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Abstract. In the semi-arid Peruvian Andes, the growing season is mostly determined by the timing of the onset and retreat of

the wet season, to which annual crop yields are highly sensitive. Recently, local farmers in the Rio Santa basin (RSB) reported

more erratic rainy season onsets and further challenges related to changes in rainfall characteristics. Previous studies based on

local rain gauges however, did not find any significant long-term rainfall changes, potentially linked to the scarce data basis and

inherent difficulties in capturing the highly variable rainfall distribution typical for complex mountain terrain. To date, there5

remains considerable uncertainty in the RSB regarding changes in plant available water over the last decades. In this study,

we exploit satellite-derived information of high-resolution vegetation greenness as integrated proxy to derive variability and

trends of plant water availability. By combining MODIS Aqua and Terra VIs, datasets of precipitation (both for 2000-2020)

and soil moisture (since 2015), we explore recent spatio-temporal changes of the vegetation growing season. We find the NDVI

to be coupled to soil moisture on a sub-seasonal basis while NDVI and rainfall only coincide on inter-annual timescales. Over10

20 years, we find significant greening in the RSB, particularly pronounced during the dry season (Austral winter), indicating

an overall increase of plant available water over the past two decades. The start of the growing season (SOS) exhibits high

inter-annual variability of up to two months compared to the end of the growing season (EOS), which varies by up to one

month, therefore dominating the variability of the growing season length (LOS). The EOS becomes significantly delayed

over the analysis period, matching the observed dry-season greening. While both in-situ and gridded rainfall datasets show15

incoherent changes in annual rainfall for the region, CHIRPS rainfall suggests significant positive dry season trends for two

months coinciding with the most pronounced greening. As the greening signal is strongly seasonal and reaches high altitudes on

unglaciated valley slopes, we cannot link this signal to water storage changes on timescales beyond one rainy season, making

inter-annual rainfall variability the most likely driver. Exploring El Niño Southern Oscillation (ENSO) control on greening, we

find an overall increased LOS linked to an earlier SOS in El Niño years, which however cannot explain the observed greening20

and delayed EOS. While our study could not corroborate anecdotal evidence of recent changes, we confirm that the SOS is

highly variable and conclude that rainfed farming in the RSB would profit from future efforts being directed towards improving

medium-range forecasts of the rainy season onset.
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1 Introduction

The Rio Santa valley in the tropical Peruvian Andes is characterized by high seasonal variability of precipitation with a rainy25

season lasting from approximately September to April where 70 - 80 % of annual precipitation occurs, followed by a dry season

with little to no rainfall (e.g. Schauwecker et al., 2014). In this region, rainfall seasonality is strongly controlled by tropical

easterlies related to the South American monsoon system (Garreaud, 2009). Interannual differences in rainfall totals may reach

up to 100 %, linked to high variability in the driving atmospheric circulation patterns. This variability is partly driven by the El

Niño Southern Oscillation (ENSO) phenomenon, but ENSO influences on rainfall patterns in the tropical Andes are complex30

and not coherent in space and time. For the Cordillera Blanca (the mountain range on the eastern side of the Rio Santa valley),

studies suggest a general dry (wet) signal following El Niño (La Niña) events (Vuille et al., 2008; Maussion et al., 2015).

But this linear relationship does not hold true for all years/events and is dependent on individual, localised anomalies in the

upper tropospheric flows. Furthermore, the primary focus of most studies has been ENSO effects on anomalies in glacier mass

balances in the highest altitudes of the Cordillera Blanca, which might not reflect the effects at lower altitudes in the Rio Santa35

basin (RSB). At the same time, studies focussing on the Pacific watershed of the Peruvian coast suggest a complex pattern

where both dry and wet anomalies might occur in the adjacent mountain ranges (where the RSB is located) following El Niño

events (Sanabria et al., 2018, 2019; Rau et al., 2017).

Small-scale farmers living along the slopes of the RSB are cultivating their crops closely linked to the water availability

imposed by this seasonality. These subsistence-based cultivation practices are increasingly threatened by rural exodus, expan-40

sion of mining activities, industrialization of agriculture and overall economic growth and modernisation (Carey et al., 2014;

Crabtree, 2002). Apart from these challenges, local farmers recently reported perceived changes in rainfall patterns, which

additionally threaten their livelihoods (Mark et al., 2010; Perez et al., 2010; Gurgiser et al., 2016). Particularly, they reported

a) a higher variability in the onset of the rainy season which complicates the planning for an ideal sowing date, b) a higher

occurrence of dry spells during the growing season leading to crop loss and c) more frequent occurrences of crop damaging45

events such as intense rainfalls, hail and ground frost. In contrast to these reports, the same authors (Gurgiser et al., 2016) could

not find evidence for the reported patterns by analysing two local rain gauge time series.

