We thank both referees for a careful reading of the paper and many suggestions that have improved it substantially.

In the following we provide responses to all points raised by Referee 1. Please also note that the paper has been edited throughout for clarity and rigor, and we will provide a version with tracked changes.

In the following, we highlight our responses in blue, with italics used when we cite word by word from the paper (apologies for the occasional latex syntax left throughout these verbatim sections).

Thank you,

Claudia Tebaldi and co-authors.

Referee 1

The authors address the problem of choosing the size of a climate model ensemble by investigating the number of members needed to obtain robust statistics for the warmest night (TNx) and wettest pentad (Rx5d) of the year. The main text presents results based on the CESM1-CAM5 38/40 member ensemble (CanESM2 48/50 member results are shown in the supplement). They investigate the accuracy, compared to the full ensemble, of a variety of statistics obtained based on 1, 5, 10,..., 35 ensemble members, namely: 1) the forced component (ensemble mean) and its uncertainty, 2) generalized extreme value (GEV) distribution fits, and 3) the internal variability (ensemble variance) at various time points, as well as detecting changes over time. They also briefly touch on the number of members needed to detect a signal to noise ratio greater than 1 for TNx and Rx5d by mid and end century. They argue that often, an ensemble of 20-25 members provides reliable statistical estimates. They also show that the full ensemble standard deviation (and error estimates that rely on it) can be accurately estimated using 5 ensemble members, supplemented by using 5 years along the time dimension of each member.

The study is of practical interest for optimizing computing resources and for potentially allowing broader investigations into structural/parameter uncertainty. While the general question of determining ensemble size has been addressed in previous studies, the analysis using yearly extremes is a new contribution as far as I'm aware. However, there are major issues that need to be addressed before the manuscript could be considered suitable to publish.

Thank you for the overall positive assessment.

Major comments:
1. There are several places where details of the methods are not provided (see specific comments below), particularly in Section 4.3 where the statistical tests used to determine the accuracy of the ensemble estimates of variability and for detecting the change in variance over time are not discussed. As such, I cannot yet comment on the validity of the methods for this section.

We apologize for this specific oversight, and the more general lack of details, which we have now attempted to fix throughout. This will be visible in the track-changes document we provide, but please also see answers to specific comments for details.

2. The bootstrap estimates are all dubious for \(n > 20 \) due to oversampling. This is mentioned in the manuscript and was addressed in some detail in Milinski et al., 2020. They are therefore not suitable for comparison in the Tables, and misleading in Figures. I strongly suggest removing any bootstrap results for \(n > 20 \). Alternatively, you can visually highlight the dubious numbers in the Tables and provide a caveat in the captions.

As a side note, I also have some doubts about number 20-25 being sufficient to provide reliable estimates, as that number constitutes a majority of the ensemble members and therefore may be biased low. I cannot point to any theory to confirm or deny my suspicion however. Repeating the analysis with an ensemble that has more members would increase the confidence in them, perhaps this can be done in another study.

Thank you for this comment and specific suggestion. We have now made clearer that the main approach in this paper is relying on the formula estimating the sample size \(n \) to bound the expected standard error, \(\sigma/\sqrt{n} \), where \(\sigma \), we demonstrate, can be effectively estimated by using only 5 members. We presented the first results also using the bootstrap method with the aim to quantify the method's shortcoming when the size of the ensemble “closes in” towards the full size of the ensemble, and justify our alternative approach. That was really the only reason to use the bootstrap in the analysis of the global time series, providing continuity with what we saw as the most natural predecessor paper, Milinski et al., and substantiating their argument further with specific numbers. We have tried to make all this clearer. We have tried to follow the reviewer’s suggestions to include caveats for this and other issues throughout, starting from the caption and design of the tables. For the latter we now color in grey all the cells where the estimates of the bootstrap are not consistent with the confidence intervals derived from the full ensemble.

