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Abstract. Understanding historical changes in gross primary productivity (GPP) is essential for better predicting the future 

global carbon cycle. However, the historical trends of terrestrial GPP, owing to the CO2 fertilization effect, climate, and land-

use change, remain largely uncertain. Using long-term satellite-based near-infrared radiance of vegetation (NIRv), a proxy for 25 

GPP, and multiple GPP datasets derived from satellite-based products, Dynamic Global Vegetation Model (DGVM) 

simulations, and an upscaled product from eddy covariance (EC) measurements, here we comprehensively investigated their 

trends and analyzed the causes for any discrepancies during 1982–2015. Although spatial patterns of climatological annual 

GPP from all products and NIRv are highly correlated (𝑟 > 0.84), the spatial correlation coefficients of trends between DGVM 

GPP and NIRv significantly decreased (with the ensemble mean of 𝑟 = 0.49) and even the spatial correlation coefficients of 30 

trends between other GPP products and NIRv became negative. By separating the global land into the tropics plus extra-

tropical southern hemisphere (Trop+SH) and extra-tropical northern hemisphere (NH), we found that, during 1982–2015, 

simulated GPP from most of the models showed a stronger increasing trend over Trop+SH than NH. In contrast, the satellite-

based GPP products indicated a substantial increase over NH. Mechanistically, model sensitivity experiments indicated that 

the increase of annual global total GPP was dominated by the CO2 fertilization effect (83.9% contribution), however, with the 35 

largest uncertainty in magnitude in individual simulations among the three drivers of CO2 fertilization, climate, and land-use 
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change. Interestingly, the spatial distribution of inter-model spreads of GPP trends resulted mainly from climate and land-use 

change rather than CO2 fertilization effect. After 2000, trends from satellite-based GPP products were different from the full 45 

time-series, suggesting weakened rising trends over NH and even significantly decreasing trends over Trop+SH, while the 

trends from DGVMs and NIRv kept increasing. The inconsistencies of GPP trends are very likely caused by the contrasting 

performances between satellite-derived and DGVM simulated vegetation structure parameter (leaf area index, LAI). Therefore, 

the uncertainty in satellite-based GPP products induced by highly uncertain LAI data in the tropics undermines their roles in 

assessing the performance of DGVM simulations and understanding the changes of global carbon sinks. The higher 50 

consistency between DGVM GPP and NIRv suggests that the trends from DGVM ensemble might even have better 

performance than satellite-based GPP products. 

1 Introduction 

The gross primary productivity (GPP) is the largest carbon flux in the terrestrial carbon cycle. Quantifying terrestrial GPP and 

understanding its variations are vital in the global and regional carbon cycle (Ryu et al., 2019). To date, there are multiple 55 

global GPP products, mainly including the up-scaled products from the eddy covariance (EC) flux data by machine learning 

techniques (Beer et al., 2010; Jung et al., 2020), satellite-based estimates by light-use efficiency (LUE) model (Running et al., 

2004; Yuan et al., 2010; Joiner et al., 2018; Zheng et al., 2020), and simulations by the state-of-the-art Dynamic Global 

Vegetation Models (DGVMs) (Huntzinger et al., 2013; Sitch et al., 2015). 

 60 

The machine learning FLUXCOM GPP products based on the global FLUXNET network, remote sensing, and meteorological 

input (Jung et al., 2020; Pastorello et al., 2020) are widely used in terrestrial carbon cycle studies. Taking FLUXCOM GPP as 

a benchmark, researches have explored the interannual variation, seasonal cycle, and climatology pattern of global and regional 

GPP (Chen et al., 2017; Jia et al., 2020; Zhang and Ye, 2021). However, due to the lack of the CO2 fertilization effect, the 

performance of this product on the long-term GPP trend is not realistic (Jung et al., 2020). Based on the LUE principle and 65 

derived from the Advanced Very High-Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) datasets, the satellite-based GPP estimates include MOD17, GLASS, GIMMS, FluxSat, 

WECANN, and revised EC_LUE GPP product (Running et al., 2004; Yuan et al., 2007; Smith et al., 2016; Alemohammad et 

al., 2017; Joiner et al., 2018; Zheng et al., 2020). These GPP products capture the seasonal variation, spatial distribution, and 

interannual variation to a large extent (Wang et al., 2014), but do not always account for the CO2 fertilization effect (O'sullivan 70 

et al., 2020). For DGVM simulations, different forcing datasets, parameterizations, and processes considered can make the 

surprising differences in model representation of responses of photosynthesis to CO2 concentration, soil moisture, temperature, 

and water vapor deficit (Rogers, 2014; Rogers et al., 2017; Ito et al., 2017; M. Wang et al., 2021). These differences caused 

large inter-model spreads in GPP simulations (Ito et al., 2017). Hence, many efforts have been made to constrain the global 
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GPP magnitude based on the satellite observations like solar-induced chlorophyll fluorescence (SIF) (Macbean et al., 2018; 

Bacour et al., 2019; Norton et al., 2019; J. Wang et al., 2021a). 

