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Abstract. Understanding historical changes in gross primary productivity (GPP) is essential for better predicting the future 

global carbon cycle. However, the historical trends of terrestrial GPP, owing to the CO2 fertilization effect, climate, and land-25 

use change, remain largely uncertain. Using long-term satellite-based near-infrared radiance of vegetation (NIRv), a proxy for 

GPP, and multiple GPP datasets derived from satellite-based products, Dynamic Global Vegetation Model (DGVM) 

simulations, and machine learning techniques, here we comprehensively investigated their trends and analyzed the causes for 

any discrepancies during 1982–2015. Although spatial patterns of climatological annual GPP from all products and NIRv are 

highly correlated (𝑟  > 0.84), the spatial correlation coefficients of trends between DGVM GPP and NIRv significantly 30 

decreased (with the ensemble mean of 𝑟 = 0.49) and even the spatial correlation coefficients of trends between other GPP 

products and NIRv became negative. By separating the global land into the tropics plus extra-tropical southern hemisphere 

(Trop+SH) and extra-tropical northern hemisphere (NH), we found that, during 1982–2015, simulated GPP from most of the 

models showed a stronger increasing trend over Trop+SH than NH. In contrast, the satellite-based GPP products indicated a 

substantial increase over NH. Mechanistically, model sensitivity experiments indicated that the increase of annual GPP was 35 

dominated by the CO2 fertilization effect (Global: 83.9%), albeit a large uncertainty in magnitude among individual simulations. 

However, the spatial distribution of inter-model spreads of GPP trends resulted mainly from climate and land-use change rather 
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than CO2 fertilization effect. Trends after 2000 were different from the full time-series, showing that satellite-based GPP 

products suggested weakened rising trends over NH and even significantly decreasing trends over Trop+SH, while the trends 

from DGVMs kept increasing. The inconsistencies are very likely caused by the contrasting performances between satellite-40 

derived and DGVM simulated vegetation structure parameter (leaf area index, LAI). Therefore, the uncertainty in satellite-

based GPP products induced by highly uncertain LAI data in the tropics undermines their roles in assessing the performance 

of DGVM simulations and understanding the changes of global carbon sinks. 

1 Introduction 

The gross primary productivity (GPP) and the ecosystem respiration (ER) dominate carbon fluxes from terrestrial ecosystems. 45 

Therefore, quantifying global terrestrial GPP is essential to understanding the global carbon cycle (Ryu et al., 2019). To date, 

there are multiple global GPP products, mainly including the up-scaled products from the eddy covariance flux data by machine 

learning techniques (Beer et al., 2010; Jung et al., 2020), satellite-based estimates by light-use efficiency (LUE) model 

(Running et al., 2004; Yuan et al., 2010; Joiner et al., 2018; Zheng et al., 2020), and simulations by the state-of-the-art Dynamic 

Global Vegetation Models (DGVMs) (Huntzinger et al., 2013; Sitch et al., 2015). 50 

 

The machine learning FLUXCOM GPP products based on the global FLUXNET network, remote sensing, and meteorological 

input (Jung et al., 2020; Pastorello et al., 2020) are widely used in terrestrial carbon cycle studies. Taking FLUXCOM GPP as 

a benchmark, research has explored the interannual variation, seasonal cycle, and climatology pattern of global and regional 

GPP (Chen et al., 2017; Jia et al., 2020; Zhang and Ye, 2021). However, due to the lack of the CO2 fertilization effect, the 55 

performance of this product on the long-term GPP trend is not realistic (Jung et al., 2020). Based on the LUE principle and 

derived from the Advanced Very High-Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) datasets, the satellite-based GPP estimates include MOD17, GLASS, GIMMS, FluxSat, 

WECANN, and revised EC_LUE GPP product (Running et al., 2004; Yuan et al., 2007; Smith et al., 2016; Alemohammad et 

al., 2017; Joiner et al., 2018; Zheng et al., 2020). These GPP products capture the seasonal variation, spatial distribution, and 60 

interannual variation to a large extent (Wang et al., 2014), but do not always account for the CO2 fertilization effect (O'sullivan 

et al., 2020). For DGVM simulations, different forcing datasets, parameterizations, and processes considered can make the 

surprising differences in model representation of responses of photosynthesis to CO2 concentration, soil moisture, temperature, 

and water vapor deficit (Rogers, 2014; Rogers et al., 2017). These differences caused large inter-model spreads in GPP 

simulations (Ito et al., 2017). Hence, many efforts have been made to constrain the global GPP magnitude based on the satellite 65 

observations like solar-induced chlorophyll fluorescence (SIF) (Hashimoto et al., 2013; Macbean et al., 2018; Bacour et al., 

2019; Norton et al., 2019; Wang et al., 2021a). 
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The application of satellite-derived GPP proxy datasets provides a breakthrough for estimating global GPP (Running et al., 

2004; Badgley et al., 2019; Piao et al., 2020). Many GPP proxy indices, such as normalized difference vegetation index (NDVI), 70 

enhanced vegetation index (EVI), and SIF, have been widely used to estimate the global GPP (Frankenberg et al., 2011; 

Guanter et al., 2014). However, each of them has its shortcomings. For example, NDVI can be saturated in tropical regions, 

demonstrating its nonlinear relationship with GPP (Badgley et al., 2017; Badgley et al., 2019; Camps-Valls et al., 2021). The 

EVI index improves the NDVI algorithm, but this index has not entirely solved the saturation problem (Huete et al., 2002). 