3) When supplementing the estimate using 5 ensemble members with information along the time dimension, one runs into the problem of serial correlation, which can reducing the effective sample size. So 5 members x 5 years results is a sample size of
25 at most. Depending on the variable of interest it can be substantially less. I am fairly confident that this is the reason that more ensembles are needed to estimate TNx variance over the ocean for example (Fig. 3). A caveat regarding this issue should be included in the text.

We have found that at a year-to-year scale, for the global quantities considered the presence of autocorrelation is not significant and therefore does not affect the validity of our estimates enough to make them faulty. We agree with the reviewer that that autocorrelation likely affects regions of the ocean and perhaps explain some of the areas that show large errors in Figure 3 and 4. However, the analysis of the frequency of these exceedances over space still supports the general approach by showing that the 2*sigma/sqrt(n) limit, with sigma estimated by 5x5 observations (5 runs, 5 years each run), works accurately. We have nonetheless included specific mentions of the problem with autocorrelation, and caveats in the text when needed.

For example, while discussing the tables of RMSE estimates and mentioning the use of the 5-year windows,

“We are aware that this could introduce auto-correlation within the sample values, but the comparison of these results to the truth shows that the estimated values based on the smaller ensemble are an accurate approximation of it, always being consistent with the 95\% confidence intervals (shown in parentheses).”

Or when describing the barplots of actual errors against the 95% bound:

“Here is where our approximation, and the use of possibly autocorrelated samples in the estimates of σ could possibly reveal shortcomings.”

We added the specific point from the reviewer when describing patterns of error:

“The prevalence of red areas over the oceans could be due to an underestimation of σ_i^c linked to the use of the 5-year windows and the autocorrelation possibly introduced, consistently with ocean quantities having more memory than land quantities, but we do not explore that further here.”

Specific comments

All the figures are too small.

We have redrawn all figures improving their readability and correcting some color legend inaccuracies throughout. We also added several figures to the appendix, documenting more extensively the additional metrics and the alternative model.
Line 43: Surface temperature is one of the strongest climate signals generally and with regard to extreme metrics. So an ensemble number based on analyzing TS is functionally a minimum value. Precipitation will also be a strong signal, especially averaging over larger regions where the dynamic changes might cancel out, leaving only the increase due to thermodynamics. So changes in precipitation extremes are also not difficult to detect. You later address this by looking a specific times when the changes are small, which I think is worth mentioning here.

Thank you for highlighting this point about the temporal range considered when identifying change, to which we would also add the fact that we are looking at statistics of precipitation extremes all the way to the grid-point scale. So we modified the sentence as:

“The consideration of two models, two atmospheric quantities and several extreme metrics, each analyzed at a range of spatial and temporal scales help our conclusions to be robust and -- we hope -- applicable beyond the specifics of our study “

Line 65-66: This is an overly strong statement. Model variability on increasingly long time scales (and hence increasing ocean depths) is indeed not included by design. But how do you justify saying these GCMs do not represent ocean variability?

This is a misunderstanding. It was not our intention to claim that GCMs do not represent ocean variability, and we have rephrased this sentence to make clear that with “experiments” we meant the ensemble design, not the ESM experiment quality per se. The sentence now reads:

“We note that sources of variability from different ocean states, particularly at depth, cannot be effectively explored by this type of initial condition ensemble design, which only perturbs atmospheric conditions.”

Line 68, elsewhere: Generally, you should avoid contractions in scientific papers

Thank you, we have corrected them throughout.

Line 93: Some brief info on the location, shape, and scale parameters would be helpful. If nothing else just name them here, which would help the reader's intuition.

Also in response to a similar request by the other reviewer, we have added the following after listing the three parameters' domains:

“[…] represent the location, scale and shape parameter respectively, responsible for the mean, variability and tail behavior of the random quantity z.”
Line 124: A symmetric sample around 1953, 2097 would result in 7 years, not 11.

We corrected those years to read 1957 and 2094 respectively (this was a mix-up with another series of window centers that we use in the calculation of the sigma parameter).

Fig 1: The full ensemble line looks white, not blue as in the legend. Only plot up to n=25, to avoid issues with oversampling.