 

The application of satellite-derived GPP proxy datasets provides a breakthrough for estimating global GPP (Running et al., 95 

2004; Badgley et al., 2019; Piao et al., 2020). Many GPP proxy indices, such as normalized difference vegetation index (NDVI), 

enhanced vegetation index (EVI), and SIF, have been widely used to estimate the global GPP (Frankenberg et al., 2011; 

Guanter et al., 2014). However, each of them has its shortcomings. For example, NDVI can be saturated in tropical regions, 

demonstrating its nonlinear relationship with GPP (Badgley et al., 2017; Badgley et al., 2019; Camps-Valls et al., 2021). The 

EVI index improves the NDVI algorithm, but this index has not entirely solved the saturation problem (Huete et al., 2002). 100 

Without dealing with the problem of distinguishing whether the signal comes from the plant or other interference factors, 

satellite retrieval of SIF measures the light emitted by chlorophyll in leaves and can be used as a robust proxy of GPP 

(Frankenberg et al., 2011; Mohammed et al., 2019). However, the time range of global SIF products is short, with direct 

observations only available from 2007. Representing the proportion of reflected near-infrared radiation attributable to 

vegetation, long-term satellite-derived near-infrared radiance of vegetation (NIRv) is a relatively recent GPP proxy (Badgley 105 

et al., 2017). Compared to NDVI and EVI, the saturation problem of NIRv and GPP in the tropical region is weakened because 

the mixed effects of background brightness, leaf area, and the distribution of canopy photosynthetic capacity with depth are 

largely eliminated. Since NIRv can be directly obtained from observational datasets of the AVHRR sensors, it can be derived 

from 1982 to the present. Moreover, previous studies have shown that NIRv and SIF are closely related and indicated that 

NIRv could well represent changes in GPP (Badgley et al., 2017; Badgley et al., 2019; Camps-Valls et al., 2021; S. Wang et 110 

al., 2021). 

 

Although there have been a lot of studies focusing on extreme anomalies, the seasonal cycle, interannual variation, and the 

climatological pattern of global and regional GPP based on the multiple GPP products and proxy indices (Chen et al., 2017; 

Madani et al., 2020; J. Wang et al., 2021b), few efforts have been devoted to evaluate the long-term GPP trends across different 115 

GPP sources and to analyze the causes of uncertainties. This study will comprehensively investigate historical GPP trends 

during 1982−2015, based on the satellite-derived GPP proxy (NIRv), simulations from process-based models, machine-

learning products, satellite-based estimates, and site-level observations. Hereinafter, section 2 describes the datasets and 

statistical methods used. The comparison of GPP trends among GPP proxy, DGVM simulations, and satellite-based GPP 

products is in section 3.1. The mechanisms of the trend attributions are explored in section 3.2. The uncertainties in GPP trends 120 

are discussed in section 3.3. At last, the main conclusions of the results are summarized in section 4. 
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2 Datasets and methods 

2.1 TRENDYv6 multi-model simulated GPP 

We used the model simulation results conducted under the auspices of the “Trends and drivers of the regional scale sources 

and sinks of carbon dioxide” (TRENDY) Project (Sitch et al., 2015). We used 10 DGVMs in the TRENDYv6 project for the 140 

period of 1982-2015, including CABLE (Haverd et al., 2018), CLASS-CTEM (Melton and Arora, 2016), CLM4.5 (Oleson et 

al., 2010), DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), OCN (Zaehle et al., 2010), ORCHIDEE-MICT (Guimberteau 

et al., 2018), ORCHIDEE (Krinner et al., 2005), VEGAS (Zeng et al., 2005), and VISIT (Kato et al., 2013). There is a suite of 

experimental protocols in the TRENDY project, and we here explored GPP trends and their mechanisms using the GPP outputs 

from three simulations. In detail, DGVMs were run under the varying CO2 concentration, and constant climate conditions and 145 

land-use change in S1; the varying CO2 concentration and climate conditions, with constant land-use change in S2; the varying 

CO2 concentration, climate conditions, and land-use change in S3. Hence, the S1 scenario represents the impact of the CO2 

fertilization effect. The contributions of climate change and land-use change (hereafter “LUC”) are calculated through the 

differences between S2 and S1, S3 and S2, respectively. These modelling details are listed in Table 1.  

 150 

In sections 3.2 and 3.3.1, we calculated the ensemble mean of the 7 model simulations, which included all scenarios as the 

DGVM ensemble GPP and calculated their standard deviation to represent inter-model spread across these models. In other 

sections which only need results from S3, we used the ensemble mean simulations from 10 models. 

 
Table 1. Information of TRENDYv6 models used in this study. S1 represents the impact of the CO2 fertilization effect, S2 represents 155 
the impact of the CO2 fertilization effect and climate change, and S3 represents the impact of the CO2 fertilization effect, climate 
change, and LUC. 

Models Spatial resolution S1a S2 S3 References  

CABLE 0.5º × 0.5º √  √ Haverd et al., 2018 

CLASS-CTEM T42 √ √ √ Melton and Arora 2016 

CLM4.5 0.94º × 1.25º  √ √ √ Oleson et al., 2010 

DLEM 0.5º × 0.5º √ √ √ Tian et al. 2015 

ISAM 0.5º × 0.5º √ √ √ Jain et al., 2013 

OCN 0.5º × 0.5º   √ Zaehle and Friend 2010 

ORCHIDEE-MICT 1º × 1º   √ Guimberteau et al., 2018 

ORCHIDEE 0.5º × 0.5º √ √ √ Krinner et al., 2005 

VEGAS 0.5º × 0.5º √ √ √ Zeng et al., 2005 

VISIT 0.5º × 0.5º √ √ √ Ito and Inatomi., 2011 
aSimulation datasets in the corresponding experiments (S1, S2, and S3) as available for models indicated with the notation of “√”.  
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2.2 FLUXCOM GPP  160 

