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Abstract. We consider the problem of estimating the ensemble sizes required to characterize the forced component and the
internal variability of a number of extreme metrics. While we exploit existing large ensembles, our perspective is that of a
modeling center wanting to estimate a-priori such sizes on the basis of an existing small ensemble (we assume the availability

of only 5 members here). We therefore ask if such small-size ensemble is sufficient to estimate accurately the population
5 variance (i.e., the ensemble internal variability) and then apply a well-established formula that quantifies the expected error
in the estimation of the population mean (i.e., the forced component) as a function of the sample size n, here taken to mean
the ensemble size. We find that indeed we can anticipate errors in the estimation of the forced component for temperature
and precipitation extremes as a function of n by plugging into the formula an estimate of the population variance derived on
the basis of 5 members. For a range of spatial and temporal scales, forcing levels (we use simulations under Representative
10 Concentration Pathway 8.5), and two models considered here as our proof of concept, it appears that an ensemble size of
20 or 25 members can provide estimates of the forced component for the extreme metrics considered that remain within small
absolute and percentage errors. Additional members beyond 20 or 25 add only marginal precision to the estimate, and this
remains true when statistical inference through extreme value analysis is used. We then ask about the ensemble size required to
estimate the ensemble variance (a measure of internal variability) along the length of the simulation, and — importantly — about
15 the ensemble size required to detect significant changes in such variance along the simulation with increased external forcings.
Using the F-test we find that estimates on the basis of only 5 or 10 ensemble members accurately represent the full ensemble

variance even when the analysis is conducted at the grid-point scale. The detection of changes in the variance when comparin|

different times along the simulation, especially for the precipitation-based metrics, requires larger sizes, but not larger than 15 dr

20 members. While we recognize that there will always exist applications and metric definitions requiring larger statistical

20 power and therefore ensemble sizes, our results suggest that for a wide range of analysis targets and scales an effectivp

estimate of both forced component and internal variability can be achieved with sizes below 30 members. This invites
consideration of the possibility of exploring additional sources of uncertainty, such as physics parameter settings, when
designing ensemble simulations.
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Recently, much attention and resources have been dedicated to running and analyzing large ensembles of climate model

simulations under perturbed initial conditions (e.g., Deser et al., 2012, Pausata et al., 2015; Steinman et al., 2015; Bittner et

al., 2016; Liand llyina, 2018; Maher et al., 2018; Deser et al., 2020; Lehner et al., 2020; Maher et al., 20214, b). Both detecting

the forced component in externally forced experiments, and quantifying the role of internal variability are being facilitated
by the

30 availability of these large ensembles. Many variables and metrics of model output have been analyzed, with large ensembles
allowing precise estimates of their current and future statistics. Large ensembles are also being used to answer
methodological questions, particularly about the precision these experiments can confer to the estimate of those variables
and metrics, and how that varies with increasing ensemble sizes (e.g., Milinski et al., 2020). Recent efforts by multiple
modeling centers to coordinate these experiments so that they can be comparable (by being run under the same scenarios
of future greenhouse

35 gas emissions) allow answering those questions robustly, accounting for the size and behavior over time of internal variability,
which is known to be a model-specific characteristic (Deser et al., 2020).

In this methodological study we adopt the point of view of a modeling center interested in estimating current and future
behavior of several metrics of extremes, having to decide on the size of a large ensemble. Such decision, we assume, needs
to be reached on the basis of a limited number of initial condition members, which the center would run as a standard
experiment.

40 We choose a size of 5, which is a fairly common choice for future projection experiments, and use the statistics we derive on
the basis of such small ensemble to estimate the optimal size of a larger ensemble, according to standards of performance
that we specify. We test our estimate of the optimal size by using a perfect model setting, defining as "the truth’ what a full
large ensemble gives us. We use two large ensembles available through the CLIVAR SMILES initiative (Lehner et al.,

2020), the CESM1-CAM5 LENS (of 40 ensemble members, (Kay et al., 2015)) and the CanESM2 ensemble (of 50 members,

45 (Kirchmeier-Young et al., 2017; Kushner et al., 2018)), both run over the historical period and under RCP8.5 according to the
CMIPS protocol (Riahi et al., 2011; Taylor et al., 2012).

Our metrics of interest are indices describing the tail behavior of daily temperature and precipitation. We conduct the

analysis in parallel for extremes of temperature and precipitation because we expect our answers to be dependent on the signal-

to-noise ratio affecting these two atmospheric quantities, which we know to be different in both space and time (Hawkins and

Sutton, 50 2009, 2011; Lehner et al., 2020).

We consider the goal of identifying the forced change over the course of the 215t century in the extremes behavior. We

seek an answer in terms of the ensemble size for which we expect the estimate of the forced component to approximate the

truth within a given tolerance, or for which our estimate does not change significantly with additional ensemble members,

We also consider the complementary problem of identifying the ensemble size that fully characterizes the variability around
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55 the forced component. After all, considering future changes in extremes usually has salience for impact risk analysis, and anr/
risk-oriented framework will be better served by characterizing both the expected outcomes (i.e. the central estimates) and
the uncertainties surrounding them. Both types of questions can be formulated at a wide range of geographic scales, as the
information that climate model experiments provide is used for evaluation of hazards at local scales, for assessment of risk
and adaptation options, all the way to globally aggregated metrics, usually most relevant for mitigation policies. The time

horizon

60 of interest may vary as well. Therefore we present results from grid-point scales all the way to global average scales, and fqr
mid-century and late-century projections, specific years or decades along the simulations, or whole century-long trajectories.
The consideration of two models, two atmospheric quantities and several extreme metrics, each analyzed at a range of

spatial and temporal scales help our conclusions to be robust and — we hope — applicable beyond the specifics of our study.

2 Models, Experiments and Metrics

65 The CESM1-CAMS LENS (CESM ensemble from now on) has been the object of significant interest and many published studie*,
as the more than 1,300 citations of Kay et al. (2015) testify to, and, if in lesser measure, so has been the CanESM2 ensemble
(CanESM ensemble from now on). The CESM model has a resolution of about 1 degree in the longitude-latitude dimensions
(Hurrell et al., 2013), while CanESM has a coarser resolution of about 2 degrees (Arora et al., 2011). Both have been run by
perturbing the atmospheric state at a certain date of the historical simulation (5 different simulations in the case of

70 CanESM) by applying "errors" of the order of magnitude of machine precision. These perturbations have been found t
generate alternative system trajectories that spread out losing memory in the atmosphere of the respective initial conditions
within a few days of simulation time (Marotzke, 2019). We note that sources of variability from different ocean states,

particularly at depth, are not systematically sampled by this type of ensembles, albeit they are partially addressed by the

design of the CanESM2 that uses de-facto different ocean states. For CESM, 38 or 40 ensemble members (depending on th

variable considered
JZ5,are available, covering the period between 1920 and 2100, while CanESM only starts from 1950 but has 48 or 50 ensemble

members. In the following we will not distinguish precisely between the full size or the full size minus two, as the results are

not influenced by this small difference Both models were run under historical and RCP8.5 external forcing, the latter applieb
|

starting at 2006. In our analysis we focus first on results from the CESM ensemble, and use CanESM to confirm the robustness
of our results. For consistency, we use the period 1950-2100 for both ensembles.

80 We use daily output of minimum and maximum temperature at the surface (TASMIN and TASMAX) and average precipitatio
(PR) and compute a number of extreme metrics, all of them part of the Expert Team on Climate Change Detection and Indices

suite (ETCCDI) (Alexander, 2016). All the metrics amount to annual statistics descriptive of daily output. They are:
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— TXx: highest value over the year of daily maximum temperature (interpretable as the warmest day of the year);
— TXn: lowest value over the year of daily maximum temperature (interpretable as the coldest day of the year);

85 — TNx: highest value over the year of daily minimum temperature (interpretable as the warmest night of the year);
— TNn: lowest value over the year of daily minimum temperature (interpretable as the coldest night of the year);
— Rx1Day: precipitation amount falling on the wettest day of the year;

— Rx5Day: average daily amount of precipitation during the wettest 5 consecutive days (i.e., the wettest pentad) of the
year.

90 We choose these indices as they reflect diverse aspects of daily extremes, but also because of a technical matter: their

definitions all result in the identification of what statistical theory of extreme values calls "block maxima" or "block minima"
(here the block is composed of the 365 days of the year). The same theory establishes that quantities so defined lend
themselves to be fitted by the Generalized Extreme Value distribution (GEVs) (Coles, 2001). GEV fitting allows us to apply the
power of inferential statistics, through which we can estimate return levels for any given period (e.g., the 20-, 50- or 100-
year events),

95 and their confidence intervals. We will be looking at how these statistics —i.e., tail inference by a statistical approach that was
intended specifically for data-poor problems - change with the number of data points at our disposal, varying with ensemble
size, and asking if the statistical approach buys us any statistical power with respect to the simple "counting" of events across

the ensemble realizations.

3 Methods

1003.1 Identifying the forced component

Milinski et al. (2020), use the ensemble mean computed on the basis of the full ensemble as a proxy for the true forced signal,
and analyze how its approximation gains in precision by using an increasingly larger ensemble size. By a bootstrap approach,
subsets of the full ensemble of a given size n are sampled (without replacement) multiple times (in our analysis we will use
100 times), their mean (for the metric of interest) is computed, and the multiple replications of this mean are used to
compute the

105 Root Mean Square Error (RMSEs) with respect to the full ensemble mean. Note that this bootstrap approach at estimating
errors is expected to become less and less accurate as n increases, as was also noted in Milinski et al. (2020). For n
approaching the size of the full ensemble, the repeated sampling from a finite population introduces increasingly stronger

dependencies among the samples, which share larger and larger numbers of members, therefore underestimating RMSE(n).
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More problematically, this approach would not be possible if we did not have a full-ensemble to exploit, and if our model
was thought of having

110 different characteristics in variability than the models for which large ensembles are available. As a more realistic approach,
therefore, we assume that only 5 ensemble members are available and we abandon the bootstrap, proposing to use a

different method to infer the expected error as a function of
— An estimate of the ensemble variability that we compute on the basis of the 5 members available;
—The variable size n of the ensemble that we are designing.

115 We will compare our inferred errors according to our method to the "true" errors that the availability of an actual large
ensemble allows us to compute.

It is a well known result of descriptive statistics that the standard error of the sample mean around the true mean

decreases as a function of n, the sample size, as in g/P(n) (see Wehner (2000) for an application to GCM ensemble m%

computations well before the advent of large ensembles). Here ¢ is the true standard deviation of the population. In our case it is
the standard deviation of the ensemble, and we take as its true value what we compute as the full ensemble standard deviatioL\

on the basis,of 40 or 50 members for CESM and CanESM respectively, while we estimate it on the basis of only 5 members an

|
show how our inferred errors compare to the true errors. We will also show in the first application of our method to global average

trajectories how the error estimated by the bootstrap compares to ours and the true error, confirming that for n approaching the
full ensemble size the bootstrap underestimates the RMSE. For the remainder of our analysis we will not use the bootstrap
approach further.

Since we are considering extreme metrics that can be modelled by a GEV, we also derive a range of return levels at a sdt

of individual locations,

Jfarandom variable z (say the temperature of the hottest day of the year, TXx) is distributed according to a GEV distributiop

its distribution function has the form:

G(Z)=exp{_ [l_£<z;ﬂ>]—1/s}

130 where three parameters 1,0, and & determine its domain and its behavior. The domain is defined as {z : 1+&(z-u)/0 > 0}, and

the three parameters satisfy the following conditions: —c0 <y < 00, 6 > 0 and —o0 < & < 0. 11,0, and £ represent the locatior),

scale and shape parameter respectively, related to the mean, variability and tail behavior of the random quantity z.

