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Abstract. The enhanced warming trend and precipitation decline in the Mediterranean region make it a climate change hotspot.

We compare projections of multiple CMIP5 and CMIP6 historical and future scenario simulations to quantify the impacts of

the already changing climate in the region. In particular, we investigate changes in temperature and precipitation during the

21st century following scenarios RCP2.6, RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5 from CMIP6,

as well as the HighResMIP high resolution experiments. A model weighting scheme is applied to obtain constrained estimates5

of projected changes, which accounts for historical model performance and inter-independence in the multi-model ensembles,

using an observational ensemble as reference. Results indicate a robust and significant warming over the Mediterranean region

during the 21st century over all seasons, ensembles and experiments. The temperature changes vary between CMIPs, CMIP6

being the ensemble that projects a stronger warming. The Mediterranean amplified warming with respect to the global mean is

mainly found during summer. The projected Mediterranean warming during the summer season can span from 1.83 to 8.49 ºC10

in CMIP6 and 1.22 to 6.63 ºC in CMIP5 considering three different scenarios and the 50% of inter-model spread by the end of

the century. Contrarily to temperature projections, precipitation changes show greater uncertainties and spatial heterogeneity.

However, a robust and significant precipitation decline is projected over large parts of the region during summer by the end

of the century and for the high emission scenario (-49 to -16 % in CMIP6 and -47 to -22 % in CMIP5). While there is less

disagreement in projected precipitation than in temperature between CMIP5 and CMIP6, the latter shows larger precipitation15

declines in some regions. Results obtained from the model weighting scheme indicate larger warming trends in CMIP5 and

a weaker warming trend in CMIP6, thereby reducing the difference between the multi-model ensemble means from 1.32 ºC

before weighting to 0.68 ºC after weighting.

1 Introduction

The Mediterranean region (10º W, 40º E, 30º N, 45º N) (Iturbide et al., 2020) is located between the arid and warm North-20

African climate and the humid and mild European climate (Cramer et al., 2018). The contrast between them is partly explained

by the influence of the surrounding oceans, their interaction with the land surface and the general atmospheric circulation

characteristics in mid-latitudes (Boé and Terray, 2014).
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Global warming is not homogeneous, and Lionello and Scarascia (2018) suggests that the Mediterranean region is a climate

change hotspot. Consequently, adaptation to the changing climate threats is paramount to the countries located around the25

Mediterranean Sea (Gleick, 2014; Cramer et al., 2018), which live in a complex and diverse socioeconomic situation and have

severe vulnerabilities to climate change and variability (Barros et al., 2014). The observed warming in the Mediterranean region

during the last decades is expected to continue and grow larger than the global-mean warming (Lionello and Scarascia, 2018).

Additionally, total precipitation declines have been observed during the late 20th century (Longobardi and Villani, 2010), and

are projected by different multi-model ensembles for the 21st century (Paeth et al., 2017; Zittis et al., 2019). Characteristics of30

the projected Mediterranean climate change have been linked to thermodynamic sources such as land-ocean warming contrast

and lapse rate change in summer (Brogli et al., 2019), or to dynamical processes such as the changes in upper-tropospheric

large-scale flow in winter (Tuel and Eltahir, 2020).

Numerical models are used to estimate future climate change. Accounting for the physical processes and interactions in each

climate subsystem (atmosphere, biosphere, cryosphere, hydrosphere and land-surface), global climate models (GCMs) aim to35

project the state of the future climate system. Model runs over long historical or future periods are driven by natural forcings

(i.e. solar irradiance and volcanic aerosols) and anthropogenic emissions that alter the greenhouse gas (GHG) concentrations,

leading to changes in the radiative forcing. (Hawkins and Sutton, 2011). GCMs are developed by a number of institutions who

always apply the same physical principles but might use slightly different assumptions. This opens the door to performing

the same experiments with multiple GCM outputs leading to more robust estimates. Modelling uncertainty can be sampled by40

ensembling various models (Tebaldi and Knutti, 2007), while running the same model multiple times (referred to as members),

with differing initial conditions (Eyring et al., 2016), under the same experiment samples internal variability (Hawkins and Sut-

ton, 2011). To make the results comparable, intercomparison projects where several models perform standardized experiments

have been organised by the international community. (Meinshausen et al., 2011; Riahi et al., 2016). The main community ef-

fort is the Coupled Model Intercomparison Project (CMIP). In this study we consider the latest two CMIP phases, CMIP5 and45

CMIP6 (Taylor et al., 2012; Eyring et al., 2016), and explore their similarities and differences over the Mediterranean region.

The almost ten years between CMIP5 and CMIP6 allowed for improvements in the modelling of certain earth system processes

such as cloud feedbacks, aerosol forcings or aerosol-cloud interactions (Voosen, 2019; Wang et al., 2021).

CMIP experiments were performed with a large set of models and therefore show many differences in projected changes due

to internal variability and the diverse model designs used by the modelling teams. By weighting single model runs according50

to their performance in simulating the observed past allows constraining the climate modelling uncertainty and obtaining a

potentially more accurate estimate of regional climate change signals. Various studies have used different subsetting/weighting

approaches such as emergent constraints (Cox et al., 2018; Hall et al., 2019; Tokarska et al., 2020), performance-based model

subsets (McSweeney et al., 2015; Langenbrunner and Neelin, 2017; Herger et al., 2019) or model weighting accounting for

performance and independence (Knutti et al., 2017; Lorenz et al., 2018; Brunner et al., 2019). The latter approach has been55

used in this study as it additionally considers the interdependencies existing between the models.

This study evaluates and quantifies the Mediterranean climate change hotspot for each season over the 21st century by look-

ing into surface air temperature and precipitation changes in the Mediterranean and how they relate to larger-scale responses.
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We consider three different emission scenarios to assess the impact of anthropogenic emission uncertainties over the Mediter-

ranean climate. The CMIP5 and CMIP6 multi-model ensembles are used to estimate the climate change signal, its uncertainty60

and to illustrate the differences between the two experiments in the region. Finally, a weighting method is applied to each

CMIP ensemble based on the criteria of model performance and independence to obtain more robust projections.

Section 2 describes the climate models and observational data used, and explains the methods to quantify climate change and

weight the projection members. The climate change hotspot in the Mediterranean and the weighted and unweighted projected

changes are presented in section 3, while these results are discussed in section 4. Section 5 concludes and raises questions for65

further investigation.

2 Data & Methods

2.1 Model data

This study is based on the CMIP5 and CMIP6 historical and future climate projections experiments. The historical CMIP5

experiments span from 1850 to 2005 (Taylor et al., 2012) and from 1850 to 2014 in CMIP6 (Eyring et al., 2016). The future70

projections are a continuation of the historical simulations, and we have used runs spanning until year 2100. The variables are

monthly mean near-surface air temperature (TAS), precipitation rate (PR) and sea-level pressure (PSL). The latter is used to

weight the ensemble members together with TAS (see section 2.3).

The increasing computational power over time has allowed for increased model resolution and complexity, which leads to

the expectation that models have improved from CMIP5 to CMIP6. Additionally, we have used the High Resolution Model75

Intercomparison Project (HighResMIP), a CMIP6 endorsed MIP (Haarsma et al., 2016), aiming to compare lower and higher

resolution versions of the same global models. The historical and future HighResMIP periods span from 1950 to 2014 and

2015 to 2050, respectively. Though only a subset of the CMIP6 models contributed to HighResMIP, this smaller ensemble has

been also considered in this study to assess the impact of increasing model resolution on the Mediterranean climate.

Three radiative forcing scenarios are used to account for uncertainty in future emissions: the CMIP5 Representative Concen-80

tration Pathways (RCPs; (van Vuuren et al., 2011)) 2.6, 4.5 and 8.5 and the CMIP6 Shared Socioeconomic Pathways (SSPs;

(Riahi et al., 2016)) 1-2.6, 2-4.5 and 5-8.5. The magnitudes 2.6, 4.5 and 8.5 (in Wm−2) represent the 2100 global radiative

forcing in comparison to the pre-industrial era. However, even if the radiative forcing at the end of the century is the same in

both RCPs and SSPs, the path to reach it can differ substantially, leading to differences in the projected climate (Wyser et al.,

2020). One of the main differences between the SSPs and RCPs is that the former have a compatible socioeconomic scenario85

associated to each forcing scenario, SSP1 being based on sustainability, inclusive development and inequality reduction, SSP2

representing a middle of the road scenario, where slow progress is made in achieving sustainable development goals and with

a mild decline in resource and energy use, and SSP5 based on a fossil-fueled development, rapid technological progress and

economic growth (Riahi et al., 2016; O’Neill et al., 2016). The results from CMIP5 and CMIP6 sharing the same 2100 ra-

diative forcing will be displayed together for simplicity, but the reader should always bear in mind that the evolution of GHG90

concentrations differs between them. They are not entirely comparable as RCPs and SSPs defined with the same radiative
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forcing at the end of the century do not share the same progression of aerosol and GHG concentrations along the 21st century.