The complex terrain of the Andes is an important factor hampering the robustness of information on rainfall patterns and

changes with large-scale rainfall drivers like ENSO being modulated by topography over short distances, creating micro-

climates. Hence, available data from rain gauges, often of questionable quality, additionally suffer from insufficient spatial50

coverage. Therefore, spatio-temporal distributions of rainfall across the valley and potential recent changes in patterns or sea-

sonality still remain uncertain and have been reported neither for the spatial domain of the RSB (Schauwecker et al., 2014;

Gurgiser et al., 2016) nor for larger scales (i.e. the tropical Andes region) (Vuille et al., 2003). But together with other climate

variables, fine-scale precipitation patterns are a dominant driver for changes in ecosystem productivity (Nemani et al., 2003;

Huxman et al., 2004; Knapp and Smith, 2001; Bonan, 2008; Beer et al., 2010; de Jong et al., 2013), and are of importance55

for downstream water shortages which to date are only assessed by quantifying the glacier mass balance - runoff relation (e.g.
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Baraer et al., 2012; Bury et al., 2013; Mark et al., 2010; Condom et al., 2012; Kaser et al., 2003) or by future projections with

locally highly uncertain results (Urrutia and Vuille, 2009; Buytaert and De Bièvre, 2012).

In the particular climatic setting of the semi-arid Peruvian Andes, the growing season of vegetation is mostly determined

by seasonal water availability. Given most agricultural land is rainfed, crops and managed grasslands similarly rely on the60

seasonal rains (Rodriguez-Iturbe et al., 1999; Svoray and Karnieli, 2011; Schwinning et al., 2004; Forzieri et al., 2014). Other

potentially limiting variables (i.e. radiation and temperature) are of minor importance for ecosystem productivity or successful

rain-fed farming at the transitions between dry and wet season (Camberlin et al., 2007). Therefore, a strong relationship of

remotely sensed Vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974)

can be expected to show a clear, albeit lagged response to available water, including rainfall and temporally delayed storage65

components of the hydrological cycle (i.e. soil moisture and snow/ice storages) (Richard and Poccard, 1998; Potter and Brooks,

1998; Wu et al., 2015). VIs have been successfully used for detecting climate anomalies (Karnieli et al., 2010), revealing long-

term changes in climate (Richardson et al., 2013, 2018; Zhang, 2005) and understanding local effects of large-scale patterns

such as ENSO (Kogan, 2000). VIs can also be exploited to calculate metrics of land surface phenology (LSP). Widely used

metrics are related to phenophases, greening or senescence of plants, usually named start, peak and end of the season (SOS,70

POS, EOS) and can be used to deduce interannual variability or spatio-temporal changes in ecosystem status in response to

weather events and climate change (e.g. Vrieling et al., 2013; Xu et al., 2016).

As the semi-arid climate causes water availability to be the key limiting factor for plant growth in the RSB, vegetation

greenness as represented by the NDVI can serve as a bulk indicator for variability and changes in plant available water.

The main advantage of exploiting NDVI for understanding recent changes in water availability in the context of agriculture75

is the unprecedented spatio-temporal resolution on the one hand and the integrative nature of plant greenness on the other

hand, meaning plant greenness is dynamically correlated with the environmental parameter which is limiting plant growth the

most. As plant water availability is directly related to soil moisture (SM), rainfall data (i.e from weather stations), although

representing the input variable in the terrestrial hydrological cycle, cannot fully represent the spatial redistribution and storage

of water in the system which is crucial to plant water availability. Furthermore, local rainfall observations have limited spatial80

representativity in complex mountainous terrain. Satellite-based retrievals of soil moisture alone on the other hand do not

capture the vegetation response to changes in water availability, and suffer from lower resolutions and/or short retrieval periods,

as well as from higher estimate uncertainties due to high sensitivity to vegetation cover. For this reason, the overachieving goal

of the study is to shed light on the interannual variability and decadal changes of water availability in the RSB in the context

of perceived changes by local farmers by utilizing NDVI as an integrated proxy of plant water availability. For that, we:85

1. examine the seasonal and interannual relationship between NDVI, SM and different rainfall datasets.

2. quantify decadal changes (long-term trends) in NDVI at the annual and monthly level in the particular setting of the

RSB, thus inferring changes in plant available water.

3. analyze the temporal characteristics of the vegetation growing season based on LSP metrics to detect shifts in plant

growth seasonality.90
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4. explore the relationship between NDVI behaviour and ENSO, a major driver of the large-scale rainfall-controlling cir-

culation patterns in the region.

2 Material and methods

2.1 Study area and local climate

The Rio Santa basin (also: Callejón de Huaylas) is located in northwest central Peru, approximately 400km northwest from95

the capital Lima (see Fig 1). In several sections, the valley is densely populated while the majority of the land surface is used

either for agriculture in the lower and extensive grazing in the higher altitudes. The complex interactions between the Andes’

topography, the position of the Intertropical Convergence Zone (ITCZ), ENSO and the South American Monsoon system

shape the precipitation gradient between the Amazon basin, which is among the rainiest places worldwide (Killeen et al., 2007;

Espinoza et al., 2015), and the dry deserts along the pacific coast with close to zero precipitation (Rau et al., 2017). The RSB is100

located between those two extremes and consequently there is a precipitation gradient between the Cordillera Blanca range on

the east slope of the valley and the Cordillera Negra range on the west slope within a few kilometers distance as seen by rain

gauge measurements and satellite precipitation retrievals in Fig. 1.