Without dealing with the problem of distinguishing whether the signal comes from the plant or other interference factors, 75 

satellite retrieval of SIF measures the light emitted by chlorophyll in leaves and can be used as a robust proxy of GPP 

(Frankenberg et al., 2011; Mohammed et al., 2019). However, the time range of global SIF products is short, with direct 

observations only available from 2007. Representing the proportion of reflected near-infrared radiation attributable to 

vegetation, NIRv is a relatively recent GPP proxy (Badgley et al., 2017). Compared to NDVI and EVI, the saturation problem 

of NIRv and GPP in the tropical region is weakened because of the mixed effects of background brightness, leaf area, and the 80 

distribution of canopy photosynthetic capacity with depth were largely eliminated. Since NIRv can be directly obtained from 

observational datasets of the AVHRR sensors, it can be derived from 1982 to the present. Moreover, previous studies have 

shown that NIRv and SIF are closely related and indicated that NIRv could well represent changes in GPP (Badgley et al., 

2017; Badgley et al., 2019; Camps-Valls et al., 2021; Wang et al., 2021c). 

 85 

Although there have been a lot of studies focusing on extreme anomalies, the seasonal cycle, interannual variation, and the 

climatological pattern of global and regional GPP based on the multiple GPP products and proxy indices (Chen et al., 2017; 

Madani et al., 2020; Wang et al., 2021b), few efforts have been devoted to evaluate the long-term GPP trends across different 

GPP sources and to analyze the causes of uncertainties. This study comprehensively investigates historical GPP trends during 

1982−2015, based on the satellite-derived GPP proxy (NIRv), TRENDYv6 multi-model simulations, machine-learning 90 

products, satellite-based estimates, and site-level observations. Section 2 describes the datasets and statistical methods used. 

The comparison of GPP trends among DGVM simulations and satellite-based GPP products is in section 3.1. The mechanisms 

of the trend attributions are proposed and explained in section 3.2. The discussions about the uncertainties in GPP trends are 

included in section 3.3. Finally, the main conclusions of the results are summarized in section 4. 

 95 

2 Datasets and methods 

2.1 TRENDYv6 multi-model simulated GPP 

We used the model simulation results conducted under the auspices of the “Trends and drivers of the regional scale sources 

and sinks of carbon dioxide” (TRENDY) Project (Sitch et al., 2015). We used 10 DGVMs in the TRENDYv6 project for the 

period of 1982-2015, including CABLE (Haverd et al., 2018), CLASS-CTEM (Melton and Arora, 2016), CLM4.5 (Oleson et 100 
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al., 2010), DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), OCN (Zaehle et al., 2010), ORCHIDEE-MICT (Guimberteau 

et al., 2018), ORCHIDEE (Krinner et al., 2005), VEGAS (Zeng et al., 2005), and VISIT (Kato et al., 2013). There is a suite of 

experimental protocols in the TRENDY project, and we here explored GPP trends and their mechanisms using the GPP outputs 

from three simulations. In detail, DGVMs were run under the varying CO2 concentration, and constant climate conditions and 

land-use change in S1; the varying CO2 concentration and climate conditions, with constant land-use change in S2; the varying 105 

CO2 concentration, climate conditions, and land-use change in S3. Hence, the S1 scenario represents the impact of the CO2 

fertilization effect. The contributions of climate change and land-use change (hereafter “LUC”) are calculated through the 

differences between S2 and S1, S3 and S2, respectively. These modelling details are listed in Table 1.  

 

In sections 3.2 and 3.3.1, we calculated the ensemble mean of the 7 model simulations, which included all scenarios as the 110 

DGVM ensemble GPP and calculated their standard deviation to represent inter-model spread across these models. In other 

sections which only need results from S3, we used the ensemble mean simulations from 10 models. 

 
Table 1. Information of TRENDYv6 models used in this study. S1 represents the impact of the CO2 fertilization effect, S2 represents 
the impact of the CO2 fertilization effect and climate change, S3 represents the impact of the CO2 fertilization effect, climate change, 115 
and LUC. 

Models Spatial resolution S1a S2 S3 References  

CABLE 0.5º × 0.5º √  √ Haverd et al., 2018 

CLASS-CTEM T42 √ √ √ Melton and Arora 2016 

CLM4.5 0.94º × 1.25º  √ √ √ Oleson et al., 2010 

DLEM 0.5º × 0.5º √ √ √ Tian et al. 2015 

ISAM 0.5º × 0.5º √ √ √ Jain et al., 2013 

OCN 0.5º × 0.5º   √ Zaehle and Friend 2010 

ORCHIDEE-MICT 1º × 1º   √ Guimberteau et al., 2018 

ORCHIDEE 0.5º × 0.5º √ √ √ Krinner et al., 2005 

VEGAS 0.5º × 0.5º √ √ √ Zeng et al., 2005 

VISIT 0.5º × 0.5º √ √ √ Ito and Inatomi., 2011 
aSimulation datasets in the corresponding experiments (S1, S2, and S3) as available for models indicated with the notation of “√”.  
 