HighResMIP is only available for the scenario SSP5-8.5 for future projections.

Many of the models have more than one member, meaning that the model runs have been started with different initial

conditions leading to diverging climate trajectories. The aim of having multiple members is to sample the uncertainty that95

arises from internal variability (Lehner et al., 2020; Deser et al., 2020). Having multi-member models means that the multi-

model ensembles are super-ensembles. A summary of the simulations performed by each model used and for every scenario

can be found in Appendix A.

2.2 Observational data

We use observational references to compare the model experiments to the observed past and to derive performance weights of100

ensemble members. Multiple observational products are used including both reanalysis (ERA5 and JRA55) and gridded obser-

vations (GPCC, CRU, BerkeleyEarth and HadSLP2) to account for observational uncertainty. A summary of the observational

datasets used is found in Table 1. JRA55 will not be displayed in the time series plots as it overestimates the precipitation over

the Mediterranean during the period 1958-1978 (Tsujino et al., 2018).

Table 1. Summary of the observational references for near-surface air temperature (TAS), precipitation rate (PR) and sea-level pressure

(PSL).

Name Type Institute Variables Reference

JRA55 Reanalysis Japan Meteorological Agency (JMA) TAS, PR, PSL (Kobayashi et al., 2015)

ERA5 Reanalysis European Centre for Medium-Range Weather Forecasts (ECMWF) TAS, PSL (Hersbach et al., 2020)

CRU (v4.04) Gridded observations University of East Anglia (UEA) TAS, PR (Harris et al., 2020)

GPCC (v2018) Gridded observations Deutscher Wetterdienst (DWD) PR (Schamm et al., 2014)

BerkeleyEarth Gridded observations Berkeley Earth TAS (Rohde et al., 2013)

HadSLP2 Gridded observations Met Office (UKMO) PSL (Allan and Ansell, 2006)

2.3 Methods105

All datasets are regridded to a 1o×1o grid using a conservative interpolation method to allow the comparison between different

models and observational references. After regridding, the dataset’s original orography will differ from that of the 1o×1o grid.

Therefore, the TAS values obtained for a specific altitude might suffer a shift in altitude which needs to be corrected by means

of the 6.49 K/km standard lapse rate (Weedon et al., 2011; Dennis, 2014). This is only necessary when absolute climatologies

are used, as computing the change in TAS climatology from one period to the other cancels out this height shift.110

To assess the seasonal dependence of climate change over the Mediterranean region, results are computed for the DJF months

December-January-February (DJF), spring months March-April-May (MAM), summer months June-July-August (JJA) and

autumn months September-October-November (SON). A summary of the time periods used and and the applications of the

different diagnostics can be found in Table 2.
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All calculations have been performed using the Earth System Model Evaluation Tool (ESMValTool). ESMValTool is a115

community framework that facilitates the processing of generic climate datasets, allowing for reproducibility of results (Righi

et al., 2020).

Mediterranean TAS and PR are assessed over land to highlight the impact of climate change over populated regions. This

avoids values over sea influencing results over land when the regridding is performed, i.e. TAS behaves differently over land

than over sea due to differences in surface thermodynamic properties, while PR over sea should not have an impact on fresh-120

water resources over land.

2.3.1 Projections verification

To verify the projection ensembles used, we compare the linear trend (TREND) distributions of the observational products

against the multi-model ensembles. It is computed by applying the linear ordinary least square regression fit with time as an

independent variable. The 35-year period 1980-2014 has been used to calculate trends in each model and observational dataset,125

as a period with shorter span would be too dependent on the effect of internal variability from the climate system (Merrifield

et al., 2020; Peña-Angulo et al., 2020). Note that CMIP5 years 2006-2014 are taken from the corresponding scenario simulation.

The results are gathered in the respective OBS, CMIP5, CMIP6 and HighResMIP distributions (displayed as box plots), and

we perform a qualitative assessment on the differences between observed and simulated historical trends.

2.3.2 Mediterranean hotspot evaluation130

A climate change hotspot is defined as a region whose climate is especially responsive to global change (Giorgi, 2006). To

characterize the hotspot, we compare the TAS and PR behaviours in the Mediterranean against the global and latitudinal band

responses, respectively. The first step is to calculate the change in the variables’ magnitude between the reference period [1986-

2005, from Collins et al. (2013)] climatology (CLIM) and a future period CLIM (this diagnostic is referred to as ∆ in this text).

To evaluate the TAS hotspot we compute the differences between the multi-model Mediterranean land-only ∆TAS and the135

global land-ocean ∆TAS means (Lionello and Scarascia, 2018). For PR the land-ocean latitudinal belt 30º N-45º N mean is

used instead of the global mean (Lionello and Scarascia, 2018). To highlight the difference in the impact of the hotspot within

the Mediterranean region we plot the hotspot maps using the near-term and long-term ∆, which refer to the future periods

2041-2060 and 2081-2100, respectively. Additionally, To assess the evolution of the hotspot we calculate the projected area-

averaged 10-year rolling windows of the Mediterranean ∆ and the large-scale ∆ for both TAS and PR. For precipitation, the140

area aggregations are computed using absolute values and then the relative change with respect to the reference is calculated

(displayed in %).

2.3.3 Mediterranean projected changes quantification

To quantify the projected magnitudes of the Mediterranean region climate change we compute the ∆ between the reference

period 1985-2005 and the future periods: near-term (2021-2040), mid-term (2041-2060) and long-term (2081-2100). We use145
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20-year baseline and future periods following the guidelines from IPCC (2021). Additionally, as CMIP5 historical simulations

end in 2005, the reference period 1986-2005 from IPCC’s AR5 (Collins et al., 2013) is chosen to avoid overlapping historical

and scenario experiments when extracting projection results. Note that only the near-term period is available for HighResMIP

as the future experiment ends in 2050. The advantage of using ∆ instead of future CLIMs is that GCMs mean-state systematic

biases are removed, and we obtain a more easily interpretable comparison of the responses among models and between models150

and observations (Garfinkel et al., 2020).

With the aim to sample the inherent uncertainty of the multi-model ensemble, we compute the inter-model spread from the

5th and 95th percentiles of the ensemble distribution. To take into account the scenario uncertainty we display side by side the

distribution of ∆ from the three different scenarios that we have used for each ensemble (RCP2.6, RCP4.5 and RCP8.5 for

CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5 for CMIP6)155

The statistical significance of TAS and PR mean changes and the degree of agreement between models are used to assess the

uncertainty and robustness of the multi-model ensemble results. A climate change signal is considered robust when at least 80

% of the models agree on the projected sign of the ∆s (Collins et al., 2013). A change in the multi-model mean is considered

significant when it is beyond the threshold of a two-tailed t-Student test at the 95 % confidence level. We consider that the

null hypothesis is met when there is no difference between the multi-model distribution in the reference and future periods,160

presuming that the variability is stationary and present and future distributions are similar. To compute the t-statistic, first,

each model’s mean is computed from its members, and secondly, the multi-model ensemble mean and standard deviation are

calculated.

2.3.4 Weighting method

It has been argued that more robust projections could be obtained by giving more weight to members with good performance165

(Knutti et al., 2017). Therefore, we compare historical simulations against the observational ensemble mean and more weight

is given to those members that better reproduce the observed climate i.e. weighting them by performance. Another aspect that

can be taken into account when weighting a multi-model ensemble is the independence between members. Giving equal weight

to all members (one model one vote) is not a fair approach as some share model formulations (either because their runs belong

to the same model or because their models share similarities), and would be overrepresented in the ensemble. An independence170

weighting method is applied to correct this issue.

