to detect rate-induced tipping.

1 Introduction

Multiple elements in the Earth system are believed to be at risk of undergoing abrupt and irreversible changes in response to

rising atmospheric Greenhouse gas concentrations. Among others, the Arctic sea-ice, the Greenland and West Antarctic ice15

sheets, the Amazon rainforest and the Atlantic Meridional Overturning Circulation (AMOC) have been identified to potentially

cross such tipping points at varying levels of global warming (Lenton et al., 2008). While an abrupt decline of the Arctic sea-

ice is already well underway (IPCC, 2019), for a system like the AMOC it is much more uncertain if and when a tipping

point will be reached. Nevertheless, it constitutes a risk that deserves attention as it has been observed across the hierarchy of

climate models (Weijer et al., 2019), and there is evidence that it has occurred repeatedly during the last glacial period (Henry20

et al., 2016). Such past changes of the AMOC likely led to abrupt climate changes known as Dansgaard-Oeschger (DO) events

(Dansgaard et al., 1993). These are the most significant instances of large-scale climate change in the past, but the underlying

mechanisms remain debated.

Mathematically, tipping points are typically understood as a transition from one stable attractor of the system to another.

Most often, this transition is associated with a bifurcation or attractor crisis, where a system state loses stability as a critical25

threshold in a control parameter is crossed, leading to tipping to another attractor (bifurcation tipping). However, tipping can
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occur also before a critical threshold is crossed. Stochastic perturbations may induce a transition to an alternative attractor

(noise-induced tipping). Furthermore, some systems can fail to track their moving equilibrium and tip to another attractor

while no bifurcation was crossed, given there is a change in a control parameter at a high enough rate (rate-induced tipping)

(Wieczorek et al., 2011; Ashwin et al., 2012).30

Such rate-induced transitions can be expected to play a role in systems that are comprised of coupled components with a time

scale separation. Here, changes in one component alter the conditions of another and act as a rapidly changing control parameter

that could cause a rate-induced transition. This might occur in the real climate system, where a vast range of time scales is

present in atmosphere, ocean and cryosphere, and where important climate parameters, such as polar ice melt, currently display

accelerating rates of change (Trusel et al., 2018; Bevis et al., 2019; The IMBIE Team, 2020). Indeed, a rate-induced collapse35

of the AMOC has been shown recently in a global ocean model (Lohmann and Ditlevsen, 2021). Rate-induced transitions in

coupled systems are an even higher risk if one of the subsystems experiences abrupt change due to tipping. This constitutes a

cascade of subsequent tipping points. Tipping cascades in coupled ecological or climate models have been considered before

(Cai et al., 2016; Dekker et al., 2018; Rocha et al., 2018; Klose et al., 2020; Wunderling et al., 2020). However, cascades where

subsystems permit rate-induced tipping have not been studied yet.40

Here we explore such a scenario with a conceptual sea-ice-ocean model. The model describes the influence of changing

polar sea-ice cover on the AMOC and features the possibility of a rate-induced resurgence of the AMOC. While an AMOC

resurgence is not an issue for contemporary climate change, it plays an important role in past abrupt climate changes and DO

events in particular, where it is thought to be responsible for the transitions from cold (so-called stadial) periods to prolonged

episodes of milder (interstadial) conditions during the last glacial period. It is still unknown what drove these transitions and45

the associated resurgences of the AMOC. In climate models, an abrupt collapse of the AMOC can be induced by sudden

discharges of freshwater into the North Atlantic, which is a phenomenon known to occur in the past (Heinrich, 1988). Similar

events of sudden ‘removal’ of freshwater that potentially lead to an abrupt resurgence of the AMOC are less well-known.

Instead, we consider changes in atmosphere-ocean heat exchange as driver of the AMOC resurgence. These could result from

abrupt changes in sea-ice cover, which in turn could be driven by changing atmospheric wind stress. The potential of rapid50

sea-ice changes to advance the abrupt DO warming events is well established (Li et al., 2005; Dokken et al., 2013; Vettoretti

and Peltier, 2016; Sadatzki et al., 2019), and has been translated into a number of conceptual models before. Gottwald proposes

a model with sea-ice as an intermittent thermal insulator to the polar ocean, forced by a chaotic (quasi-stochastic) atmospheric

component, extremes of which can trigger temporary excursions of the ocean circulation (Gottwald, 2021). While we include

a stochastic forcing, the main cause of the abrupt transitions in our model is a deterministic underlying parameter shift. A55

different conceptual model by Boers et al considers sea ice and an ice shelf coupled to an ocean box model, where the sea ice

evolves due to a prescribed piecewise-linear feedback, leading to self-sustained oscillations (Boers et al., 2018). The mechanism

proposed here is different in that it involves a cascade: a tipping of the sea-ice cover due to slowly changing climatic conditions

leads to a rate-induced tipping of the ocean circulation as a consequence of the rapid increase in ocean heat loss.

Several lines of evidence from proxy data and climate model simulations motivate such a sequence of events. Zhang and60

co-workers showed model simulations with abrupt climate changes similar to DO events by gradually varying the Northern
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Hemisphere ice sheet topography, which led to shifts in the atmospheric circulation that altered the wind-driven export of

sea-ice (Zhang et al., 2014). This eventually led to an abrupt decrease in North Atlantic sea-ice cover and a resurgence of

the AMOC. Kleppin and co-workers reported spontaneous transitions of the AMOC that were triggered by the stochastic

atmospheric forcing and subsequent changes in North Atlantic sea-ice (Kleppin et al., 2015). Ice core data indicate that abrupt65

shifts in the sea-ice extent at the onset of DO events were preceded by shifts in atmospheric circulation by about a decade

(Erhardt et al., 2019). Furthermore, there is evidence for gradual trends leading up to the abrupt shifts in both sea-ice and

atmospheric circulation proxies, indicating an underlying parameter shift that might be mutually expressed in sea-ice and

atmosphere (Lohmann, 2019; Sadatzki et al., 2019).

Besides illustrating a new mechanism for abrupt climate change, the conceptual model proposed here gives some interest-70

ing insight into dynamical phenomena in systems combining time-dependent and stochastic forcing. We find that the ocean

component of our model (the well-known Stommel box model) displays rate-induced tipping in what could be called a ‘soft’

tipping point. Here, due to a non-smooth fold bifurcation, tipping occurs always before the bifurcation point is reached, even if

the rate of change in the parameter shift is arbitrarily slow. Further, the rate-induced transition involves attraction by the stable

manifold of a saddle, which can lead to a significant delay of the tipping under stochastic forcing. Based on this, we propose75

an early warning indicator to detect rate-induced tipping; so far only early warning signals specific to bifurcation tipping are

known (Held and Kleinen, 2004; Dakos et al., 2008; Scheffer et al., 2009, 2012).