2. 2 FLUXCOM GPP  

The FLUXCOM datasets comprised of 120 global carbon flux products generated by nine machine learning techniques, based 120 

on site-level observed GPP measured by eddy covariance and upscaled with remote sensing information and meteorology data 

(Jung et al., 2020). This research used the ensemble mean of GPP datasets forced by CRUJRA climate data and generated 
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from three machine learning techniques (random forest, artificial neural network, and multivariate adaptive regression splines) 

from 1982 to 2015. The original spatial resolution of this dataset is 0.5 º × 0.5 º.  

 125 

2.3 Satellite-based GPP products  

In this study, the GLASS GPP and revised EC-LUE GPP estimates were used as representatives of long-term satellite-based 

GPP products from 1982 to 2015. 

 

GLASS GPP originated from the Eddy Covariance–Light Use Efficiency (EC-LUE) model (Yuan et al., 2007), which 130 

considered various impact factors (NDVI, photosynthetically activate radiation, temperature, CO2 concentrations, the Bowen 

ratio of sensible to latent heat flux, water vapor pressure deficit, direct radiation fluxes, and diffuse radiation fluxes) and nine 

ecosystem types to accurately estimate the long-term change of GPP (Yuan et al. 2019). The original spatial resolution of this 

dataset is 0.05 º × 0.05 º. 

 135 

The revised EC-LUE GPP is a long-term GPP dataset based on the LUE equation. Zheng et al. (2020) generated the revised 

EC-LUE GPP using the following formula: 

𝐺𝑃𝑃 = (𝜀!"# × 𝐴𝑃𝐴𝑅𝑠𝑢 + 𝜀!"$ × 𝐴𝑃𝐴𝑅"$) × 𝐶𝑠 ×𝑚𝑖𝑛(𝑇𝑠,𝑊𝑠)                                          (1)  

where 𝜀!"# is the maximum LUE of sunlit leaves and 𝜀!"$  is the maximum LUE of shaded leaves; 𝐴𝑃𝐴𝑅𝑠𝑢 is the PAR 

absorbed by sunlit leaves and 𝐴𝑃𝐴𝑅"$  is the PAR absorbed by shaded leaves. 𝐶𝑠, 𝑇𝑠 , and 𝑊𝑠 represent the downward 140 

regulation scalars of atmospheric CO2 concentration, temperature, and VPD on LUE with the range from 0 to 1. Specifically, 

the direct effect of CO2 fertilization on GPP is determined by the following equations: 

𝐶" =
%!&'
%!()'

                                                                                                                                (2) 

𝐶* = 𝐶+ × 𝜒                                                                                                                              (3) 

where 𝐶*  represents the CO2 concentration inside the leaf, 𝐶+  is the atmospheric CO2 concentration, 𝜑  means the CO2 145 

compensation point in the absence of dark respiration (ppm), and 𝜒 means the ratio of CO2 concentration inside the leaf to that 

in the atmosphere (Farquhar et al., 1980). 

 

After adding the effect of CO2 fertilization, the GPP generated from this model is closer to the site observation data of more 

than five years (R2 = 0.44) than that of other LUE models (R2 ranged from 0.06 to 0.30) (Zheng et al., 2020). The original 150 

spatial resolution of this dataset is 0.05 º × 0.05 º. 

 

The spatial pattern and temporal changes of these datasets are highly consistent (Fig. S1, Fig. S2, and Fig. S3). Therefore, for 

simplicity, we averaged them to represent satellite-based GPP products. 
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 155 

2.5 Site-level GPP observations 

We also adopted 20 EC sites from the FLUXNET2015 dataset  (Pastorello et al., 2020) with an observation period longer than 

15 years to evaluate the performance of different global GPP products. These sites included 5 vegetation types: evergreen 

broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), grassland (GRA), and mixed 

forest (MF), all distributed over Northern Hemisphere (Table 2). The GPP variable used in this study is GPP_NT_VUT_REF. 160 

When evaluating the global gridded GPP datasets with the site observations, the bilinear interpolation method was used to 

interpolate the gridded data to the specific site locations. 