The FLUXCOM datasets comprised of 120 global carbon flux products generated by nine machine learning algorithms based 

on site-level observed GPP measured by EC associated with remote sensing information and meteorology data, but did not 

take the CO2 fertilization effect into account (Jung et al., 2020). This research used the ensemble mean of GPP datasets forced 

by CRUJRA climate data and generated from three machine learning techniques (random forest, artificial neural network, and 

multivariate adaptive regression splines) from 1982 to 2015. The original spatial resolution of this dataset is 0.5 º × 0.5 º.  165 

 

2.3 Satellite-based GPP products  

In this study, the GLASS GPP and revised EC-LUE GPP estimates were used as representatives of long-term satellite-based 

GPP products from 1982 to 2015. GLASS GPP originated from the Eddy Covariance–Light Use Efficiency (EC-LUE) model 

(Yuan et al., 2007), which considered various impact factors (NDVI, photosynthetically activate radiation, temperature, CO2 170 

concentrations, the Bowen ratio of sensible to latent heat flux, water vapor pressure deficit, direct radiation fluxes, and diffuse 

radiation fluxes) and nine ecosystem types to accurately estimate the long-term change of GPP (Yuan et al. 2019). The original 

spatial resolution of this dataset is 0.05 º × 0.05 º. 

 

The revised EC-LUE GPP is a long-term GPP dataset based on the LUE equation. Zheng et al. (2020) generated the revised 175 

EC-LUE GPP using the following formula: 

𝐺𝑃𝑃 = (𝜀!"# × 𝐴𝑃𝐴𝑅𝑠𝑢 + 𝜀!"$ × 𝐴𝑃𝐴𝑅"$) × 𝐶𝑠 ×𝑚𝑖𝑛(𝑇𝑠,𝑊𝑠)                                          (1)  

where 𝜀!"# is the maximum LUE of sunlit leaves and 𝜀!"$  is the maximum LUE of shaded leaves; 𝐴𝑃𝐴𝑅𝑠𝑢 is the PAR 

absorbed by sunlit leaves and 𝐴𝑃𝐴𝑅"$  is the PAR absorbed by shaded leaves. 𝐶𝑠, 𝑇𝑠 , and 𝑊𝑠 represent the downward 

regulation scalars of atmospheric CO2 concentration, temperature, and VPD on LUE with the range from 0 to 1. Specifically, 180 

the direct effect of CO2 fertilization on GPP is determined by the following equations: 

𝐶" =
%!&'
%!()'

                                                                                                                                (2) 

𝐶* = 𝐶+ × 𝜒                                                                                                                              (3) 

where 𝐶*  represents the CO2 concentration inside the leaf, 𝐶+  is the atmospheric CO2 concentration, 𝜑  means the CO2 

compensation point in the absence of dark respiration (ppm), and 𝜒 means the ratio of CO2 concentration inside the leaf to that 185 

in the atmosphere (Farquhar et al., 1980). After adding the effect of CO2 fertilization, Zheng et al. (2020) suggested that the 

generated GPP was closer to the site observation data of more than five years (R2 = 0.44) than that of other LUE models (R2 

ranged from 0.06 to 0.30). The original spatial resolution of this dataset is 0.05 º × 0.05 º. 

 

The spatial pattern and temporal changes of the GLASS GPP and Revised EC-LUE GPP are highly consistent (Fig. S1, Fig. 190 

S2, and Fig. S3). Therefore, for simplicity, we averaged them to represent satellite-based GPP products. 
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 205 

2.4 NIRv dataset 

The long-term (1982–2015) satellite growing season NIRv dataset used in this study as the GPP proxy (Badgley et al. 2019) 

originates from the AVHRR sensors. Following the previous study, the NIRv was first calculated as a function of monthly 

NDVI and near-infrared reflection of the total pixel (NIRT) via the equation of NIRv	 = 	 (NDVI	 − 	0.08) 	× 	NIRT (Badgley 

et al. 2017). By defining the growing season as monthly average temperature higher than 0℃, the NIRv for each grid cell 210 

during the growing season was then aggregated into annual value. Wang et al. (2021) have shown that AVHRR NIRv could 

explain about 60% of the monthly variances in ground observational GPP from the FLUXNET2015 dataset, and NIRv trends 

could be used as the proxy of GPP trends under the different definitions of the growing season. 

 

2.5 Site-level GPP observations 215 

We also adopted 20 EC sites from the FLUXNET2015 dataset  (Pastorello et al., 2020) with an observation period longer than 

15 years to evaluate the performance of different global GPP products. These sites, all located over Northern Hemisphere, 

included 5 vegetation types: evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest 

(DBF), grassland (GRA), and mixed forest (MF) (Table 2). The GPP variable used in this study is GPP_NT_VUT_REF. When 

evaluating the global gridded GPP datasets with the site observations, the bilinear interpolation method was used to interpolate 220 

the gridded data to the specific site locations. 

 
Table 2. FLUXNET sites used in this study. The vegetation types include evergreen broadleaf forest (EBF), evergreen needleleaf 
forest (ENF), deciduous broadleaf forest (DBF), grassland (GRA), and mixed forest (MF). 