The paper is structured as follows. In Sec. 2 the coupled conceptual model is presented. We then show rate-induced tipping

of the ocean component (the Stommel box model) in the deterministic and stochastic case in Sections 3.1 and 3.2, respectively.

Thereafter, the cascading dynamics of the coupled model are presented (Sec. 3.3). Early-warning signals for the cascade, as80

well as for the rate-induced tipping, are investigated in Sec. 3.4 and Sec. 3.5. The results are discussed in Sec. 4, and our

conclusions are given in Sec. 5.

2 Model

2.1 Ocean component: Stommel’s ’61 box model

We consider the Stommel box model of the Atlantic thermohaline circulation (Stommel, 1961), with added noise to represent85

variations in the atmospheric forcing on short time scales. The model assumes the overturning flow ψ in between well-mixed

polar and equatorial ocean basins as proportional to the density difference

ψ ∝ (ρp− ρe) = [αT (Te−Tp)−αS(Se−Sp)], (1)

where the density is given by the equation of state of seawater

ρe,p = ρ0 [1−αT (Te,p−T0) +αS(Se,p−S0)] , (2)90

with some reference densities, temperatures and salinities ρ0, T0 and S0, respectively. The two model variables represent the

dimensionless temperature difference T = αT (Te−Tp) and salinity difference S = αS(Se−Sp) in between the boxes. This
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defines the dimensionless overturning circulation strength

q = T −S. (3)

Temperature and salinity in the boxes relax towards an atmospheric temperature and salinity forcing T ae,p and Sae,p. The95

meridional difference of the forcing drives the circulation and is represented by the two parameters η1 ∝ (T ae −T ap ) and

η2 ∝ (Sae −Sap ). A third parameter represents the time scale ratio of the temperature and salinity relaxation η3 = τT
τS

. The

model is then defined by the stochastic differential equations

dTt = (η1−T − |T −S|T )dt+σT dWT,t

dSt = (η2− η3S− |T −S|S)dt+σSdWS,t,
(4)

with the Wiener processes WS,t and WT,t. Time is scaled with respect to the ocean time-scale τT = 200 years. For a more100

detailed derivation of the model see Dijkstra (2008). The deterministic system features a parameter regime with two stable

equilibria, which are referred to as the circulation ‘on’ and ‘off’ states. For the ‘on’ state we have T > S, where the temperature

forcing gradient dominates the opposing salinity forcing gradient and drives the circulation. The ‘off’ state (S > T ) corresponds

to a reversed circulation, which is weaker and dominated by the salinity forcing gradient. In Fig. 1a-b we show deterministic

bifurcation diagrams of q with respect to the parameters η1 and η2. In both cases, the ‘on’ state loses stability in a regular105

saddle-node bifurcation, whereas the ‘off’ state destabilizes in a non-smooth saddle-node bifurcation. The latter is also known

as a non-smooth fold (di Bernardo et al., 2008), and is due to the fact that the Stommel model is a non-smooth dynamical system

owing to the absolute value in its equations (see Sec. S3 and Fig. S3 for more detail). The existence and extent of bi-stability

depends on the parameter η3. A large time scale separation (slower salinity damping) leads to a large region of bi-stability,

whereas as the salinity damping approaches the time scale of temperature damping, the bistability disappears (Fig. 1c). This is110

because a faster salinity damping disables the positive salt advection feedback, which gives rise to the bi-stability.

2.2 Coupled sea-ice-ocean model

The ocean model is coupled to a sea-ice component in the polar ocean box, which is the energy-balance model described in

Eisenman and Wettlaufer (2009) and Eisenman (2012), modified by neglecting the seasonal cycle and effects of the sea-ice

thickness. The changing sea-ice cover acts to insulate the polar ocean to varying degrees from the cold atmospheric temperature115

forcing T ap , thus modulating the temperature forcing gradient η1 ∝ (T ae −T ap ). A schematic of the coupled model including

model variables and important parameters is given in Fig. 2. The deterministic sea-ice component is defined (Eisenman and

Wettlaufer, 2009) by

dI

dt
= ∆tanh

(
I

h

)
+ [R0Θ(I)−B]I +L−F − 1 +R, (5)

with the Heaviside step function Θ(·). Time is scaled with respect to τI = 1 year. The parameters and their values are described120

in Tab. 1. While I > 0 corresponds to a positive sea-ice cover, I < 0 represents zero sea-ice cover and the variable instead is

a measure of the enthalpy of the surface ocean (Eisenman, 2012). The control parameter R models influences on the sea-ice
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Figure 1. (a) Bifurcation diagram of the Stommel box model with η1 as control parameter, η2 = 1.0 and η3 = 0.3. Solid lines indicate

branches of stable fixed points, whereas dotted lines indicate unstable fixed, or saddle, points. (b) Bifurcation diagram with η2 as control

parameter, η1 = 3.0 and η3 = 0.3. (c) Dependence of bi-stability on η3 (η1 = 3.0). The individual bifurcation diagrams with η2 as control

parameter are shown with decreasing bistability interval as η3 is increased from 0.1 up to 0.75.

Figure 2. Schematic of the coupled sea-ice-ocean model including model parameters and variables (bold). A description of the parameters

is given in Tab. 1. The well-mixed polar and equatorial ocean boxes are coupled by a surface flow q, along with an identical return flow at

the bottom. The ocean component is reduced to the two variables T ∝ Te−Tp and S ∝ Se−Sp. In the polar ocean box, the sea-ice cover I

insulates the ocean from the cold atmospheric temperature T a
p .

concentration due to external factors, such as export or import of sea-ice into the North Atlantic via changes in wind stress.

While in the climate system R is driven by slower dynamic processes, such as changes in ice sheet topography, we treat it as

a control parameter. We use parameter values from Eisenman (2012), which yield a sea-ice component that is bi-stable with125

respect to R. As seen in Fig. 3, for a range of R there exists a stable state with a positive sea-ice cover (red), as well as a state

with zero sea-ice cover I < 0 (black). This range is bounded by two saddle-node bifurcations. The stable state with sea-ice
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cover collapses at R=−0.282. We define the state at R= 0 as the stadial state, yielding a fixed point with positive sea-ice

cover I+0 ≈ 1.156. A slight deviation from the parameters of Eisenman (2012) is our larger value of h, which gives a more

gradual albedo transition from an ice-free to an ice-covered state. Accordingly, the bifurcation diagram is more ’S-shaped’130

instead of ’Z-shaped’ (see Sec. S1 and Fig. S1 for more details).

Figure 3. Bifurcation diagram of the sea-ice component for parameter values as in Tab. 1. The solid (dotted) lines indicate stable (unstable)

fixed points.