If p (say p = 0.01) is the tail probability to the right of level z, under the GEV probability density function, z is said to be

the return level associated to the 1/p-year return period (100-yr return period in this example), and is given by:

(
‘ ( Deleted: o
C

( Deleted:

C Deleted: return levels for a number of multi-year periods )

( Moved down [2]: (e.g.,

)

Deleted: 10—, 50—, 100-year events). If a random
variable z (say the temperature of the hottest day of the
125 year, TXx) is distributed according to a GEV
distribution, its distribution function has the form:

Deleted: G =ew {7 |:1 - <%>:| 71/§},

( Deleted: on

Deleted: where

Deleted: responsible for

AN V) A N




yfor £6=10

_Ju— gl —{-log(1-p)}
P -
p—olog{~log(1-p)}, ~ foré=0
135 Thus zpin our example represents the temperature in the hottest day of the year expected to occur only once every 100 years
(in a stationary climate) or with 0.01 probability every year (a definition more appropriate in the case of a transient climate).

We estimate the parameters of the GEVs, and therefore the quantities that are function of them, like z, and their
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confidence intervals by maximum likelihood, using the R package extRemes,. [ Deleted: available from https://CRAN.R-
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We perform the analysis for a set of individual locations (i.e., grid-points), as for most extreme quantities there would be

little value in characterizing very rare events as means of large geographical regions. Figure C9 shows the 15 locations that we 155

chose with the goal of testing a diverse set of climatic conditions.

3.2 Characterizing internal variability

Recognizing the importance of characterizing variability besides the signal of change, we ask how many ensemble members,

are required to fully characterize the size of internal variability and its possible changes over the course of the simulation

due,to increasing anthropogenic forcing. Process based studies are suited to tackle the question of how and why changes in

internal

1 Available from https://CRAN.R-project.org/package=extRemes
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160 variability manifest themselves in transient scenarios (Huntingford et al., 2013), while here we simply describe the behavior <1f
a straightforward metric, the within-ensemble standard deviation. We look at this quantity at the grid-point scale and we
investigate how many ensemble members are needed to robustly characterize the full ensemble behavior, which here again

we assume to be representative of the true variability of the system. This translates into two separate questions. First, for a
number of dates along the simulation spanning the 20th and 21% centuries, we ask how many ensemble members are

needed to estimate
165 an ensemble variance that is not statistically significantly different from that estimated on the basis of the full ensemble (note
that we have implicitly answered this by verifying that, at least for the computation of the expected RMSE in Section 3.1, plugging
in an estimate of o based on 5 members appears to be accurate). Second, we first detect changes in variance between all possible
pairs of these dates on the basis of the full ensemble, and we then ask how many ensemble members are needed to detect the
same changes. We use F-tests to determine significant differences in variance, and since we apply them at each grid point we
adopt a method for controlling the False Discovery Rate described for environmental applications in Ventura et al.

(2004) and Wilks (2016) as a way to correct for multiple testing fallacies.

4 Results

In the following presentation of our main findings we choose two representative metrics, TNx (warmest night of the year)
and Rx5Day (average rainfall amount during the 5 wettest days of the year) using the 40-member CESM ensemble. In the

175 appendix we include the same type of results for the additional metrics considered and the 50-member CanESM ensemble. Wi|
will discuss if and when the results presented in this section differ from those shown in the appendix.

4.1 Identifying the forced component

We start from time series of annual values of globally averaged TNx and Rx5Day (Figure 1, top panels). We compute them
for each ensemble member separately, and average them over n ensemble members as the ensemble size n increases, applying

the 180 bootstrap approach and computing RMSE(n) (see Section 3.1) at every year along the simulation.
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Figure 1. Time series for TNx (warmest night of the year, left) and Rx5Day (average daily amount during the 5 consecutive wettest days of
the year, right) showing how the estimate of the forced component of their global mean trajectories over the period 1950-2100 changes
when averaging an ensemble of increasing size. Top row shows the entire time series. Middle row zooms into the relatively flatter period
of 1950-2000, so that the y-axis range allows a clearer assessment of the relative size of the uncertainty ranges for different sizes of the

ensembles. The ranges are determined by bootstrapping. Bottom row plots the bootstrapped RMSE for every year and each ensemble size.
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As Figure 1 indicates, for both quantities the marginal effect of increasing the ensemble size by 5 members is not constant

but rather decreases as the ensemble size increases. This is qualitatively visible in the evolution of the ranges in the panels

of the first two rows, and is measured along the y-axis of the plots along the bottom row, where RMSE(n) for increasing n 15
|

shown (each n corresponding to a different color).

1953 (F) 1953 (F-5) 1953(3)‘ 2000 (F) 2000 (F-5) 2000 (B)
0.10 0.09 010 | 0.14 0.12 0.14
(0.08,0.13) (0.07,0.17) (0.11,0.18) (0.09,0.17)
n= 10 0.05 0.04 0.04 | 0.06 0.05 0.05
n= ;g (0.04,0.06) (0.03,0.06) (0.05,0.08) (0.04,0.08)
n=
ne2s | 0.03 0.03 0.03 | 0.04 0.04 0.04
n=30 | (0.03,0.04) (0.02,0.04) (0.04,0.06) (0.03,0.05)
n=35 | 0.03 0.02 0.02 | 0.04 0.03 0.03
(0.02,0.03) (0.02,0.03) (0.03,0.05) (0.02,0.04)
0.02 0.02 0.02 | 0.03 0.03 0.02
(0.02,0.03) (0.02,0.03) (0.03,0.04) (0.02,0.04)
0.02 0.02 001 | 003 0.02 0.02
(0.02,0.03) (0.01,0.02) o1 | (002,004) (0.02,0.03)
0.02 0.02 000 | 003 0.02 001
(0.02,0.02) (0.01,0.02) (0.02,0.03) (0.02,0.03) -~
0.02 0.02 0.02 0.02
(0.01,0.02) (0.01,0.02) (0.02,0.03) (0.02,0.03)

‘ 2050 (F) 2050 (F-5) 2050(3)‘ 2097 (F) 2097 (F5) 2097 (B)
n=1 | 012 0.15 011 | 015 0.13 015
n=5 | (0.09,0.15) (0.12,0.21) (0.12,0.19) (0.10,0.17)
n=10 | 505 0.07 0.05 | 0.07 0.06 0.06
n= ;3 (0.04,0.07) (0.05,0.09) (0.05,0.09) (0.04,0.08)
n=
n=25 | 0.04 0.05 0.03 | 0.05 0.04 0.04
n=30 | (0.03,0.05) (0.04,0.07) (0.04,0.06) (0.03,0.06)
n=35 | 0.03 0.04 0.02 | 0.04 0.03 0.03

(0.02,0.04) (0.03,0.05) (0.03,0.05) (0.03,0.05)
0.03 0.03 0.02 | 0.03 0.03 0.03
(0.02,0.03) (0.03,0.05) (0.03,0.04) (0.02,0.04)
0.02 0.03 001 | 003 0.03 0.02
(0.02,0.03) (0.02,0.04) 001 | (002,008) (0.02,0.03)
0.02 0.03 001 | 0.03 0.02 0.01
(0.02,0.03) (0.02,0.04) (0.02,0.04) (0.02,0.03)

( Deleted: 170




0.02 0.03 0.03 0.02 0.01
(0.02,0.03) (0.02,0.04) (0.02,0.03) (0.02,0.03)
Table 1. Error in estimating the global mean of TNx as simulated by the CESM ensemble: Values of the RMSE in approximating the full

ensemble mean by the individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining
rows). The values along the columns labelled as "(F)" apply the formula by using the "truth" for o: which we take as the standard deviation
of the ensemble computed over all 40 members. We compare these estimates to those derived by plugging into the formula a value of o+
estimated by a subset of 5 ensemble members, and 5 years around the year ¢t considered (columns labelled by "(F-5)"). We also show
estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the truth "(F)" and we

underline the values that are not consistent with it and its confidence interval, thus pointing out for which ensemble sizes the bootstrap

underestimates the RMSE. Results are shown for four individual years (t) along the simulation (column-wise), since arvaries along its length.

185 This behavior is to be expected, as we know the RMSE of a mean behaves in inverse proportion to the square root of the size

of the sample from which the mean is computed, but the actual behavior shown in the plots and Tables 1 and 2 along columns,

(B) could be misleading, as the variability of the largest means (largest in sample size n) could be underestimated by the

bootstrap (see Section 3.1). Furthermore, this assessment would not be possible if all we had was a 5-member ensemble for our
v _model. We can therefore compute the

formula for the standard error of a mean, g/ n (see Section 3.1), using the full ensemble 190 to estimate ¢, which we assume to
be the true standard deviation of the ensemble. We then repeat the estimation by substituting a value of ¢ derived using only 5
ensemble members. Table 1 shows RMSEs for the same increasing values of n, evaluated at 4 different dates along the
simulation, as we expect o to change. The columns labeled (F) apply the formula using the full ensemble size to estimate oy, t =
1953,2000,2050,2097. The values along these columns represent the truth against which we compare our estimates based on
the first 5 ensemble members (columns labelled (F-5)), and the estimates by the bootstrap

195 (columns labelled as (B)). Importantly for the accuracy of our results, when we use only the first 5 members we increase the

sample size by using a window of 5 years around each date t. We are aware that this could introduce autocorrelation within
the sample values, but the comparison of these results to the truth shows that the estimated values based on the smaller
ensemble are an accurate approximation of it, always being consistent with the 95% confidence intervals (shown in
parentheses). From the table entries we can assess that the bootstrap estimation is inaccurate once the ensemble size
exceeds about 15-20 out

200 of 40 available (we have colored the cells when this happens grey to underline this behavior). For the larger sizes, the RMSE
estimated by the bootstrap falls in all cases to the left of the confidence interval under the (F) column, confirming the
tendency to underestimate the RMSE. However, the estimates of RMSE associated with an ensemble size of 10 or 15 already
quantifies a high degree of accuracy for the approximation of the ensemble mean of the full 40-member ensemble: those
RMSEs for TNx are on the order of 0.02°C-0.04°C.

205 Table 2 reports the same analysis results for the precipitation metric, Rx5Day. The same general message can be drawn, with
too narrow estimates by the bootstrap approach for ensemble sizes starting at around 20 or 25 members. Even in this case

however the estimates for the RMSE is on the order of 0.1-0.2mm/day for Rx5Day once the ensemble size exceeds 10.

10
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The lessons learned here are that

1. For both metrics, an accurate estimate of o, i.e., the instantaneous model internal variability at global scale,is possiblF

using 5 ensemble members (and a window of 5 years around the year t of interest);

2. if the formula for computing the RMSE on the basis of a given sample size is adopted, and that estimate for o¢is plugged in,

it is possible, on the basis of an existing 5-member ensemble, to accurately estimate the required ensemble size to identify
the forced component within a given tolerance for error. Of course, the size of this tolerance will change depending on the

specific application.

215 We note here that the calculation of the RMSE for increasing ensemble sizes is straightforward, once o:is estimated. Even morg

straightforward is the calculation of the expected "gain" in narrowing the RMSE. A simple ratio calculation shows

that for n spanning the range 5 to 45 (relevant sizes for our specific examples) the reduction in RMSE follows the sequence

{100%1/ n}:=1,5,...,45. Thus, compared to a single model run’s RMSE, we expect the RMSE of mean estimates derived bb/
ensemble sizes of n = 5,10,20,350r45 to be 45%, 32%, 22%, 17% or 15% of that, respectively.