Site name latitude longitude Vegetation type Study period 

FR-Pue 43.74°N 3.60°E EBF 2000–2012 

CH-Dav 46.8°N 9.85°E ENF 1997–2014 

DE-Tha 50.96°N 13.57°E ENF 1996–2012 

US-NR1 40.03°N 105.55°W ENF 1999–2012 

IT-Ren 46.59°N 11.43°E ENF 1999–2012 

NL-Loo 52.17°N 5.74°E ENF 1996–2014 

RU-Fyo 56.46°N 32.92°E ENF 1998–2012 

FI-Hyy 61.85°N 24.30°E ENF 1996–2012 

CA-Man 55.88°N 98.48°W ENF 1994–2008 

US-UMB 45.56°N 84.71°W DBF 2000–2012 

US-MMS 39.32°N 86.41°W DBF 1999–2012 

DK-Sor 55.49°N 11.64° E DBF 2001–2012 
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US-Ha1 42.54°N 72.17°W DBF 1992–2012 

IT-Col 41.85°N 13.59°E DBF 1996–2014 

CA-Oas 53.63°N 106.20°W DBF 1996–2010 

US-Var 38.41°N 120.95°W GRA 2000–2014 

DK-ZaH 74.47°N 20.55° E GRA 2000–2014 

US-PFa 45.95°N 90.27°W MF 1996–2012 

BE-Bra 51.31°N 4.52°E MF 1999–2012 

BE-Vie 50.31°N 6.00°E MF 1997–2012 

 

2.6 Leaf area index  

GLASS LAI version 05 was used to compare the TRENDY model ensemble LAI (S3) because it is an input parameter for 

GLASS GPP and revised EC-LUE GPP. This dataset is originated from version 4 Long-Term Data Record (LTDR) AVHRR 

surface reflectance product before 2001 with a spatial resolution of 0.05º × 0.05º and MODIS surface reflectance product 235 

(MOD09) after 2001 with a spatial resolution of 1km × 1km. The spatial-average method was used to aggregate the dataset to 

0.05º × 0.05º. Biome-specific general regression neural networks were used to fuse these two datasets to generate a long-term 

LAI product (1982 - 2018), which improved performance than the original datasets. Its spatial and temporal resolutions are 

0.05º × 0.05º and eight days, respectively (Xiao et al., 2016). The previous study has shown that this product performed well 

than other long time LAI estimation based on the evaluation of high-resolution reference maps at VAlidation of Land European 240 

Remote sensing Instruments sites (Xiao et al., 2017).  

 

2.7 Statistical methods used 

Due to the difference among spatial resolution of each product, we resampled all GPP datasets into 0.5 º × 0.5 º through the 

first-order conservative remapping method: 245 

𝐹D, 	= 	
-
." ∫ 𝑓	𝑑𝐴                                                                                 	(4)	

where 𝐹D, is the area-averaged destination quantity, 𝐴, means the area of grid k, and f is the quantity in an old grid with an 

overlapping area with the destination grid.  We resampled NIRv and LAI into 0.5 º × 0.5 º using bilinear interpolation and 

generated the annual datasets according to the weights of days. To detect the historical changes in GPP in each dataset, we 

calculated the global and regional total GPP and their linear trends. We also calculated the linear trends of each dataset at the 250 

pixel level to generate the spatial patterns of GPP trends. The linear trend was calculated as 

𝑦 = 	𝑘𝑥	 + 	𝑏	 + 	𝜀,	 																																																																														(5) 

where k represents the linear trend of the time series, b is the intercept, and 𝜀 is the error term. 
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Finally, non-parametric Mann-Kendall trend tests were used to evaluate the level of significance for each GPP time series  265 

because it does not acquire the data to follow the normal distribution (Khaled H. Hamed, 1998). 

 

3 Results and Discussions 

3.1 Different GPP trends in DGVMs and satellite-based products 

During 1982–2015, the spatial patterns of climatological annual GPP from different products are highly correlated with 270 

satellite-derived NIRv with their spatial correlation coefficients ranging from 0.84 to 0.95 (Table 3). However, the spatial 

distributions of the various GPP and NIRv trends are quite different. The spatial patterns of trends of NIRv, the DGVM 

ensemble, FLUXCOM, and satellite-based GPP during 1982–2015 are presented in Figure 1. NIRv clearly shows increasing 

trends in most land regions, especially in the northwest parts of Eurasia, and shows decreasing trends over Alaska and 

Kazakhstan (Fig. 1a). The global distribution of the DGVM ensemble GPP trends is generally consistent with satellite-derived 275 

NIRv with their spatial correlation coefficient (𝑟) of 0.49. However, the increasing trends of the DGVM ensemble GPP in the 

tropical regions (Amazon and equatorial Africa) are higher than those in the boreal zone. Further, for DGVM ensemble GPP, 

there are about 59.8% of the global land regions showing significant positive GPP trends, and 3.8% showing significant 

negative GPP trends. For NIRv, 88.2% of the global land had positive GPP trends (Table 3).  

 280 

Although the DGVM ensemble GPP trends are close to those of NIRv, inconsistencies exist in spatial distribution and 

magnitude of GPP trends among individual model simulations. Firstly, the spatial correlations among individual models and 

NIRv range from 0.15 to 0.48. Secondly, the GPP simulated by the DLEM shows increasing trends in about three-fourths 

(77.3%) of the global land areas, while the GPP simulated by the CLASS-CTEM has increasing trends in only about one-third 

(33.9%) of the land area (Table 3). Finally, in magnitude, the trends of VEGAS GPP appear generally weaker than other 285 

models (Fig. S2, Fig. S4a).  