2.2 Vegetation Indices data

For this analysis we acquired complete time series of NDVI, EVI and PR (Pixel Reliability) layers of the MODIS Terra &105

Aqua satellites (i.e. products MOD13Q1 (Didan, 2015a) and MYD13Q1 (Didan, 2015b), respectively) for a subset covering

the RSB in NetCDF format. Both products contain images with a spatial resolution of 250 m and are composited from the

best radiometric and geometric quality pixels (i.e. low clouds, low viewing zenith angle and highest values of NDVI/EVI)

in a 16-day observation period. The composites in MOD13Q1 & MYD13Q1 are purposely phased eight days apart and use

the same spatial grid, which allows combining them. Both MOD13Q1 and MYD13Q1 were filtered to only retain pixels with110

the MODLAND QA criteria ’VI produced with good quality’ and ’VI produced but check other QA’ and in a second step by

removing low quality VI’s (’Lowest Quality’, ’Quality so low that it is not useful’, ’L1B data faulty’ and ’Not useful for any

other reason/not processed’). In a third step, only pixels with ’low’ and ’average’ aerosol quantity were included and pixels

where adjacent clouds, mixed clouds and/or possible shadows were detected, were removed from the dataset. Finally, the two

filtered datasets were combined to cover 19 growing seasons (starting from 01-Sep) from 2000 to 2020 in 8-day temporal115

and 250m spatial resolution. The consistent dataset was exported into a set of GeoTiff files for being processed with the

Decomposition and Analysis of Time Series software (DATimeS) software (Belda et al., 2020). All VI analyses shown in this

study are based on NDVI, as EVI time series produced overall similar results and are therefore not presented.
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2.3 Precipitation and soil moisture data

We used gridded precipitation data from The Climate Hazards InfraRed Precipitation with Station data (CHIRPS) dataset120

(Funk et al., 2015) in 0.05◦ x 0.05◦ spatial and 1-day temporal resolution and subset the data for the evaluated MODIS NDVI

period 2000-2020 and the spatial extent of the RSB. CHIRPS rainfall is derived by a combination of satellite and rain gauge

data. In particular, precipitation is derived from thermal infrared cold cloud duration observations and blended with rain gauge

data by weighted interpolation. Due to its comparably high spatial and high temporal resolution it is regularly used for regional

studies in complex terrain as found in the RSB (e.g. Rivera et al., 2018; Torres-Batlló and Martí-Cardona, 2020; Segura125

et al., 2019). In addition, monthly L3 GPM - IMERG (Global precipitation measurement - Integrated MultisatellitE Retrievals)

precipitation data were used for comparison (Huffman et al., 2012). IMERG provides global estimations of precipitation based

on microwave satellite observations in combination with surface precipitation rain gauges. In contrast to CHIRPS, IMERG

rainfall incorporates direct satellite radar measurements, but suffers from coarser spatio-temporal resolution (0.1◦ x 0.1◦). We

also compared our results with data from local weather stations operated by the National Meteorological and Hydrological130

Service of Peru (SENAHMI). Stations that suffered from larger data gaps over the NDVI time period were excluded from

further analysis. This resulted in three suitable stations, all located along the valley floor (see Fig. 3d for approximate locations).

Finally, we acquired SMAP Enhanced Level 3 radiometer global daily 9-km soil moisture retrieval beginning from March 2015

(O’Neill et al., 2021). We used the morning overpass times (AM) of the Dual Channel Algorithm (DCA) and included both

observations with recommended and uncertain quality as the data availability was low if the data with uncertain quality would135

have been excluded. Using the MODIS NDVI data we constructed a mask to only include SMAP data which corresponds to

NDVI observations.

2.4 NDVI time series pre-processing

As our study area covers a variety of land cover types, we used two state-of-the-art methods to derive LSP metrics from

the NDVI time series: 1. Whittaker smoother (wt) (Atzberger and Eilers, 2011) and 2. Gaussian process regression (GPR)140

(Rasmussen, 2004), both implemented in DATimeS software (Belda et al., 2020). The Whittaker smoother (Whittaker, 1922)

calculates least squares with a penalty based on how noisy the input time series is. The smoothness is controlled by a single

parameter (λ). GPR is a non-parametric Bayesian approach where (hyper-)parameters are determined in a probabilistic way in

the calculation. Recent studies showed advantages of GPR over standard models for gap-filling and fusion of various biophysi-

cal parameters (Belda et al., 2020; Pipia et al., 2019; Mateo-Sanchis et al., 2018). Besides being promising in terms of yielding145

accurate estimates, GPR is different from other models since it determines uncertainty estimates for each pixel in addition to

the fitted data. However, as differences between the results of the two methods turned out to be negligible, all analyses shown

are based on GPR. The DATimeS software was set up by using a daily time step. To account for possible greening or browning

trends in the NDVI time series, we used a seasonal amplitude to determine SOS and EOS. POS is defined as the day where

NDVI reaches its seasonal maximum. All other settings were DATimeS default settings (i.e. SOS/EOS detection at 30 % am-150

plitude, min. Prominence of 20 %, min. Separation of SOS and EOS of 100 days and no further smoothing method applied).
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Additionally we filtered the LSP results by masking the data on conditions: i) pixels where the length of the growing season