We have corrected these plots’ color legends and redrawn the full ensemble estimate in black. Now that we think we have made clearer the shortcomings of the bootstrap and our motivation for using it we thought we could leave the whole range of estimates in the plots.

Line 168: Since the full ensemble statistics are being treated as the true statistics, the F values are the true RMSE values. So, the results show that the bootstrap method is not “optimistic” but inaccurate, as mentioned in line 109 and Milinski, 2020.

Agreed, and we reworded using “inaccurate”.

Line 167-168: Need to consider autocorrelation. Are the F-5 values bootstrapped, or is only a single 5-member subset used?

We use only the first 5 members of the ensemble, again adopting the point of view of a modeling center that only has 5 runs to estimate sigma and drawing the comparison to the estimates computed on the basis of the full ensemble available. We have specified now “on the basis of a small ensemble (the first 5 members)” for clarity. We have discussed the problem of autocorrelation as detailed in an earlier response to the general comment about this.

Table 1: Show percentages for more precision. Remove or visual highlight the spurious bootstrap numbers. Comparing the n=5 results to the bootstrap result that are known to be spurious is not useful. Consider putting the “true” full ensemble number on the left.

We are keen to show actual values to also bring home the accuracy of the estimates in the unit of the quantity considered. We are also giving the general rule for the percentage change in RMSE according to ensemble size in a paragraph of the text:

“Thus, compared to a single model run’s RMSE, we expect the RMSE of mean estimates derived by ensemble sizes of $n=5, 10, 20, 35 or 45$ to be 45%, 32%, 22%, 17% or 15% of that, respectively.”
However, we have improved the tables by switching the order of the columns as the Reviewer suggests, and by coloring in grey the cells of the tables corresponding to the inaccurate bootstrap estimates.

Lines 180-184: It seems the more general result that 5 ensemble members are sufficient to obtain an accurate measure the true instantaneous (i.e. changing over time) model internal variability at global scales.

Agreed, and we have changed the lessons learned exposition in the following way:

The lessons learned here are that

1. For both metrics, an accurate estimate of σ_t, i.e., the instantaneous model internal variability at global scale, is possible using 5 ensemble members (and a window of 5 years around the year t of interest);

2. If the formula for computing the RMSE on the basis of a given sample size is adopted, and that estimate for σ_t is plugged in, it is possible, on the basis of an existing 5-member ensemble, to accurately estimate the required ensemble size to identify the forced component within a given tolerance for error. Of course, the size of this tolerance will change depending on the specific application.

Line 186: It's not clear what you mean by “RMSE affecting estimates” or “our estimate of σ”; What about starting with: “Thus, compared to a single model run, we would expect....”

Thank you for the suggestion, we have rephrased as

“Thus, compared to a single model run's RMSE, we expect the RMSE of mean estimates derived by ensemble sizes of $n=5$, 10, 20, 35 or 45 to be 45%, 32%, 22%, 17% or 15% of that, respectively.”

Line 191: Why twice the expected RMSE? The 2 sigma level is roughly the 95% confidence interval of the expected error, so you would expect to exceed that level 5% of the time. You cannot conclude from these results that “the actual error is in most cases much smaller than the expected...”

You made us realize that our wording was imprecise all through this exposition, and we apologize for that. We now consistently refer to the $2\sigma/\sqrt{n}$ as the 95% bound.
for the error, not as the expected error and we describe more rigorously the expectation of the actual error behavior compared to this bound throughout.

“Figure 2 for global averages of the two same quantities, shows the ratios of actual error vs. the 95% probability bound, indicating the 100% level by a horizontal line for reference. As can be assessed, the actual error is in most cases much smaller than the 95% bound (as it is not reaching the 100% line in the great majority of cases), and we see that only occasionally the actual error spikes above the 95% bound for individual years, consistent with what would be expected of a normally distributed error. This behavior is consistently true for ensemble sizes larger than n=5 “

Line 205: “We use the full ensemble or only 5 members to estimate the ensemble standard deviation...” You specify two definitions here and then never clarify which one you use.