 

The spatial distributions of the trends between NIRv and the remaining non-DGVM products are quite different, ranging from 

uncorrelated to negatively correlated (Table 3). For FLUXCOM, owing to the lack of CO2 fertilization effect, the GPP trend 

pattern generally shows no significant trends over 74.1% of the land areas. And the most striking differences between NIRv 290 

and satellite-based GPP products are located in the low latitudes, especially over Amazon and Indonesia, with the latter 

indicating significant decreasing trends over these regions (Fig. 1d).  
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Figure 1: Geographical distributions of linear trends of NIRv and GPP during 1982–2015. (a) AVHRR NIRv, (b) Ensemble mean of 
TRENDY multi-model simulated GPP, (c) FLUXCOM GPP, (d) Mean of satellite-based products from revised EC-LUE and GLASS 300 
GPP. Stripped areas indicate that the trends are significant with p < 0.05 following the non-parametric Mann-Kendall trend test. 
The trends of NIRv and GPP are unitless and in kgC m–2 yr–2, respectively. Additionally, owing to lack of the CO2 fertilization effect 
in FLUXCOM GPP (c), we used a smaller scale than in (b) and (d). 

 
Table 3. Spatial information for NIRv and different GPP products. 305 

Products 

Spatial 

correlations 

of 

climatological 

annual GPP 

with NIRv 

Spatial 

correlations 

of annual 

GPP trends 

with NIRv 

trends 

Area 

percentage 

with   

significant   

positive 

trends (%) 

Area 

percentage 

with no    

significant 

trends (%) 

Area 

percentage 

with 

significant 

negative 

trends 

(%) 
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DGVM 

ensemble 

mean 

0.94 0.49 59.8 36.4 3.8 

CABLE 0.89 0.39 56.2 41.1 2.7 

CLASS-

CTEM 
0.90 0.38 33.9 61.3 4.8 

CLM4.5 0.85 0.42 42.6 55.0 2.4 

DLEM 0.84 0.44 77.3 20.4 2.3 

ISAM 0.93 0.42 64.5 31.9 3.6 

OCN 0.94 0.48 59.4 37.8 2.8 

ORCHIDEE-

MICT 
0.90 0.20 52.6 41.9 5.5 

ORCHIDEE 0.89 0.20 49.3 45.6 5.1 

VEGAS 0.89 0.15 51.4 37.4 11.2 

VISIT 0.86 0.22 51.4 42.7 5.9 

GLASS 0.95 -0.01 46.4 42.6 11.0 

Revised EC-

LUE 
0.91 -0.03 48.7 40.7 10.6 

FLUXCOM 0.93 -0.26 15.1 74.4 10.5 

NIRv - - 88.2 8.3 3.5 

 

As mentioned above, the trends of DGVM ensemble GPP and NIRv show relatively consistent patterns for 1982–2015. 

However, the DGVM ensemble mean GPP shows slightly stronger trends over the tropics than over Northern Hemisphere, 

whereas NIRv has relatively stronger increasing trends over Northern Hemisphere (Fig. 2a). The tropical region shows the 310 

most extensive inter-model spread for the DGVM ensemble, with the strongest trends in CABLE and the weakest trends in 

VEGAS (Fig. S4a, Fig. S5b). The latitudinal distribution of satellite GPP products is quite different from DGVM ensemble 

and NIRv. Satellite-based GPP shows a significant decrease over the tropical region, rebounding to the most substantial 

increase located between 15°S and 25°S. The GPP increases in the middle and high latitudes of the northern hemisphere, but 

its magnitude is weaker than that of the DGVM ensemble in the most northern regions.  315 

 

The GPP trends are quite different for the long-term (1982–2015) and recent short-term (2001–2015) periods (Fig. 2b, Fig. S4, 

Fig. S6). Comparing to the comparable trend magnitudes of DGVM ensemble mean GPP and NIRv over NH during these two 

periods, the DGVM ensemble mean GPP trends show much stronger increase but NIRv appears a little weakened increase 

over tropical regions during 2001–2015 (Figs. 2a and b). Additionally, satellite-based GPP products indicate a much stronger 320 

GPP decrease over the tropical regions and no noticeable trends in mid-latitudes of the Northern Hemisphere after 2000 (Fig. 
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2b). Also, FLUXCOM GPP trends are near zero in most latitudinal bands during these two periods (Figs. 2a and b), owing to 

the lack of CO2 fertilization effect (Jung et al., 2020). 

  335 

 
Figure 2. Latitudinal profiles of trends of annual zonal total NIRv and GPP (0.5° latitudinal bins). Results for the DGVM ensemble 
mean (blue), FLUXCOM GPP (green), satellite-based products (orange), and NIRv (red) during 1982–2015 (a) and 2001–2015 (b), 
respectively. The GPP values are given on the bottom axis and the NIRv values on the top axis. The shaded areas represent the 
standard deviation of the individual TRENDY model simulated GPP trend.  The units of the NIRv and GPP trends are unitless and 340 
GtC yr-2, respectively. (c) represents the latitudinal total vegetated land areas.  