To model transitions from stadial to interstadial conditions in the coupled sea-ice-ocean model, we consider the following

mechanism. The glacial polar ocean is insulated by a high sea-ice concentration from the atmospheric temperature forcing,

preventing it from losing heat efficiently. As the sea-ice concentration decreases, the polar ocean becomes more and more

exposed to the cold atmosphere and loses heat. Thus, the sea-ice variable modulates the parameter η1, which we now defined135

as η1(I) = η01 −κΘ(I)I , with the Heaviside function Θ(·) since I < 0 corresponds to zero sea-ice cover. Adding noise as a

model of fast atmospheric perturbations (Wiener process WI,t), this yields the following coupled equations:

dIt =

(
∆tanh

(
I

h

)
+ [R0Θ(I)−B]I +L−F − 1 +R

)
dt+σIdWI,t

τT
τI
dTt =

(
η01 −κΘ(I) · I −T − |T −S|T

)
dt+σT dWT,t

τT
τI
dSt = (η2− η3S− |T −S|S)dt+σSdWS,t

(6)

The value of κ reflects the change in atmospheric temperature forcing when removing the sea-ice cover. In this conceptual

framework it can only be chosen heuristically. We can for instance assume η01 = 3.0 for an open ocean, and atmospheric140

temperature forcings in a glacial climate of 20 oC and -10 oC in the equatorial and polar box, respectively. Full sea-ice cover

would limit the polar temperature forcing to 0 oC, corresponding to η1 = 2.0. Even if the glacial polar atmosphere were above

0 oC, given that it was colder than the surface ocean, extensive sea-ice cover would severely reduce heat loss to the atmosphere

and thus effectively reduce η1. Here we choose a scenario where during the stadial the sea-ice reduces the atmospheric forcing

from η1 = 3.0 to η1 = 2.65. κ is then chosen such that η1 = 2.65 at the stadial fixed point I+0 and η1 = 3.0 for I < 0, yielding145

κ= 0.35/I+0 . As a result, the ocean component is in the bi-stable regime for both full and zero sea-ice cover. A transition
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from stadial to interstadial will then be captured by decreasing R from zero beyond the bifurcation point which tips the sea-ice

component towards a state of I < 0, while the ocean remains in the bi-stable regime.

Due to the unidirectional, linear coupling of the model, and our focus on a specific dynamical regime, we restrict our

presentation of the coupled dynamics to the individual bifurcation diagrams of the sea ice component with R as control150

parameter and of the ocean component with η1(I) as effective control parameter. The full bifurcation structure of the coupled

model with R as the only control parameter is presented in Sec. S2 and Fig. S2.

Table 1. Description of Model Parameters

Parameter Description Value
η2 Salinity forcing gradient 1.0
η3 Temperature-salinity time scale ratio 0.3
κ Sea ice - ocean coupling 0.303
τT Ocean time scale 200
τI Sea ice time scale 1.0
∆ Ocean - sea-ice albedo diff. 0.43
h Albedo transition smoothness 0.5
R0 Sea ice export -0.1
B Outgoing longwave radiation coeff. 0.45
L Incoming longwave radiation 1.25
F Ocean forcing on sea-ice 1/28

3 Results

3.1 Rate-induced tipping and soft tipping points in Stommel model

In this Section, we investigate the tipping dynamics in the ocean component in the deterministic limit (σT = σS = 0). As noted155

above, there is a non-smooth fold in the Stommel model as the ’off’ state loses stability, which leads to a resurgence of the

AMOC. In the bifurcation diagrams of Fig. 4 it can be seen that both in terms of T and S the stable fixed point (red line)

moves in the same direction as the saddle point when the non-smooth fold bifurcation is approached. Thus, in a sufficiently fast

parameter shift towards the fold, the saddle point can outpace the system state, which is trying to follow the moving equilibrium.

This is illustrated in Fig. 4, where instantaneous parameter shifts and the corresponding movements of the system state vector160

in the bifurcation diagrams are indicated. When the saddle point moves past the system state, the system will tip towards the

alternative stable state, which is the ’on’ circulation in our case. Thus, tipping can occur even before the bifurcations points are

reached, which is known as rate-induced tipping. While in the Stommel model this can happen for both η1 and η2 as control

parameter, it occurs for a larger range of amplitudes and rates of the parameter shift when changing η1.

To be more rigorous one has to consider the movement of the basin boundary as the control parameter is changed. The basin165

boundary is the stable manifold of the saddle, and it separates the basins of attractions of the ’on’ and ’off’ states, i.e. the sets

of initial conditions that converge to the respective attractors. In Fig. 5 we illustrate the movement of the fixed points and basin
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Figure 4. (a,b) Bifurcation diagram of the Stommel model equilibria in terms of the variables T (a) and S (b) as a function of η1 as control

parameter with η2 = 1.0 and η3 = 0.3. (c,d) Same, but with η2 as control parameter and η1 = 3.0 and η3 = 0.3. Solid lines indicate stable

fixed points, whereas dotted lines indicate saddle points. The horizontal arrows indicate the movement of the system state as the control

parameter is changed instantaneously within the bi-stable regime. In (a) we illustrate how the system state may track the moving equilibrium

for a slow parameter shift (purple trajectory), or tip to the undesired equilibrium in a fast parameter change (blue trajectory).

boundary as η1 is changed from 2.65 to 3.0. This corresponds to the scenario of a transition from stadial to interstadial sea-ice

cover in the coupled model, as described in Sec. 2.2. Figure 5b shows that the ’off’ fixed point before the parameter shift (open

circle) lies inside the basin of attraction of the ’on’ fixed point after parameter shift (blue area). This is a sufficient condition170

for rate-induced tipping, which has been called basin instability (O’Keeffe and Wieczorek, 2020), since for an instantaneous

parameter shift, the system would tip to the other attractor. Similarly, as the system tries to follow the moving fixed point during

a sufficiently fast parameter shift, it will fail to reach the ’off’ basin (orange area) at the end of the parameter shift and tip to the

’on’ fixed point. This happens for the blue trajectory, where the parameter is ramped up linearly within 300 years. In contrast,

the purple trajectory shows that tipping does not occur for a ramping duration of 500 years. For this given amplitude of the175

parameter shift, there is a critical rate of parameter change in between these two values.