Using the approach developed in Lorenz et al. (2018), Brunner et al. (2020) and Merrifield et al. (2020), we use equation

(1) to give a weight wi to each member i in the projections ensemble. The distances (measured with the root mean squared

error, RMSE) Di between member i and the observational reference inform the performance weight, and the distance Sij

between member i and every other member j from the multi-model ensemble informs the independence weight. The amount175

of j members is represented by m, which is the total number of members minus one. σs and σd are the independence and

performance shape parameters, respectively. The mean of the observational ensemble is used as the observational reference.
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The weighting method distances account for different performance and independence diagnostics (trends, differences, vari-

abilities and climatologies) to avoid weighting members that could match the performance and independence criteria of a single180

diagnostic just by chance. The diagnostics di and sij used to evaluate the distances Di and Sij , respectively, are different as

Merrifield et al. (2020) suggests. The aim when evaluating performance is to give more weight to members that resemble the

observed past in a more faithful way. Differently, the aim of weighting for independence is to clearly identify members that

behave in a similar way. All the diagnostics are computed over the period 1980-2014 (Brunner et al., 2020). The variables used

to compute the diagnostics are TAS and PSL (Merrifield et al., 2020). The performance diagnostics are the surface temperature185

1980-2014 CLIM minus its area average (TAS-DIFF), the surface temperature interannual standard deviation (TAS-STD); the

surface temperature linear trend (TAS-TREND), the sea-level pressure 1980-2014 CLIM minus its area-average (PSL-DIFF),

and the sea-level pressure interannual standard deviation (PSL-STD). The independence diagnostics are the 1980-2014 PSL

and TAS climatologies (PSL-CLIM and TAS-CLIM).

The distances between member-observations for each of the diagnostics are aggregated as in equation 2 where di represents190

the distance for each diagnostic Xd = (TAS-TREND,TAS-DIFF,TAS-STD,PSL-DIFF,PSL-STD). Equation 3 shows how to

compute the distances between models and observations, where g refers to each grid cell and wg represents its area weight. To

find Sij the same method is followed but using Xs = (TAS-CLIM,PSL-CLIM) and comparing members against each other

instead of observations.

Di =
∑
Xd

dX
d

i

MEDIANi(dX
d

i )
(2)195

dX
d

i =

√∑
g

wg(Xd
i −Xd

obs)
2 (3)

The shape parameters are constant values that inform if the member-observations or the member-member distances are

enough to downweight a member (σd) or if they are close enough to determine some dependency between members (σs),

respectively. Each ensemble (CMIP5 and CMIP6), season and scenario has its own shape parameters associated. Appendix200

B explains in further detail the meaning of the shape parameters, the methods used to compute them and the diagnostics to

determine performance and independence.
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Table 2. Summary of each diagnostic’s use and time period.

Diagnostic Period/s Use

∆ 2021-2040/2061-2080/2081-2100 against 1986-2005 weighted and unweighted projection results

DIFF 1980-2014 performance weight

STD 1980-2014 performance weight

TREND 1980-2014 performance weight and verification

CLIM 1980-2014 independence weighting

3 Results

Apart from the figures displayed in this section and the supplementary material, additional ones generated during the study can

be found in a shiny app in the following link https://earth.bsc.es/shiny/medprojections-shiny_app/.205

3.1 Verification

We compare CMIP and HighResMIP ensemble TAS and PR trends to the observational ensemble trends between 1980 and

2014 as an indication of model performance over the Mediterranean. PR and TAS trends in the observational ensemble fall

within the range of the multi-model ensembles in all seasons (see Fig. 1 for DJF and JJA results, MAM and SON not shown).

The historical multi-model ensemble spread of temperature trends is notably larger than that of the observational ensemble.210

CMIP6 past warming trends are generally larger than CMIP5. The inter-model spread for the precipitation projections is large

for all ensembles and usually has both negative and positive trends (e.g DJF CMIP5 precipitation trends range from -0.092 to

0.097 mmday−1 decade−1 for the 5th and 95th percentiles, respectively). HighResMIP TAS trends are contained within the

CMIP6 ensemble, but some of the high-resolution (HR) models exhibit trends outside the CMIP6 range for PR in JJA (Fig.

1.d). The agreement between the different observational products in past warming trends is shown in Fig. S7 (columns 1 and215

5). While the general warming patterns are similar there are some notable differences over the Balkans and Western Asia. The

figure also highlights the need of considering multiple observational sources, as historical trends differ both in magnitudes and

spatial patterns.

3.2 The Mediterranean as a climate change hotspot

Figure 2 shows CMIP5 and CMIP6 high radiative forcing scenario differences of ∆TAS over the Mediterranean against the220

1986-2005 global mean ∆TAS (for DJF, JJA and the annual means). The Mediterranean ∆PR is compared to the 30º N-45º N

latitudinal belt ∆PR mean.

The Mediterranean region shows a higher annual temperature increase than the global mean. When accounting for seasonal

differences, the highest amplifications are visible for JJA over the Iberian Peninsula and the Balkans. CMIP5 and CMIP6

agree on the regions showing the highest amplified warming, but the latter projects larger amplification magnitudes. There is225
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(a) (b)

(d)(c)

DJFDJF

JJA JJA

Figure 1. Historical trends for DJF (a, b) and JJA (c, d) temperature (a, c) and precipitation (b, d) of the observational, CMIP5, CMIP6 and

HighResMIP ensembles. The observational distribution is composed of the different values obtained from each of the observational products.

In the box plots, the black horizontal line represents the median and the black dot is the mean. The interquartilic range (IQR) and whiskers

are defined by the 25th-75th and 5th-95th percentiles, respectively. HighResMIP models are displayed as markers, enabling a comparison

of the HR (green) and LR (orange) models within the experiment. The same markers are used for two different resolution runs of the same

model (see Table S1)

agreement between both CMIPs in the distribution and magnitude of the DJF warming amplification, which is small and even

negative in the northwest part of the domain. While projections agree on a precipitation increase in the 30º N-45º N latitudinal

belt for the long-term period (Lionello and Scarascia, 2018), the Mediterranean region shows a decline in precipitation. The

largest amplified drying shifts latitudinally from the south of the Mediterranean region in DJF to the north in JJA. The most

affected region in JJA is projected to be the southwest of the Iberian Peninsula. Both CMIPs agree on the precipitation patterns230

of change, but CMIP6 dries more and faster in the amplified drying regions, and projects larger precipitation increases in regions

where the hotspot has a negative sign such as the southeast of the domain (probably enhanced by using relative precipitation

changes).
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Figure 2. Mediterranean region TAS (upper rows) and PR (lower rows) change differences with respect to the mean global temperature

change and the mean 30º N-45º N latitudinal belt precipitation change, respectively. The changes for periods 2041-2060 (1st and 3rd row)

and 2081-2100 (2nd and 4th row) are evaluated against the 1986-2005 mean. The differences are shown for the CMIP5 (left) and CMIP6

(right) DJF, JJA and annual mean projections (columns) under the high emission scenario RCP8.5 and SSP5-8.5, respectively. N indicates

the number of models included in the ensemble mean.

TAS and PR differences increase in magnitude from the mid to the long-term, while the spatial pattern remains the same,

indicating that the climate in the Mediterranean changes faster than the global average when forced by the 8.5Wm−2 scenarios.235

The low emission scenario, instead, shows a hotspot weakening from the mid to the long-term as the warming amplification is

reduced and the precipitation differences are maintained (see Fig. S1). The weakening of the hotspot under the low emission

scenario will be further explored below.

Even though CMIP6 is projecting a larger warming and drying amplification than CMIP5, Fig. 3 shows that CMIP5 and

CMIP6 agree on the relation between global and local warming (slopes painted in the figures). This indicates that CMIP6240

is not enhancing the hotspot with respect to CMIP5, but rather the higher amplified warming in the Mediterranean is the

result of a globally warmer multi-model ensemble. For DJF, additional warming over the Mediterranean is almost zero with

respect to the global mean. Contrastingly for JJA, additional warming over the Mediterranean is about 1.6 × higher than the

global-mean warming. This relationship appears to be linearly maintained for higher global warming levels, i.e. with time and

GHG-concentrations.245

In spite of this strong agreement in the relationship between global and local warming, CMIP5 and CMIP6 have slight

differences in the projected precipitation over the Mediterranean in comparison to the 30º N-45º N latitudinal belt (see Fig.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Mediterranean region warming against global warming for the three scenarios (columns) shown in DJF (a,b,c) and JJA (d,e,f) for

the CMIP5 and CMIP6 ensemble means. Each dot represents a 10 year mean change beginning from 1960-1969 (light coloring) until 2091-

2100 (opaque coloring). The changes are computed with 1986-2005 as baseline. An ordinary least squares linear regression is computed and

the slope and r values are shown. N indicates the number of models included in the ensemble mean.

