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[bookmark: _Toc75964844]Supplement 1. The DBSCAN Algorithm

In this supplement to Tilloy et al. (2021), we describe the clustering method used for identifying spatiotemporal clustering of extreme wind and precipitation needs to comply with different characteristics of our spatiotemporal data:
The large size of the dataset: The ERA5 data we use (January 1979 to September 2020, almost 41 years) has an hourly timestep; this implies a significant amount of data over our study area of 1485 cells.
Noise level: The method used to sample extreme occurrences of wind gust and precipitation produce objects scattered in space and time, which cannot be associated with a hazard cluster.

To ensure the flexibility of the approach used, we do not pre-determine the shapes of the natural hazard clusters. The characteristics of reanalysis climate data and the absence of assumptions about the shape of our hazard clusters guided the choice of a clustering algorithm towards the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm (Ester et al., 1996). DBSCAN is a density-based clustering method which is one of the five main types of clustering methods along with Partitional, Hierarchical, Grid-based and Model-based methods (Birant and Kut, 2007; Xu and Tian, 2015). Density-based clustering methods aim to define a structure that accurately represents the underlying density of the data (Hahsler et al., 2017). Density-based clustering methods are non-parametric methods able to find clusters with arbitrary shapes and do not require the predetermination of the number of clusters to be detected (Birant and Kut, 2007). 

DBSCAN is a clustering algorithm for identifying clusters with arbitrary shapes (Shi and Pun-Cheng, 2019). The primary idea behind DBSCAN is that for each point of a cluster, the neighbourhood of a given radius (ε) has to contain at least a minimum number of points (μ), i.e. the density in the neighbourhood needs to be above a threshold (Ester et al., 1996). The shape of a neighbourhood is conditioned by the choice of the distance function used (e.g., Manhattan, Euclidean, Minkowski) (Ester et al., 1996). DBSCAN estimates the density around each data point by counting the number of points in the radius ε. 

DBSCAN identifies three types of objects: (i) core points; (ii) border points; (iii) noise points (Hahsler et al., 2017). A point c is a core point if at least μ other points are within the distance ε of it. Points that are not core points but in the neighbourhood of core points are called border points. All points not reachable from any other point are outliers (Ester et al., 1996) (see Figure S1.1). To create clusters, a key concept of the method is the density-reachability. Density-reachability is obtained when there is a chain of core points where one falls in the neighbourhood (distance<ε) of the next (see Figure S1.1). All the points from the chain are said to be “density-connected” and form clusters (see Figure S1.1). Each cluster contains at least one core point (Yuan et al., 2017). Figure S1.1 illustrates the basic concepts and terms of DBSCAN in two dimensions with Euclidean distance as a distance metric. For more details on the DBSCAN algorithm, the reader can refer to Ester et al. (1996) and Hahsler et al. (2017) for details about the implementation of the algorithm in R.
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[bookmark: _Ref33018583][bookmark: _Toc47345230][bookmark: _Toc51174396][bookmark: _Toc51174866][bookmark: _Toc51240662]Figure S1.1: illustration of DBSCAN. Basic concepts and terms: dashed large circles represent the distance with a radius ε. Small red filled circles (a, b, c, d) are core points. Small black circles (red outline) (e, f, g, h, i) are border points. Black circles (no red outline) (j, k, l) are noise points. Points i and d are density-reachable from a; i and e are density-connected via object a. Black arrows represent the connection between two density-reachable points. The cluster detected by DBSCAN contains points a, b, c, d, e, f, g, h, i and j, k, l that are noise points.

The two input parameters of the DBSCAN algorithm are the density threshold μ and neighbour parameter ε; these are set by the user. The usual rule to follow when defining μ is to use at least the number of dimensions of the dataset plus one (i.e., three for two-dimensional data). Regarding the ε parameter, the selection is usually made by plotting the points’ k–NN distances (i.e., the distance to the kth nearest neighbour) in decreasing order and identifying the knee in the plot (Hahsler et al., 2017). In this study, the rules mentioned above are associated with considerations arising from the definition of a hazard cluster used in the study. 