 

The relative changes and linear trends of annual total GPP among the DGVM simulations, FLUXCOM, and satellite-based 

GPP products, vary substantially both globally and regionally (Fig. 3, Fig. S3). Based on the analysis over the 34 years, the 

trend of global GPP was about 0.37 ± 0.08 (DGVM ensemble mean ± 95% confidence intervals), 0.0 (FLUXCOM), and 0.18 345 

(satellite-based GPP products) GtC year−2, respectively (Fig. 3d). Before 2001, the GPP trend of satellite-based products was 

generally stronger than that of DGVMs (Fig. 3a). Separating the global land into the tropics plus extra-tropical southern 

hemisphere (Trop+SH: 90°S–23°N) and extra-tropical northern hemisphere (NH: 23°N–90°N), results show that more than 

half of the increase of GPP in the DGVM ensemble is from the Trop+SH (57%). In comparison, the increase of GPP in satellite-

based GPP products is mainly attributed to the NH (60%) rather than Trop+SH (40%) (Fig. 3d). In individual models, with the 350 
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exception of ORCHIDEE-MICT and VEGAS, the others indicate that Trop+SH largely contributes to the global GPP trend 

(ranging from 54.3% to 65.3%) (Fig. 3d). 

 

 
Figure 3. Linear trends of global and regional total GPP. Changes of annual total GPP relative to 1982, based on DGVM ensemble 365 
mean (blue), FLUXCOM (green) , and satellite-based products (orange), compared to AVHRR-NIRv (red), for global (a), Trop+SH 
(b), and NH (c). The shaded areas denote the TRENDY inter-model 1-𝝈 spread. (d and e) Global and regional GPP trends in 
individual models and products for the period of 1982–2015 and 2001–2015, respectively. Asterisks indicate that the trend is 
significant with p < 0.05 following the non-parametric Mann-Kendall trend test. 

 370 

After 2000, there were obvious differences in the trend between DGVM ensemble and satellite-based GPP products, with the 

satellite-based GPP products showing an obvious turning point at the year of 2000 (Figs. 3a-c), confirming the previous studies 

(Yuan et al., 2019; Madani et al., 2020). Both GLASS and revised EC-LUE GPP changed from significant increasing trends 

to significant decreasing trends, resulting mainly from Trop+SH (Figs. 3a-c). Studies based on satellite-based GPP products 

suggested that this transition was mainly due to the increased atmospheric vapor pressure deficit in the tropical zones (Yuan 375 

et al., 2019; Madani et al., 2020). Meanwhile, the increasing GPP trend in the NH was greatly weakened (from 0.10 to 0.01 

GtC year−2 for GLASS and from 0.11 to 0.05 GtC year−2 for revised EC-LUE). In contrast, DGVM ensemble mean GPP and 

NIRv kept increasing. However, in detail, four out of ten DGVM models (CLASS-CTEM, OCN, ORCHIDEE-MICT, and 

VEGAS) simulated weakened GPP increasing signals primarily from the Trop+SH (Figs. 3d and e).  

 380 
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In general, we found that, for the two study periods, the trends from DGVM GPP have higher consistencies with the trends of 

NIRv at the global and regional scales compared with satellite-based GPP. It maybe suggests that long-term trends of GPP 

from DGVM ensemble results have better performance than satellite-derived GPP products. 395 

 

3.2 Trend attributions in DGVMs 

We analyzed the contributions of three drivers (CO2 fertilization effect, climate change, and LUC) to the GPP trends during 

1982–2015 by using the results of the TRENDY sensitivity experiments (Fig. 4). Globally, DGVM ensemble results suggest 

that the CO2 fertilization effect is the dominant driver to the increasing GPP (0.29 GtC year−2 accounting for 83.9%), followed 400 

by climate change (0.09 GtC year−2 accounting for 26.5%). Additionally, LUC has little effect on the trend of GPP (−0.04 GtC 

year−2 accounting for −10.4%). For individual model simulations, the contributions from CO2 fertilization effect, climate 

change, and LUC range from 65.7% to 116.3%, 2% to 50.4%, and −18.4% to 5.5%, respectively. The model simulations for 

the period of 2001–2015 show similar results (Fig. S7).  

 405 

The spatial distributions of GPP trends indicate that the CO2 fertilization effect consistently increases global GPP, especially 

in tropical rainforest areas (Fig. 5a). Climate change has inhomogeneous effects on GPP owing to different regional changes 

of climate elements (Fig. 5c and Figs. S8a and b) associated with different vegetation sensitivities to each climate element 

(Wang et al., 2016; Jung et al., 2017). For instance, in the high northern latitudes, global warming dominates the increase of 

GPP (Fig. 5c, Fig. S8a, and Fig. S9c); the increase in temperature and decrease in precipitation over Amazon lead to the GPP 410 

decrease; the increase of GPP over Equatorial Africa appears to be consistent with the increase of the precipitation based on 

visual comparison against the trends for the CRU observational dataset (Fig. 5c and Fig. S8b). Concentrated in the Trop+SH, 

LUC basically weakens GPP (Fig. 5e and Fig. S9a), mainly due to deforestation (Friedlingstein et al., 2019).  
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Figure 4. Attributions of global total GPP trends for TRENDYv6 simulations from 1982 to 2015: CO2 fertilization effect (S1), climate 
(S2-S1), and land-use change (S3-S2). “All” gives the values of the reference simulation that includes the effect of all three drivers 
(S3). Asterisks indicate that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   420 