(LOS) was longer than 365 days, ii) pixels where the amplitude or the maximum NDVI was one or greater, iii) pixels where the

order of SOS, POS, EOS was not given (e.g. POS after EOS), iv) pixels where any SOS, POS or EOS were more than 365 days

after the first September of the corresponding season were removed. Finally, we removed the upper and lower 1 % percentile155

of SOS, POS and EOS to remove outliers. Parts of our study area also contain areas with irrigated agriculture, where two (or

more) maxima in the NDVI signal per season are expected. To exclude such pixels where the NDVI seasonality is evidently

decoupled from seasonal water availability, we used an approach based on autocorrelation analysis (Verstraete et al., 2008).

The time series was split into 14 months (growing season ± 1 month) for each season (e.g. 2000-07-01 to 2001-08-31) and a

3-weeks rolling window was applied to the calculation of autocorrelation for each pixel and season independently. By detect-160

ing the local maxima of the autocorrelation, the number of peaks in each pixel was detected and finally all pixels with more

than one local autocorrelation maximum were excluded from further analysis (on average 7.23 % pixels per season removed

with σ = 1.42 %). These pixels are exclusively located at the highest altitudes and close to the Rio Santa river. Additionally,

we masked the whole time series with the global Land Cover product of the Copernicus Climate Change Service (C3S) at

300m resolution (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview, accessed June 2020).165

Specifically, we removed all pixels which intersected with nine specific land-cover classes corresponding to flooded vegetation,

urban areas, bare areas, water, snow and ice. We did not account for land-cover changes during the 20-year time period and

masked the whole timeseries with the ESA CCI LC data from 2018.

3 Results

3.1 Seasonal Relationship between NDVI, soil moisture and Rainfall170

We first evaluate how the average regional NDVI relates to soil moisture and rainfall information from CHIRPS on a seasonal

basis. Conceptually, rainfall is the primary input into the hydrological cycle but since part of that rainfall is redistributed, soil

moisture is more directly related to plant growth. This relation is illustrated in Figure 2a where the domain-average detrended

monthly anomalies of NDVI show significant co-variability with the soil moisture anomalies, including a response to drier and

wetter years. This suggests that SMAP soil moisture data is suitable to detect short-term variability in plant water availability175

on a regional scale. However, its spatial resolution remains too coarse for evaluation of sub-valley soil water distribution and

its availability from 2015 onward does not allow trend analyses. For the CHIRPS data the relation of monthly anomalies is

less clear with an explained variance through rainfall of 11 % for 2015-2020 (shown in Fig. 2a) and 14 % for 2000-2020 (not

shown). For annual anomalies however, the explained variance reaches 52 % (Fig. 2b). These findings highlight strong NDVI

sensitivity to inter-annual rainfall variability, while on shorter timescales there is little sensitivity of NDVI to rainfall anomalies.180

Given the described restrictions in soil moisture data, we rely on NDVI in combination with regional rainfall information for

subsequent analyses.

In-situ measurements indicate that seasonal rainfall shows a west-east gradient across the valley (c.f. Fig. 1). This is con-

firmed by the gridded datasets in Fig. 2d, where all three datasets represent this difference in seasonal water availability between
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the two ranges. Monthly rainfall differences show less rainfall for the Cordillera Negra, particularly during the early rainy sea-185

son with approximately 12 % for September, October and November compared to the average for the entire valley. (Fig. 2d).

While CHIRPS suggests only minor differences between the ranges during the peak rainy season (Jan-Mar), corresponding

lagged NDVI values (approximately Feb-Apr) remain lower (higher) on the Coordillera Negra (Blanca) with a minimum in

April (Fig. 2d). This illustrates that NDVI is a useful metric to capture the response of vegetation to cumulative water avail-

ability in this region, which may better reflect vegetation and crop sensitivities than rainfall metrics alone. Soil moisture shows190

a smaller difference of +2 % and -5 % on average for the Cordillera Blanca and Negra compared to the complete RSB, which

is most likely related to the coarser resolution of the SMAP dataset.

3.2 Decadal Changes in NDVI and their consistencies with Rainfall datasets

Next, we investigate potential changes in plant water availability in the RSB since 2000. In addition to vegetation greenness as

represented by the NDVI, we consider three different rainfall datasets for detection of changes that may explain NDVI trends.195

The NDVI data itself (Fig. 3a) reveals a greening tendency across the RSB, amounting to +10 % over the considered period,

suggesting an increase in plant water availability given the strong NDVI sensitivity to SM illustrated in Fig. 2. In contrast,

the rain-gauge dataset and CHIRPS (Fig. 3b and d, respectively) do not show any significant changes during the observation

period, while the IMERG dataset (Fig. 3c) indicates a significant reduction of rainfall. Stable annual rainfall in CHIRPS and

station data in combination with the greening signal render considerable rainfall decrease as shown by IMERG unlikely. On a200

sub-seasonal basis, monthly NDVI trends as shown in Fig. 4, reveal widespread greening particularly pronounced during the

dry season (approximately May to September). In May and August, this greening is in line with the CHIRPS data, while the

other dry season months show no clear rainfall signal. As illustrated in Fig. 2a, the NDVI signal is lagging behind the rainfall

signal and therefore correspondence between changes in rainfall and NDVI might also be affected by a few months lag (Tote

et al., 2011). Significant browning occurs in only a relatively small fraction of the area, consistently localized in urban areas or205

where mines are operating.