 
Table 2. FLUXNET sites used in this study. The vegetation types are: evergreen broadleaf forest (EBF), evergreen needleleaf forest 
(ENF), deciduous broadleaf forest (DBF), grassland (GRA), and mixed forest (MF) 165 

Site name latitude longitude Vegetation type Study period 

FR-Pue 43.74°N 3.60°E EBF 2000–2014 

CH-Dav 46.8°N 9.85°E ENF 1997–2014 

DE-Tha 50.96°N 13.57°E ENF 1996–2014 

US-NR1 40.03°N 105.55°W ENF 1999–2014 

IT-Ren 46.59°N 11.43°E ENF 1999–2013 

NL-Loo 52.17°N 5.74°E ENF 1996–2014 

RU-Fyo 56.46°N 32.92°E ENF 1998–2014 

FI-Hyy 61.85°N 24.30°E ENF 1996–2014 

CA-Man 55.88°N 98.48°W ENF 1994–2008 

US-UMB 45.56°N 84.71°W DBF 2000–2014 

US-MMS 39.32°N 86.41°W DBF 1999–2014 

DK-Sor 55.49°N 11.64° E DBF 2001–2014 

US-Ha1 42.54°N 72.17°W DBF 1992–2012 

IT-Col 41.85°N 13.59°E DBF 1996–2014 

CA-Oas 53.63°N 106.20°W DBF 1996–2010 

US-Var 38.41°N 120.95°W GRA 2000–2014 

DK-ZaH 74.47°N 20.55° E GRA 2000–2014 

US-PFa 45.95°N 90.27°W MF 1996–2014 

BE-Bra 51.31°N 4.52°E MF 1999–2014 

BE-Vie 50.31°N 6.00°E MF 1997–2014 
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2. 6 Leaf area index  

GLASS LAI version 03 was used to compare the TRENDY model ensemble LAI (S3) because it is an input parameter for 

GLASS and revised EC-LUE GPP. This dataset is originated from AVHRR product before 2001 and MODIS surface 

reflectance product (MOD09) after 2001. Biome-specific general regression neural networks were used to fuse these two 170 

datasets. Its original spatial and temporal resolutions are 0.05º × 0.05º and eight days, respectively (Xiao et al., 2016). 

 

2.7 Statistical methods used 

Due to the difference among temporal and spatial resolution of each product, we resampled all GPP datasets into 0.5 º × 0.5 º 

through the first-order conservative remapping method: 175 

𝐹8, 	= 	
-
."
∫ 𝑓	𝑑𝐴                                                                                 	(4)	

where 𝐹8, is the area-averaged destination quantity, 𝐴, means the area of grid k, and f is the quantity in an old grid with an 

overlapping area with the destination grid. We resampled NIRv and LAI into 0.5 º × 0.5 º using bilinear interpolation and 

generated the annual datasets according to the weights of days. We then calculated the global and regional total GPP time 

series from each GPP dataset and generated the linear trends of each dataset at the pixel level to generate the spatial patterns 180 

of GPP trends and at the global and zonal scales to detect the historical changes in GPP. The linear trend was calculated as 

𝑦 = 	𝑘𝑥	 + 	𝑏	 + 	𝜀,	 																																																																														(5) 

where k represents the linear trend of the time series, b is the intercept, and 𝜀 is the error term. 

 

Finally, non-parametric Mann-Kendall trend tests were used to evaluate the level of significance for each GPP time series  185 

because it does not acquire the data to follow the normal distribution (Khaled H. Hamed, 1998). 

 

3 Results and Discussions 

3.1 Different GPP trends in DGVMs and satellite-based products 

During 1982–2015, the spatial patterns of climatological annual GPP from different products are highly correlated with 190 

satellite-derived NIRv with their spatial correlation coefficients ranging from 0.84 to 0.94 (Table 3). However, the spatial 

distributions of the various GPP products and NIRv trends are quite different. The spatial patterns of trends of NIRv, the 

DGVM ensemble, FLUXCOM, and satellite-based GPP during 1982–2015 are presented in Figure 1. NIRv clearly shows 

increasing trends in most land regions, especially in the northwest parts of Eurasia, and shows decreasing trends over Alaska 

and Kazakhstan (Fig. 1a). The global distribution of the DGVM ensemble GPP trends is generally consistent with satellite-195 
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derived NIRv with their spatial correlation coefficient (𝑟) of 0.49. However, the increasing trends of the DGVM ensemble 

GPP in the tropical regions (Amazon and equatorial Africa) are higher than those in the boreal zone. Further, for DGVM 

ensemble GPP, there are about 59.8% of the global land regions showing significant positive GPP trends, and 3.8% showing 

significant negative GPP trends. For NIRv, 88.2% of the global land had positive GPP trends (Table 3).  

 200 

Although the DGVM ensemble GPP trends are close to those of NIRv than the other GPP products used here, inconsistencies 

exist in spatial distribution and magnitude of GPP trends among individual model simulations. Firstly, the spatial correlations 

among individual models and NIRv range from 0.15 to 0.48. Secondly, the GPP simulated by the DLEM shows increasing 

trends in about three-fourths (77.3%) of the global land areas, while the GPP simulated by the CLASS-CTEM has increasing 

trends in only about one-third (33.9%) of the land area (Table 3). Finally, in magnitude, the trends of VEGAS GPP appear 205 

generally weaker than other models (Fig. S2, Fig. S4a).  