Figure 6 shows time series of q for simulations with different ramping durations. The realizations in a) and b) tip to the

’on’ attractor, while the realizations in panels c) and d) track the moving ’off’ equilibrium. The critical ramping duration is

in between the 388.5 and 390 years employed in panels b) and c). Comparing a) to b), one observes a delay in the tipping in
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Figure 5. Phase portraits of the Stommel model with basins of attraction and fixed points. Squares and dots indicate stable fixed points, and

triangles denote saddle points. (a) Phase portrait for η1 = 2.65 with several flow lines to indicate the dynamics around the saddle. The basin

of attraction of the ’off’ (’on’) state is shaded in orange (blue). (b) Phase portrait for η1 = 3.0. Two trajectories, where η1 is ramped linearly

from η1 = 2.65 to η1 = 3.0 within 300 and 500 years are shown in blue and purple, respectively. The initial conditions T,S = (2.4,2.5)

are indicated by the yellow cross. Open symbols indicate the positions of the fixed points at η1 = 2.65, and the black curve indicates the

corresponding basin boundary from (a).

b) of multiple thousand years. This occurs because for close-to-critical rates, the system state passes by very closely to the180

saddle point, where it remains for a long time as the dynamics slows down before being ejected. The close approach of the

saddle happens because the system state is attracted by the saddle’s stable manifold, which is also the basin boundary. If one

were to use the exact critical ramping duration, the system state would evolve precisely towards the saddle and remain there.

Such trajectories are called maximum canards (O’Keeffe and Wieczorek, 2020). This behavior is also seen for trajectories that

eventually track the moving equilibrium, as in panel c). It is worth noting that the attraction by the stable manifold of the saddle185

continues after the parameter shift is already over, as shown in the inset in panel c.

The critical ramping duration depends on the amplitude ∆η1 of the parameter shift (Fig. 7a). Rate-induced tipping becomes

possible at a certain ∆η1, where the basin instability condition is first satisfied. Increasing ∆η1 then leads to a very rapid

increase of the critical ramping duration Dc. Thereafter, Dc keeps increasing and actually diverges as the bifurcation is ap-

proached. This is due to the non-smoothness of the fold bifurcation, where the attractor and saddle meet in a cusp (see Sec. S3190

and Fig. S3 for more detail). As a result, the attractor gets close to the basin boundary very quickly as the bifurcation is ap-

proached. This leads to a super-linear scaling of the shortest distance to the basin boundary. In Fig. 7b, we compare this to

the square root scaling of the smooth fold bifurcation in the sea-ice component. In the non-smooth case, as the bifurcation is

approached the basin boundary gets arbitrarily close to the attractor. Then, even very small and slow parameter increases lead

to tipping. Thus, the non-smooth fold leads to what could be called a ’soft’ tipping point: In practice, there is no hard critical195

threshold of the parameter, but for any parameter shift at finite rate, the tipping will occur at some point prior to the bifurcation.

The precise location of the tipping point depends on the trajectory of the parameter shift.
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Figure 6. Time series of q = T −S in the Stommel model when ramping the parameter from η1 = 2.65 to η1 = 3.0 at different rates. The

realizations are initialized at T,S = (2.4,2.5), which is close to the ’off’ fixed point at η1 = 2.65. The duration of the ramping is indicated

by the gray shading. The realizations in (a) and (b) with ramping durations of 300 and 388.5 years, respectively, tip from the ’off’ to the ’on’

attractor. The realizations in (c) and (d) with ramping durations of 389 and 500 years, respectively, track the moving ’off’ attractor. The ’on’,

’off’ and saddle fixed points at η1 = 3.0 are shown as horizontal lines.

3.2 Noisy rate-induced tipping

We now consider additive noise in the ocean component, which models variations in atmospheric forcing on short time scales.

In addition to the ’soft’ tipping just described, the stochastic perturbations further blur the critical threshold leading to tipping.200

For a given amplitude of the parameter shift, there is no longer a critical rate, but a range of rates where the probability of

tipping goes from 0 to 1. Figure 8a shows how this range of rates expands for increasing noise level. Note that since the system

features unbounded noise, we consider finite time tipping probabilities during a simulation time of 5000 years. Eventually,

there will always occur a noise-induced transition to the ’on’ attractor, especially from the ’off’ attractor at η1 = 3.0 for higher

noise levels.205

By introducing noise, tipping becomes a mixture of rate-induced and noise-induced transitions, since the unbounded noise

allows the system to cross the basin boundaries of the deterministic system in any circumstances. Still, for low noise levels the

behavior strongly resembles the deterministic case. As discussed earlier, for a ramping speed relatively close to the critical rate,
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Figure 7. (a) Critical ramping duration below which there is a rate-induced tipping in the Stommel model when shifting the parameter from

η1 = 2.65 to η1 = 2.65 + ∆η1. The ’off’ attractor loses stability in the bifurcation at ηoff
1 = 3.333, as indicated by the red dashed line. (b)

Normalized shortest distance to the basin boundary ∆B as a function of the normalized distance to the bifurcation ∆λ= (ηoff
1 −η1) · (ηoff

1 −

ηon
1 )−1. ηon

1 is the parameter value at the other saddle node bifurcation of the ’on’ state. The black, solid curve shows the results of the

Stommel model, and a proposed super-linear scaling is shown by the dashed curve. Also shown are results for the smooth bifurcation in the

sea-ice component (blue solid) and the corresponding square root scaling (dotted).

Figure 8. (a) Probability of a rate-induced tipping in the Stommel model from the ’off’ to the ’on’ state as a function of the linear parameter

ramping duration from η1 = 2.65 to η1 = 3.00. Different noise levels σT = σS = σ are considered: σ = 0.01 (lightest gray curve), σ =

0.02, σ = 0.04, σ = 0.06, σ = 0.1, σ = 0.2 and σ = 0.4 (darkest gray curve). The red dashed line is the critical ramping duration in the

deterministic system. (b) Probability distributions of the time of tipping, defined by the first crossing of q > 0.1, for different noise levels.

The ramping is started in year 1000 and the duration is fixed at 300 years. The red dashed line is the time of tipping in the deterministic

system.

the tipping involves an escape from the saddle. This behavior is robust for low noise levels, where the stochastic fluctuations

cannot overcome the attraction of the stable manifold of the saddle. Thus, the system approaches the saddle, before being210

ejected from its vicinity.
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Figure 9. (a,b,c) Three realizations in phase space of the Stommel model with σT = σS = 0.2, where η1 is ramped from η1 = 2.65 to

η1 = 3.00 over 300 years. The filled dot (triangle) marks the ’off’ fixed point (saddle) at η1 = 3.0. The colored areas are the quasi-stationary

basins of attraction at the time when their boundary is first crossed. The colored basins of attractions are given at the time of first basin crossing

of the trajectories, which change color from purple to yellow. The initial conditions T,S = (2.4,2.5) are indicated by the yellow cross. The

locations of the saddle point (triangle) and the ’on’ fixed point at this time are shown with open symbols. The threshold q = T −S = 0.1

used to define the time of tipping is shown as the dotted line.