3.3 Characteristics of the Vegetation Growing Season

To further explore if and how the vegetation growing seasonality may have changed, we extracted spatio-temporal information

on LSP. As Fig. 5 indicates, SOS shows a large interannual variability, with a median of 79 days since 01.Sep with a maximum

range of 60 days. In contrast, POS and EOS show much smaller fluctuations over time (median of 203 and 304 days since210

01.Sep and maximum ranges of 30 and 34, respectively). Consequently, the growing season length (LOS) is mostly governed

by the high variability of SOS. The Cordillera Negra shows both later SOS and earlier EOS in comparison to the Cordillera

Blanca, while POS is similarly distributed for both ranges, which corresponds to the monthly differences shown in Fig. 2b-d.

These differences between Cordillera Blanca and Negra remain clearly visible even on the pixel scale (Fig. 6a-c with a nine

day later SOS, seven day earlier EOS and 15 day shorter LOS (median values of all pixels). Neither SOS nor LOS show larger-215

scale changes over the 20-year time series across the valley as seen in Figure 6. EOS on the other hand, is shifted towards later

dates on the valley scale, without dominant localised patterns that would suggest land-use change driving this shift (Fig. 6f).

7



Although we identify a robust trend in EOS, it remains small compared to the variability of SOS and hence has little effect on

the overall LOS.

3.4 Influence of ENSO on interannual NDVI Variability220

Our results on pronounced vegetation greening at the end of the rainy season paired with a significant May rainfall trend

suggested by CHIRPS point towards a later retreat of the rainy season. We now want to investigate whether the succession of

ENSO phases over the last two decades may have produced this delay in the EOS signal. Therefore, we categorized NDVI and

rainfall mean seasonal cycles by partitioning them into Niño, Niña and Neutral phases. As Fig. 7b-d indicates, we find that

early season (Oct, Nov, Dec) precipitation tends to be enhanced under El Niño conditions, although not significant except in the225

local observations for November (Fig. 7d). This might be favoring early greening after the dry season (Fig. 7a, significant for

November). At the same time, we find tendencies of lower (higher) mean seasonal precipitation (September to August) under

El Niño (La Niña) conditions (not significant). For the three investigated rainfall products these are -3.6, -7.9 and -1.5 % during

El Niño phases (+7.1, +8.3, +4.4 % during La Niña) for CHIRPS, IMERG and local weather station observations compared

to the mean seasonal precipitation of the complete time series (mean of all available years, independent of ENSO phases).230

Regarding vegetation, the increased early season plant available water seems to trigger a contrasting greening response over

the seasonal cycle in the RSB: Early rainfalls induce favourable conditions for early plant growth and may allow earlier sowing

for farmers. Expected reduced greening linked to less plant available water during El Niño is insignificant in our analysis, but

mostly affects peak monsoon rainfall (see Fig. 7) when plant water stress should be low. This may explain why the associated

reduction in mean annual precipitation and peak monsoon precipitation has little effect on the NDVI signal later in the rainy235

season (Fig. 7a). Although the investigated time series features only one multi-year El Niño event (seasons 2014/15, 2015/16),

we suspect that the accumulated lack of rain during such events (-8.5, -3.9, +7.4 % and -20.7,-29.3, -17.5 % for the seasons

2014/2015 and 2015/2016 for CHIRPS, IMERG and local weather station observations) may have a cumulative detrimental

effect on plant growth and result in overall browning tendencies as annual intermediate storages feeding soil moisture and

sub-surface flows may become depleted earlier in the season. For the growing season 2016/2017 after the 2015/2016 El Niño240

this might be the case, as the growing season is clearly delayed (for most pixels the latest SOS, POS and EOS of the whole time

series, compare Fig. 5). Yet, for this particular growing season, November rainfall is extremely reduced (by -52, -64, -92 % for

the three rainfall products), which might be unrelated to the previous El Niño event but a similar pattern occurs in the growing

season 2005/2006, where SOS is severely delayed and November precipitation is reduced (by -48, -26, -85 % for the three

rainfall products) following a phase of El Niño. As Fig. 8 shows, anomalies in NDVI show a non-linear response to anomalies245

of the Niño 3.4 index. From September to December though, there is a positive correlation between the two variables with 18 -

28 % explained variance, significant only for November and December. In May, where the strongest greening occurs (compare

Fig. 4), the correlation remains insignificant at approximately 7 % explained variance, similar to other months at the end of the

rainy season. Therefore, we cannot explain the observed changes in NDVI and EOS by ENSO alone.
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4 Discussion250