 

The spatial distributions of the trends between NIRv and the remaining non-DGVM products are quite different, ranging from 

uncorrelated to negatively correlated (Table 3). For FLUXCOM, owing to the lack of CO2 fertilization effect, the GPP trend 

pattern generally shows no significant trends over 74.1% of the land areas. The most striking differences between NIRv and 210 

satellite-based GPP products are located in the low latitudes, especially over Amazon and Indonesia, with the latter indicating 

significant decreasing trends over these regions.  
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Figure 1: Geographical distributions of linear trends of NIRv and GPP during 1982–2015. (a) AVHRR NIRv, (b) Ensemble mean of 215 
TRENDY multi-model simulated GPP, (c) FLUXCOM GPP, (d) Mean of satellite-based products from revised EC-LUE and GLASS 
GPP. Stripped areas indicate that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test. The 
trends of NIRv and GPP are unitless and in kgC m–2 yr–2, respectively. Additionally, owing to lack of the CO2 fertilization effect in 
FLUXCOM GPP (c), we used a smaller scale than in (b) and (d). 

 220 
Table 3. Spatial information for NIRv and different GPP products. 

Products 

Spatial 

correlations 

of 

climatological 

annual GPP 

with NIRv 

Spatial 

correlations 

of annual 

GPP trends 

with NIRv 

trends 

Area 

percentage 

with   

significant   

positive 

trends (%) 

Area 

percentage 

with no    

significant 

trends (%) 

Area 

percentage 

with 

significant 

negative 

trends 

(%) 

TRENDY 

ensemble 
0.94 0.49 59.8 36.4 3.8 

CABLE 0.89 0.39 56.2 41.1 2.7 

CLASS-

CTEM 
0.90 0.38 33.9 61.3 4.8 

CLM4.5 0.85 0.42 42.6 55.0 2.4 

DLEM 0.84 0.44 77.3 20.4 2.3 

ISAM 0.93 0.42 64.5 31.9 3.6 

OCN 0.94 0.48 59.4 37.8 2.8 

ORCHIDEE-

MICT 
0.90 0.20 52.6 41.9 5.5 

ORCHIDEE 0.89 0.20 49.3 45.6 5.1 

VEGAS 0.89 0.15 51.4 37.4 11.2 

VISIT 0.86 0.22 51.4 42.7 5.9 

GLASS 0.95 -0.01 46.4 42.6 11.0 

Revised EC-

LUE 
0.91 -0.03 48.7 40.7 10.6 

FLUXCOM 0.93 -0.26 15.1 74.4 10.5 

NIRv - - 88.2 8.3 3.5 

 

As mentioned above, the trends of DGVM ensemble GPP and NIRv show relatively consistent patterns for 1982–2015. 

However, the DGVM ensemble mean GPP shows slightly stronger trends over the tropics than over Northern Hemisphere, 

whereas NIRv has relatively stronger increasing trends over Northern Hemisphere (Fig. 2a). The tropical region shows the 225 
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most extensive inter-model spread for the DGVM ensemble, with the strongest trends in CABLE and the weakest trends in 

VEGAS (Fig. S4a, Fig. S5b). The latitudinal distribution of satellite GPP products is quite different from DGVM ensemble 

and NIRv. Satellite-based GPP shows a significant decrease over the tropical region, rebounding to the most substantial 

increase located between 15°S and 25°S. The GPP increases in the middle and high latitudes of the northern hemisphere, but 

its magnitude is weaker than that of the DGVM ensemble in the most northern regions. There are sufficient numbers of pixels 230 

available in these regions to lend confidence to our results (Fig. 2c). 

 

The GPP trends are quite different for the long-term (1982–2015) and recent short-term (2001–2015) periods (Fig. 2b, Fig. S4, 

Fig. S6) (Hashimoto et al., 2013; Yuan et al., 2019; Madani et al., 2020). Between 2001 and 2015, the DGVM ensemble mean 

GPP trend increases more than NIRv over tropical regions and is consistent with NIRv in middle and high latitudes. However, 235 

satellite-based GPP products indicate a stronger GPP decreasing signal over the tropical region after 2001 compared to the 

long-term trend (Fig. 2).  

 

 
Figure 2. Latitudinal profiles of trends of annual zonal total NIRv and GPP (0.5° latitudinal bins). Results for the DGVM ensemble 240 
mean (blue), FLUXCOM GPP (green), satellite-based products (orange), and NIRv (red) during 1982–2015 (a) and 2001–2015 (b), 
respectively. The GPP values are given on the bottom axis and the NIRv values on the top axis.  The shaded areas represent the 
standard deviation of the individual TRENDY model simulated GPP trend.  The units of the NIRv and GPP trends are unitless and 
GtC yr-2, respectively. (c) represents the change of vegetated land area along the latitudes. 
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 245 

The relative changes of annual total GPP and the linear trends of GPP among the DGVM simulations, FLUXCOM, and 

satellite-based GPP products, vary substantially both globally and regionally (Fig. 3, Fig. S3). Based on the analysis over the 