As the noise level is increased, there are noise-induced early tippings as well as significantly delayed tippings. In order to

quantify when a tipping is ’early’ or ’late’, we need to define the moment when the system actually tips. For the deterministic

system, a sensible choice would be the time when the moving, quasi-stationary basin boundary is crossed, since this is the first

moment that the system would tip in case the parameter shift would be stopped suddenly. However, for the noisy system this215

does not guarantee tipping, since the system may cross back to the other basin at any time. As a heuristic definition of tipping,

we can instead detect the departure from the vicinity of the saddle in terms of the overturning q, as the tipping is associated

with a monotonic increase of q (see Fig. 6). Thus, as tipping we define the first crossing of q = 0.1, which is a slightly larger

value than at the saddle to allow for some fluctuations around it. In phase space this defines a straight line.

Figure 9 shows the crossing of this threshold, as well as the basins at the time when the basin boundary is first crossed, for220

three different realizations with a ramping duration of 300 years and σT = σS = 0.2. The time of tipping varies significantly

and depends primarily on the proximity of the approach to the saddle and the subsequent time spent in its vicinity. Whereas

Fig. 9b shows a realization with tipping close to the deterministic scenario, the realization in Fig. 9a) leaves the stable manifold

early and does not approach the saddle closely. The realization in Fig. 9c approaches the saddle very closely and remains there

for a long period of time.225

The tipping time distribution and its dependence on the noise level is shown in Fig. 8b. In our case of a ramping duration

slightly below the critical value of the deterministic system, there are three regimes of noise levels. For low noise (σ = 0.01,

σ = 0.02, σ = 0.04 and σ = 0.06 in Fig. 8b) the trajectories are very similar to the deterministic case, and it is very unlikely

that the noise pushes the system closer to the saddle. Thus, the tipping time is distributed closely around the deterministic

value. For intermediate noise (σ = 0.1 and σ = 0.2 in Fig. 8b), some early noise-assisted tippings are possible, as seen by the230
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shift of the distribution mode towards earlier times. For other realizations there is a good chance that the noise pushes the

system closer to the saddle, where it can stay for a long time (multiple thousand years) as the dynamics slow down before

escaping. This leads to the development of a long tail in the tipping time distribution. For larger noise (σ = 0.4 in Fig. 8b),

even earlier noise-assisted tippings are seen, as well as some delayed tippings. However, the latter occur not as frequently as

for intermediate noise, since the average residence time at the saddle is also shortened.235

3.3 Cascading dynamics

We now consider the coupled model and investigate how a stadial-interstadial transition can arise as a cascading tipping of the

two components. The cascade is initiated by a change in the control parameter R leading to a decrease and eventual tipping of

the sea-ice to I < 0. Subsequently, the modulation of the parameter η1(I) due to the decrease of I can be expected to induce a

rate-induced resurgence of the AMOC. On the one hand, this is because the short sea-ice time scale leads to very fast dynamics240

as the sea-ice tips. On the other hand, even if the sea-ice would not change fast, when the amplitude of the change in η1(I)

becomes larger, there will be rate-induced tipping anyway due to the ’soft’ tipping point in the Stommel model described

earlier. We thus choose the robust scenario where the coupling κ is such that the ocean component remains in the bi-stable

regime with respect to η1(I), and a rate-induced AMOC resurgence is the only pathway to tipping. As described in Sec. 2.2,

this can be exemplified by a change in η1(I) from η1 = 2.65 (at the stadial sea-ice fixed point for R= 0) to η1 = 3.0 for a245

collapsed sea-ice cover I < 0. Simulations with these parameters are qualitatively representative for a wider range of coupling

strengths and rates of changing R.

Figure 10. Cascading stadial-interstadial transition in the coupled sea-ice-ocean model where R is ramped from R= 0 to R=−0.3 within

340 years and kept constant afterwards. (a) Trajectory of the sea-ice component as function of the control parameter R. (b,c) Trajectory of

the ocean component as function of the changing parameter η1(I(t)) = η01 −κΘ(I(t)) · I(t). The tipping cascade consists of several steps

separated by the points A, B, and C, and marked by different colors in the trajectories (see main text). The gray surface in (c) is the moving

basin boundary corresponding to the changing η1(I(t)).
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Figure 10 shows trajectories for a cascading stadial-interstadial transition in the deterministic limit when R is ramped down

from R= 0 to R=−0.3 over 340 years. The transition can be divided into several stages: First, the sea-ice slowly decreases

as R is decreased and the ocean component tries to track the moving equilibrium (green segment of trajectories in Fig. 10). At250

point A, 325 years after the start of ramping, the sea-ice passes the bifurcation point and rapidly tips to I < 0 (purple segment

in Fig. 10). This leads to a quick movement of η1(I) towards η1 = 3.0, which is reached at point B, 350 years after the start

of ramping (Fig. 10b). As a result, the ocean state crosses the moving basin boundary (gray surface in Fig. 10c) from above,

and is thus determined to undergo rate-induced tipping to the ’on’ attractor (black solid curve). However, before tipping the

ocean state is attracted by the stable manifold (i.e. the basin boundary) of the saddle (yellow segment). Finally, at point C (700255

years after the start of ramping) the ocean component escapes the vicinity of the saddle and tips towards the ’on’ state (blue

segment).

There is a critical time scale below which such a cascading transition with a rate-induced tipping is possible. This is a

combination of the rate of change in the control parameter R and the speed of the tipping of the sea-ice, which is held fixed

here. As additive noise is included in the model, the boundary of tipping in terms of the ramping time of the control parameter260

is again blurred. Figure 11a shows the tipping probabilities for different noise levels as a function of the ramping time of R.

The result is very similar to the ocean only case, except that because of the fast tipping in the sea-ice, the average ramping

times leading to tipping are slightly higher. The picture looks different as we increase the noise level in the sea-ice component,

as seen in Fig. 11b. Here, the ramping times that yield significant tipping probabilities simply increase with the noise level

without a large simultaneous decrease of the tipping probability for lower ramping durations. This is because noise-induced265

transitions to I < 0 occur before the bifurcation of I is crossed. Since these transitions happen on the fast sea-ice time scale, a

rate-induced tipping of the ocean model becomes possible even when R is changed very slowly. As in the ocean-only case, the

tipping cascade involves a saddle escape, which can lead to significant tipping delays as noise forcing of intermediate strength

is included. Next, we will discuss this in more detail and relate it to potential pre-cursor signals leading up to such transitions.