S2). CMIP5 generally shows more negative slopes than CMIP6, meaning that the former is projecting a larger amplification of

the precipitation hotspot: as the relative precipitation loss in the Mediterranean (ordinate) for the same amount of precipitation

increase in the larger scale region (abscissa) is larger. While this is true for all seasons and scenarios, the difference between250

CMIP5 and CMIP6 is more noticeable during DJF and especially for the low emission scenario. Fig. S3 highlights more

extreme CMIP6 precipitation relative changes in the latitudinal band and increases of over 30 % in Asia and over the Pacific

as opposed to CMIP5. Therefore, conclusions must be drawn carefully from comparing area-averaged values of these regions.

Nevertheless, there is agreement between both ensembles on the spatial distribution of PR changes.

We tried following a second approach to assess the trend differences of the precipitation hotspot between the CMIPs. Fig.255

S4 shows changes in precipitation for the Mediterranean region against the global mean warming and the ensemble that dries
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faster for the same magnitude of global warming is CMIP5. This is more noticeable during the DJF season. The results from

Fig. S4, together with Fig. S2, give some evidence on the fact that CMIP5 projects a larger precipitation hotspot (relative to its

own large-scale climate response) than CMIP6.

Coming back to the hotspot weakening, the low emission scenario panels [Figs. S2.(a,d) and S4.(a,d)] show more clearly how260

a recovery of the precipitation decline is projected following mitigation. For the rest of the scenarios, the projected amplified

warming, combined with an anomalous precipitation decline, makes the Mediterranean a climate change hotspot (Lionello and

Scarascia, 2018).

3.3 Unweighted projections

3.3.1 Temperature265

Figure 4(a) shows projected multi-model ensemble JJA and DJF TAS changes under three scenarios and three time horizons

over the Mediterranean. The CMIP6 ensemble always shows larger ∆TAS than CMIP5. Inter-model spread for the end of the

century is larger for CMIP6 than CMIP5. CMIP6 projects JJA temperatures to increase by over 7.4 ºC (90 % inter-model spread

within 5.6 ºC to 9.1 ºC) until the end of the century under the high emission scenario and 2.3 ºC (90 % within 1.2 ºC to 3.3 ºC)

under the low emission scenario (Fig. 4). CMIP5 shows a mean JJA warming of 5.9 ºC by the end of the century (90 % within270

4.1 ºC to 7.7 ºC) under RCP8.5 and 1.6 ºC (90 % within 0.3 ºC to 2.5 ºC) under RCP2.6. In DJF the warming is always lower,

and 90 % of CMIP6 models for the high emission scenario project a ∆TAS between 3.3 and 6.8 ºC (CMIP5: 2.7 ºC to 5.0 ºC).

For the remaining seasons (MAM and SON), CMIP6 shows a larger warming and larger intermodel spread than CMIP5 (not

shown). HighResMIP HR and low-resolution (LR) projections are contained within the CMIP5 and CMIP6 distributions (only

near-term, see Fig. S5.c). No specific relation between the LR and HR model outputs can be found, and due to the small size of275

the HighResMIP ensemble further conclusions cannot be drawn. Finally, from the area averaged distributions of ∆TAS (Fig.

4.a) we can see that the largest source of uncertainty for the mid and long-terms is the forcing scenario, and the inter-model

spread for the near-term.

The inter-model spread grows larger with emissions both for TAS and PR (Fig. 4(a,c)). To check the influence of the

equilibrium climate sensitivity (ECS) on the increasing inter-model spread, the same plot is computed with a subset of CMIP5280

and CMIP6 models with ECSs constrained between 2.6 and 3.3 (rather than the original 2.1 to 4.7 ECS range from CMIP5

(Meehl et al., 2020) and the 1.8 to 5.6 ECS range from CMIP6 (Hausfather, 2019)). From Fig. S6 it can be seen that ensembles

with narrower ECS ranges see a reduction in inter-model spread growth alongst time for the high emission scenarios.

Figure 5 shows the spatial distribution of the projected JJA warming by the high emission scenario for CMIP5, CMIP6

and HighResMIP in the three future reference periods. JJA warming is significant and robust for the three future periods in285

the Mediterranean region (see Fig. 5). HighResMIP warming shows many non-statistically significant grid points, due to the

ensemble only having 4 models as it reduces the degrees of freedom for the Student’s t-test and makes it harder to reject the

hypothesis that the ensemble means for the baseline and the future periods are the same. As seen before, CMIP6 warms more

than CMIP5 and at a faster rate. Nevertheless, there is good spatial agreement between the warming projected by the CMIP
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Figure 4. CMIP5 and CMIP6 JJA and DJF projections for the near, mid and long-term periods with respect to the baseline period considering

the 2.6, 4.5 and 8.5 Wm−2 RCP and SSP radiative forcing scenarios for (a) unweighted ∆TAS (b) weighted ∆TAS and (c) unweighted

∆PR. The black horizontal line in the boxes represents the median and the black dot is the mean. The interquartile range (IQR) and whiskers

are defined by the 25th-75th and 5th-95th percentiles, respectively. The number of members in the boxplot distributions is represented by m

in the legend.

experiments over the Mediterranean region. The Iberian peninsula, the Balkans and Eastern Europe are the regions with the290

largest mean JJA warming, with values reaching over 8 ºC.
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The remaining scenarios also project robust and significant warming for JJA throughout the century with a tendency of

smaller positive trends by 2050 (not shown). CMIP6 systematically projects higher warming than CMIP5 again with a similar

spatial warming pattern. The regions with larger warming are the Iberian peninsula and the Balkans.
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Figure 5. JJA ∆TAS according to CMIP5, CMIP6 and HighResMIP ensemble means (columns) for the three relevant future periods (rows),

under the RCP8.5 and SSP5-8.5 scenarios. The time series plot shows the anomalies in the Mediterranean region with respect to the period

1986-2005 for the multi-model ensembles and the observational references. A solid line indicates the one-member-per-model ensemble

mean and the shaded region indicates the 5th-95th percentiles range. CRU trend for the period 1980-2014 is shown along with the dashed

line which bounds the Mediterranean region. Non-significant coastline grid points are due to differences in the original grid resolutions

between models. Coarse models have masked data in complex coastline regions once regridded, making the ensemble smaller and therefore

reducing the degrees of freedom for the t-Student test.
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The temperature spatial changes during DJF for the high emission scenario are shown in Fig. S8. The north-eastern Mediter-295

ranean shows the largest projected warming in DJF (4.5 ºC according to CMIP5 and 6 ºC to CMIP6). For the near-term,

HighResMIP shows a slightly larger TAS increase than CMIP6 in eastern Europe. The rest of scenarios agree with the spatial

distribution of changes but with lower warming magnitudes (not shown).

3.3.2 Precipitation

In contrast to temperature, CMIP5 and CMIP6 show the same mean JJA ∆PR declines of -33 % by the end of the century300

under the high emission scenario (Fig. 4.c). CMIP6 has a wider inter-model 90 % range than CMIP5. The former spans from

-63 % to -4 % and the latter from -56 % to -11 %. For the low emission scenario CMIP6 mean JJA precipitation declines by

-7 % (90 % between -23 % and +17 %) and CMIP5 by -4 % (90 % within -19 % to +16 %). In DJF and by the end of the

century, CMIP6 precipitation declines by -8 % (90 % between -20 % and +5 %) and CMIP5 by -9 % (90 % between -31 %

to +4 %) under the high emission scenario. For the low emission scenario in DJF, CMIP6 shows a mean +2 % precipitation305

increase (90 % between -11 % and +18 %) and CMIP5 a -1 % decline (90 % within -15 % to 9 %). Seasons JJA, DJF (Fig.

4.c), MAM and SON (not shown) for all scenarios generally project mean ∆PR declines beginning from the mid-term period

onwards. Nevertheless, there is an exception in DJF under the low emission scenario, where a slight increase in mean DJF

precipitation is projected. HighResMIP near-term projections of PR change are contained within the CMIP6 ensemble (Fig.

S5(b,d)). Generally, the signal is considerable, but the inter-model spread is wide for all multi-model ensembles, therefore310

we will later present the statistical robustness and significance of changes. Finally, from the area averaged distributions of

∆PR (Fig. 4.c) we can see that the largest source of uncertainty is the forcing scenario for long-term JJA projections, and the

inter-model spread for DJF and near and mid-term JJA.