220 We assess how the results of the formula compare to the actual error by considering the difference between the smaller sizF

ensemble means and the truth (the full ensemble mean), year by year and comparing that difference to twice the expected

RMSE derived by the formula, i.e., 20/sqrt(n), akin to a 95% probability interval for a normally distributed quantity. Here is

where our approximation, and the use of possibly autocorrelated samples in the estimates of o could possibly reveal

shortcomings. Figure 2, for global averages of the two same quantities, shows the ratios of actual error vs. the 95% probability

bound,
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0.07 0.06 0.03 | 0.09 0.08
(0.06,0.09) (0.05,0.08) 002 | (007,0.12) (0.06,0.11)
0.07 0.06 0.08 0.08
(0.06,0.09) (0.04,0.08) (0.07,0.11) (0.06,0.11)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1 | 055 052 054 | 077 0.65 076
n=5 | (0.45,0.71) (0.40,0.72) (0.63,0.98) (0.51,0.90)
=101 025 023 023 | 034 0.29 033
"‘;g (0.20,0.32) (0.18,0.32) (0.28,0.44) DZEDA)
n=
n=2s | 0.17 0.16 017 | 0.24 021 0.19
n=30 | (0.14,0.22) (0.13,0.23) (0.20,0.31) (0.16,0.29) -
n=35 | 0.14 0.13 0.14 | 0.20 0.17 0.10
(0.12,0.18) (0.10,0.19) (0.16,0.25) (0.13,0.23) 010
0.12 0.12 0.09 | 0.17 0.15 E
(0.10,0.16) (0.09,0.16) oo0g | (0.14,0.22) (0.11,0.20) =
002 0.05
011 0.10 004 | 0.15 0.13
(0.09,0.14) (0.08,0.14) 003 | (013020 (0.10,0.18)
0.10 0.09 o 0.12
(0.08,0.13) (0.07,0.13) (0.11,0.18) (0.09,0.16)
0.09 0.09 0.13 0.11
(0.08,0.12) (0.07,0.12) (0.11,0.17) (0.09,0.15)

Table 2. Same as Table 1, for Rx5Day simulated by CESM.

225 indicating the 100% level by a horizontal line for reference. As can be assessed, the actual error is in most cases much smaller
than the 95% bound (as it is not reaching the 100% line in the great majority of cases), and we see that only occasionally the
actual error spikes above the 95% bound for individual years, consistent with what would be expected of a normally

distributed error. This behavior is consistently true for ensemble sizes larger than n = 5.
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Figure 2. In each plot, for each year, the height of the bar gives the error in the estimate of the forced component (defined as the mean of t|

1950 2000 2050 2100

1950 2000 2050 2100

1950 2000 2050 2100

1950 2000 2050 2100

pe

Deleted:

V entire ensemble) as a percentage of the expected 95% probability bound, estimated by the formula 20t/ n with n the ensemble size.

Grey bars if otis the truth (i.e., estimated using the whole ensemble), colored bars if ot is estimated using only 5 ensemble members (but

using 5 years around each year). Each plot corresponds to a different and increasing ensemble size: 1,5,10,15,20,25,30,35. The top two

rows of plots are for TNx; the bottom two rows are for Rx5Day. All results are for the CESM ensemble.

In the appendix we report the results of applying the same analysis to the rest of the indices. We cannot show all results, bL't
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230 we tested country averages, zonal averages, land- and ocean-areas averages separately, confirming that the qualitative
behavior we assess here is common to all these other scales of aggregation.

Here we go on to show how the same type of analysis can be applied at the grid-point scale, and still deliver an accurate
bound for the error in approximating the forced component. For the grid scale analysis, we define as the forced component
anomalies by mid- and end-of-century (compared to a baseline) obtained as differences between 5-year averages: 2048-
2052

235 and 2096-2100 vs 2000-2005. We use only 5 members (and as before, a 5-year window for each to increase the sample size) to
estimate the ensemble standard deviation of the two anomalies (separately, as that standard deviation may differ at midand
end-of-century) at each grid-point, and compare the actual error when approximating the "true" anomalies (i.e., those
obtained on the basis of the full ensemble) by increasingly larger ensemble sizes to the 95% confidence bound, calculated by

the formula 2<7f/\/7_l(here iindicates the grid cell, and c indicates the period in the century considered for the anomalies). In

240 Figures 3 and 4 we show fields of the ratio of actual error to the 95% bound, as the ensemble size increases. Red areas are ones
where the ratio exceeds 100%, i.e., where the bound was exceeded by the actual error, which we would expect to happen
only over 5% of the surface. As can be gauged even by eye, only small and sparse areas appear where the actual error exceeds

the expected error, especially if land regions are considered (incidentally,these indices have been mostly used over land

. . . . c
areas, as input to impact analyses). The prevalence of red areas over the oceans could be due to an underestimation of%:

linked

245 to the use of the 5-year windows and the autocorrelation possibly introduced, consistent with ocean quantities having more

memory than land quantities, but we do not explore that further here. Over the majority of the Earth’s surface, particularly
when errors are estimated for ensemble sizes of 20 or more, the bound is a good measure providing an accurate estimate of
the error behavior according to normal distribution theory. Tables B1 through B4 in the appendix confirm this by reporting
percentages of surface areas (distinguishing global, land-only or ocean-only aggregation) where the actual error exceeds the
250 bound, i.e., where the values of the fields exceed 100%. As can be assessed for all metrics considered in our analysis, 20
ensemble members consistently keep such fraction at or under 5% for the CESM model ensemble, while the coarser

resolution CanESM requires 25 ensemble members for that to be true.
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Figure 3. Error in the estimation of anomalies in TNx by mid-century (top two rows) and end-of-century (bottom two rows) from the CESM
ensemble. In each plot, for increasing ensemble sizes, the color of each grid-point indicates the ratio (as a percentage) between actual
error and the 95% confidence bound. Values less than 100% indicate that the actual error in estimating the anomaly at that location is
contained

14
within the bound. The color scale highlights in dark red the values above 100%, whose total fraction is reported in Table B1.
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Figure 4. Error in the estimation of anomalies in Rx5Day by mid-century (top two rows) and end-of-century (bottom two rows) from the
CESM ensemble. In each plot, for increasing ensemble sizes, the color of each grid-point indicates the ratio (as a percentage) between
actual error and the 95% confidence bound. Values less than 100% indicate that the actual error in estimating the anomaly at that location
is
15
contained within the bound. The color scale highlights in dark red the values above 100%, whose total fraction is reported in Table B3.
Overall, these results attest to the fact that we can use a small ensemble of 5 members to estimate the population standard

deviation, and plug it into the formula for the standard error of the sample mean as a function of sample size. Imposing a
ceiling

255 for this error allows us then to determine how large an ensemble should be, in order to approximate the forced component to
the desired level of accuracy. This holds true across the range of spatial scales afforded by these models, from global means

all the way to grid-point values.
4.2 GEVresults

As explained in Section 3, the extreme metrics we chose can be fit by a Generalized Extreme Value distribution, and return

260 levels for arbitrary return periods derived, with their confidence interval. In this section we ask two questions:

1. How many ensemble members are needed for the estimates to stabilize and the size of the confidence interval not to

change in a substantial way?

2. Js there any gain in applying GEV fitting rather than simply "counting” rare events across the ensemble?

Here we show results for our two main metrics, choosing two different locations for each. These results are indicative of,

265 what happens across the rest of locations (see Figure C9), for the other metrics and the other model considered (see Appendix

for a sampling of those).
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Figure 5. Return Levels for TNx at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-, 100-year return periods, based on
estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble sizes along the x-axis (from 5 to
the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95% confidence interval. The
estimates based on the full ensemble (central and confidence interval bounds), which we consider the truth, are also drawn across the
plot for reference, as horizontal lines. The blue dots in each plot show return levels for the same return periods estimated by counting, i.e.,

computing the empirical cumulative distribution function of TNx on the basis of the nx11 years in the sample, where n is the ensemble
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size. Note that in the 100-yr return level plots the first such dot is obtained by interpolation of the last two values of the CDF, since the

sample size is less than 100 (see text). The first three rows show results for a location in India while the following three rows show results

for a location in Western South America (see Figure C9).
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Figure 6. Return Levels for Rx5Day at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-, 100-year return periods, based
on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble sizes along the x-axis (from 5
to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the 95% confidence interval. The
estimates based on the full ensemble (central and confidence interval bounds), which we consider the truth, are also drawn across the
plot for reference, as horizontal lines. The blue dots in each plot show return levels for the same return periods estimated by counting, i.e.,
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computing the empirical cumulative distribution function of Rx5Day on the basis of the nx11 years in the sample, where n is the ensemble

size. Note that in the 100-yr return level plots the first such dot is obtained by interpolation of the last two values of the CDF, since thie

sammple size is less than 100 (see text). The first three rows show results for a location in Northern North America while the following

three rows show results for a location in West Africa (see Figure C9).

Figures 5 and 6 and several more in the appendix compare for each of the six return levels (along the columns), and acrosls C Deleted: 260
|

the three projection dates (along the rows), the behavior of the GEV central estimates (red dots) and 95% confidence
intervals (pink envelope, calculated according to the maximum likelihood approach) based on an increasing ensemble size

(along the x-axis)

N NN N

270 to the "truth" obtained by the full ensemble, which is drawn as a reference across each plot as horizontal lines. We also compute ( Deleted: Further,
estimates of the central quantities based on computing the empirical cumulative distribution function (see Section 3.1) from C Deleted: an
the same data points. These empirical estimates are added to each plot as blue dots for each of the ensemble sizes considerefi, ( Deleted: (
Note that also for these empirical estimates we use 11-year windows for each ensemble member, so that the sample is
exactly the same as that used for fitting the corresponding GEV. Only the left-most blue dot in the 100-yr return level panels ( Deleted: ‘GEV).
is based

275 on interpolating the values of the empirical CDF, which for that sample size is based on only 55 data points. We first observe

that in the great majority of cases the central estimate settles within the "true" confidence interval as soon as the ensemble

comprises 15 or 20 members. This is true for both model ensembles, i.e., both when the truth is identified through,40 anF ) C Deleted:

through 50 ensemble members, as the corresponding plots in the appendix confirm. Therefore, if all that concerns us is the
central estimate, an ensemble of 20 members, from which we sample 11-yr windows to enrich the sample size, delivers an|

280 estimate of the "truth" within its confidence interval. When an estimate of the uncertainty is concerned, however, the trut|
remains by definition an unattainable target, as the size of the confidence intervals is always bound to decrease for larger
sample sizes. The behavior of the confidence intervals for the return level estimates in the plots, however, suggests that
there might be only marginal gains for ensemble sizes beyond 30, for both models. The value of this general result will benefit
from an analysis of larger ensembles. In addition, the value of increasing the sample size should always be judged on the
basis of the

285 actual size of the 95% confidence intervals in the units of the quantity of interest, and what that size means for managing risks
associated with these extremes. This is an aspect that, however, goes beyond the scope of our work. As for the results of the
empirical counting approach, i.e., the blue point estimates, we can assess that in the majority of cases, but not across the
board when we look closely to all the plots in the appendix, they do not deviate significantly from the central estimates based
on fitting the GEV using the same sample size. However, while the latter can provide a measure of uncertainty through
confidence

290 intervals, the estimates based on counting events do not come with uncertainty bounds. Another advantage of using the GE
is the ability to extrapolate to even more rare events than the ensemble size would allow to robustly estimate, not

underplaying the risk of statistical extrapolations as a general rule.
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Further statistical precision could be attained by relaxing the quasi-stationarity assumption and extending the analysis
period to contain a longer window of years. Exchanging time for ensemble members however, when beyond a decade’s

worth, neces-

295 sitates in most cases the inclusion of temporal covariates: for example, indicators of the phase and magnitude of major modes
of variability known to affect the behavior of the atmospheric variables in question over multi-decadal scales. The inclusion

of covariates of course adds another source of fitting uncertainty.

4.3 Characterizing internal variability

After concerning ourselves with the characterization of the forced component we turn to the complementary problem of

| char300 acterizing internal variability. Rather than aiming at eliminating the effects of internal variability as we have done so far in

the estimation of a forced signal, we take here the opposite perspective, wanting to fully characterize its size and behavior over

we want to be sure to estimate the range of variations such members may display. Thus, we ask how large the ensemble needs to
be to fully characterize the variations that the full-size ensemble produces, which once again we take as the truth (as

305 mentioned, the answer to this question can be seen as a systematic confirmation that 5 members are sufficient for the
estimation of g, one result that we only indirectly affirmed so far). We also ask how large an ensemble is needed to detect changes
in the size of internal variability with increasing external forcing. Our definition of internal variability here is simply the size of the

ensemble variance. Both these questions we tackle directly at the grid-point scale, as that answer can serve as an upper bound for

the characterization of variability at coarser spatial scales. Figures 7 through 10 synthesize our findings for both 310 these questions.
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JFigure 7. Estimating the ensemble variance for TNx: Each plot corresponds to a year along the simulation length (1950, 1975, 2000, 2025,

2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate an ensemble variance at that location that
is statistically indistinguishable from that computed on the basis of the full 40-member ensemble, using an F-test to test the null hypothesis
of equality in variance. The results of the first two columns use only the specific year for each of the ensemble members. The results of the

third and fourth columns enrich the samples by using 5 years around the specific date.