3.4 Early warning of the tipping cascade270

Due to their irreversible nature, it is important to foresee impending tipping points using generic early warning signals that

do not require detailed knowledge of the system dynamics. These are typically obtained from time series by estimating a

statistical indicator in a sliding window with appropriate detrending (see Sec. S4). For bifurcation tipping, a system often

exhibits critical slowing down, which can be measured by increasing variance and autocorrelation. In Fig. 12 we show these

indicators estimated in a sliding window for the cascading transition in Fig. 10. As expected there is an increase in variance and275

autocorrelation of I leading up to the bifurcation (Fig. 12c,d). Because of the speed of the parameter shift necessary to induce

the cascade, the increases in the indicators do not fully exceed the variability prior to the parameter shift, but could still provide

early warning with a reasonable skill. Due to the coupling one might expect a signature of the sea-ice critical slowing down

in the ocean component. This is not seen here (Fig. 12e,f), since increasing fluctuations due to the sea-ice are small compared

to the variability in the ocean component for the chosen σ. If no noise is added to the ocean variables, critical slowing down280

can be detected in T or S. This might be an example of scenarios proposed in Rypdal (2016) and Boers (2018), where it is
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Figure 11. Probability of a cascading transition in the coupled sea-ice-ocean model when changing the control parameter R linearly from

R= 0 to R=−0.3 within different ramping times. (a) Fixed noise level σI = 0.02 in the sea-ice component and varying noise levels σT =

σS = σ = 0.005 (lightest gray), σ = 0.01, σ = 0.02, σ = 0.04, and σ = 0.1 (darkest gray) in the ocean component. (b) Fixed noise level

σT = σS = 0.02 in the ocean component and varying noise levels σI = 0.005 (lightest gray), σI = 0.01, σI = 0.02, σI = 0.04, σI = 0.08,

and σI = 0.2 (darkest gray) in the sea-ice component.

hypothesized that a bifurcation in the sea-ice system is detectable as increased variance in the high frequencies of ice-core data

prior to DO events. Similarly, the fluctuations in I of increasing amplitude and temporal correlation may influence the ocean

subsystem in a more consistent way as the bifurcation is approached. This should increase the crosscorrelation especially on

longer time scales, which can be measured with detrended crosscorrelation analysis (DCCA). This has been proposed as early285

warning indicator for cascading transitions (Dekker et al., 2018). The method is similar to detrended fluctuation analysis, but

instead of scaling in the variance, it measures scaling in the covariance of two signals with increasing time scales (for details

see Zebende (2011) or Dekker et al. (2018)). We can detect a slight increase on average in the DCCA exponent of I and T

(Fig. 12e,f) for the transition in Fig. 10. However, the increase found in individual time series is not statistically significant,

owing to the large variance of the DCCA estimator.290

3.5 Early warning of rate-induced tipping in the Stommel model

During the rate-induced transition of the ocean component there is an increase in the ensemble variance, as can be seen by the

shadings in Fig. 12b. This increase, as well as a corresponding increase in ensemble autocorrelation, has been proposed before

as early warning signal for rate-induced tipping (Ritchie and Sieber, 2016). However, we show here that this results from the

large spread in the amount of time spent by individual realizations at the saddle before tipping to the other attractor (see Fig. 8).295

In contrast, the fluctuations in individual realizations, as used for operational early warning, do not show an increase in variance

and autocorrelation. This can be seen in Fig. 12e-f, where no increases in sliding window variance and autocorrelation accom-

pany the increase in ensemble variance. For the estimation of variance and autocorrelation in a sliding window, a detrending

of the time series is necessary, such that remaining trends in the residuals are not larger than the fluctuations themselves. For
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Figure 12. Ensemble simulations of the coupled sea-ice ocean model, where R is ramped linearly from R= 0 to R=−0.3 within 350

years. (a) Time series of R (dashed line) and mean time series of I with a 90% confidence band of the ensemble (gray shading). (b) Mean

time series and 90% confidence band of T and S. (c-f) Indicators of critical slowing down for I and T , estimated in a sliding window of

150 years, where the data in the window is detrended by a cubic function. The data is cut as the bifurcation in I is crossed until after the last

realization tips plus the sliding window length. (g) Detrended cross-correlation analysis (DCCA) exponent estimated from I and T .

our detrending method using cubic functions, the severity of detrending, and thus the ability to remove sharp changes in the300

signal trend, depends only on the sliding window size (see Sec. S4 for more details). In order to remove the trend due to the

parameter shift regarded here, a window size of no more than 200 years is required (Fig. S4).

Detrending inevitably removes some of the original fluctuations. To show that the lack of increased fluctuations in the

detrended time series is not a consequence of too severe detrending, we extract segments of the time series where the system is

in the vicinity of the saddle and there are no sharp trends. The fluctuations around the saddle are then compared to time series305

segments where the system fluctuates around the initial attractor. We define the vicinity of the saddle by the time periods in

the simulations where q = 0.06 is first crossed until q = 0.1 is first crossed (Fig. 13). We regard the time series segments of an
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Figure 13. (a) Simulation in phase space of the Stommel model with σT = σS = 0.2, where η1 is ramped from η1 = 2.65 to η1 = 3.00

within 300 years. The two dotted lines correspond to the levels q = T −S = 0.06 and q = T −S = 0.1. The trajectory in between the first

crossing of these two thresholds is shown in yellow. (b) Corresponding time series of the variable T .

ensemble of realizations where the system stays in this vicinity for at least a certain duration. After detrending the segments by

cubic functions, we calculate variance and autocorrelation. This yields empirical distributions of these quantities, describing

the fluctuations in the system shortly before tipping. For each realization, we also choose a segment of the same duration taken310

just before the parameter shift starts, yielding distributions of variance and autocorrelation at the initial attractor. Figure 14

shows that variance and autocorrelation at the saddle are not increased, but actually slightly decreased compared to the initial

attractor. This is best seen for longer segments (panels c and d), since here the uncertainty in the estimators is smaller. One can

also see that in this case the average variance and autocorrelation is larger compared to panels a and b, because the detrending

in longer windows removes less variability on longer time scales.315

It thus does not appear that critical slowing down indicators apply to rate-induced tipping. Instead, we exploit that the system

is attracted towards the saddle where the dynamics are different to those at the initial attractor. If this difference can be detected

before the system tips, a small perturbation in the right direction or a reversal of the parameter shift could push the system back

in the desired basin of attraction. Saddles, which have at least one unstable direction in phase space, can be distinguished from

attractors by a change from a negative to a positive real part of the largest eigenvalue of the Jacobian. Estimating the Jacobian320

from the time series in a sliding window could thus be a generic tool to detect the saddle escape involved in rate-induced

tipping, and we describe a method to do this in the Appendix A. With this method the elements of the Jacobian during rate-
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Figure 14. Distributions of variance and autocorrelation for ensembles of time series from the Stommel model (σT = σS = 0.2). These are

estimated from time series segments around the initial fixed point at η1 = 2.65 (black) and close to the saddle point (orange, see main text).