34 years, the trend of global GPP was about 0.37 (DGVM ensemble mean), 0.0 (FLUXCOM), and 0.18 (satellite-based GPP 

products) GtC year−2, respectively (Fig. 3d). Before 2001, the GPP trend of satellite-based products was generally stronger 

than that of DGVMs (Fig. 3a). Separating the global land into the tropics plus extra-tropical southern hemisphere (Trop+SH: 250 

90°S–23°N) and extra-tropical northern hemisphere (NH: 23°N–90°N), results show that more than half of the increase of 

GPP in the DGVM ensemble is from the Trop+SH (57%). In comparison, the increase of GPP in satellite-based GPP products 

is mainly attributed to the NH (60%). In individual models, the majority of them show similar results to the model ensemble 

mean. With the exception of ORCHIDEE-MICT and VEGAS, the others indicate that Trop+SH largely contributes to the 

global GPP trend (ranging from 54.3% to 65.3%) (Fig. 3d). 255 

 

 
Figure 3. Linear trends of global and regional total GPP. (a, b, and c) Changes of annual total GPP relative to 1982, based on DGVM 
ensemble mean (blue), satellite-based products (orange), and FLUXCOM (green), compared to AVHRR-NIRv (red), for global (a), 
Trop+SH (b), and NH (c). The shaded areas denote the TRENDY inter-model spread (the standard deviation of the annual 260 
aggregated time series). (d and e) Global and regional GPP trends in individual models and products for the period of 1982–2015 
and 2000–2015, respectively.  Asterisks indicate that the trend is significant with p < 0.05 following the non-parametric Mann-
Kendall trend test. 
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After 2000, there were obvious differences in the trend between DGVM ensemble and satellite-based GPP products, with the 265 

satellite-based GPP products showing an obvious turning point (Figs. 3a-c). Both GLASS and revised EC-LUE GPP changed 

from significant increasing trends to significant decreasing trends, resulting mainly from Trop+SH (Figs. 3a-c). Studies based 

on satellite-based GPP products suggested that this transition was mainly due to the increasing atmospheric vapor pressure 

deficit in the tropical zones (Yuan et al., 2019; Madani et al., 2020). Meanwhile, the increasing GPP trend in the NH was 

greatly weakened (from 0.10 to 0.01 GtC year−2 for GLASS and from 0.11 to 0.05 GtC year−2 for revised EC-LUE). In contrast, 270 

DGVM ensemble mean GPP and NIRv kept increasing. However, in detail, four out of ten DGVM models (CLASS-CTEM, 

OCN, ORCHIDEE-MICT, and VEGAS) simulated weakened GPP increasing signals primarily from the Trop+SH (Fig. 3d 

and e). Similar to the spatial distribution, the FLUXCOM GPP has no noticeable trends in the study period. 

 

3.2 Trend attributions in DGVMs 275 

We analyzed the contributions of three drivers (CO2 fertilization effect, climate change, and LUC) to the GPP trends during 

1982–2015 by using the results of the TRENDY sensitivity experiments (Fig. 4). Globally, DGVM ensemble results suggest 

that the CO2 fertilization effect is the dominant driver to increasing GPP (0.29 GtC year−2 accounting for 83.9%), followed by 

climate change (0.09 GtC year−2 accounting for 26.5%). Additionally, LUC has little effect on the trend of GPP (−0.04 GtC 

year−2 accounting for −10.4%). For individual model simulations, the contributions from CO2 fertilization effect, climate 280 

change, and LUC range from 65.7% to 116.3%, 2% to 50.4%, and −18.4% to 5.5%, respectively. The model simulations for 

the period of 2001–2015 show similar results (Fig. S7).  

 

The spatial distributions of GPP trends indicate that the CO2 fertilization effect consistently increases global GPP, especially 

in tropical rainforest areas (Fig. 5a). Climate change has inhomogeneous effects on GPP owing to different regional changes 285 

of climate elements (Fig. 5c and Figs. S8a and b) associated with different vegetation sensitivities to each climate element 

(Wang et al., 2016; Jung et al., 2017). For instance, in the high northern latitudes, global warming dominates the increase of 

GPP (Fig. 5c, Figs. S8a, and S9c); the increase in temperature and decrease in precipitation over Amazon lead the GPP to 

decrease; the increase of GPP over Equatorial Africa appears to be consistent with the increase of the precipitation based on 

visual comparison against the trends for the CRU observational dataset (Fig. 5c and Fig. S8b). Concentrated in the Trop+SH, 290 

LUC basically weakens GPP (Fig. 5e and Fig. S9a), mainly due to deforestation (Friedlingstein et al., 2019).  
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Figure 4. Attributions of global total GPP trends for TRENDYv6 simulations: CO2 fertilization effect (S1), climate (S2-S1), and 
land-use change (S3-S2). “All” gives the values of the reference simulation that includes the effect of all three drivers (S3). Asterisks 295 
indicate that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   

 