23




Rx5Day Rx5Day Rx5Day Rx5Day
ensemble variance in 1950 ensemble variance in 1975 ensemble variance in 1950 ensemble variance in 1975
35 35
30 30
25 25
20 20
15 15
10 10
5 ' 5
0 0
o
Rx5Day Rx5Day Rx5Day Rx5Day
ensemble variance in 2000 ensemble variance in 2025 ensemble variance in 2000 ensemble variance in 2025
35 35 35 35
. 30 30 30 30
25 25 25 25
20 20 20 20
o
15 15 15 15
10 10 10 10
N 5 5 5 5
0 0 0 0
E R @
Rx5Day Rx5Day Rx5Day Rx5Day
ensemble variance in 2050 ensemble variance in 2075 ensemble variance in 2050 ensemble variance in 2075
35 35 35 35
- 30 30 30 30
25 25 25 25
20 20 20 20
o
15 15 15 15
10 10 10 10
- 5 5 5 5
0 0 0 0
o oo m oz W W
Rx5Day Rx5Day
ensemble variance in 2097 ensemble variance in 2097
35 35
= 30 30
25 25
20 20
o
15 15
10 10
-
5 5
o o

Figure 8. Estimating the ensemble variance for Rx5Day: Each plot corresponds to a year along the simulation length (1950, 1975, 2000,
2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate an ensemble variance at that location
that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble, using an F-test to test the null
hypothesis of equality in variance. The results of the first two columns use only the specific year for each of the ensemble members. The
results of the third and fourth columns enrich the samples by using 5 years around the specific date.

The two columns on the left-hand side of Figure 7 show for several years along the simulation of TNx how many ensemble
members are needed (denoted by the colors, see legends) in order to estimate an ensemble variance at each grid-point that

is not statistically distinguishable from the same variance estimated by the full 40-member. We use a traditional F-test
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approach to test the null hypothesis of equality in variance. Note that we do this at various times along the length of the
simulation

315 (1950, 1975, 2000, 2025, 2050, 2075, 2100) because we account for the possibility that internal variability might change over
its course with increasing external forcing, but for now we remain agnostic on this issue. For all times considered, 5 members
are sufficient to estimate an ensemble variance indistinguishable, statistically, from that which would be estimated using the
full ensemble at most grid-points over the Earth’s surface, as the light blue color indicates. For some sparse locations,
however, 10 members are needed to achieve the same type of accuracy. The same type of Figure for the precipitation metrig,

320 Figure 8, left two columns, confirms that for this noisier quantity a larger extent of the Earth’s surface needs ensemble sizes qf
10 or more to accurately estimate the behavior of the full ensemble variance. The two right-hand columns in Figure 7 show
corresponding plots where now most of the Earth’s surface only requires 5-members. This is the result of "borrowing
strength" in the estimation of the ensemble variance by using a 5-year window around the date as we have done for the
analysis of otin the previous sections. This solution addresses the problem of estimating the variance for both temperature
and precipitation

325 metrics, as Figure 8 confirms, reducing also for the latter the number of grid-points that require more statistical power to
noisy speckled pattern. Similar figures in the appendix attest to this remaining true for the other model and the remaining
metrics as well. We note here that the patterns shown in some of these figures have indeed the characteristics of noise. To
minimize that possibility we have applied a threshold for the significance of the p-values from the F-test obtained through
the method that controls the False Discovery Rate (Ventura et al., 2004). The method has been shown to control for the false
identification

330 of significant differences "by chance" due to repeating statistical tests hundreds or thousands of times, as in our situation. Th
same method has been proved effective in particular for multiple testing over spatial fields, despite the presence of spatial
correlation (Ventura et al., 2004; Wilks, 2016). We fix the false discovery rate to 5%.

Detecting changes in the size of the variance over time by comparing two dates over the simulation is a problem that we

expect to require more statistical power than the problem of characterizing the size of the variance at a given point, as the|

335 difference between stochastic quantities is affected by larger uncertainty than the quantities individually considered, unlegs

those are strongly correlated. Figure 9 shows the ensemble size required to detect the same changes in the ensemble variance of

TNXx that the full ensemble of 40-members detects. Each plot is at the intersection of a column and a row corresponding to two of

the dates considered in the previous analysis, indicating that the solution applies to detecting a change in variance between those

two dates, as the title of each plot specifies. Here again we use the F-test and the method for controlling the false mdiscoverty

rate.
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Figure 9. Estimating changes in ensemble variance for TNx: each plot corresponds to a pair of years along the simulation (same set of years
as depicted in Figures 7 and 8 above). Colored areas are regions where on the basis of the full 40-member ensemble a significant change
in variance was detected. The colors indicate the size of the smaller ensemble needed to detect the same change. Here the sampling size
is 24

increased by using 5 years around each date. We only show the Northern hemisphere as no region in the southern shows significant

changes in variance for this quantity.
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Figure 10. Estimating changes in ensemble variance for Rx5Day: each plot corresponds to a pair of years along the simulation (same set of

years as depicted in Figures 7 and 8 above). Colored areas are regions where on the basis of the full 40-member ensemble a significant
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change in variance was detected. The colors indicate the size of the smaller ensemble needed to detect the same change. Here the sampling
size is increased by using 5 years around each date.
Blank areas are regions where the full ensemble has not detected any changes in the ensemble variance at that location
when comparing the two dates. Colored areas are regions where such change has been detected by the full ensemble, and
the color indicates what (smaller) ensemble size is sufficient to detect the same change. Here as in the previous analysis a
significant change is detected when the F-test for the ratio of the two variances that are being compared across time has g
345 p-value smaller than the threshold determined by applying the false discovery rate method, and fixing the false discovery ratg
to 5%. These results are obtained by increasing the sample size using 5 years around the dates, as in the right-hand columns

of Figures 7 and 8. In the case of TNx, a metric based on daily minimum temperature, the changes are confined to the Arctic

region and in most cases the ensemble size required is again 5, with only pne instance where the changes between mid- ( Deleted: an )

century and end-of the century require consistently a larger ensemble size over an appreciable extent (as many as 1p

members over the

350 region). When we conduct the same analysis on the precipitation metric, shown in Figure 10, we are presented with a spatially Deleted: 340 the century require consistently a larger

ensemble size (as many as 15 members over the region).

noisier picture, with changes in variance scattered throughout the Earth’s surface, especially over the oceans. Jn the case df

this precipitation metric the ensemble size required is in many regions as large as 15 or 20 members. These results are madp Deleted: pictures

Deleted: This can again being accurately characterized by

clearer by Figures C30 and C31 in the Appendix, where the grid-boxes where significant changes are present are gatheref 2 5-member.

into histograms (weighted according to the Earth’s surface fraction that the grid-boxes represent) that show the ensemble

Deleted: almost everywhere, aside from some isolated
patches....
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size

355 required along the x-axis. We highlight in those figures the fact that for the temperature-based metric only three histogram:

corresponding to three specific time-comparisons, gather grid-boxes covering more than 5% of the Earth’s surface, while thp

coverage is more extensive than 5% for all time comparisons for the precipitation metric. These results are representative gf

the remaining metrics and the alternative model as Figures C20 through C41 in the Appendix document.

We do not show it explicitly here, as it is not the focus of our analysis, but, for both model ensembles, when the change

360 is significant, the ensemble variance increases over time for both precipitation metrics, indicating that the ensemble sprea|:i

increases with the strength of external forcing over time under RCP 8.5. This is expected as the variance of precipitation

increases in step with its mean. For the temperature based metrics, the changes, when significant, are mostly towards an

increase in variance (ensemble spread) with forcings for hot extremes (TNx and TXx, the hottest night and day of the year),

for which the significant changes are mostly located in the Arctic region. The ensemble spread decreases instead for cold
extremes

365 (TNn and TXn, the coldest night and day of the year), for which the significant changes are mostly located in the Southern ocear’.

4.4  Signal-to-Noise considerations
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Another aspect that is implicitly relevant to the establishment of a required ensemble size, if the estimation is concerned
with emergence of the forced component, or, more in general, with ‘detection and attribution’-type analysis is the Signal-
to-Noise

370 ratio of the quantity of interest. Assuming as we have done in our study that the quantity of interest can be regarded as the
mean u of a noisy population, the signal to noise ratio is defined as Sy = p/0 where o is the standard deviation of the
population. A critical threshold, say K, for Snis usually set at K= 1 or 2, and it is immediate to derive the sample size required

for

such threshold to be hit, by computing the value of n that makes u/[o/\/nrz K, i.e., n 2 K2/Sx?. Figure 11 shows two maps
‘ of the spatially varying ensemble sizes required for the signal to noise ratio to exceed 2, when computing anomalies at 375
mid-century for the two metrics from the CESM ensemble. In appendix we show maps for the remaining metrics and CanESM.
The anomalies are computed as 5-year mean differences, as in Section 4.1 under RCP8.5. If the majority of the Earth’s surface

requires only 2 to 4 ensemble members to be averaged for the temperature metric to reach the Svvalue of 2, the Southern

Ocean and the Arctic, together with some limited regions over land need more statistical power, up to 18 ensemble members.

The pattern remains similar, but the requirements enhanced for the hottest day of the year (TXx, shown in Figure C42). Cold

380 extremes evidently are more substantially affected by noise over larger portions of the land regions (TNn and TXn, again in

Figure C42). The behavior of the precipitation metrics is qualitatively very different, with the great majority of the globe not

reaching that level of Syeven when averaging 40 members, as the white areas in Figure 11, bottom panel, and £42, last panel, -

signify. This discussion is also model specific. Figure £43 shows the same type of results when using CanESM, a model running

at a coarser resolution which we therefore expect to show an emergence of the signal from the noise relatively

385 more easily. This is confirmed by the homogeneous light blue color for the temperature metrics in Figure £43, indicating that

between 2 and 6 ensemble member averages reach an Syof 2. It remains the case also for CanESM, however, that the noise

affects substantially Snfor the precipitation metrics.
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TNx Anomalies at mid Century

__ Deleted:

Figure 11. Ensemble size n required for the signal to noise ratio of the grid-point scale anomalies to exceed 2 (anomalies defined as the
mean of 2048-2052 minus the historical baseline taken as 2000-2005). Results for CESM and hottest night (TXn, top panel) and wettest
pentad (Rx5Day, bottom panel) of the year.

5 Conclusions

In this study we have addressed the need of deciding a-priori the size of a large ensemble, using an existing 5 member
ensemble
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390 as our guidance. Aware that the optimal size ultimately depends on the purpose the ensemble is used for, and in order to cover
a wide range of possible uses, we chose metrics of temperature and precipitation extremes and we considered output from
gridpoint scale to global averages. We tackled the problem of characterizing forced changes along the length of a transient
scenario simulation, and that of characterizing the system’s internal variability and its possible changes. By using a high
emission scenario like RCP8.5, but considering behaviors all along the length of the simulations, we are also implicitly
addressing

395 a wide range of signal-to-noise magnitudes. Using the availability of existing large ensembles with two different models, CESM1-
CAMS and CanESM2, we could compare our estimates of the expected errors that a given ensemble size would generate
with actual errors, obtained using the full ensembles’ estimates as our "truth".