The length of the segments for each realization corresponds to the time period that the system spent in the vicinity of the saddle. (a,b) Results

for realizations where these time windows were at least 300 years long. (c,d) Results for time windows of at least 700 years. Also shown are

the distributions around the ’on’ attractor (dashed) and the ’off’ attractor at η1 = 3.0 (dotted).

induced tipping of the Stommel model can be inferred and allow for the distinction of the dynamics around the different fixed

points (Fig. S5). However, there are quantitative biases in the estimates of individual elements, and as a result the estimates of

the real part of the largest eigenvalue in the vicinity of the saddle are not consistently positive. These biases could be a result325

of the detrending, of a too high noise level, or because the unstable dynamics are ’suppressed’ since we consider time series

segments taken before the escape from the saddle.

As a more reliable indicator we propose the actual elements of the Jacobian, since they are inferred in a qualitatively robust

way (Fig. S5). This lowers the estimator variance compared to the eigenvalues, which are composed of the estimates of all

elements. The off-diagonal elements record changes in sign of the feedbacks in between the system variables. Such changes330

in feedback are common as a system move towards a saddle. We combine the off-diagonal elements to a scalar early warning

indicator J , defined in Eq. A5. Figure 15a-f shows that J can distinguish the dynamics around the attractor (black) and the

saddle (red) before tipping. The panels correspond to different minimum lengths of the time windows used to estimate J .

The figure also shows probabilities p of observing a value of J estimated around the attractor that is larger than a value of J
in the vicinity of the saddle. This measures the performance of J as an early warning signal. For longer time windows, the335

distributions become better separated since the uncertainty of the estimator is reduced. Still, even for relatively short windows

the indicator correctly identifies the departure from the attractor for most realizations.

An operational early warning signal can be constructed by estimating J in a sliding window, and raising an alert as soon

as a threshold Jc is exceeded. Choosing a location of Jc relative to the tails of the distributions in Fig. 15a-f is a trade-off in
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Figure 15. (a-f) Distributions of the early warning indicator J for ensembles of time series from the Stommel model (σT = σS = 0.2),

estimated around the initial fixed point at η1 = 2.65 (black) and close to the saddle point (orange). For each realization, J is estimated after

detrending in a time window that corresponds to the time period that the system spent in the vicinity of the saddle. In increasing order, the

panels show results for realizations where these time windows were at least 100, 150, 200, 300, 400 and 600 years long, respectively. (g)

Receiver operator characteristic curves for the same time series ensembles, showing the false and true positive rates as the threshold Jc

is increased from low (top right) to high values (bottom left). The increasing darkness in the gray scale of the curves corresponds to the

increasing time window lengths, as above. The diagonal dashed line indicates the performance of a pure chance classifier. The red cross

indicates a perfect classifier.

between maximizing the rate of true positives and minimizing the rate of false positives (alerts). The performance of the alert340

as a binary classifier can be summarized in receiver operating characteristic (ROC) curves. The curve of a perfect classifier

collapses to the point (0,1). Figure 15g shows that for realizations that spend a longer time at the saddle, the indicator J
comes close to a perfect classifier, detecting the saddle approach with very low false positive and very high true positive rates.

Figure 16 shows J estimated from time series in a sliding window, along with critical slowing down indicators. J begins to

rise sharply roughly 200 years after the ramping started and decreases slightly as most realizations leave the saddle towards345

the ’on’ attractor. In contrast to the ensemble variance (orange), the variance and autocorrelation in the sliding window show

no signal, apart from a small artifact around the parameter shift, which is a remnant of imperfect detrending in the 200-year

windows.
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Figure 16. Early-warning indicators estimated in a 200-year sliding window from an ensemble of time series of the Stommel model, where

η1 is ramped from η1 = 2.65 to η1 = 3.0 within 300 years. (a) Time series of T and the parameter ramp. (b) Variance estimated from

the detrended time series, as well as the ensemble variance (orange). (c) Lag-1 autocorrelation in the sliding window. (d) Early-warning

indicator J (Eq. A5) estimated from the Jacobian in the sliding window. Mean time series are shown in black and the range in between 5-

and 95-percentiles are shaded in gray.

4 Discussion

In this work we propose a conceptual model that describes a mechanism for abrupt climate change comprising a rate-induced350

resurgence of the AMOC as a response to increasing atmosphere-ocean heat exchange, which results from fast disappearance

of sea-ice. The latter occurs via a bifurcation tipping as a response to changing sea-ice export into the North Atlantic, which

could be driven by changes in wind stress forcing due to variations in ice sheet topography. In the context of DO events, the

proposed model merely describes the sequence of events leading to a stadial-interstadial transition, and not the dynamics of

entire DO cycles that repeat in a self-sustained way. The model omits processes on longer time scales, as well as processes that355

would initiate after the resurgence of the AMOC. However, it can be easily extended to display self-sustained DO cycles by

adding another slow variable that dynamically models the parameter shift. This could be a simple negative feedback reflecting,

e.g., the influence of the AMOC on the ice sheets. Similarly, stronger noise forcing of the sea ice together with a weak feedback

from the ocean to the sea ice can yield an excitable system with stochastically driven DO cycles. The proposed mechanism

is thus a dynamical skeleton that is in principle compatible with both stochastic, externally forced as well as self-sustained360
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oscillatory dynamics driving DO cycles. Whether it indeed played a role in past abrupt climate change remains to be confirmed

with more complex models, as well as with analyses of new highly resolved and synchronized climate proxy records.

The type of cascade introduced here could be a common feature in coupled systems that feature multistability and time-

scale separation. Here, a tipping in a fast subsystem can trigger a rate-induced transition of a slower subsystem even for weak

coupling. Conversely, when there is no time scale separation but stronger coupling, the cascade can still occur in systems with365

non-smooth fold bifurcations. This is due to ’soft’ tipping points (Sec. 3.1), where the critical ramping duration to enable rate-

induced tipping diverges as the parameter shift increases towards the bifurcation point. As a result, the cascading dynamics

seen in the conceptual model may also be relevant for other regime shifts in the climate system, as well as for other natural

systems. Consequently, we examined the mathematical details of the tipping cascade, which occurs in several stages. During

the parameter shift the ocean subsystem tries to track the moving equilibrium. As the sea-ice component tips abruptly, this fails370

and the system is instead attracted by the stable manifold of the saddle. The system then remains in the vicinity of the saddle

as the dynamics slow down, before escaping to the ’on’ attractor. Adding noise leads to a broad distribution of the tipping

time towards the ’on’ attractor. Early tipping, where stochastic perturbations push the system away from the stable manifold,

is observed as well as significantly delayed tipping is. In the latter case, noise pushes the system very close to the saddle,

where it can get stuck for a very long time. A similar delay of rate-induced tipping for low noise levels has been reported375

for a one-dimensional gradient system (Ritchie and Sieber, 2016). It is seen from our model that due to the attraction by the

stable manifold of the saddle, the tipping delay is a robust feature that exists for a fairly large range of rates (both sub- and

super-critical), as well as of noise levels. Thus, it opens up the possibility to issue an early warning of rate-induced transitions.