We have eliminated the mention of “the full ensemble” which was a residue of doing things step by step to compare results. In the results shown the estimate is based on 5 members * 5 years.

Figure 2: Why is 2-sigma the cutoff when the standard error is sigma/sqrt(n)?

Again, we believe this question comes from our less than rigorous description of the 95% bound.

The caption now (partially) reads:

“In each plot, for each year, the height of the bar gives the error in the estimate of the forced component (defined as the mean of the entire ensemble) as a percentage of the expected 95% probability bound, estimated by the formula $2\sigma_t/\sqrt{n}$ with n the ensemble size.”

The diagonal lines are spurious; they show a large widening of the variability that is absent in Fig 1 (no change in the width of the lines in a-d.) Table 1 also indicates that TNx variability increase by maybe 50%, not a factor of 3 as shown here. Also the variability may not change monotonically with time.

This comment was likely a product of the axis labels being illegible (which we corrected throughout). The change is – as the caption says – stylized, and for TNx the right axis labels show a change over time consistent with the reviewer’s estimate of about 50%. The larger change is for Rx5Day which is to be expected in precipitation-based metrics since precipitation variability follows precipitation mean increase with warming.
decided however to eliminate this piece of information from the plots given that also Reviewer 2 found these diagonal lines confusing.

As for the reconciliation of Figure 1 with the behavior of variability over time, we note that in fact the width of the red envelope appears appreciably greater at the end of the period than at its beginning for Rx5Day (panel (b)), while the x-y aspect ratio for panel (a) makes it difficult to appreciate a relatively smaller change. As for panels (c) and (d), please note that these have a limited time range, covering only the historical period, while the change appears most pronounced when comparing the latest years of the 21st century to the earliest period in the historical years.

Line 210: “Small and sparse” over land perhaps, but certainly not over the ocean due to the longer timescales of variability which necessitate more samples.

We have added this point, specifying that these indices have been usually adopted in impact analysis over land.

“As can be gauged even by eye, only small and sparse areas appear where the actual error exceeds the expected error, especially if land regions are considered (incidentally, these indices have been mostly used over land areas, as input to impact analyses). The prevalence of red areas over the oceans could be due to an underestimation of σ_i^c linked to the use of the 5-year windows and the autocorrelation possibly introduced, consistently with ocean quantities having more memory than land quantities, but we do not explore that further here. Over the majority of the Earth’s surface, particularly when errors are estimated for ensemble sizes of 20 or more, the bound is a good measure providing an accurate estimate of the error behavior according to normal distribution theory.”

We specifically note here that when we compute the percentage of points affected by errors above the 2*sigma/sqrt(n) bound, it is still consistent with the 5% expectation (as the tables in appendix describe).

Line 212: “consistently providing a conservative estimate of it according to normal distribution theory”: 1) I don't think that conservative is the goal, but accuracy, and 2) this is dependent on using the 2-sigma threshold, which was not justified.

Fig 3: The 2 sigma level is not an “upper bound”, but an estimate of the 95% level.

For both these comments we believe that our improved discussion of the use of 2*sigma/sqrt(n) as the 95% bound will help. The sentence that used to be on line 212 now reads:
“Over the majority of the Earth’s surface, particularly when errors are estimated for ensemble sizes of 20 or more, the bound is a good measure providing an accurate estimate of the error behavior according to normal distribution theory.”

We have also corrected the caption of Figure 2, always referring to $2\sigma/\sqrt{n}$ as the 95% confidence bound.

Fig 3&4: From Fig. 1, it seems safe to assume a normal distribution for the ensemble range of the global average of the block maxima (TNx, Rx5Day). But is that true at each grid point. Don't we expect them to be follow the GEV distribution?

These plots show averages (across ensemble members, except for the first panels in row 1 and 3, which show 1 ensemble member only) of the difference between two 5-year means. We agree that the individual quantities (for a given year and model run at the grid-point level) follow the GEV, but for these average quantities we invoke the central limit theorem, and our calculations of the exceedances seem to confirm that the behavior is indeed consistent with the normal approximation.