First, we find that for the many uses that we explored, it is possible to put a ceiling on the expected error associated with
a given ensemble size by exploiting a small ensemble of 5 members. We estimate the ensemble variance at a given simulation
| 400 date (e.g., 2000, or 2050, or 2095), which is the basis for all our error computations, on the basis of 5 members, "borrowing

strength" by using a window of 5 years around that date. The results we assess are consistent with assuming that the
quantities

| e

of interest are normally distributed with standard deviation g/ n, where ¢ can be estimated on the basis of the 5 members
available: the error estimates and therefore the optimal sizes computed on the basis of choosing a given tolerance for such
errors provide a safe upper bound to the errors that would be committed for a given ensemble size n. This is true for all

| 405 metrics considered, both models, and the full range of scales of aggregation. When we compared such estimates (verified by

the availability of the actual large ensembles) there appears to be a sweet spot in the range of ensemble sizes that provides
accurate estimates for both forced changes and internal variability, consisting of 20 or 25 members. The larger of these sizes

also appears approximately sufficient to conduct an estimation of rare events with as low as 0.01 probability of occurrence

each year, by fitting a GEV and deriving return levels and their confidence intervals. In most cases (locations around the globe,,

410 times along the simulation, and metrics considered) enlarging the sample size beyond 25 members provides only marginal
improvement in the confidence intervals, while the central estimate does not change significantly from the one established
using 25 members, and in most cases accurately approximating that obtained by the full ensemble.

In all cases considered a much smaller ensemble size of 5 to 10 members, if enriched by sampling along the time dimension

(that is, using a 5-year window around the date of interest) is sufficient to characterize the ensemble variability, while its

changes
415 along the course of the simulations under increasing greenhouse-gases, when found significant using the full ensemble size,

can be detected using 15 or 20 ensemble members.

Some caveats are in order. Obviously, the question of how many ensemble members are needed is fundamentally ill-posed,
as the answer ultimately and always depends on the most exacting use to which the ensemble is put. One can always find a
higher-frequency, smaller-scale metric, and a tighter error bound to satisfy, requiring a larger ensemble size than any

previously
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420 identified. As tropical cyclone permitting and eventually convection permitting climate model simulations become availabl#,
these metrics will be more commonly analyzed. Even for a specific use, the answer depends on the characteristics of internal

variability. The fact that for both the models considered here 5 ensemble members are sufficient to obtain an accurate

estimate, of it is promising, but not guarantee that 5 are sufficient for all models. In fact, this could also be invalidated byla
|

different experimental exploration of internal variability: new work is adopting different types of initialization, involving

ocean states,

425 which could uncover a dimension of internal variability that has so far being under-appreciated(Hawkins et al., 2016; Marotzke,

2019). This would likely change our best estimates of internal variability, and with it possibly the ensemble sizes required to

accurately estimate it.

With this work, however we have shown a way to attack the problem "bottom up", starting from a smaller ensemble and

building estimates of what would be required for a given problem. One can imagine a more sophisticated set-up where an

430 ensemble can be recursively augmented (rather than assuming a fixed 5-member ensemble as we have done here) in order t|

approximate the full variability incrementally better. We have also shown that for a large range of questions the size needed
is actually well below what we have come to associate with "Large Ensembles". There exist other important sources of

uncertainties in climate modeling, one of which is beyond reach of any single modeling center, having to do with structural

uncertainty

e.g., Knutti et a|, (2010)). Adopting the perspective of an individual model, however, parameter settings have as importan

|

435 a role if not larger as initial conditions. Together with scenario uncertainty, all these dimensions compete over computation*l
resources for their exploration. The same computational resources may be further stretched by the need of downscaling the
results of ESM ensembles through regional and impact models (Leduc et al., 2019). Our results may be of guidance in choosing

how to allocate those resources among these alternative sources of variation.

Code and data availability. The large ensembles output is available through the CLIVAR Large Ensemble Working Group webpage, in the

440 archive maintained through the NCAR CESM community project cesm.ucar.edu/projects/community-projects/MMLEA/.

R code for these analyses is available from the first author on reasonable request.

Appendix A: RMSE estimation for more indices and based on the CanESM ensemble

-

n=1
n=5
n=10
n=15
n=20
n=25

1953 (F)

0.24
(0.19,0.30)
0.11
(0.09,0.14)
0.07
(0.06,0.10)

1953 (F-5)

0.20
(0.16,0.28)
0.09
(0.07,0.13)
0.06
(0.05,0.09)

1953 (B)

0.23

0.10

0.07
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2000 (F)

0.20
(0.17,0.26)
0.09
(0.07,0.12)
0.06
(0.05,0.08)

2000 (F-5) 2000 (B)

0.22 0.20
(0.17,0.31)
0.10 0.07
(0.08,0.14)
0.07 0.05
(0.05,0.10)
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n=30 | 0.06
(0.05,0.08)
0.05
(0.04,0.07)
0.05
(0.04,0.06)
0.04
(0.04,0.06)
0.04
(0.03,0.05)

2050 (F)

0.20
(0.16,0.26)

0.09
(0.07,0.12)

0.06

n=30 | (0.05,0.08)
0.05
(0.04,0.07)

0.05
(0.04,0.06)
0.04
(0.03,0.05)
0.04
(0.03,0.05)

0.03
(0.03,0.04)

0.05
(0.04,0.07)

0.05
(0.04,0.06)
0.04
(0.03,0.06)
0.04
(0.03,0.05)

0.03
(0.03,0.05)

2050 (F-5)

0.21
(0.17,0.30)

0.10
(0.08,0.13)

0.07
(0.05,0.09)

0.06
(0.04,0.08)

0.05
(0.04,0.07)
0.04
(0.03,0.06)
0.04
(0.03,0.05)
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0.04
(0.03,0.05)

0.03
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2097 (F)

0.24
(0.20,0.32)

0.11
(0.09,0.14)

0.08
(0.06,0.10)

0.06
(0.05,0.08)
0.05
(0.04,0.07)
0.05
(0.04,0.06)
0.04
(0.04,0.06)

0.04
(0.03,0.05)

0.06
(0.04,0.08)

0.05
(0.04,0.07)
0.04
(0.03,0.06)
0.04
(0.03,0.06)

0.04
(0.03,0.05)

2097 (F-5)

0.18
(0.14,0.25)

0.08
(0.06,0.11)

0.06
(0.04,0.08)

0.05
(0.04,0.07)

0.04
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0.04
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0.03
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Table Al. Global mean of TNn as simulated by the CESM ensemble: Values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). We compare
estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 40-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the
"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the

bootstrap underestimates the RMSE (usually starting from n=20 or 25). Results are shown for four individual years (t) along the simulation

(columnwise), since ot varies along its length.

1953 (F)

n=1 0.11
n=5 (0.09,0.14)

1953 (F-5) 1953 (B) ‘

0.10
(0.08,0.14)

0.11
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2000 (F)

0.14
(0.12,0.19)

2000 (F-5)

0.13
(0.10,0.18)

2000 (B)

0.14
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n=10 | 0.05 0.04 0.05 | 0.06 0.06 0.05
n=15 | (0.04,0.06) (0.03,0.06) (0.05,0.08) (0.05,0.08)
n=20 | 504 0.03 0.03 | 0.05 0.04 0.04
"‘23 (0.03,0.05) (0.02,0.04) (0.04,0.06) (0.03,0.06)
n=
n=3s | 0.03 0.03 0.02 | 0.04 0.03 0.03
(0.02,0.04) (0.02,0.04) (0.03,0.05) (0.03,0.05)
0.02 0.02 0.02 | 0.03 0.03 0.02
(0.02,0.03) (0.02,0.03) (0.03,0.04) (0.02,0.04)
0.02 0.02 0.01 | 0.03 0.03 0.02
(0.02,0.03) (0.02,0.03) 001 | (0.02,0.08) (0.02,0.04)
0.02 0.02 001 | 0.03 0.02 0.01
(0.02,0.03) (0.01,0.03) (0.02,0.03) (0.02,0.03) -~
0.02 0.02 0.02 0.02
(0.02,0.02) (0.01,0.02) (0.02,0.03) (0.02,0.03)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1 | 012 0.16 012 | 016 0.14 015
n=5 | (0.10,0.16) (0.12,0.22) (0.13,0.20) (0.11,0.19)
n=10 | 005 0.07 0.06 | 0.07 0.06 0.07
"‘;3 (0.04,0.07) (0.06,0.10) (0.06,0.09) (0.05,0.09)
n=
n=2s | 0.04 0.05 0.03 | 0.05 0.04 0.04
n=30 | (0.03,0.05) (0.04,0.07) (0.04,0.06) (0.03,0.06)
n=35 | 0.03 0.04 0.02 | 0.04 0.04 0.03
(0.03,0.04) (0.03,0.06) (0.03,0.05) (0.03,0.05)
0.03 0.04 0.02 | 0.03 0.03 0.03
(0.02,0.04) (0.03,0.05) (0.03,0.05) (0.02,0.04)
0.02 0.03 001 | 0.03 0.03 0.02
(0.02,0.03) (0.02,0.04) 001 | (003,008) (0.02,0.04) -~
0.02 0.03 001 | 0.03 0.03 0.00
(0.02,0.03) (0.02,0.04) (0.02,0.04) (0.02,0.04)
0.02 0.03 0.03 0.02
(0.02,0.03) (0.02,0.04) (0.02,0.03) (0.02,0.03)

Table A2. Global mean of TXx as simulated by the CESM ensemble: Values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). We compare
estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 40-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the
"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes th!e

bootstrap underestimates the RMSE (usually starting from n=20 or 25). Results are shown for four individual years (t) along the simulation

(columnwise), since ot varies along its length.
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1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
n=1 | 021 0.19 0.21 | 0.20 0.21 0.19
ns5  (0.17,0.27) (0.15,0.27) (0.16,0.25) (0.16,0.29)
n=10 | 409 0.09 0.09 | 0.09 0.09 0.07
“‘;2 (0.08,0.12) (0.07,0.12) (0.07,0.12) (0.07,0.13)
n=
=25 | 0.07 0.06 0.06 | 0.06 0.07 0.05
n=30 | (0.05,0.09) (0.05,0.08) (0.05,0.08) (0.05,0.09)
n=35 | 0.05 0.05 0.04 | 0.05 0.05 0.04
(0.04,0.07) (0.04,0.07) (0.04,0.07) (0.04,0.08)
0.05 0.04 0.02 | 0.04 0.05 0.03
(0.04,0.06) (0.03,0.06) 0.02 | (0.04,0.06) (0.04,0.07) AR
‘ 0.04 0.04 0.02 ‘ 0.04 0.04 0.02
(0.03,0.05) (0.03,0.05) 001 | (003005) (0.03,0.06) -
0.04 0.04 0.04 0.04
(0.03,0.05) (0.03,0.05) (0.03,0.05) (0.03,0.05)
0.04 0.03 0.03 0.04
(0.03,0.05) (0.03,0.05) (0.03,0.04) (0.03,0.05)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1 | 0.19 0.19 019 | 0.22 0.17 0.22
ns5 | (0.15,0.27) (0.18,0.32) (0.18,0.29) (0.13,0.23)
=101 0,09 0.09 0.08 | 0.10 0.08 011
"‘;2 (0.07,0.12) (0.08,0.14) (0.08,0.13) (0.06,0.10)
n=
n=25 | 0.06 0.06 0.04 | 0.07 0.05 0.06
n=30 | (0.05,0.09) (0.06,0.10) (0.06,0.09) (0.04,0.07)
n=35 | 0.05 0.05 0.04 | 0.06 0.04 0.05
(0.04,0.07) (0.05,0.08) (0.05,0.07) (0.03,0.06)
0.04 0.04 0.03 | 0.05 0.04 0.04
(0.03,0.06) (0.04,0.07) (0.04,0.06) (0.03,0.05)
0.04 0.04 0.02 | 0.04 0.03 0.03
(0.03,0.05) (0.04,0.06) 0,02 | (004,0.06) (0.03,0.05) AR
0.04 0.04 0.01 0.04 0.03 0.01
(0.03,0.05) (0.03,0.06) (0.03,0.05) (0.02,0.04)
0.03 0.03 0.04 0.03
(0.03,0.05) (0.03,0.05) (0.03,0.05) (0.02,0.04)

Table A3. Global mean of TXn as simulated by the CESM ensemble: Values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). We compare
estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 40-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the

"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the
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bootstrap underestimates the RMSE (usually starting from n=20 or 25). Results are shown for four individual years (t) along the simulation

(columnwise), since ot varies along its length.