Precipitation spatial changes in the Mediterranean region only get more robust and significant with time (see Fig. 6). ∆PR

projected for the long-term during JJA, and under the 8.5 Wm−2 scenarios, indicate significant and robust decline for most of315

the region. Note that neither significant nor robust changes are projected in the south and east Mediterranean mainly due to the

already low or non-existent precipitation during JJA, according to the climatology observed by CRU. Both CMIPs agree on the

south-western Iberian peninsula having the strongest precipitation decline, with long-term CMIP6 changes ranging from -50 to

-60 % and CMIP5 by -30 to -40 % for the high emission scenario. Despite lower forcing scenarios projecting non-robust and

non-significant changes (except the western Mediterranean for long-term SSP2-4.5), the results agree on a general precipitation320

decline throughout the region with patterns similar to the high emission scenario projections (not shown). The HighResMIP

projections agree with CMIP6 mean magnitudes and spatial pattern for most of the seasons in the near-term period (the large

amount of non-robust and non-significant grid points must be noted).

∆PRs in DJF are different from those in JJA (see Fig. S9). The southern part of the domain is expected to see a significant

and robust precipitation decline in the long-term of up to -20 to -40% over northern Africa. The north of the Mediterranean is325

located in a transition zone, as precipitation in areas northward from the Pyrenees, Alps and Balkans is projected to increase

and in areas under 38º N is projected to decrease, causing changes for the Iberian, Italian and Balkan peninsulas to remain

uncertain. In comparison to CMIP5, CMIP6 shows more significant and robust changes over the region and wider 5-95th
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Figure 6. Same as Fig. 5 for JJA precipitation and showing CRU in the top left panel.

percentile spreads. This remains true for the rest of the scenarios (not shown). As a final remark, the observed DJF precipitation

variability in the time series falls outside the simulated 90 % inter-model spread (5th-95th percentiles shown as shades in Fig.330

6).

3.4 Weighted projections

The models of CMIP ensembles perform very differently depending on the computed diagnostic, and some models share

similarities. Section 1 of the supplementary material explains in further detail how differently models represent the observed

climate over the Mediterranean region, justifying the need to constraint the projection ensembles.335
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We obtain new projections from applying the performance and independence weighting method to TAS projections from the

CMIP5 and CMIP6 ensembles. Figure 4.b shows the distribution of ∆TAS in the weighted ensembles for the three emission

scenarios and the three future periods. The weighting increases the CMIP5 mean and median projections while at the same

time decreasing the CMIP6 mean and median projections, bringing the two ensemble means closer together: before weighting,

CMIP5 and CMIP6 medians differed 1.32 ºC and after weighting the difference is 0.68 ºC (for the highest emission scenario in340

JJA). Generally, the high emission scenario means are the ones that see larger reductions in CMIP6 ensemble, e.g. differences

between the unweighted and weighted ensemble means are of around -0.3, -0.2 and -0.1 ºC in JJA and DJF for SSPs 5-8.5, 2-4.5

and 1-2.6, respectively. The IQRs are generally narrowed for all seasons, and scenarios except for the mid and late century JJA

SSP2-4.5, SSP1-2.6 and RCP2.6 scenarios. The 90 % spreads are slightly reduced or maintained, exceptions are the CMIP6

DJF long-term distributions and the CMIP6 JJA low and mid emission scenarios for the mid-term. The 75-95th percentile range345

in the weighted CMIP6 ensemble increases while the 5-25th percentile range decreases, generating a skewed CMIP6 weighted

distribution towards smaller warming. Weighting the CMIP5 ensemble leads to a more constrained distribution.

The weighted ∆TAS projections in DJF show similar responses as in JJA: the mean signal in CMIP6 decreases while it

increases in CMIP5, making the differences between both mean distributions smaller. In some cases the weighting did not lead

to significant alterations of the projected inter-model spread, suggesting that uncertainties in the temperature changes are well350

sampled by the original ensembles. In contrast, the large IQR of CMIP6 model projections in the long-term is reduced by half,

and the CMIP5 90 % inter-model spread narrows up to 1 ºC, after weighting. Nevertheless, even though the weighting ap-

proach reduces the probability of the most extreme warming values, they remain possible in the weighted ensemble. Generally

speaking, the 90 % inter-model spreads are maintained while the IQRs narrow.

To assess the contribution of the performance and independence weights in the resulting distribution we have plotted355

the distribution of performance and full weights, and compared the raw ensemble long-term warming distribution with the

performance-weighted and the fully-weighted warmings (Fig. S12). JJA performance shifts both CMIP ensembles to larger

warmings, while the addition of independence weights shifts CMIP6 median to lower warmings than the raw ensemble. DJF

performance weights don’t have an effect on the warming medians but they narrow CMIP5 spread. The addition of DJF inde-

pendence weighting shifts CMIP6 median warming and broadens its inter-model spread. CMIP5 median remains unchanged360

but its spread grows toward the raw distribution without reaching it.

Note that precipitation weighted projections are not shown as there is no evidence that the diagnostics used to assess tem-

perature (Merrifield et al., 2020) are relevant to the precipitation response of the models.

4 Discussion

Projections obtained from climate multi-model ensembles contain various sources of uncertainties. Different modelling meth-365

ods and emission scenarios (e.g land use, GHG emissions...) lead to different results (Tebaldi and Knutti, 2007). We use

different multi-model ensembles and radiative forcing scenarios to consider as many factors as possible contributing to the
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uncertainty of the Mediterranean climate change projections. Additionally, a weighting method constraining the projections

has been applied to reduce uncertainty in the projections.

We have shown that average Mediterranean temperature changes were larger than the global-mean average during JJA, but370

close to it during DJF, for all scenarios, time periods and model ensembles. This hotspot is projected to enhance over the 21st

century under the scenarios RCP8.5, SSP5-8.5, RCP4.5 and SSP2-4.5, and to diminish from the mid to long term under the

RCP2.6 or SSP1-2.6 scenarios. Interestingly, the multi-model ensemble mean projections of the low emission scenario show a

recovery of the precipitation decline towards the end of the century, suggesting that precipitation could be restored to historical

values relatively fast in the Mediterranean region if strict mitigation policies are applied. Previous studies also have identified375

the Mediterranean warming amplification (Lionello and Scarascia, 2018; Zittis et al., 2019), but it must be stressed that this

enhanced warming does not apply to the DJF season.

We argue that the different results obtained from CMIP5 and CMIP6 on the Mediterranean hotspot and the unweighted

projections are largely due to the global response from each multi-model ensemble. Figs. 3, S2 and S4 show how the regional

changes relative to the larger scale are similar for both CMIPs, indicating that CMIP6 isn’t producing a regional enhancement380

of climate change, but it rather follows a larger global change. This behaviour is most evident in JJA than in DJF, as the relative

changes with respect to larger scales are more similar for the two multi-model ensembles. To further support this statement, we

can look at the spatial distribution of changes within the mediterranean region in Figs. 5, 6, S3, S8 and S9. The figures generally

agree on the spatial distribution of changes even if the magnitudes differ. Therefore, we can argue that the main difference in

TAS and PR output from the older (CMIP5) and newer generation (CMIP6) multi-model ensembles is an enhancement of the385

global change, while its relation with the Mediterranean region response has been maintained. The work from Palmer et al.

(2021) arrives at a similar conclusion for the European region.

The drivers of the projected Mediterranean climate change has been studied by Brogli et al. (2018), Brogli et al. (2019) and

Tuel and Eltahir (2020). They have found that the mechanisms projected to drive the Mediterranean climate are large-scale

upper-tropospheric flow changes (PR in DJF), reduction in the regional land-sea temperature gradient (PR in DJF and JJA) and390

changes in the north-south lapse-rate contrast (PR in JJA, TAS in DJF and JJA). While these drivers have been deeply studied

for CMIP5, affirmirming that the same mechanisms remain valid for the CMIP6 ensemble would be speculative.

Consistent with basic radiative forcing theory (Wallace and Hobbs, 2006), temperature projections have shown that the

warming over the 21st century is larger when stronger radiative forcing scenarios are applied. There is confidence in a precip-

itation decline for the high emission scenario over the whole Mediterranean region in JJA and only in the south during DJF.395

Conclusions should be drawn carefully from precipitation as there is a large inter-model spread. For other seasons and scenar-

ios, precipitation declines are projected, although results are uncertain due to large spread and low significance and robustness

over most of the region. Regarding HighResMIP, the HR near-term precipitation and temperature changes generally fall within

the CMIP6 ensemble distribution and no clear improvement could be seen from the increased resolution in the historical trends,

probably due to the small number of HighResMIP models available for the assessment, and the focus on larger scale changes400

and temporal resolutions.
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The largest source of uncertainty to determine the warming and precipitation change by the mid and long-term periods is

the emission scenario (as seen in Fig. 4). To illustrate the scenario uncertainty, let’s take the range between the 5th and 95th

percentile of the low (high) and high (low) emission scenario distributions for temperature (precipitation) changes. CMIP6

shows a range from 1ºC to 9ºC warming and -62% to 19% precipitation long-term changes in JJA. CMIP5 ranges from 0.1ºC405

to 7.5ºC warming and -54% to 18%. This broad spectrum of possible futures has various possible outcomes associated. The

inter-model spread grows at faster rates along the 21st century with higher radiative forcing, in part due to the differing climate

sensitivities of the models inside the ensemble (see Fig. S6), i.e. the differences between a low and a high climate sensitivity

model will get amplified with larger radiative forcing.