DBSCAN relies heavily on forming neighbourhoods. A simple approach is to compute the distances to all other points to find the closest points. This requires O(n) operations for each time a neighbourhood is needed, with n being the number of data points. Since the operation is repeated for each data point once, this results in an O(n2) runtime complexity. As a result, the size of the full distance matrix becomes very large and is slow to compute for medium to large data sets. To reduce computation time, spatial indexing methods provide a mechanism to quickly locate single or multiple objects and extract desired information from a database. A spatial index is a data structure that optimizes data processing in large datasets (Azri et al., 2013). DBSCAN relies on space partitioning data structure called k-d trees (Bentley, 1975). The k-d trees divide the space into non-overlapping regions and allow DBSCAN to run more efficiently in sub-linear time using on average only O(log(n)) operations per query. The result is a reduced runtime complexity of O(n log(n)) (Hahsler et al., 2017). Figure S1.2 displays the 10th nearest neighbour distance increasing order. The knee in the plot is identified around 2.24 for extreme wind gust and 2.45 for extreme precipitation values. 
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[bookmark: _Ref47373582][bookmark: _Toc47345233][bookmark: _Toc51174400][bookmark: _Toc51174870][bookmark: _Toc51240666]Figure S1.2: Sorted Euclidean distance to the 10th nearest neighbour (10-NN) for sampled hourly wind and precipitation extreme values over Great Britain for 1979–2019: (a) extreme wind events and (b) extreme precipitation events. The dotted lines represent the knee of the distribution (ε). This value is the neighbouring parameter of the DBSCAN algorithm.

From Figure S1.2, it is possible to estimate the spatiotemporal domain in which the 10–NN needs to be to create a new cluster. This neighbourhood is highlighted in Figure S1.3, showing that the 10–NN neighbourhood includes nmax=44 points with a maximum temporal distance of 2.0 h and a maximum spatial distance of 0.5° in latitude or longitude. 
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[bookmark: _Toc47345234][bookmark: _Toc51174401][bookmark: _Toc51174871][bookmark: _Toc51240667]Figure S1.3: reachable distance in the spatiotemporal space used in this study. The arrow represents time steps and each node is a potential spot for an extreme value. The red point represents extreme value. To be neighbours, other extreme values need to be within the space delimited by the purple line. For a new cluster to be created, an extreme value needs to have at least 10 (out of 44 possibilities) extreme value neighbours.
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[bookmark: _Toc51174161][bookmark: _Toc51174343][bookmark: _Toc51240909][bookmark: _Toc52125567]Summary: 
This supplement consists of a sensitivity analysis on the spatiotemporal clustering procedure for Compound Hazard Cluster Identification (SI-CH). Parameters influencing the SI-CH method are listed and a brief overview of sensibility analysis is provided. The Sensitivity Analysis is performed over one year of reanalysis data (2016) with the SRC (standardized regression coefficient). The SRC is a sensitivity index to assess the importance of each input parameter. For compound hazard cluster, the most dominant variable is the threshold for the sampling of extreme events. 
[bookmark: _Toc75964846]2.1 Introduction 
In the main manuscript of Tilloy et al. (2021), we present a methodology for the Spatiotemporal Identification of Compound Hazards (SI–CH) which we apply to Great Britain for 1979–2020 for extreme wind and precipitation. The SI–CH method involves numerous steps to go from raw ERA5 data of hourly maximum wind gust and hourly accumulated precipitation to detecting 4555 compound wind–precipitation clusters. The three main parameters that influence the process and consequent results:
the threshold selected to sample extreme events u 
the ratio r of the spatiotemporal scaling parameter a and b
the density threshold μ 

The neighbour parameter ε is not included here in the set of parameters that might influence the clustering process as it is set in a systematic manner. The value of the parameter ultimately depends on the three other parameters. The limitations around the selection of these parameters are discussed in Section 6 of the manuscript. In this supplement, a sensitivity analysis is conducted to understand the effect of the three aforementioned parameters (u, r, μ) on the output of the spatiotemporal clustering procedure. The sensitivity analysis is performed on a subsample of the datasets used in the article. One year of data (January-December 2016) is used to reduce computational time. 
[bookmark: _Toc51174162][bookmark: _Toc51174344][bookmark: _Toc51240910][bookmark: _Toc52125568][bookmark: _Toc75964847]2.2 Sensitivity Analysis
The idea behind a sensitivity analysis is to change an input parameter X and assess if it produces a change in the output parameter Y. The measure of this change in Y allows determining the sensitivity of Y with respect to X (Nguyen and Reiter, 2015). A panoply of methods have been developed to conduct a sensitivity analysis (see Hamby, 1994; Frey et al., 2003; Nguyen and Reiter, 2015 for reviews). Here, a “statistical (or probabilistic) approach” is used. This type of approach is based on the generation of a sample of input vectors and associated outputs (Frey et al., 2003). The three parameters of interest are sampled within given ranges. The extreme threshold u is set to 0.99 (99th percentile) in the article. In this sensitivity analysis (hereafter noted as SA), u varies between 0.95 and 0.99. The scaling parameters ratio takes three values: 2, 4, 8. Finally the density threshold μ takes four values between 5 and 30. The combination of these parameters creates a sample of 60 input parameter sets. The values retained for each parameter are displayed in Table S2.1.
[bookmark: _Toc51240586]Table S2.1: Values taken by the three input parameters in Sensitivity Analysis 
	Parameter
	Values