1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
n=1 | 1.06 0.90 105 | 1.25 1.15 1.23
n=s | (0.87,1.36) (0.70,1.25) (1.02,1.60) (0.89,1.59)
n=10'| 048 0.40 0.50 | 0.56 051 052
"‘;(5) (0.39,0.61) (0.31,0.56) (0.46,0.72) (0.40,0.71)
n=
nos | 034 0.28 034 | 039 036 036
ne30 | (0.28,0.43) (0.22,0.39) (032,0.51) (0.28,0.50)
n=35 | 0.27 0.23 0.20 | 0.32 0.30 0.29
(0.22,0.35) (0.18,0.32) (0.26,0.41) (0.23,0.41)
0.24 0.20 0.19 | 0.28 0.26 017
(0.19,0.31) (0.16,0.28) (0.23,0.36) (0.20,0.36) 055
‘ 0.21 0.18 0.12 ‘ 0.25 0.23 011
(0.17,0.27) (0.14,0.25) 008 | (0.20032) (0.18,0.32) 008
0.19 0.16 007 | 023 021
(0.16,0.25) (0.13,0.23) (0.19,0.29) (0.16,0.29)
0.18 0.15 021 0.19
(0.15,0.23) (0.12,0.21) (0.17,0.27) (0.15,0.27)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (8)
n=1 | 1.79 1.69 177 | 2.20 222 218
n=5 | (1.47,2.30) (1.32,2.36) (1.81,2.83) (1.73,3.08)
n=10 | o.80 0.76 0.82 | 0.99 0.99 0.80
"‘;2 (0.66,1.03) (0.59,1.05) (0.81,1.27) (0.77,1.38)
n=
neos | 0.57 0.54 042 | 070 0.70 0.58
ne30 | (0.46,0.73) (0.42,0.75) 043 | (057,0.89) (0.55,0.98)
n=35 ‘ 0.46 0.44 029 ‘ 0.57 0.57 038
(0.38,0.59) (0.34,0.61) ous | ©47073) (0.45,0.80) —
0.40 038 016 | 049 0.50 .
(0.33,0.51) (0.30,0.53) == (0.40,0.63) (0.39,0.69)
0.10 0.22
036 034 0.44 0.44 013
(0.29,0.46) (0.26,0.47) (0.36,0.57) (0.35,0.62) ==
033 031 0.40 0.40
(0.27,0.42) (0.24,0.43) (0.33,0.52) (0.32,0.56)
0.30 0.29 037 037
(0.25,0.39) (0.22,0.40) (0.31,0.48) (0.29,0.52)

Table A4. Global mean of Rx1Day as simulated by the CESM ensemble: Values of the RMSE in approximating the full ensemble mean by

the individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 35, along the remaining rows). We compare
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estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t

considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 40-member ensemble (columns labelled

by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the

"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the

bootstrap underestimates the RMSE (usually starting from n=20 or 25). Results are shown for four individual years (t) along the simulation

(columnwise), since ot varies along its length.

n=1

n=5

n=10
n=15
n=20
n=25
n=30
n=35
n=40

n=30

n=40

|
|
|

1953 (F)

0.14
(0.12,0.17)

0.06
(0.05,0.08)

0.04
(0.04,0.05)

0.04
(0.03,0.04)

0.03
(0.03,0.04)

0.03
(0.02,0.03)

0.03
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

2050 (F)

0.14
(0.11,0.17)

0.06
(0.05,0.08)
0.04
(0.04,0.05)
0.04
(0.03,0.04)

0.03
(0.03,0.04)

0.03
(0.02,0.03)

1953 (F-5)

0.12
(0.10,0.17)

0.05
(0.04,0.08)

0.04
(0.03,0.05)

0.03
(0.02,0.04)

0.03
(0.02,0.04)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

2050 (F-5)

0.13
(0.10,0.18)

0.06
(0.04,0.08)
0.04
(0.03,0.06)
0.03
(0.03,0.05)

0.03
(0.02,0.04)

0.03
(0.02,0.04)

1953 (B)

0.14

0.06

0.04

0.03

o

.02

=3
o
=

(=
o
=

=
o
=

2050 (B)

0.13

0.06

0.04

0.03

0.03

0.02
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2000 (F)

0.16
(0.13,0.19)

0.07
(0.06,0.09)

0.05
(0.04,0.06)

0.04
(0.03,0.05)

0.03
(0.03,0.04)

0.03
(0.03,0.04)

0.03
(0.02,0.04)

0.03
(0.02,0.03)

0.02
(0.02,0.03)

2097 (F)

0.12
(0.10,0.15)

0.05
(0.04,0.07)
0.04
(0.03,0.05)
0.03
(0.03,0.04)
0.03
(0.02,0.03)
0.02
(0.02,0.03)

2000 (F-5)

0.12
(0.09,0.17)

0.05
(0.04,0.07)

0.04
(0.03,0.05)

0.03
(0.02,0.04)

0.03
(0.02,0.04)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.01,0.03)

2097 (F-5)

0.14
(0.11,0.20)

0.06
(0.05,0.09)
0.05
(0.04,0.06)
0.04
(0.03,0.05)

0.03
(0.02,0.04)

0.03
(0.02,0.04)

2000 (B)

0.15

0.07

0.04

o |©
o O
==

2097 (B)

0.12

0.03

0.02

0.02
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0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02

0.02
(0.02,0.03)

0.02
(0.02,0.03)

0.02
(0.02,0.02)

0.03
(0.02,0.04)

0.02
(0.02,0.03)

0.02
(0.02,0.03)

(=
(=
=

o
o
=

(=]
(=3
=

Table AS. Global mean of TNx as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean by the

individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare

estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t

considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full 50-member ensemble (columns labelled

by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the

"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes th|e
I

bootstrap underestimates the RMSE (usually starting from n=20 or 25). Results are shown for four individual years (t) along the simulation

(columnwise), since ot varies along its length.

I
‘ 1953 (F) 1953 (F-5) 1953 (B) ‘ 2000 (F) 2000 (F-5) 2000 (B)
0.29 0.35 0.29 | 0.27 0.26 0.26
(0.24,0.36) (0.27,0.49) (0.22,0.33) (0.20,0.36)
n= 10 0.13 0.16 0.10 | 0.12 0.12 0.11
n= ;Z (0.11,0.16) (0.12,0.22) (0.10,0.15) (0.09,0.16)
n=
n=25 | 0.09 0.11 0.09 | 0.08 0.08 0.07
n=30 | (0.08,0.12) (0.09,0.15) (0.07,0.10) (0.06,0.11)
n=35 | 0.08 0.09 0.06 | 0.07 0.07 0.05
n=40 | (0.06,0.09) (0.07,0.13) (0.06,0.09) (0.05,0.09) 0.04
0.07 0.08 0.05 | 0.06 0.06
(0.05,0.08) (0.06,0.11) (0.05,0.07) (0.05,0.08)
0.06 0.07 0.04 | 0.05 0.05 0.04
(0.05,0.07) (0.05,0.10) 003 | (0.04,0.07) (0.04,0.07)
‘ 0.05 0.06 003 ‘ 0.05 0.05 0.03
(0.04,0.07) (0.05,0.09) 00z | (0:04006) (0.04,0.07) 0.02
0.05 0.06 0.05 0.04 0.02
(0.04,0.06) (0.05,0.08) (0.04,0.06) (0.03,0.06)
0.05 0.06 0.04 0.04
(0.04,0.06) (0.04,0.08) (0.04,0.05) (0.03,0.06)
‘ 2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
0.29 0.30 0.29 | 034 031 0.33
(0.25,0.37) (0.23,0.41) (0.28,0.42) (0.24,0.44)
n=10 | 913 0.13 013 | 0.15 014 017
n=15 | (0.11,0.16) (0.10,0.18) (0.13,0.19) (0.11,0.19)
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n=20
n=25
n=30
n=35
n=40

0.09
(0.08,0.12)
0.08
(0.06,0.09)
0.07
(0.05,0.08)

0.06
(0.05,0.07)
0.05
(0.04,0.07)
0.05
(0.04,0.06)

0.05
(0.04,0.06)

0.09
(0.07,0.13)

0.08
(0.06,0.11)

0.07
(0.05,0.09)

0.06
(0.05,0.08)
0.05
(0.04,0.07)
0.05
(0.04,0.07)

0.05
(0.04,0.06)

(=]
o
5

0.04

.0

(=
']

(=]
o
o

0.11
(0.09,0.13)

0.09
(0.07,0.11)
0.08
(0.06,0.09)

0.07
(0.06,0.08)
0.06
(0.05,0.08)
0.06
(0.05,0.07)

0.05
(0.04,0.07)

0.10
(0.08,0.14)

0.08
(0.06,0.11)

0.07
(0.05,0.10)

0.06
(0.05,0.09)
0.06
(0.04,0.08)
0.05
(0.04,0.07)

0.05
(0.04,0.07)

0.10

0.08

o
=}
>

o 1o
o |o
= &

(=
f=
(o]

o
o
o

Table A6. Global mean of Rx5Day as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean by

the individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare

estimates derived by plugging into the formula a value of orestimated by a subset of 5 ensemble members, and 5 years around the year t

considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 50-member ensemble (columns labelled

by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the

"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the

bootstrap underestimates the RMSE (usually starting from n=20 or 25. Results are shown for four individual years (t) along the simulation

(column-wise), since ot varies along its length.

1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
n=1 | 0.20 0.20 0.20 | 0.21 0.22 0.20
n=5 | (0.17,0.25) (0.15,0.28) (0.17,0.26) (0.17,0.30)
n=10"1 0,09 0.09 0.09 | 0.09 0.10 0.10
"‘;2 (0.07,0.11) (0.07,0.12) (0.08,0.12) (0.08,0.13)
n=
n=25 | 0.06 0.06 0.06 | 0.07 0.07 0.05
n=30 | (0.05,0.08) (0.05,0.09) (0.05,0.08) (0.05,0.10)
n=35 | 0.05 0.05 0.05 | 0.05 0.06 0.04
n=40 | (0.04,0.06) (0.04,0.07) (0.04,0.07) (0.04,0.08)
0.04 0.04 0.04 | 0.05 0.05 0.04
(0.04,0.06) (0.03,0.06) (0.04,0.06) (0.04,0.07)
0.04 0.04 0.03 | 0.04 0.04 0.03
(0.03,0.05) (0.03,0.06) (0.03,0.05) (0.03,0.06)
0.04 0.04 0.02 | 0.04 0.04 0.02
(0.03,0.05) (0.03,0.05) 0.02 | (0.03,0.05) (0.03,0.06) 0.02
0.03 0.03 0.01 0.03 0.04 0.01
(0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)

40
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0.03 0.03 0.03 0.03
(0.03,0.04) (0.03,0.04) (0.03,0.04) (0.03,0.05)
2050 (F) 2050 (F-5) 2050 (8) 2097 (F) 2097 (F-5) 2097 (8)
n=1
n=5
n=10 | 410 0.10 0.10 | 0.10 0.10 0.08
"';2 (0.08,0.12) (0.08,0.13) (0.08,0.12) (0.08,0.15)
e
ne2s | 0.07 0.07 0.06 | 0.07 0.07 0.07
=30 | (0.06,0.09) (0.05,0.09) (0.06,0.09) (0.06,0.10)
n=35 | 0.06 0.06 0.04 | 0.06 0.06 0.04
n=40 | (0.05,0.07) (0.04,0.08) (0.05,0.07) (0.05,0.08) -
0.05 0.05 0.04 | 0.05 0.05 0.03
(0.04,0.06) (0.04,0.07) (0.04,0.06) (0.04,0.07) 000
0.04 0.04 0.02 | 0.04 0.05 E
(0.04,0.06) (0.03,0.06) (0.04,0.05) (0.04,0.06) ==
0.02
0.04 0.04 0.03 | 0.04 0.04
(0.03,0.05) (0.03,0.05) (0.03,0.05) (0.03,0.06)
0.04 0.04 0.02 | 0.04 0.04
(0.03,0.05) (0.03,0.05) o1 | (0.03,005) (0.03,0.05)
0.04 0.03 0.03 0.04
(0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)

Table A7. Global mean of TNn as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare
estimates derived by plugging into the formula a value of o:estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 50-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the
"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes 1hle
bootstrap underestimates the RMSE (usually starting from n=20 or 25. Results are shown for four individual years (t) along the simulation

(column-wise), since ot varies along its length.