 

3.3 Uncertainties in GPP trends 

3.3.1 DGVM simulations 

By analyzing the simulation results driven by each factor, it can be found that though the CO2 fertilization effect has the most 

considerable contribution to the global GPP trend, it has the largest inter-model uncertainty (𝜎 = 0.11 GtC yr-2) among three 425 

drivers (Fig. 4). A previous study showed that some models might overestimate the CO2 fertilization effect on stomatal closure 

(Anav et al., 2015). The spatial pattern of the standard deviation among each model indicates that the inter-model spreads are 

mainly located in the Trop+SH (Fig. 5h). The inter-model spread attributed to the CO2 fertilization effect shows a consistently 

positive effect on GPP at the global scale (Figs. 5a and b). By contrast, the inter-model spreads driven by climate change and 

LUC over Trop+SH outweigh the CO2 fertilization effect (Figs. 5b, d, and f). However, because the inhomogeneous impacts 430 

on GPP from climatic elements can offset each other to a large extent (Fig. 5c), it makes the largest inter-model uncertainty of 

CO2 fertilization to the global GPP increase rather than the climate effect. Meanwhile, the largest uncertainties in the impact 

of LUC on GPP trends concentrate over 20º–40ºS in South America. 

 

We further calculated the spatial correlation coefficients among the GPP trends of each model S3 simulation to quantify their 435 

spatial consistencies. The correlation coefficients in pairs among individual models varied from 0.16 to 0.61 (Fig. S10), 

implying that large uncertainties existed in the distribution of GPP trends among models, which were caused by differences in 

model structures and parameterizations (Rogers, 2014; Rogers et al., 2017). Furthermore, studies have shown that the global 
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GPP increase can be largely overestimated without nitrogen (N) constraints, especially in the tropical region, where the 445 

nitrogen limitation will reduce the photosynthetic capacity of vegetations and weaken its response to the increasing 

atmospheric CO2 concentration (He et al., 2017; Terrer et al., 2019). Phosphorus (P) availability also limits the extent to which 

plants respond to the CO2 fertilization effect, which is especially relevant in the Amazon forest (Fleischer et al., 2019). 

Therefore, DGVM ensemble GPP may overestimate the increasing GPP trend in the tropical regions since not all of the models 

used in this study take the effect of N limitation into consideration, and no model includes P limitation to the CO2 fertilization 450 

effect.  

 

 

 

Figure 5. The spatial distribution patterns and the inter-model spreads of GPP trends from the DGVM ensemble. (a and b) GPP 
trends and spreads owing to CO2 fertilization effect; (c and d) GPP trends and spreads owing to climate change; (e and f) GPP trends 
and spreads owing to LUC; (g and h) GPP trends and spreads from the combined effects of all drivers (S3). Stripped areas indicate 455 
that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   

删除了: will 



16 
 

 

3.3.2 Satellite-based GPP products 

In this study, GLASS GPP and revised EC-LUE GPP were used as a representative of long-term satellite-based GPP products. 460 

As an essential input in the LUE model (Eq. 1), APAR is a function of LAI, suggesting that LAI is a key parameter in satellite-

derived GPP. The GLASS LAI product was used in calculating both the GLASS GPP and the revised EC-LUE GPP products.  

The spatial correlation coefficient of trends between GLASS LAI and satellite-based GPP (i.e., the mean of GLASS GPP and 

revised EC-LUE GPP) is 0.42. A previous study over China has shown that satellite-based LAI datasets play a more important 

role in GPP estimation than meteorological data for all land cover types (Liu et al., 2014). Also, the spatial distribution of 465 

trends between LAI and GPP simulated from the DGVM ensemble is even more consistent (𝑟 = 0.77), confirming the previous 

studies showing that the trends of GPP and LAI are highly correlated in biome models (Ito et al., 2017; Liu et al., 2019), and 

the changes of GPP and LAI are consistent in earth system models from CMIP5 (Hashimoto et al., 2019).  

 

Figure 6 compares the LAI trends of GLASS and the DGVM ensemble during 2001–2015. The spatial distribution of DGVM 470 

LAI indicates significant increasing trends over the boreal forest regions, Indonesia, Equatorial Africa, and India, and 

significant decreasing trends over Kazakhstan, Southeast Asia, and Western Australia. The trends of GLASS LAI were 

obviously weaker than that of the DGVM ensemble, especially in the equatorial Africa region, northern Amazon region, 

Indonesia, and Northern high latitudes. The large inconsistencies between the LAI from the DGVMs and those observed in 

the satellite products could lead to substantial uncertainties in generating/simulating the global GPP (Fig. 1 and Fig. 6). Xiao 475 

et al. (2017) suggested that the trends of four satellite-derived LAI products showed large discrepancies in equatorial Africa 

from 1982 to 2011 and differed across each vegetation type. Jiang et al. (2017) revealed that NOAA satellite orbit changes and 

MODIS sensor degradation might cause long-term satellite-derived LAI products inconsistent with each other. Xie et al. (2019) 

also suggested that satellite-derived LAI datasets can cause uncertainties in GPP estimations through model structure and the 

complexity of the terrain. Hence, the long-term trends of satellite GPP products based on satellite-derived LAI remain highly 480 

uncertain (Smith et al., 2016; Jiang et al., 2017; Liu et al., 2018). 
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Figure 6. The spatial distributions of LAI trends (m2 m-2 yr-2) from (a) DGVM ensemble mean and (b) GLASS from 2001 to 2015. 
Striped areas indicate that the trend is significant with p < 0.05 following the non-parametric Mann-Kendall trend test.   