The implications of an 8.5Wm−2 increase in radiative forcing from preindustrial times by the end of the century could pose410

severe strains on: human health, due to heat-related illness (Lugo-Amador et al., 2004) and altered transmission of infectious

diseases (Patz et al., 2005); food security due to crop pests and diseases (Newton et al., 2011) and productivity decline in

many countries which economies depend on agriculture (Devereux and Edwards, 2004); and water insecurity due to droughts

(Devereux and Edwards, 2004) and changing rainfall patterns in vulnerable regions (Sadoff and Muller, 2009). Note that the

three climate change induced impacts defined above are closely intertwined and may increase existing scarcities.415

In face of the very pessimistic future projected by the high emission scenario, some studies argue that 8.5 Wm−2 forcing

is highly unlikely as it is based on an expansion of the coal use along the 21st century instead of on a reduction (Ritchie and

Dowlatabadi, 2017a). In the context of energy transition and lowering demand of coal, the high emission scenario is often

criticised (Ritchie and Dowlatabadi, 2017b). Nevertheless, studies on the carbon cycle discuss that CO2 feedbacks might be

underestimated in the GHG-concentration scenarios (Booth et al., 2017), and thus we’ve considered keeping the 8.5 scenarios420

as an extreme but yet possible future.

The CMIP6 ensemble is known to have models with notably higher climate sensitivity than CMIP5, i.e. radiative forcing

generates stronger changes and at a faster rate (Hausfather, 2019). Higher sensitivity can be due to model design or the definition

of the radiative forcing scenario. Even if SSP and RCP scenarios are labelled after the radiative forcing (in Wm−2) by the end

of the century, the transient GHG concentrations are different (Meinshausen et al., 2011; Riahi et al., 2016). Wyser et al. (2020)425

suggests that running the same model with equal 2100 GHG concentrations from SSP and RCP (2.6, 4.5 and 8.5Wm−2), leads

to larger temperature changes when forcing the model with the former. It has been argued that improvements in the formulation

of clouds and aerosols in CMIP6 are the major contributors to larger climate sensitivities with respect to CMIP5 (Meehl et al.,

2020; Hausfather, 2019). Even if there is higher sensitivity to radiative forcing in some CMIP6 models, this behaviour is not

reproduced by all of them, resulting in a larger inter-model spread compared to CMIP5.430

In terms of which multi-model ensemble performs better, there are some studies that attribute better performance of the

CMIP6 ensemble compared to historical references in China (Zhu et al., 2020), Turkey (Bağçaci et al., 2021), the Tibetan

plateau (Lun et al., 2021), and the global mean (Fan et al., 2020). Nevertheless, as no performance studies have been made

specifically in the Mediterranean region we can not speculate which ensemble performs better. Therefore, it would be a topic

of interest for further study.435
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Assessing the weighted temperature ensemble, we found that the CMIP6 distribution shifts to lower changes, meaning

that models showing larger TAS changes have been down-weighted, reducing the differences between CMIP6 and CMIP5

experiment medians and means. To find the reason behind this shift we plotted the ensemble warming distribution for the long

term after applying only the performance weights (numerator of equation 1) and compared it to the raw and fully weighted

ensembles (see Fig. S12). We found that the indepence weights are the ones shifting the CMIP6 ensemble to lower warmings440

rather than the performance. In this regard, CMIP5’s median is unaltered by the independence and its effect can only be seen in

inter-model spread changes. JJA performance weights shift CMIP5 and CMIP6 to larger warmings, suggesting that a number of

the members projecting larger changes do a better job at representing the historical climate. A last remark that can be extracted

from Fig. S12 is that both independence and performance weighting play an important role which changes between seasons

and ensembles. Therefore, there is not a straightforward interpretation of the general behaviour of the weights.445

5 Conclusions

This study aims to analyse the projected temperature and precipitation changes by the CMIP5 and CMIP6 multi-model en-

sembles in the Mediterranean region. Different scenarios and seasons have been assessed to tackle the uncertainties inherent

to ensemble projections. To complement the traditional information provided, a weighting method that accounts for historical

performance and inter-independence of the models has been applied to offer an alternative view of the temperature projections.450

The Mediterranean is a climate-change hotspot due to the amplified warming and drying when compared to the large-scale

climate behaviour. The amplified warming of the Mediterranean is found in JJA and not in DJF. Comparing the Mediterranean

hotspot in CMIP5 and CMIP6 we found that the ratio of warming amplification is similar for both multi-model means, meaning

that no enhanced regional warming is projected by the CMIP6 ensemble, but it is rather the consequence of a globally warmer

ensemble.455

Conclusions must be drawn carefully from multi-model ensembles as the single models perform very differently and might

share dependencies with each other. Model agreement gives high confidence in significant and robust warming affecting the en-

tire Mediterranean region along the 21st century caused by anthropogenic emissions. The Balkans during DJF and the Balkan

and Iberian peninsulas during JJA are expected to be the most affected regions. Precipitation changes are less robust and sig-

nificant and show greater spatial heterogeneity than the warming. Significant and robust declines in precipitation are expected460

to affect the Mediterranean in JJA and the southern part in winter by the end of the 21st century if high emission scenarios are

considered. The warming combined with a precipitation decline could put under strain the whole region, especially the south,

which has less resources to adapt to the changing climate. The biggest source of uncertainty to determine the magnitude of

TAS and PR changes is the emission scenario, which will depend on the future policies and measures for mitigation followed.

Considering three scenarios, the range of the long-term projected warming (given by the 50 % inter-model spread) can go from465

1.83-8.49 ºC according to CMIP6 and 1.22-6.63 ºC according to CMIP5 in JJA. For precipitation, the decline ranges go from

-49 to -16 % in CMIP6 and -47 to -22 % in CMIP5. It has also been concluded that part of the increasing warming inter-model

spread with time is related to the wide range of ECS values among the ensemble members.
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A weighting method has been applied to reduce the uncertainty caused by models that poorly represent key aspects of the

historical climate or by the high dependence of the results provided by families of models (that might be overrepresented470

in the multi-model ensemble). Based on the constrained projections we conclude that CMIP6 overestimates warming in the

Mediterranean and its 25th to 50th percentile inter-model spread. The shift to lower warming seen by the CMIP6 weighted

ensemble is driven by the independence weighting. CMIP5 slightly underestimates warming and generally overestimates the

IQR inter-model spread. The weighted projections are relevant because they help to reconcile the conclusions extracted from the

last two CMIP phases, reducing future uncertainties of climate change. The fact that CMIP6’s 90 % spread range is unaltered,475

shows that the climate uncertainty might have been underestimated in previous, less physically advanced, CMIP exercises,

which displayed smaller inter-model spread when constrained.

Further work is required for the weighting method to identify the most relevant diagnostics that best assess historical pre-

cipitation model performance. As spatial heterogeneities can be seen in the Mediterranean region, we suggest considering

subregions for the Mediterranean to extract more user-relevant information from the constrained projections. Furthermore, it480

would be of great interest for the community to update studies on the physical mechanisms and the performance of the CMIP6

multi-model ensemble in the Mediterranean region.