3.3 Uncertainties in GPP trends 

3.3.1 DGVM simulations 

By analyzing the simulation results driven by each factor, it can be found that though the CO2 fertilization effect has the most 300 

considerable contribution to the global GPP trend, it has the largest inter-model uncertainty (𝜎 = 0.11 GtC yr-2) among three 

drivers (Fig. 4). A previous study showed that some models might overestimate the CO2 fertilization effect on stomatal closure 

(Anav et al., 2015). The spatial pattern of the standard deviation among each model indicates that the inter-model spreads are 

mainly located in the Trop+SH (Fig. 5h). The inter-model spread attributed to the CO2 fertilization effect shows a consistently 

positive effect on GPP at the global scale (Fig. 5a, b). By contrast, the inter-model spreads driven by climate change and LUC 305 

over Trop+SH outweigh the CO2 fertilization effect (Figs. 5b, d, and f). However, because the inhomogeneous impacts on 

GPP from climatic elements can offset each other to a large extent (Fig. 5c), it makes the largest inter-model uncertainty of 

CO2 fertilization to the global GPP increase rather than the climate effect. Meanwhile, the largest uncertainty in the impact of 

LUC on GPP increase concentrates over 20º–40ºS in South America. 

 310 
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We further calculated the spatial correlation coefficients among the GPP trend of each model simulation to quantify their 

spatial consistencies. The correlation coefficient between each model varied from 0.16 to 0.61 (Fig. S10), implying that large 

uncertainties existed in the distribution of GPP trends among models, which were caused by differences in model structures 

and parameterizations (Rogers, 2014; Rogers et al., 2017). Furthermore, studies have shown that the global GPP increase will 

be largely overestimated without nitrogen (N) constraints, especially in the tropical region, where the nitrogen limitation will 315 

reduce the photosynthetic capacity of vegetations and weaken its response to the increasing atmospheric CO2 concentration 

(He et al., 2017; Terrer et al., 2019). Phosphorus (P) availability also limits the extent to which plants respond to the CO2 

fertilization effect, which is especially relevant in the Amazon forest (Fleischer et al., 2019). Therefore, DGVM ensemble GPP 

may overestimate the increasing GPP trend in the tropical regions since not all of the models used in this study take the effect 

of N limitation into consideration, and no model includes P limitation to the CO2 fertilization effect.  320 
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Figure 5. The spatial distribution patterns and the inter-model spreads of GPP trends from the DGVM ensemble. (a and b) GPP 
trends and spreads owing to CO2 fertilization effect; (c and d) GPP trends and spreads owing to climate change; (e and f) GPP trends 
and spreads owing to LUC; (g and h) GPP trends and spreads from the combined effects of all drivers (S3). Stripped areas indicate 
that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   325 

 

3.3.2 Satellite-based GPP products 

In this study, GLASS GPP and revised EC-LUE GPP were used as a representative of long-term satellite-based GPP products. 

As an essential input in the LUE model (Eq. 1), APAR is a function of LAI, suggesting that LAI is a key parameter in satellite-
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derived GPP. The spatial correlation coefficient of trends between GLASS LAI and satellite-based GPP (i.e., the mean of 330 

GLASS GPP and revised EC-LUE GPP) is 0.42. A previous study over China has shown that satellite-based LAI datasets play 

a more important role in GPP estimation than meteorological data for all land cover types (Liu et al., 2014). Also, the spatial 

distribution of trends between LAI and GPP simulated from the DGVM ensemble is even more consistent (𝑟  = 0.77), 

confirming the previous studies showing that the trends of GPP and LAI are highly correlated in biome models (Ito et al., 2017; 

Liu et al., 2019), and the changes of GPP and LAI are consistent in earth system models from CMIP5 (Hashimoto et al., 2019).  335 

 

Figure 6 compares the LAI trends of GLASS and the DGVM ensemble during 2001–2015. The spatial distribution of DGVM 

LAI indicates significant increasing trends over the boreal forest region, Indonesia, Equatorial Africa, and India, and significant 

decreasing trends over Kazakhstan, Southeast Asia, and Western Australia. The trends of GLASS LAI were obviously weaker 

than that of the DGVM ensemble, especially in the equatorial Africa region, northern Amazon region, Indonesia, and Northern 340 

high latitudes. The large inconsistencies between the LAI from the DGVMs and those observed in the satellite products could 

lead to substantial uncertainties in generating/simulating the global GPP (Fig. 1 and Fig. 6). Xiao et al., (2017) suggested that 

the trends of four satellite-derived LAI products showed large discrepancies in equatorial Africa from 1982 to 2011 and 

differed across each vegetation type. Jiang et al., (2017) revealed that NOAA satellite orbit changes and MODIS sensor 

degradation might cause long-term satellite-derived LAI products inconsistent with each other. Xie et al., (2019) also suggested 345 

that satellite-derived LAI datasets can cause uncertainties in GPP estimations through model structure and the complexity of 

the terrain. Hence, the long-term trends of satellite GPP products based on satellite-derived LAI remain highly uncertain (Smith 

et al., 2016; Jiang et al., 2017; Liu et al., 2018). 
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 350 
Figure 6. The spatial distributions of LAI trend (m2 m-2 yr-2) from (a) DGVM ensemble mean and (b) GLASS from 2001 to 2015. 
Striped areas indicate that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   