1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
0.14 0.14

n=5 (0.11,0.19) (0.11,0.19)
n=10 1 507 0.06 0.07 | 0.08 0.06 0.07
"';(5) (0.06,0.09) (0.05,0.09) (0.06,0.10) (0.05,0.08)
n=
n=25 | 0.05 0.04 0.05 | 0.05 0.04 0.05
n=30 | (0.04,0.06) (0.03,0.06) (0.05,0.07) (0.03,0.06)
n=35 | 0.04 0.04 0.03 | 0.04 0.03 0.04
n=40 | (0.03,0.05) (0.03,0.05) (0.04,0.06) (0.03,0.05)
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0.04 0.03 0.03 | 0.04 0.03 0.03
(0.03,0.04) (0.02,0.04) (0.03,0.05) (0.02,0.04)
0.03 0.03 0.02 | 0.03 0.03 0.03
(0.03,0.04) (0.02,0.04) (0.03,0.04) (0.02,0.04)
0.03 0.03 0.02 | 0.03 0.02 0.02
(0.02,0.04) (0.02,0.04) (0.03,0.04) (0.02,0.03) 0.01
0.03 0.02 0.01 | 0.03 0.02 0.01
(0.02,0.03) (0.02,0.03) 001 | (0.02,0.04) (0.02,0.03)
0.02 0.02 0.03 0.02
(0.02,0.03) (0.02,0.03) (0.02,0.03) (0.02,0.03)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1 | 0.14 0.14 0.13 | 0.13 0.14 0.13
n=5 | (0.11,0.17) (0.11,0.20) (0.11,0.16) (0.11,0.20)
n=10 | 506 0.06 0.06 | 0.06 0.06 0.06
"‘;Z (0.05,0.08) (0.05,0.09) (0.05,0.07) (0.05,0.09)
n=
n=25 | 0.04 0.04 0.03 | 0.04 0.05 0.04
n=30 | (0.04,0.05) (0.03,0.06) (0.03,0.05) (0.04,0.06)
n=35 | 0.03 0.04 0.03 | 0.03 0.04 0.03
n=40 | (0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)
0.03 0.03 0.03 | 0.03 0.03 0.02
(0.03,0.04) (0.02,0.04) (0.02,0.03) (0.03,0.04)
0.03 0.03 0.02 | 0.03 0.03 0.02
(0.02,0.03) (0.02,0.04) (0.02,0.03) (0.02,0.04)
0.02 0.03 0.01 | 0.02 0.03 0.01
(0.02,0.03) (0.02,0.04) 001 | (0.02,0.03) (0.02,0.04) 0.01
0.02 0.02 0.01 | 0.02 0.02 0.01
(0.02,0.03) (0.02,0.03) (0.02,0.03) (0.02,0.03)
0.02 0.02 0.02 0.02
(0.02,0.03) (0.02,0.03) (0.02,0.03) (0.02,0.03)

Table A8. Global mean of TXx as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean by the
individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare
estimates derived by plugging into the formula a value of o:estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 50-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the

"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the

bootstrap underestimates the RMSE (usually starting from n=20 or 25. Results are shown for four individual years (t) along the simulation

(column-wise), since ot varies along its length.

1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
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=101 0,09 0.09 0.09 | 0.09 0.10 0.07
"‘;2 (0.07,0.11) (0.07,0.12) (0.07,0.11) (0.07,0.13)
n=
=25 | 0.06 0.06 0.05 | 0.06 0.07 0.04
n=30 | (0.05,0.08) (0.05,0.08) (0.05,0.08) (0.05,0.09) AGE
n=35 | 0.05 0.05 0.04 | 0.05 0.06 0.03
n=40 | (0.04,0.06) (0.04,0.07) (0.04,0.06) (0.04,0.08) -
0.04 0.04 0.03 | 0.04 0.05 E
(0.04,0.06) (0.03,0.06) (0.04,0.06) (0.04,0.07) ==
0.02
0.04 0.04 003 | 0.04 0.04 -
(0.03,0.05) (0.03,0.05) (0.03,0.05) (0.03,0.06) 001
0.04 0.04 0.02 | 0.04 0.04
(0.03,0.05) (0.03,0.05) 002 | (0.03,0.05) (0.03,0.05)
0.03 0.03 0.01 | 0.03 0.04
(0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)
0.03 0.03 0.03 0.03
(0.03,0.04) (0.03,0.04) (0.03,0.04) (0.03,0.05)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1
n=5
=101 0,09 0.10 0.08 | 0.09 0.10 0.10
"‘;2 (0.08,0.12) (0.07,0.13) (0.07,0.11) (0.07,0.13)
n=
=25 | 0.07 0.07 0.05 | 0.06 0.07 0.06
n=30 | (0.06,0.08) (0.05,0.09) (0.05,0.08) (0.05,0.09)
n=35 | 0,05 0.06 0.05 | 0.05 0.05 0.05
n=40 | (0.05,0.07) (0.04,0.08) (0.04,0.06) (0.04,0.08)
0.05 0.05 0.04 | 0.04 0.05 0.03
(0.04,0.06) (0.04,0.07) (0.04,0.06) (0.04,0.07) -
‘ 0.04 0.04 0.03 ‘ 0.04 0.04 0.02
(0.04,0.05) (0.03,0.06) 002 | (003,0.05) (0.03,0.06) 002
0.04 0.04 0.02 | 0.04 0.04 001
(0.03,0.05) (0.03,0.05) ooy | (0:030.05) (0.03,0.05) =
0.04 0.04 | oo03 0.04
(0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)
0.03 0.03 0.03 0.03
(0.03,0.04) (0.03,0.05) (0.03,0.04) (0.03,0.05)

Table A9. Global mean of TXn as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean by the

individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare
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estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 50-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the
"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes the

bootstrap underestimates the RMSE (usually starting from n=20 or 25. Results are shown for four individual years (t) along the simulation

(column-wise), since o varies along its length.

44

1953 (F) 1953 (F-5) 1953 (B) 2000 (F) 2000 (F-5) 2000 (B)
n=1 0.68 0.68
n=5 (0.53,0.94) (0.53,0.95)
n=10 | 540 0.30 038 | 0.39 031 0.44
"‘;(5) (0.33,0.50) (0.24,0.42) (0.32,0.48) (0.24,0.43)
e
ne2s | 028 021 0.25 | 0.28 022 0.26
ne30 | (0.24,0.35) (0.17,0.30) (0.23,0.34) (0.17,0.30)
n=35 | 023 017 020 | 0.22 0.18 021
n=40 | (0.19,0.29) (0.14,0.24) (0.19,0.28) (0.14,0.25)
0.20 0.15 017 | 0.19 0.15 015
(0.17,0.25) (0.12,0.21) (0.16,0.24) (0.12,0.21) _—
‘ 0.18 0.14 0.12 ‘ 0.17 0.14 0.10
(0.15,0.22) (0.11,0.19) 010 | (0.15022) (0.11,0.19) 008
0.16 0.12 008 | 016 012 005
(0.14,0.20) (0.10,0.17) 0oy | (0:13020) (0.10,0.17) =
0.15 011 0.15 012
(0.13,0.19) (0.09,0.16) (0.12,0.18) (0.09,0.16)
0.14 011 0.14 011
(0.12,0.18) (0.08,0.15) (0.11,0.17) (0.11,0.17)
2050 (F) 2050 (F-5) 2050 (B) 2097 (F) 2097 (F-5) 2097 (B)
n=1
n=5
n=10 | 544 043 040 | 0.44 0.39 0.49
"‘;g (0.37,0.55) (0.34,0.60) (0.37,0.55) (0.30,0.54)
n=
neas | 031 031 028 | 031 027 027
n=30 | (0.26,0.39) (0.24,0.43) (0.26,0.39) (0.21,0.38)
n=35 | 0.25 0.25 0.20 | 0.25 0.22 0.18
n=40 | (0.21,0.32) (0.20,0.35) (0.21,0.32) (0.17,0.31) 0.13
022 022 020 | 0.22 0.19 08
(0.18,0.28) (0.17,0.30) (0.18,0.27) (0.15,0.27) 010
0.20 0.19 015 | 0.20 017 0.09
(0.16,0.25) (0.15,0.27) (0.16,0.24) (0.14,0.24) ==
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0.18 0.18 011 | 018 0.16 0.07
(0.15,0.22) (0.14,0.25) 010 | (0.15,0.22) (0.12,0.22)

0.17 0.16 007 | 017 0.15

(0.14,0.21) (0.13,0.23) (0.14,0.21) (0.11,0.20)

0.16 0.15 0.15 0.14

(0.13,0.19) (0.12,0.21) (0.12,0.21) (0.11,0.19)

Table A10. Global mean of Rx1Day as simulated by the CanESM ensemble: Values of the RMSE in approximating the full ensemble mean
by the individual runs (first row, n=1), and by ensembles of increasingly larger sizes (from 5 to 40, along the remaining rows). We compare
estimates derived by plugging into the formula a value of ot estimated by a subset of 5 ensemble members, and 5 years around the year t
considered (columns labelled by "(F-5)") to the "truth" defined by the estimates based on the full, 50-member ensemble (columns labelled
by "(F)"). We show estimates obtained by the bootstrap approach in the columns labeled by "(B)". These can also be compared to the
"truth" and we underline the values that are not consistent with it and its confidence interval, pointing out for which ensemble sizes thle
bootstrap underestimates the RMSE (usually starting from n=20 or 25. Results are shown for four individual years (t) along the simulation

(column-wise), since o¢varies along its length.

Appendix B: Summary of error ratio patterns as shown in Figures 3 and 4 for all metrics and models

Ens. size 1 5 10 15 20 25 30 35

TNx Global midC 4.74 8.27 552 481 265 291 0.87 0.07

TNxGlobalendC | 347 649 634 357 373 238 102 OO8
TNx Land midC 0.96

TN Land endC 38 - 714 43 311 295 0.14
TNxOceanmidc | 3.88 © 901 635 334 3% 199 079 006
TNxOceanendC | 593 743 485 501 246 289 083 005

0.08

TNn Global midC
TNn Global endC

3.68 267 121 02

3,58 357 053 011

TNn Land midC 0.18

TNn Land endC
TNn Ocean midC
TNn Ocean endC

291 4 073

483 645 093 021

399 212 141 o021

3.07 239 036 0.08

TXx Global midC
TXx Global endC
TXx Land midC

588 358 1.06 0.2

498 172 A3 0.29

456 218 149 014

45
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TXn Global midC
TXn Global endC
TXn Land midC
TXn Land endC
TXn Ocean midC

TXx Land endC
TXx Ocean midC
TXx Ocean endC

TXn Ocean endC

7.76

4.84

4.75

5.49

5.14

434

4.84

5.75

5.26

3.76

4.7

6.42

5.1

5.63

3.66

3.52

43

6.5

3.4

248

4.16

1.53

2.68

2.02

2.39

3.12

2.79

1.57

1.37

0.88

0.92

0.66

0.85

0.79

0.94

0.61

0.29

0.23

03

0.38

0.34

0.26

0.4

0.44

0.32

Table B1. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula
"a-priori" using 5 ensemble members to estimate o. Results for all temperature extreme metrics, derived from the CESM ensemble whose
full size is 40 members. Calculations apply cosine-of-latitude weighting. Results for TNx are summaries of the behavior shown in Figure 3,
i.e., the fraction of surface represented by locations where the error ratio is larger than 100%. Numbers under small n’s are affected by

noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the fractions

stabilizes for n=15.