By combining metrics of LSP and statistical analyses of spatio-temporal data of MODIS NDVI in combination with SMAP soil

moisture and different rainfall datasets, we aimed at creating a more robust picture of differences in water availability across

the RSB and of temporal changes therein. The observed annual change towards vegetation greening, particularly widespread

during the dry season, strongly suggests an increase in water availability. This is however not reflected in annual rainfall

totals of any of the rainfall datasets, while soil moisture data, which shows reasonable agreement with intra-seasonal NDVI255

variability, is not available for the MODIS era. On the other hand, we found 52 % of regional interannual variability in NDVI

to be explained by CHIRPS rainfall estimates suggesting strong rainfall control on NDVI variability in this region. We did

not find strong near-immediate responses of NDVI to CHIRPS rainfall on a monthly basis (see Fig. 2). This may be a result

of the fact that the NDVI-rainfall co-variability strongly varies throughout the season: During the wet season, plant growth is

unlikely to be limited by water availability, but wet season anomalies likely have an effect later in the season as water storages260

become depleted. In contrast, positive rainfall anomalies during the drier months can show an immediate increase of plant

greenness, while negative anomalies may not result in any response. Accordingly, the time-lag between rainfall and NDVI is

varying dynamically throughout each individual season.

Consistent with other studies which relied on CHIRPS data for trend analyses (e.g. Segura et al. (2019); Torres-Batlló and

Martí-Cardona (2020)), our results suggest CHIRPS data to be suitable for regional studies in the Andes but results should265

be interpreted with care and ideally compared with other independent data sources as conducted here, particularly for sub-

catchment scales. We find strongest vegetation greening during the drier months, which is at the same time the only period

with significant CHIRPS trends in May and August. Because precipitation sums are small at that time, these changes might be

below the precision of precipitation measurements, particularly in complex terrain, and trend magnitudes should be treated with

caution. In fact, our analysis of different rainfall datasets on domain-scale gives inconclusive and inconsistent results regarding270

changes in annual precipitation totals, as previously reported by other authors (e.g. Gurgiser et al., 2016; Schauwecker et al.,

2014; Vuille et al., 2003). This illustrates the feeble precipitation data basis and the uncertainty that comes with assessments

that exclusively consider rainfall trends in the region, while highlighting the value of vegetation-focussed analyses for assessing

plant water availability in the context of rain-fed farming.

Overall, we found the mean seasonal cycle of NDVI across the RSB to be shifting towards higher values since 2000, with a275

reduction in amplitude linked to more pronounced late wet season / dry season greening. As many studies on changes in VIs

in semi-arid areas suggest, greening patterns are not coherent and dominant drivers are diverse. Although currently greening

appears to be the dominant signal across the Andes (and many other regions), one has to account for regional changes in

climate and land-use from case to case (Fensholt et al., 2012). The same applies for studies beyond regional scales (i.e. Peru),

where the diversity of ecosystems and gradients in environmental variables may constrain transferable conclusions (Polk et al.,280

2020). Previously, a variety of potential drivers for greening in the tropical Andes were reported. Among these are primary

succession of recently deglaciated areas (Young et al., 2017), forestation activities (e.g. Aide et al., 2019) and agricultural

land use expansion (Bury et al., 2013). Although these mechanisms most likely also occurred in the Rio Santa basin during the
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observation period, they cannot explain how greening during the dry season occurs independent of altitude, aspect or land-cover

type. By visually comparing pixels which show very intense values of greening with RGB-imagery, we discovered some areas285

which were affected by land-cover change. These were mainly located in higher altitudes dominated by grassland/shrub (so-

called Puna) ecosystems. In some of these locations, the changes were related to afforestation of evergreen conifers in certain

locations of the Cordillera Blanca (not shown). These pixels only occur in small numbers and therefore cannot be the dominant

cause of the identified greening. Hence, we are confident that the widespread greening, particularly over the drier months, is

linked to increased water availability indicating potential changes in the seasonality of rainfall and vegetation growth.290

As known for the Amazon, ENSO-driven extreme events such as the drought during 2015/2016 can have complex effects

such as having contrary anomalies in greening and photosynthesis for forests (Yang et al., 2018). For the (tropical) Andes

region, little research was conducted regarding effects of larger scale circulation on vegetation. Related to farming, the highly

variable SOS, and consequently LOS in the RSB is probably the largest challenge for farmers as planning for sowing and crop

choice can be difficult under these conditions. This is especially pronounced on the Cordillera Negra, where water availability295

is lower and LOS is shorter. The spatially widespread trend towards delayed EOS dates is in line with the identified dry season

greening and includes the relatively dry Cordillera Negra, where multi-year storages such as glaciers or wetlands are absent.