Code and data availability. The tool used for the diagnostics (ESMValTool) can be found at https://github.com/ESMValGroup/. ESMVal-

Tool v2.2 is publicly available on Zenodo at https://zenodo.org/record/4562215#.YOWlhTqxVH4 (Andela et al., 2021). The source code

of the ESMValCore package, which is installed as a dependency of the ESMValTool v2.3, is also publicly available on Zenodo at https:485

//zenodo.org/record/4947127#.YOa2BsBR1QI (Andela et al., 2021b). ESMValTool and ESMValCore are developed on the GitHub repos-

itories available at https://github.com/ESMValGroup. The observational data used: GPCC (doi:10.5676/DWD_GPCC/FD_M_V2020_025),

CRU (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/cruts.2004151855.v4.04/, https://doi.org/10.1038/s41597-020-0453-3.),

JRA55 (https://jra.kishou.go.jp/JRA-55/index_en.html#reanalysis), ERA5 (https://doi.org/10.1002/qj.3803), BerkeleyEarth

(http://berkeleyearth.lbl.gov/auto/Global/Gridded/Complete_TAVG_LatLong1.nc), HadSLP (https://doi.org/10.1175/JCLI3937.1).490

CMIP data: all the CMIP5 and 6 datasets were downloaded from the Earth System Grid Federation (ESGF). The models used are listed in

Appendix A. For CMIP6, the DOIs of the datasets from the ESGF can be obtained in Identifier DOI after clicking on "show citation" from

the following url https://esg-dn1.nsc.liu.se/search/cmip6-liu/?source_id=ACCESS-CM2,ACCESS-ESM1-5,AWI-CM-1-1-MR,BCC-CS

M2-MR,CAMS-CSM1-0,CAS-ESM2-0,CESM2-WACCM,CIESM,CMCC-CM2-SR5,CNRM-CM6-1,CNRM-ESM2-1,CanESM5-Ca

nOE,EC-Earth3,FGOALS-f3-L,FGOALS-g3,FIO-ESM-2-0,GFDL-ESM4,GISS-E2-1-G,HadGEM3-GC31-LL,INM-CM4-8,INM-CM495

5-0,IPSL-CM6A-LR,KACE-1-0-G,KIOST-ESM,MCM-UA-1-0,MIROC-ES2H,MPI-ESM1-2-HR,MPI-ESM1-2-LR,MRI-ESM2-0,No

rESM2-LM,NorESM2-MMUKESM1-0-LL&experiment_id=historical,ssp126,ssp245,ssp585&variant_label=r1i1p1f1,r1i1p1f2,r1i1p1

f3,r2i1p1f1,r2i1p1f2,r2i1p1f3,r3i1p1f1,r3i1p1f2,r4i1p1f1,r4i1p1f2,r5i1p1f1,r5i1p1f2,r6i1p1f1,r6i1p1f2,r7i1p1f1,r7i1p1f2,r8i1p1f1,r8i1

p1f2,r9i1p1f1,r9i1p1f2&table_id=Amon&variable_id=tas

The ESMValTool recipes and the code for the diagnostics can be found at http://doi.org/10.23728/b2share.01b483fa953241b2b2d8f5242500

cae6e8c

Additional figures not shown in the main text or the supplementary material can be found in the figure repository built with a shiny app

following the link https://earth.bsc.es/shiny/medprojections-shiny_app/.
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Appendix A: Model data summary

A summary of all the initial-condition runs from the multi-model ensembles CMIP5, CMIP6 and HighResMIP, for the three505

radiative scenarios used in this study can be found in Table A1.

Table A1. Summary of the members used in this study from CMIP5, CMIP6 and HighResMIP. The columns display the emssion scenarios.

CMIP5 lato x lono RCP2.6 RCP4.5 RCP8.5 CMIP6 lato x lono SSP1-2.6 SSP2-4.5 SSP5-8.5

ACCESS1-0 1.25ox1.875o - r1i1p1 r1i1p1 ACCESS-CM2 1.25ox1.875o r1i1p1f1 r(1-2)i1p1f1 r1i1p1f1

ACCESS1-3 1.25ox1.875o - r1i1p1 r1i1p1 ACCESS-ESM1-5 1.25ox1.875o r(1-3)i1p1f1 r(1-10)i1p1f1 r(1-3)i1p1f1

BCC-CSM1-1 2.8125ox2.8125o r1i1p1 r1i1p1 r1i1p1 AWI-CM-1-1-MR 0.9375ox0.9375o r1i1p1f1 r1i1p1f1 r1i1p1f1

BCC-CSM1-1-M 1.125ox1.125o r1i1p1 r1i1p1 r1i1p1 BCC-CSM2-MR 1.125ox1.125o r1i1p1f1 r1i1p1f1 r1i1p1f1

BNU-ESM 2.8125ox2.8125o r1i1p1 r1i1p1 r1i1p1 CanESM5 2.8125ox2.8125o r(1-10)i1p1f1 r(1-10)i1p1f1 r(1-10)i1p1f1

CanESM2 2.8125ox2.8125o r(1-5)i1p1 r(1-5)i1p1 r(1-5)i1p1 CanESM5-CanOE 2.8125ox2.8125o r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

CCSM4 0.942406ox1.25o r(1-5)i1p1 r(1-5)i1p1 r(1-5)i1p1 CAS-ESM2-0 1.40625ox1.40625o - r(1,3)i1p1f1 -

CESM1-BGC 0.942406ox1.25o - r1i1p1 r1i1p1 CESM2 0.9375ox1.25o r1i1p1f1 r(1,4,10-11)i1p1f1 r(1,2)i1p1f1

CESM1-CAM5 0.942406ox1.25o r(1-3)i1p1 r(1-3)i1p1 r(1-3)i1p1 CESM2-WACCM 0.9375ox1.25o r1i1p1f1 r(1-3)i1p1f1 r1i1p1f1

CMCC-CESM 3.75ox3.75o - - r1i1p1 CIESM 0.9375ox1.25o - r1i1p1f1 r1i1p1f1

CMCC-CM 0.75ox0.75o - r1i1p1 r1i1p1 CMCC-CM2-SR5 0.9375ox1.25o r1i1p1f1 r1i1p1f1 r1i1p1f1

CMCC-CMS 1.875ox1.875o - r1i1p1 r1i1p1 CNRM-CM6-1 1.40625ox1.40625o r(1-6)i1p1f2 r(1-6)i1p1f2 r1i1p1f2

CNRM-CM5 1.40625ox1.40625o r1i1p1 - r(1-2,4,6,10)i1p1 CNRM-CM6-1-HR 0.5ox0.5o r1i1p1f2 r1i1p1f2 r1i1p1f2

CSIRO-Mk3-6-0 1.875ox1.875o r(1-10)i1p1 r(1-10)i1p1 r(1-10)i1p1 CNRM-ESM2-1 1.40625ox1.40625o r(1-5)i1p1f2 r(1-5)i1p1f2 r1i1p1f2

EC-Earth 1.125ox1.125o r(8,12)i1p1 r(2,6-9,12-14)i1p1 r(1,2,6,8,9,12,13)i1p1 EC-Earth3 0.703125ox0.703125o r(4,6,9,11,13,15)i1p1f1 r(2,7,18-24)i1p1f2 r(4,6,9,11,13,15)i1p1f1

FGOALS-s2 1.6667ox2.8125o - r1i1p1 r(1-3)i1p1 FGOALS-g3 2.25ox2o r1i1p1f1 r(1-4)i1p1f1 r1i1p1f1

FIO-ESM 2.8125ox2.8125o r(1:3)i1p1 r(1-3)i1p1 r(1-3)i1p1 FGOALS-f3-L 1.0ox1.25o r1i1p1f1 r1i1p1f1 r1i1p1f1

GFDL-CM3 2.0ox2.5o - r1i1p1 r1i1p1 FIO-ESM-2-0 0.942408ox1.25o r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

GFDL-ESM2G 2.0ox2.5o r1i1p1 - r1i1p1 GFDL-ESM4 1.0ox1.25o r1i1p1f1 r1i1p1f1 r1i1p1f1

GFDL-ESM2M 2.0ox2.5o r1i1p1 - r1i1p1 GISS-E2-1-G 2.0ox2.5o r1i1p3f1 - r1i1p3f1

GISS-E2-H 2.0ox2.5o r1i1p1 r(1-3,5)i1p1 r(1-2)i1p1 HadGEM3-GC31-LL 1.25ox1.875o r1i1p1f3 r1i1p1f3 r(1-3)i1p1f3

GISS-E2-H-CC 2.0ox2.5o - - r1i1p1 INM-CM4-8 1.5ox2.0o r1i1p1f1 r1i1p1f1 r1i1p1f1

GISS-E2-R 2.0ox2.5o r1i1p1 r(2,6)1i1p3 r(1-2)i1p1 INM-CM5-0 1.5ox2.0o r1i1p1f1 r1i1p1f1 r1i1p1f1

GISS-E2-R-CC 2.0ox2.5o - - r1i1p1 IPSL-CM6A-LR 1.25ox2.5o r(1-4,6)i1p1f1 r(1-6,10,11,14,22,25)i1p1f1 r1i1p1f1

HadGEM2-AO 1.25ox1.875o r1i1p1 - r1i1p1 KACE-1-0-G 1.25ox1.875o r(1-2)i1p1f1 r(1,3)i1p1f1 r1i1p1f1