Line 219: The goal is to find the number of ensembles, n, that can be used to accurately “decide how large an ensemble we need in order to approximate the forced component to a given degree of accuracy.” As I read it, that amounts to finding the a threshold for n, such that the ensemble standard deviation σ_n accurate measure the true σ. So rather that comparing to a threshold of 2 σ (the rationale for which is never given) you should compare the error with respect to the true σ, including the confidence intervals of both the true value and the estimate. The two aspects being how accurate is the estimate, and how narrow is the range of estimate.

We have given our analysis a slightly different angle, as we have shown that σ estimated on the basis of 5 ensemble members (which we consider a standard ensemble size traditionally run by modeling centers) produces results (in terms of estimating the RMSE around the mean signal within a given tolerance as a function of n) that are not significantly different from what the full ensemble size would produce.

When we show a “bound” defined as $2\sigma/\sqrt{n}$ in our various analyses it is because we want to compare actual realizations of the error, and therefore we use the fact that $2\sigma/\sqrt{n}$ represents the size of the deviation from the mean that we expect to be exceeded 5% of the times.

What the reviewer argues could be considered another way to look at the issue where the “5 member ensemble” is not a given and finding the size to estimate σ accurately is the first order of business. That however would not be enough to ensure that the mean component estimate would be within a desired tolerance for error, as
that error is a function of sigma/sqrt(n*) where n* may be different from the n found to be accurate in estimating sigma.

We do approach the problem of accurately estimating sigma per-se in the sections dedicated to internal variability. We have now pointed out that the results in this section were in fact implicit in our finding 5-members sufficient to estimate sigma, and therefore the appropriate ensemble size for the estimate of the forced component, in the previous sections.

Line 220: You do not actual address regional means.

It is true, and apologies for this mention that we wrote thinking of including results that at the time of organizing the paper we could not show without making the paper an overly long, overly tedious, list of results. We have rephrased as in

“This holds true across the range of spatial scales afforded by these models, from global means all the way to grid-point values.”

Line 232: Provide a bit more information or reference about temporal covariates for the reader. You can safely assume that the forced climate change signal is not causing temporal autocorrelation, but interannual to decadal internal variability can still induce serial correlation.

We have elaborated as in

“Further statistical precision could be attained by relaxing the quasi-stationarity assumption and extending the analysis period to contain a longer window of years. Exchanging time for ensemble members however, when beyond a decade’s worth, necessitates in most cases the inclusion of temporal covariates: for example, indicators of the phase and magnitude of major modes of variability known to affect the behavior of the atmospheric variables in question over multi-decadal scales. The inclusion of covariates of course adds another source of fitting uncertainty.”

Fig 5: Is this based on a bootstrap, or a single selection of N ensemble members? From the NNA plots, I assume the latter, because the N=10 return levels are way off. If that is the case, were the same ensemble members used in all the plots? How are the confidence intervals for the full ensemble (the upper and lower horizontal lines) calculated?

Your assumption is right, and in all cases the CI are computed using the default MLE approach to their estimation from the extRemes package, which applies to any number
of ensemble members, also the full ensemble. We have specified both aspects at the opening of the section describing the GEV results:

“We estimate return levels (event sizes, z_p in our notation) for a number of return periods, i.e., 2-, 5-, 10-, 20-, 50- and 100-years by concatenating the 11 year segments across the first n ensemble members, with n varying between 5 and the full ensemble size by 5 units. For each value of n the same subset of members is used across all metrics, locations, times and return periods.”

Line 243: You’re not bootstrapping here so oversampling is not an issue, but 20-25 is still a majority of the ensemble members, which may artificially improve the results. The exercise would need to be repeated with a larger ensemble to increase confidence in the result. A caveat along these lines should be included.

This comment caused us to reevaluate the way we describe this part of the results, after considering more closely the patterns emerging from the same type of exercise with the CanESM ensemble, which sports 50 members (please note additional figures included in the supplementary material). As a consequence we revised slightly our argument, by distinguishing what size of an ensemble ensures the central estimate to be within the “true” confidence interval, and separately, how the size relates to the behavior of the C.I. width.