 

3.3.3 Evaluation of site-level GPP trends 

We further adopted 20 sites with observations longer than 15 years from FLUXNET2015 datasets to evaluate long-term GPP 355 

trends from global products and simulations. Compared to the site observations, the magnitudes of GPP at most of site locations 

were underestimated by satellite-based GPP products, FLUXCOM, and the DGVM ensemble mean. Also, the interannual 

variation and long-term trend of GPP at sites are more obvious than those of global GPP products and NIRv (Fig. 7). This is 

possibly due to the fact that climate variables at 0.5-degree grid cells are smoothed out compared to those recorded at individual 

sites, which leads to a moderate GPP variation. 360 

 

More than half of the sites indicate that FLUXNET GPP has increased on a long-time scale (Fig. 7, Fig. S11), which was 

mainly caused by rising LUE due to the CO2 fertilization effect and increased green vegetation cover (Cai and Prentice, 2020). 

Although FLUXCOM was upscaled from FLUXNET datasets, it did not capture the trends of GPP observed at sites, which 

was also mentioned by Anav et al. (2015). Sites with significant increasing GPP trends were all captured by DGVM ensemble 365 
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mean, but some were missed by satellite-based GPP (Figs. 7b, d, k, l, m, s, and t). Furthermore, none of sites with decreasing 

GPP trends were reflected in the global GPP products and NIRv (Figs. 7f, h, i, j, n, q, r), which may be in part due to the 

different spatial representativenesses between a tower fetch and a model or satellite grid point. Therefore, the uncertainty 

remained when using the site-level observed GPP to evaluate the GPP trends of the DGVM simulations and satellite-based 

GPP products. It is worth mentioning that sites with more than 15 years of observations were all located at NH (from 39.32°N 370 

to 50.96°N) (Table 2). It is hardly for us to evaluate the GPP trends of global products over the Trop+SH by using the GPP 

observations from sites. 
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Figure 7. Comparisons of annual GPP over different FLUXNET2015 sites (black), FLUXCOM (green), satellite-based product 375 
(orange), DGVM ensemble (blue), and NIRv (red). The global GPP datasets were interpolated into the locations of these 20 sites 
according to the bilinear interpolation method. Observation sites with significant trends are marked with values. Single (*) and 
double (**) asterisks indicate that the trend is significant with p < 0.1 and p < 0.05 following the non-parametric Mann-Kendall 
trend test. The units of GPP and GPP trend are kgC m−2 yr−1 and kgC m−2 yr−2 respectively.  

 380 

4 Conclusions 

Based on five kinds of GPP or GPP-related datasets, including satellite-based products, machine learning models, DGVM 

simulations, satellite-observed proxy (NIRv), and site-level observations, we comprehensively assessed the global and regional 

GPP trends during 1982−2015. The simulated spatial pattern of GPP trends from the DGVM ensemble is highly consistent 

with NIRv, but shows considerable inconsistency with satellite-based GPP products, especially in the tropical regions. After 385 

2000, the GPP generated by the satellite-based GPP products decreased significantly in Trop+SH, and the increasing trend in 

NH also weakened. However, the results of DGVMs showed that global GPP kept increasing after 2000, even in the tropical 

region, which was closer to the performance of NIRv. By analyzing the impact of each driving factor in DGVM simulations, 

the results indicate that the CO2 fertilization effect has the dominant contribution to the global GPP. Spatially, the CO2 

fertilization effect makes the global GPP increased consistently, while climate has inhomogenous impact on GPP trends over 390 

different regions. 

 

We further explored the uncertainties in GPP trends among these different datasets. For DGVM ensemble, globally, the CO2 

fertilization effect causes the largest inter-model spread. At the grid cell level, the uncertainties in simulated GPP trends 

concentrate over the Trop+SH, which result mainly from climate and LUC. Furthermore, the large discrepancy in the GPP 395 

trends between DGVM ensemble and satellite-based GPP products is, to a large extent, induced by the difference of vegetation 

canopy structure parameter (LAI). Therefore, the highly uncertain satellite-derived LAI data in the tropical regions increase 

the uncertainty of satellite GPP products and weaken their reliability in explaining changes in the global GPP. 

 

Finally, GPP trends from satellite-based products and DGVM simulations were evaluated by using the FLUXNET2015 dataset. 400 

Results show that all of sites with significant increasing GPP trends can be captured by DGVM ensemble mean, but some of 

them were missed by satellite-based GPP. And none of sites with decreasing GPP trends were reflected in the global GPP 

products. Therefore, uncertainty remained when using the FLUXNET observed GPP to evaluate the GPP trends of the global 

GPP products.  

 405 

Generally, the differences among models, observations, and products suggest the importance of the research on the GPP trend 

and make our caution to interpret the mechanisms of the global carbon cycle by using the long-term GPP products. 
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