HadGEM2-ES 1.25ox1.875o r(1-4)i1p1 r(1-4)i1p1 r(1-4)i1p1 KIOST-ESM 1.875ox1.875o - r1i1p1f1 -

INMCM4 1.5ox2.0o - r1i1p1 r1i1p1 MCM-UA-1-0 2.25ox3.75o r1i1p1f1 r1i1p1f1 r1i1p1f1

IPSL-CM5A-LR 1.875ox3.75o r(1-4)i1p1 r3i1p1 r(1-4)i1p1 MIROC6 1.40625ox1.40625o r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

IPSL-CM5A-MR 1.26761ox2.5o r1i1p1 r1i1p1 r1i1p1 MIROC-ES2L 2.8125ox2.8125o r1i1p1f2 r1i1p1f2 r1i1p1f2

IPSL-CM5B-LR 1.875ox3.75o - r1i1p1 r1i1p1 MPI-ESM1-2-HR 0.9375ox0.9375o r1i1p1f1 r1i1p1f1 r1i1p1f1

MIROC-ESM 2.8125ox2.8125o r1i1p1 r1i1p1 r1i1p1 MPI-ESM1-2-LR 1.875ox1.875o r(1-10)i1p1f1 r(1-10)i1p1f1 r(1-10)i1p1f1

MIROC-ESM-CHEM 2.8125ox2.8125o r1i1p1 r1i1p1 r1i1p1 MRI-ESM2-0 1.125ox1.125o r1i1p1f1 r1i1p1f1 r1i1p1f1

MIROC5 1.40625ox1.40625o r(2-3)1i1p1 r(2-3)i1p1 r(2-3)i1p1 NESM3 1.875ox1.875o r(1-2)i1p1f1 r(1-2)i1p1f1 r(1-2)i1p1f1

MPI-ESM-LR 1.875ox1.875o r(1-3)i1p1 r(1-3)i1p1 r(1-3)i1p1 NorESM2-LM 1.25ox3.75o r1i1p1f1 r(1-3)i1p1f1 r1i1p1f1

MPI-ESM-MR 1.875ox1.875o r1i1p1 r(1-3)i1p1 r1i1p1 NorESM2-MM 0.9375ox1.25o r1i1p1f1 r1i1p1f1 r1i1p1f1

MRI-CGCM3 1.125ox1.125o r1i1p1 r1i1p1 r1i1p1 UKESM1-0-LL 1.25ox1.875o r(1-4,8)i1p1f2 r(1-4,8)i1p1f2 r(1-4,8)i1p1f2

MRI-ESM1 1.125ox1.125o - - r1i1p1

NorESM1-M 1.875ox2.5o r1i1p1 r1i1p1 r1i1p1

HighResMIP lato x lono SSP5-8.5 lato x lono SSP5-8.5 lato x lono SSP5-8.5

CMCC-CM2-HR4 0.942408ox1.25o r1i1p1f1 CNRM-CM6-1-HR 0.5ox0.5o r1i1p1f1 HadGEMGE3-GC31-HM 0.234375ox0.351562o r1i1p1f1

CMCC-CM2-VHR4 0.234681ox0.3125o r1i1p1f1 EC-Earth3P 0.703125ox0.703125o r3i1p2f1 HadGEMGE3-GC31-MM 0.555557ox0.833333o r1i1p1f1

CNRM-CM6-1 1.40625x1.40625 r1i1p1f1 EC-Earth3P-HR 0.3515625x0.3515625 r2i1p2f1

Appendix B: Diagnostics, σd and σs of the weighting method

This Appendix aims to describe the methodology behind the performance and independence weighting. First, we will explain

the diagnostics chosen to compute the distances and secondly how to obtain the two constant shape parameters from equation

(1).510
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As the aim is to obtain weighted projections from a multi-model ensemble, the diagnostics to assess performance and

independence must be relevant for the used variable. The weighting is going to be optimised for temperature projections and

therefore variables TAS and PSL from the historical period (1980-2014) will be used, as these variables are relevant for the

projected temperature ((Merrifield et al., 2020), (Brunner et al., 2020)). In order for CMIP5 to comply with the historical

reference period, the diagnostics will include the first years of the scenario experiments (2006-2014). As there is a unique515

ensemble of members for each project, scenario and season, each ensemble will have its own set of weights.

The diagnostics used are differences, climatologies, trends, and variability. According to Tebaldi and Knutti (2007), TAS

historical trends have an evident physical link and high correlation with future projected warming. The trend is defined by

the linear ordinary least square regression fit for each grid point with time as independent variable during the reference period

(TREND); the climatologies are computed as the time mean of each grid point over the reference period (CLIM); the differences520

are computed by subtracting the area averaged climatology to each grid point’s reference period climatology (DIFF) and the

variability is obtained with the mean inter-annual standard deviation for each grid point (STD). As the trend is not relevant for

PSL, it is not computed (Merrifield et al., 2020).

When assessing performance, the aim is to identify the models that more faithfully represent the historical climate. As all

our results are computed as differences from the historical period, model biases in the climatology shouldn’t be relevant. That525

is why the diagnostics used for performance weighting are TAS-TREND, TAS-DIFF, TAS-STD, PSL-DIFF and PSL-DIFF.

Differently, the aim of weighting for independence is to identify members that have similar traits. Biases in models should be

similar for dependent models (Merrifield et al., 2020), therefore we use CLIM for temperature and sea level pressure (TAS-

CLIM and PSL-CLIM) to compute the distances Sij from equation (1). Computing the climatology over relatively long periods

is a good approach as the internal variability gets minimised and ideally, it is the main attribute distinguishing two members of530

the same model (Hawkins and Sutton, 2011).

Finally, to compute the actual values of Di and Sij the single diagnostic distances (e.g. TAS-TREND, TAS-DIFF, PSL-

DIFF...) must be combined. It is done by normalizing the single diagnostics with the median over all members and then

averaging them.

The shape parameters are constant thresholds that inform how large or small distances should be to determine performance535

(Di) and independence (Sij). If σd is overconstrained (small value), it will generate a very strict performance weighting as

only members with very low values of Di will receive any weight. Contrarily, if high values of σd are used, models with large

distances will receive performance weight, leading to too permissive constraints. The independence shape parameter doesn’t

work in such a straightforward way, small values of σs could weight all models as being independent, as the distance to consider

two members dependent would have to be too small. This could result in models receiving similar weights. A similar thing540

could happen but for the opposite reason if a large σs was used i.e. most models would seem dependent as large distances

between members would be considered small enough. We therefore must find an optimal σs that is neither too small nor too

large (Knutti et al., 2017).

The ensemble gives the necessary information to make a best guess of both shape parameters. Regarding the performance

parameter, Knutti et al. (2017) suggests applying perfect model tests for a range of σd candidates to obtain the optimal mag-545
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nitude. The candidates are values between the 10% and 200% of the median Di distance. Consecutively, all members in the

ensemble are once taken as the reference while the rest are weighted following equation (1) withDi being the distance between

the perfect member and the member i. The σd candidates are iteratively tested for all perfect model tests until the smallest σd

that makes 80% of the perfect models fall in between the 10th and 90th percentiles of their respective weighted ensembles is

found. The diagnostics used in the test are the same as the ones used to weight performance but computed for the future periods550

(2041-2060 and 2081-2100) as we want σd to be based on the uncertainties of the future projection ensemble. The average σd

between both periods is used for its corresponding season, scenario and CMIP ensemble.

The parameter σs is informed by models with more than one initial-condition run. Ideally, members from the same model

should be considered completely dependent as their modelling assumptions are the same, even though internal variability

makes the runs differ. The independence weighting should identify when initial-condition runs from the same model are added555

or subtracted from an ensemble. If the independence weights (equation (1) denominator) are calculated for an ensemble with

one member per model (wind
j ) and then all the available members of a model j are added to the ensemble (Ej represents the

amount of members added), the average independence weights of model j (w̃ind
j ) are expected to decrease by a ratio 1 : Ej .

Additionally, including members of a model j to the ensemble should have a minimal effect on the independence weights of

the rest of models i represented by only one member in the ensemble.560

The optimal σs is found via an iterative process for a range of σs candidates, looking for the one that minimizes the sum

ε1 + ε2, where ε1 and ε2 are defined as (Brunner et al., 2019):

meanj
[
wind

j (σs) +Ej − w̃ind
j (σs)

]2
= ε1

meanj

{
meani

[
wind

i 6=j(σs)− w̃ind
i6=j(σs)

]2}
= ε2 ∀j

565
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