Ens. size 1 5 10 15 20 25 30 35 40 45
TNx Global midC | 15.89  7.38 1335 832 477 459 277 176 148 0.64
TNx Global endC 1009 1373 921 67 4838 476 184 * o
TNx Land midC
Txlandengc | 1282 768 1036 916 485 56 294 178 059 038
TNx Ocean midC 99 1065 894 661 533 491 23 107 049
TNx Ocean endC 725 1465 796 473 415 27 176 187 076
1017 1506 932 674 468 469 % 16 085
TNnGlobal midC | 11.91 1212 879 645 506 343 276 172 073 0.04
TNnGlobalendC | 961 9205 1108 1177 7.56 637 508 346 107 028
TNn Land midC
TNmlandengc | 1185 1039 838 707 462 424 29 178 059 002
TNn OceanmidC | 10.76 13.02 1001 1014 65 675 415 311 141 048
TNnOceanendC | 1793 1287 896 614 525 3.07 267 169 079 005
915 145 1155 1248 803 62 549 361 092 019
TXxGlobal midC | 936 103 7.81 687 554 445 358 134 067 0.5
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TXx GlobalendC | 12.06 1161 799 857 572
TXx Land midC 1113 1019 814 519 6.1
TXx Land endC
10.16
o cean mide | 1521 941 927 6.44
TXxOceanendc | 859 1035 767 76 53
107 1224 737 826 54
TXn Global midC | 10.59 866 9.07 573 545
TXnGlobalendC | 4595 1074 905 730 429
TXn Land midC
olondengc | 1176 1032 1095 662 545
TXn Oceanmidc | 1222 112 846 % 3488
TXnOceanendC | 4007 794 826 534 545
1041 1054 931 7.46 4.48

4.14

3.75

4.05

4.76

4.18

3.34

3.95

4.15

2.89

4.41

3.54

3.01

3.47

3.82

3.57

1.8

2.29

2.06

2.68

2.12

1.6

2.09

1.76

1.02

158

1.04

1.93

dLe)

1.46

0.97

213

0.4

0.45

0.51

0.77

0.35

0.72

0.42

0.69

0.55

0.74

0.36

0.05

0.13

0.16

0.07

0.06
0.13

0.04
0.09

0.16

Table B2. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula

"a-priori" using 5 ensemble members to estimate o. Results for all temperature extreme metrics, derived from the CanESM ensemble

whose full size is 50 members. Calculations apply cosine-of-latitude weighting. Numbers under small n’s are affected by noise, as we

randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the fractions stabilizes for

nz15.

Ens. size

Rx5Day Global midC
Rx5Day Global endC
Rx5Day Land midC
Rx5Day Land endC
Rx5Day Ocean midC
Rx5Day Ocean endC

Rx1Day Global midC
Rx1Day Global endC
Rx1Day Land midC
Rx1Day Land endC
Rx1Day Ocean midC
Rx1Day Ocean endC

4.89
5.83
4.81

|
|
‘ 5.42
|
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15 20 25 30 35
6.33 503 326 179 049
6.46 458 322 161 0.39
6.26 57 321 158 048
6.07 491 261 166 038
636 476 328 187 05
6.63 445 348 159 0.39
6.77 533 336 203 049
6.22 478 32 173 047
6.34 527 314 167 04
524 46 3.04 172 029
695 535 346 218 0.53
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Table B3. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula
"a-priori" using 5 ensemble members to estimate 0. Results for the two precipitation extreme metrics, derived from the CESM ensemble
whose full size is 40 members. Calculations apply cosine-of-latitude weighting. Results for Rx5Day are summaries of the behavior shown
in Figure 4, i.e., the fraction of surface represented by locations where the error ratio is larger than 100%. Numbers under small n’s are

affected by noise, as we randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the

fractions stabilizes for n215.

Table B4. Percentage of the global, land or ocean surface where the actual errors exceed the errors estimated on the basis of the formula
"a-priori" using 5 ensemble members to estimate o. Results for the two precipitation extreme metrics, derived from the CanESM ensemble
whose full size is 50 members. Calculations apply cosine-of-latitude weighting. Numbers under small n’s are affected by noise, as we
randomly choose n members from the full ensemble, only once. As can be gauged, the decreasing behavior of the fractions stabilizes for
nz15.

Ens. size

Rx5Day Global midC
Rx5Day Global endC
Rx5Day Land midC
Rx5Day Land endC
Rx5Day Ocean midC
Rx5Day Ocean endC

Rx1Day Global midC
Rx1Day Global endC
Rx1Day Land midC
Rx1Day Land endC
Rx1Day Ocean midC
Rx1Day Ocean endC

10

15

20

25 30 35 40 45
5.03 41 209 091 032
5.43 39 235 117 059
484 468 223 113 0.4
498 327 216 104 033
512 385 202 0.82 029
562 417 243 123 071
569 409 256 133 028
484 365 278 131 0.23
589 371 233 133 015
477 333 24 117 019

56 425 267 133 034
4.87 3.8 294 137 025

Appendix C: Additional Figures

25C1

Forced Component
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Figure C1. Like Figure 1 for the remaining metrics, derived from the CESM ensemble.
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Figure C2. Like Figure 1 for metrics derived from the CanESM ensemble.
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Figure C3. Like Figure C1 for metrics derived from the CanESM ensemble.
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Figure C4. As Figure 2 for TNn and Rx1Day derived from the CESM ensemble.
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Figure C5. As Figure 2 for TXn and TXx derived from the CESM ensemble.
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Figure C6. As Figure 2 but using the CanESM ensemble.
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Figure C7. As Figure C6 for TNn and Rx1Day and using the CanESM ensemble.
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Figure C8. As Figure C6 for TXn and TXx and using the CanESM ensemble.
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Figure C9. The fifteen locations at which we fit GEV distributions to the various quantities.
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Figure C10. Return Levels for TNn from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-, 100-
year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
sizes along the x-axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the
95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TNn on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location in Australia while the following three rows show results for a location in Central North
America (see Figure C9).
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Figure C11. Return Levels for TXx from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-, 100-
year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
sizes along the x-axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the
95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical

cumulative distribution function of TXx on the basis of the same sample used for the estimation of the corresponding GEV parameters. The
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first three rows show results for a location in China while the following three rows show results for a location in Southern Africa (see Figure

).
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Figure C12. Return Levels for TXn from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-, 100-

year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble

sizes along the x-axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the

95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for

reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical

cumulative distribution function of TXn on the basis of the same sample used for the estimation of the corresponding GEV parameters.
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The first three rows show results for a location on the Maritime Continent while the following three rows show results for a location in

Northern South America (see Figure C9).
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Figure C13. Return Levels for Rx1Day from the CESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,
100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
sizes along the x-axis (from 5 to the full ensemble, 40), the red dots indicate the central estimate, and the pink envelope represents the

95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
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reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx1Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.

The first three rows show results for a location on the Iberian peninsula while the following three rows show results for a location in

Southern South America (see Figure C9).
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Figure C14. Return Levels for TNx from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,
100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the
95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical

cumulative distribution function of TNx on the basis of the same sample used for the estimation of the corresponding GEV parameters.
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The first three rows show results for a location in Northern Asia while the following three rows show results for a location in Southern

South America (see Figure C9).
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Figure C15. Return Levels for TNn from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,

100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble

sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the

95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for

reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical

cumulative distribution function of TNn on the basis of the same sample used for the estimation of the corresponding GEV parameters.
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The first three rows show results for a location in Central South America while the following three rows show results for a location in

Western South America (see Figure C9).
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Figure C16. Return Levels for TXx from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,
100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the

95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
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reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TXx on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location in Central North America while the following three rows show results for a location in

Southern Africa (see Figure C9).
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Figure C17. Return Levels for TXn from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,

100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble

sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the

95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
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reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of TXn on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location on the Central America while the following three rows show results for a location in China

(see Figure C9).
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Figure C18. Return Levels for Rx1Day from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,

100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
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sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the
95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx1Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.
The first three rows show results for a location on the Iberian peninsula while the following three rows show results for a location in

Northern North America (see Figure C9).
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Figure C19. Return Levels for Rx5Day from the CanESM ensemble at (row-wise) 2000, 2050 and 2100 for (column-wise) 2-, 5-, 10-, 20-, 50-,
100-year return periods, based on estimating a GEV by using 11-yr windows of data around each date. In each plot, for increasing ensemble
68



sizes along the x-axis (from 5 to the full ensemble, 50), the red dots indicate the central estimate, and the pink envelope represents the
95% confidence interval. The estimates based on the full ensemble, which we consider the truth, are also drawn across the plot for
reference, as horizontal lines. The blue dots in each plot show the same quantities estimated by counting, i.e., computing the empirical
cumulative distribution function of Rx5Day on the basis of the same sample used for the estimation of the corresponding GEV parameters.

The first three rows show results for a location in Australia while the following three rows show results for a location in China (see Figure

o).
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Figure C20. Estimating the ensemble variance for TNn in the CESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5

years around the specific date.
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Figure C21. Estimating the ensemble variance for TXx in the CESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that

location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
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columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5

years around the specific date.
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Figure C22. Estimating the ensemble variance for TXn in the CESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the first two
columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5
years around the specific date.
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Figure C23. Estimating the ensemble variance for Rx1Day in the CESM ensemble: Each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance
at that location that is statistically indistinguishable from that computed on the basis of the full 40-member ensemble. The results of the

first two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by

using 5 years around the specific date.
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Figure C24. Estimating the ensemble variance for TNx in the CanESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at that
location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first two

columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using 5

years around the specific date.
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Figure C25. Estimating the ensemble variance for TNn in the CanESM ensemble: Each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance
at that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the
first two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by

using 5 years around the specific date.
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that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first

two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.
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Figure C26. Estimating the ensemble variance for TXx in the CanESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
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that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.
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Figure C27. Estimating the ensemble variance for TXn in the CanESM ensemble: Each plot corresponds to a year along the simulation length
(1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance at
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that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the firgt
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.

77



Figure C28. Estimating the ensemble variance for Rx1Day in the CanESM ensemble: Each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance

at

that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.
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that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first

two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.
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Figure C29. Estimating the ensemble variance for Rx5Day in the CanESM ensemble: Each plot corresponds to a year along the simulation
length (1950, 1975, 2000, 2025, 2050, 2075, 2100). The color indicates the number of ensemble members needed to estimate a variance

at

that location that is statistically indistinguishable from that computed on the basis of the full 50-member ensemble. The results of the first
two columns use only the specific year for each ensemble member. The results of the third and fourth columns enrich the samples by using

5 years around the specific date.
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Figure C31. Histograms of required ensemble sizes at grid-boxes where significant change in variability is detected: each plot corresponds

to a map in Figure 10 and shows a histogram of the values at each grid-box that is colored in that map. Histograms are weighted according

to the cosine of the latitude of the grid-box, so that the values along the y-axes can be interpreted as fractions of the Earth’s surface. We

color red histograms that represent a total fraction of the Earth’s surface larger than 5%.
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Figure C32. Estimating changes in ensemble variance for TNn in the CESM ensemble: each plot corresponds to a pair of years along the
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simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected.
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Figure £33. Estimating changes in ensemble variance for TXx in the CESM ensemble: each plot corresponds to a pair of years along the (Deleted: Cc31

simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected.

The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5

years

86
around each date.
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Figure £34. Estimating changes in ensemble variance for TXn in the CESM ensemble: each plot corresponds to a pair of years along the CDeleted: Cc32

simulation. Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected.
The
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simulation, Colored areas are regions where on the basis of the full 40-member ensemble a significant change in variance was detected.
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simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected. -
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5

years 92around each date.




Figure £37. Estimating changes in ensemble variance for TNn in the CanESM ensemble: each plot corresponds to a pair of years along th‘a (Deleted: c35 )

| Deleted: (same set of years as depicted in Figures 7 and 8
above)....

y (Deleted: 93 j

simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5
years 93around each date.
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simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.

The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5

years 94around each date.




Figure £38. Estimating changes in ensemble variance for TXx in the CanESM ensemble: each plot corresponds to a pair of years along th4 (Deleted: c36 )
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simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5
years 95around each date.
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simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.

The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5

years 96around each date.




Figure £39. Estimating changes in ensemble variance for TXn in the CanESM ensemble: each plot corresponds to a pair of years along thé (Deleted: c37 )
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simulation, Colored areas are regions where on the basis of the full 50-member ensemble a significant change in variance was detected.
The colors indicate the size of the smaller ensemble needed to detect the same change. Here too the sample size is increased by using 5
years 97around each date.
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