This supports the hypothesis of a trend induced by changes in water availability, especially since magnitude, spatial distribution

and seasonal timing are comparable with the rest of the valley, hence rendering other drivers of greening on temporal scales

beyond one rainy season unlikely. Influences from anthropogenic activities can potentially cause a decoupling of naturally300

occurring water inputs and vegetation. This can be related to land-use practices such as irrigation, fertilizing or tilling. In spite

of this, there are several arguments for the validity of our analysis. First, large parts of the RSB are characterized by small-scale,

subsistence based, rain-fed, non-industrial agriculture where a large-scale decoupling is not expected. Hence, we account for

areas (i.e. at the valley floor) where a multi-modal growing season is realized by irrigation. Second, increasing glacial melt

during the past decades might have increased (sub-surface) runoff and facilitated an extension of the agricultural growing305

season by irrigation. But as neither the magnitude nor the spatial pattern of greening is distinguishable between the glaciated

Blanca and non-glaciated Negra slopes and hence farmers predominantly reported negative impacts (c.f. Gurgiser et al., 2016)

related to climate, this seems unlikely to be relevant. We want to point out that potential change in water availability during

the late wet season remains not fully understood as i) the vegetation decouples from the water availability signal later in the

season as other factors becoming limiting and the explanatory power of NDVI data becomes limited and ii) the availability310

of cloud-free scenes is poor during the wet season which causes uncertainties (see dry and wet season panels in Fig. 4). By

contrast, the delay in EOS in a large proportion of the valley (see Fig. 6f) suggests a potential shift towards a slower retreat of

the rainy season and/or slower decay of plant available water accumulated during the rainy season.

In summary, we are mostly unable to confirm the local farmers’ reports (see Section 1). Our results indicate that SOS in the

RSB is featured with high interannual variability but this variability is not significantly changing in the 20 years of observation.315

In spite of this, the farmers’ perceptions seem comprehensible if experienced simultaneously with challenges of other nature.

Furthermore, the farmers reported increasing dry spells and more frequent occurrences of detrimental events (e.g. hail, frost).

Regarding the dry spells, one methodological constraint is the focus on seasonal unimodal pixels, as severe drought events
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during the growing season might result in bi- or multi-modal VI seasonal cycles. Nevertheless, an ongoing significant increase

of severe dry spells is somewhat contrary to the observed greening pattern on regional scale but cannot be precluded on the320

local scale or might be not noticeable in the NDVI signal as farmers might take measures if their crops are threatened by

droughts. Regarding extreme meteorological events, our analysis does not allow clear statements as the information in NDVI

is accumulative and additionally, such events might occur locally only. But again, we do not expect detrimental effects on the

seasonal cycle of the majority of the valley as we find widespread greening.

In recent years, our understanding of the hydroclimatological mechanisms improved, particularly in the Andean regions.325

However, the discovered changes of water availability are spatially variable across the Andes as different interacting mech-

anisms modify the hydroclimatic system on different timescales (e.g. ENSO (Garreaud, 2009; Arias et al., 2021), Pacific

Decadal Oscillation (PDO) (Campozano et al., 2020), seasonality of Southern Pacific Anticyclone (al Fahad et al., 2020) and

Bolivian High (Segura et al., 2019) circulation systems and consequently displacement of the ITCZ). No consistent pattern of

rainfall in- or decrease for the period 2000-2020 is reported for either the tropical Andes (Rabatel et al., 2013) or the RSB330

(Schauwecker et al., 2014; Gurgiser et al., 2016) which could explain the increased plant water availability found in our study.

Here, we find significantly increased early season NDVI and precipitation under El Niño conditions with only one significant

month and small rainfall sums. Hence, we find non-significant tendencies of decreased MAP values which are in line with

glacier mass balance studies in the RSB (Kaser et al., 2003; Vuille et al., 2008; Maussion et al., 2015). The modulation of dry

season precipitation is rarely the focus of neither glaciologists nor climatologists and therefore remains poorly understood.335

Understanding the drivers of the greening in the RSB remains challenging and raises several questions. We found that ENSO

sequences for the observation period cannot explain the observed greening and delayed EOS. This is in line with a study on

the impact of ENSO cycles on continental evaporation by (Miralles et al., 2014). They suggest that El Niño is associated

with negative evaporation anomalies in parts of the Andes and illustrate a recovery from El Niño dominated evaporation

conditions until approximately 2001 towards La Niña dominated conditions starting 2007. The early 2000s have a neutral340

El Niño tendency though, which again suggests that ENSO phases are unlikely to be the dominant driver for the later EOS.

Globally, CO2 fertilization is thought to be the dominant driver for vegetation greening (e.g. Sitch et al., 2015; Zhu et al.,

2016) as photosynthesis rates are accelerated and water use efficiency of plants can be increased by stomatal closure with

higher CO2 availability. But as water limitation can negate these benefits (e.g. Gray et al., 2016; Reich et al., 2014) and we find

several indications of increased dry season plant water availability we suggest the greening to be governed by it, as previously345

observed for other, more thoroughly investigated semi-arid regions (e.g. Sahel (Dardel et al., 2014; Brandt et al., 2019; Huber

et al., 2011; Hickler et al., 2005; Herrmann et al., 2005; Anyamba and Tucker, 2005; Eklundh and Olsson, 2003), southern

Africa (Fensholt et al., 2012) or Australia (Donohue et al., 2009). Additionally, greening induced by CO2 fertilization should

be particularly pronounced during times where water availability is not the limiting factor (i.e. around POS) which contrasts

our findings. The observed greening trend might also induce a feedback of increased transpiration bringing more moisture350

from the soils into the atmosphere which might be especially relevant during the dry season where this could lead to beneficial

recycling of moisture and promote feedbacks of rainfall and plant transpiration (Spracklen et al., 2012).
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5 Conclusions

Changes in water availability are great concerns for local society as many inhabitants of the RSB are subsistence-based farmers

who rely on rain-fed agriculture. To date, drivers of changes in water availability in the RSB remain unclear and the feeble355

climate data basis hinders understanding spatial patterns and temporal trends.