We now write:

“**We first observe that in the great majority of cases the central estimate settles within the “true” confidence interval as soon as the ensemble comprises 15 or 20 members. This is true for both model ensembles, i.e., both when the truth is identified through 40 and through 50 ensemble members, as the corresponding plots in the appendix confirm. Therefore, if all that concerns us is the central estimate, an ensemble of 20 members, from which we sample 11-yr windows to enrich the sample size, delivers an estimate of the “truth” within its confidence interval. When an estimate of the uncertainty is concerned, however, the truth remains, by definition, an unattainable target, as the size of the confidence intervals is always bound to decrease for larger sample sizes. The behavior of the confidence intervals for the return level estimates in the plots, however, suggests that there might be only marginal gains for ensemble sizes beyond 30, for both models. The value of this general result will benefit from an analysis of larger ensembles. In addition, the value of increasing the sample size should always be judged on the basis of the actual size of the 95\% confidence intervals in the units of the quantity of interest, and what that size means for managing risks associated with these extremes. This is an aspect that, however, goes beyond the scope of our work.**”
What test is used to determine if they are distinguishable?

We use an F-test in all cases, and determine the threshold for significance by applying the False Discovery Rate method. The lack of mention was an oversight that we have now fixed. We have also added that we fix the FDR at 5%, which we also failed to specify before.

The Ventura et al, 2004 method addressing spatial covariability, not temporal, correct?

Correct. The Ventura et al method is shown not to be sensitive to spatial correlation, and that is what we are concerned here (besides the general problem of multiple testing.) We added this point to the text:

"We note here that the patterns shown in some of these figures have indeed the characteristics of noise. To minimize that possibility we have applied a threshold for the significance of the p-values from the F-test obtained through the method that controls the False Discovery Rate (Ventura et al,2004). The method has been shown to control for the false identification of significant differences "by chance" due to repeating statistical tests hundreds or thousands of times, as in our situation. The same method has been proved effective, in particular for multiple testing over spatial fields, despite the presence of spatial correlation (Ventura et al., 2004; Wilks, 206). We fix the false discovery rate to 5%.”

What test is used to detect variance changes?

As before, we are still comparing variances (in this case, estimates at different times during the simulation) by using the F-test. We have made that explicit here as well.

Several color bars are mislabelled

We have redrawn and corrected the layout of the plots not to cut off the legends.

"minimum temperature” might be confusing; consider using “warmest night” as you do elsewhere

We rephrased as in “In the case TNx, a metric based on daily minimum temperature behavior,” as we wanted to keep the reference to the basic atmospheric quantity on which the metric is based.
Line 315: Is sigma held constant for this calculation?

We have slightly changed this section to only show results for mid-century (but results for more metrics) so we believe this question is now mute. We were however using different sigmas for mid-century and end-of-century signal to noise calculations.

Line 326: Only grid points and global averages were shown, not a range of aggregation.

Apologies for the misleading sentence. We repeat here the answer to a previous point: We have considered intermediate aggregations in the analysis phase, but we could not make it work to show them without making the paper too tedious a list of results. We have mentioned testing the forced component error analysis at different spatial scales in the corresponding section of the paper:

“In the appendix we report the results of applying the same analysis to the rest of the indices. We cannot show all results, but we tested country averages, zonal averages, land- and ocean-areas averages separately, confirming that the qualitative behavior we assess here is common to all these other scales of aggregation.”

Otherwise the point is redundant, given that most our results are for the grid-point scale and therefore provide an upper bound for n, so we do not mention additional scales any longer.

Line 336: Are the variables of interest here normally distributed? Shouldn't they obey an GEV distribution

As we argued a little earlier, aside from the moment when we start considering grid-point level, yearly-resolved quantities for our GEV analysis, everything else undergoes multi-year averages (difference of five year means in the cases of grid-point level patterns of change). We do not believe the GEV would be a good choice for quantities that result from averaging multiple years.

Line 365: Missing parentheses

Thank you, corrected.