The main difficulty for achieving an early warning of the cascade before the initial tipping of the sea-ice is due to the

relatively fast parameter shift involved. Thus, indicators proposed for cascading tipping points (Dekker et al., 2018) yield380

non-significant results, and more research is needed to find better indicators that might rely on similar principles. Instead, we

focused on the rate-induced tipping of the ocean subsystem, since early warning signals for rate-induced tipping have not been

developed. As in the case of fast passages through a bifurcation, for very fast parameter shifts one cannot hope for an early

warning of rate-induced tipping. Here the system is not attracted by the saddle but evolves quickly towards the alternative

attractor. However, for intermediate rates we can exploit that the tipping occurs via saddle escape. As the moving attractor385

is departed towards the saddle the linear stability changes. This can be captured by the Jacobian matrix, which we estimate

from the time series. We then propose to use the off-diagonal elements of the Jacobian as early warning signal. These elements

record changes in the sign of coupling in between the system variables, indicating a change in stability. The proposed indicator

detects an approach of the saddle with significant skill, in particular for realizations where the system stays in the vicinity for

a longer time, so that the Jacobian can be estimated with good precision. Note that the actual tipping occurs by escaping the390

vicinity of the saddle, which is largely noise-induced. Thus, early warning in the sense of predicting the precise time of the

saddle escape is hard to achieve. Early-warning signals for saddle escapes have been proposed (Kuehn et al., 2015), but they

require being very close to the saddle and very low noise.

While the specific early warning signal proposed here may not apply to all cases of rate-induced tipping, the general pro-

cedure of detecting a qualitative change in the feedback structure of the system via the Jacobian or its eigenvalues should be395
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widely applicable. For higher-dimensional systems early warning might even become easier, since there are often dominant

eigenvalues and large differences in the effective dimensionality of the dynamics on the attractor versus the transient dynamics

during tipping. Other techniques for detecting transient dynamics may also be useful here (Gottwald and Gugole, 2020). The

phenomenology of cascading transitions involving rate-induced tipping that has been exemplified here is to be tested with

models of different complexity in upcoming studies. Furthermore, the applicability of the early warning method to real-world400

data needs to be tested. In the typical case where only one (or a few) scalar time series are available, this will involve a time

series embedding and subsequent estimation of the Jacobian from the reconstructed multivariate time series.

5 Conclusions

Building on previous studies of proxy records and state-of-the-art climate models, we propose that past abrupt climate change

could have arisen as a cascade of tipping points. We translate this into a conceptual sea-ice-ocean model, where a parameter405

shift leads to the following cascade: First, as a result of the gradually changing climatic conditions, the North Atlantic sea-ice

cover collapses abruptly. Subsequently, the AMOC resurges abruptly from a weak to a vigorous state in a rate-induced tipping,

as a response to the fast rate of sea-ice decline enhancing the atmosphere-ocean heat exchange. Our analysis suggests that

cascades of tipping points in weakly coupled climate components with time-scale separation become more likely under certain

circumstances. This is case when there are rate-dependent tipping points, or ’soft’ tipping points associated with non-smooth410

fold bifurcations. This motivates the development of specialized early warning signals for such rate-dependent cascading

tipping points. We present a first step in this direction by showing that due to a delay in the tipping of the ocean circulation

a statistical estimation of the Jacobian can detect the impending abrupt transition. This may be applicable as generic early

warning signal of rate-induced transitions.

Appendix A: An early warning indicator for rate-induced tipping415

We detect rate-induced tipping by identifying a departure from the initial attractor towards the vicinity of the saddle. This is

accompanied by a change in the linear stability of the system, and thus the Jacobian. The latter is estimated from the multi-

variate time series in a sliding window as follows. Consider the underlying dynamical system ẋ(t) = f(x(t)) with x ∈ Rd,

and the observed discrete time series {x(1),x(2), ...,x(N)}, where N is the window size. The linearization of the dynamical

system around the equilibrium point y is420

˙̃x(t) =

d∑
i=1

x̃i(t)
∂f(x)

∂xi

∣∣∣∣
x=y

(A1)

with x̃(t) = x(t)−y. Discretized, this can be approximated as:

x̃(t+ 1)− x̃(t) = x(t+ 1)−x(t)≡∆xt = δt

(
d∑
i=1

x̃i(t)
∂f(x)

∂xi

∣∣∣∣
x=y

)
. (A2)
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In this expression, the factors ∂fj(y)
∂xi

are the elements Jji of the Jacobian matrix. They can be estimated with multiple linear

regression by sampling different ∆xt as dependent variable and x̃i(t) as independent variables for a given y from within the425

time series. To this end, we choose {x(t1),x(t2), ...,x(tM )} from within the windowed time series, which are the M closest

points to y in phase space in terms of the distance Dy,k =
∑d
i=1 [xi(tk)− yi]2. For each x(tk), we evaluate ∆xtk using the

subsequent point in the time series. From the M samples of ∆xtk and x̃i(tk) for i= 1...d, we obtain the factors ∂fj(y)
∂xi

by

multiple linear regression. We then repeat the procedure for every data point in the window as y, and average the results

to obtain average Jacobian elements Jji within the sliding window. In this work we chose M =N/2. To illustrate how the430

Jacobian changes in the Stommel model as the system departs the ’off’ attractor, we write Eq. 4 in the deterministic case as

dT

dt
= f(T,S)

dS

dt
= g(T,S).

(A3)

The corresponding Jacobian of the linearized system is

J =

(
∂f(T,S)
∂T

∂f(T,S)
∂S

∂g(T,S)
∂T

∂g(T,S)
∂T

)
=

(
sgn(T −S) · (S− 2T )− 1 sgn(T −S) ·T

sgn(S−T ) ·S sgn(T −S) · (2S−T )− η3.

)
(A4)

Around the attractors, the real parts of both eigenvalues are negative. As the saddle is approached by crossing q > 0, the real435

part of the first eigenvalue becomes positive. Furthermore, the off-diagonal elements of the Jacobian change sign. We propose

this sign change as early warning signal, since it is more robust than the eigenvalues when estimated from noisy data. We define

the early warning signal as

J ≡ ∂f

∂S
− ∂g

∂T
. (A5)

Note that for dynamical systems defined by a gradient of a potential this indicator is not applicable, since it would be 0 in the440

whole phase space due to the symmetric Jacobian. Using instead just one of the diagonal elements as indicator still gives good

early warning possibilities with roughly half the statistical power due to the smaller amount of information retained. For time

series from unknown dynamical systems, changes in the individual elements could be monitored simultaneously, potentially

after embedding in case of univariate time series.
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