Our study illustrates that vegetation indices such as the NDVI can be exploited as an integrative proxy of water availability

and to examine the plausibility of gridded datasets of coinciding parameters at regional scale and in data-scarce environments.

Specifically, we quantified changes and variability of NDVI, derived land surface phenology metrics and analysed several

rainfall products. We find changes in annual rainfall in between three products not to be coherent in space and time, while the360

VI data reveals a widespread greening trend, particularly pronounced during the dry season with low rainfall sums. Based on

greening seasonality, we find the onset of the growing season (SOS) to be strongly variable, while peak greening and the end of

the growing season exhibit little variability in time. We find indications of increased early season but decreased peak monsoon

precipitation during El Niño events, resulting in favourable conditions for early plant growth as water availability is crucial

early in the season but less important during peak monsoon.365

In consideration of the high variability in SOS and associated challenges for farmers, we suggest that future research should

attempt to improve SOS forecasts derived from atmospheric circulation patterns. This could enable farmers to develop strate-

gies to decrease risks of crop failure and optimize sowing dates. Although remote sensing nowadays provides information

at unprecedented spatial resolution, we also emphasize the need for more and high quality local measurements (e.g. auto-

matic weather stations, flux measurements and LTER sites) to broaden the knowledge on the coupling between vegetation and370

hydroclimatic components in the Andes.
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Figure 1. Left: Overview of the topography (based on SRTM data, Kautz (2017)). Important towns are shown (relative population by

markersize). Black box marks RSB location and inset shows upper RSB including most important towns. Blue line indicates the Santa river,

the range west (east) of the river is the Coordillera Negra (Blanca). Approximate glacier outlines are shown in white polygons. Small inset

panel shows locations of rainfall observation transect by the AgroClimHuaraz (https://agroclim-huaraz.info/) project. Right: TRMM rainfall

climatology (Bookhagen and Strecker, 2008) shows rainfall gradient over central-west South America and the RSB (Inset). Lower right panel

roughly illustrates the East-West precipitation gradient in the RSB of rain-gauge observations (cumulative rainfall, averaged from 2016 to

2019).
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Figure 2. a) Domain mean monthly anomalies of detrended NDVI, SMAP soil moisture and CHIRPS rainfall time series between 2015 and

2020 (for the calculation of the coefficient of determination (R2) NDVI was shifted back 1 month for CHIRPS, but not for SMAP data),

b) Domain mean annual anomalies of detrended NDVI, SMAP and CHIRPS time series between 2000 and 2019 (as SMAP data is only

available for four complete years (2015-2019) it is shown but without R2 statistics), c) Seasonal cycle of the whole RSB from 2015 to 2020

for NDVI, SMAP and CHIRPS data, d) Relative differences of Coordillera Negra and Coordillera Blanca against the domain mean seasonal

cycle for NDVI, SMAP and CHIRPS from 2015 to 2020.
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Figure 4. Monthly greening and browning of NDVI. For months with at least 15 % significant pixels, median slopes values (x̃) and interquar-

tile ranges (25− 75 %) are shown. Only significant pixels (P < 0.05) are shown, white color indicates non-significant pixels, while grey

areas correspond to no-data due to frequent cloud cover or excluded land-cover. Pie charts show relative frequencies of greening, browning

and non-significant pixels. Small panels (blue line plots) show domain mean CHIRPS rainfall data for the respective month and additionally

decadal slope (m) and linear regression statistics for significant (P < 0.05) relationships.
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Figure 6. Maps of LSP and NDVI-rainfall lag correlation analysis. First row: Median values of a) SOS, b) EOS, c) LOS between CHIRPS

rainfall and MODIS NDVI for the RSB. Only pixels where the full time series is available (20 seasons) are shown. Second row: Linear

regression for the same parameters, maps show decadal slope of the same parameters, inset scatter plots show time series of the domain
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red color indicates a forward shift and blue color a backward shift of the LSP metrics.
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Figure 7. Mean monthly seasonal time series for 2000-2020 time series of NDVI and three rainfall products. Red (blue, grey) color indicates

month in El Niño (La Niña, Neutral) classification after Trenberth (1997) of Niño 3.4. sea surface temperature anomalies (SSTa). We shifted

the time series of SSTa by 3 month forward to account for lagged responses of rainfall in the RSB (Maussion et al., 2015). Below the x-axis,

the number of months of each phase are displayed. Stars indicate significant results according to a Kruskal-Wallis and post hoc Conover’s

test (P < 0.05, corresponding phase marked by colored bars above the star). For panel d), the average time series of three stations in the RSB

were used, smaller circles indicating values of the three individual stations. Locations of these stations are shown in the lower right panel of

Fig.3.
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