 

3.3.3 Evaluations at site-level 490 

We further adopted 20 sites with observations longer than 15 years from FLUXNET2015 datasets to evaluate long-term GPP 

trends from global products and simulations. Compared to the site observations, the magnitudes of GPP at most of site locations 

were underestimated by satellite-based GPP products, FLUXCOM, and the DGVM ensemble mean. Also, the interannual 

variation of GPP at sites are more obvious than those of global GPP products and NIRv (Fig. 7). This is possibly due to the 

fact that climate variables at 0.5-degree grid cells are smoothed out compared to those recorded at individual sites, which leads 495 

to a moderate GPP variation. 

 

More than half of the sites indicate that FLUXNET GPP has increased on a long-time scale (Fig. 7, Fig. S11), which was 

mainly caused by rising LUE due to the CO2 fertilization effect and increased green vegetation cover (Cai and Prentice, 2020). 

Although FLUXCOM was upscaled from FLUXNET datasets, it did not capture the trends of GPP observed at sites, which 500 

was also mentioned by Anav et al. (2015). Sites with significant increasing GPP trends were all captured by DGVM ensemble 

mean, but some were missed by satellite-based GPP (Figs. 7b, d, k, l, m, s, and t). Furthermore, none of sites with decreasing 

GPP trends were reflected in the global GPP products and NIRv (Figs. 7f, h, i, j, n, q, r), which may be in part due to the 

删除了:  of

删除了:  GPP trends505 

删除了: and long-term trend 



18 
 

different spatial representativenesses between a tower fetch and a model or satellite grid point. Therefore, the uncertainty 

remained when using the site-level observed GPP to evaluate the GPP trends of the DGVM simulations and satellite-based 

GPP products. We also selected sites with observation longer than 12 years and found similar results (Fig. S12). It is worth 

mentioning that sites with more than 15 years of observations were all located at NH (from 39.32°N to 50.96°N) (Table 2), 510 

and only three sites with more than 12 years of observations located at Trop+SH (Table S2).Therefore, it is hardly for us to 

evaluate the GPP trends of global products over the Trop+SH by using the GPP observations from sites. 

 

 
Figure 7. Comparisons of annual GPP over different FLUXNET2015 sites (black), FLUXCOM (green), satellite-based product 515 
(orange), DGVM ensemble (blue), and NIRv (red). The global GPP datasets were interpolated into the locations of these 20 sites 
according to the bilinear interpolation method. Observation sites with significant trends are marked with values. Single (*) and 
double (**) asterisks indicate that the trend is significant with p < 0.1 and p < 0.05 following the non-parametric Mann-Kendall 
trend test. The units of GPP and GPP trend are kgC m−2 yr−1 and kgC m−2 yr−2 respectively.  

 520 
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4 Conclusions 

Based on five kinds of GPP or GPP-related datasets, including satellite-based products, the upscaled product from EC 

measurements, DGVM simulations, satellite-observed proxy (NIRv), and site-level observations, we comprehensively 525 

assessed the global and regional GPP trends during 1982−2015. The simulated spatial pattern of GPP trends from the DGVM 

ensemble is highly consistent with NIRv, but shows considerable inconsistency with satellite-based GPP products, especially 

in the tropical regions. After 2000, the GPP generated by the satellite-based GPP products decreased significantly in Trop+SH, 

and the increasing trend in NH also weakened. However, the results of DGVMs showed that global GPP kept increasing after 

2000, even in the tropical regions, which was closer to the performance of NIRv. By analyzing the impacts of different drivers 530 

in DGVM simulations, the results indicate that the CO2 fertilization effect has the dominant contribution to the global GPP. 

Spatially, the CO2 fertilization effect makes the global GPP increased consistently, while climate has inhomogeneous impact 

on GPP trends over different regions. 

 

We further explored the uncertainties in GPP trends among these different datasets. For DGVM ensemble, globally, the CO2 535 

fertilization effect causes the largest inter-model spread. At the grid cell level, the uncertainties in simulated GPP trends 

concentrate over the Trop+SH, which result mainly from climate and LUC. Furthermore, the large discrepancy in the GPP 

trends between DGVM ensemble and satellite-based GPP products is, to a large extent, induced by the difference of vegetation 

canopy structure parameter (LAI). Therefore, the highly uncertain satellite-derived LAI data in the tropical regions increase 

the uncertainty of satellite GPP products and weaken their reliability in explaining changes in the global GPP. 540 

 

Finally, GPP trends from satellite-based products and DGVM simulations were evaluated by using the FLUXNET2015 dataset. 

Results show that all of sites with significant increasing GPP trends can be captured by DGVM ensemble mean, but some of 

them were missed by satellite-based GPP. Also none of sites with decreasing GPP trends were reflected in the global GPP 

products. Therefore, uncertainty remained when using the FLUXNET observed GPP to evaluate the GPP trends of the global 545 

GPP products.  

 

Generally, the differences among models, observations, and products suggest the importance of the research on the GPP trend 

and make our caution to interpret the mechanisms of the global carbon cycle by using the long-term GPP products. 

 550 
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