	Extreme threshold u
	0.99; 0.98; 0.97; 0.96; 0.95

	Scaling parameters ratio r
	2; 4; 8

	Density threshold μ
	5; 10; 20; 30



The output variables of interest of this sensitivity analysis are the number of wind, precipitation and compound hazard clusters created. The clustering procedure illustrated in Main manuscript Fig. 3 is run for each of the 60 parameter sets, providing 60 output sets. To quantify the sensitivity of the three output in respect to u, r and μ, a sensitivity index is computed. Several sensitivity indices have been developed for statistical SA including: PEAR (Pearson product moment correlation coefficient), SPEA (Spearman coefficient), SRC (standardized regression coefficient), and SRRC (standardized rank regression coefficient) (Nguyen and Reiter, 2015). These indices are regression-based sensitivity indices that are suitable for linear trends.

Regression methods are often used in SA because of their relative simplicity and their low computational cost (Hamby, 1994; Nguyen and Reiter, 2015). Regression techniques build an approximate empirical model starting from a sample of the input x= (x1, …, xk) and output variable y. Such models can be written as (Bolado-Lavin and Badea, 2008):
	
	(S2.1)


where ε ~ N(0, σ2) (normal distribution with null mean and variance σ2) is a white noise and β = (β1, … βk) are the regression coefficients. Equation S2.1 is a first-order polynomial regression and assumes the independence of each input. The regression parameters provide an estimate of the strength of the correlation between the inputs x and the output y. Regression techniques allow to create a sensitivity ranking based on the relative magnitude of each regression coefficient. To compare the magnitude of regression parameters, a standardization process is beneficial (Hamby, 1994). 

[bookmark: _Hlk50546492]One widely used sensitivity index based on the regression method is the SRC (standardized regression coefficient). This coefficient is expressed as follow (Saltelli et al., 2004): 
	
	(S2.2)


where ,  is the regression parameter of the variable xi,  is the variance of variable xi and  is the variance of the output variable y. The influence of each input variables on the output is therefore comparable. The absolute value of the SRC represents a measure for parameter importance with higher SRC values indicating more influence on the model outcome, the sign of the SRC value indicates whether the model outcome increases or decreases as the value of the input factor changes (Menberg et al., 2016). The reliability of the SRC depends on how well the linear regression model represents the output variable(Nguyen and Reiter, 2015). To assess how well the model fits the output, the coefficient of determination R2, which indicates how much of the output variance  can be explained by the variance of the linear model  (Menberg et al., 2016). R2 is bounded between 0 and 1. Lower values indicate a poor fit of the model. 
2.3 [bookmark: _Toc51174163][bookmark: _Toc51174345][bookmark: _Toc51240911][bookmark: _Toc52125569][bookmark: _Toc75964848]Results
The Sensitivity Analysis is performed with the R package sensitivity (Iooss et al., 2020) on three outputs: number of wind clusters Nw, number of precipitation cluster Nr and number of compound clusters Nc. The aim is to identify which input parameters are the most likely to influence the number of detected clusters, and therefore influence the results of SI-CH method. Polynomial linear regression is computed regarding each of the three outputs. The regression coefficient of each variable has a p-value which tests the null hypothesis that the variable does not correlate with the output. For a p-value below a given significant level (e.g., 0.01), there is evidence to reject the null hypothesis that there is zero correlation between the input variable and the output. The results of the regression analysis for Nw, Nr and Nc are displayed in Tables S2.2, S2.3 and S2.4.
[bookmark: _Toc51240587]Table S2.2: Results for the regression analysis on the number of wind clusters Nw
	Parameters
	Regression coefficients
	P-value
	SRC
	Rank

	u
	-7215.8
	3.84e-13***
	-0.71 [-0.84,-0.54]
	1

	r
	9.3
	0.03*
	0.16 [0.30,0.52]
	3

	μ
	5.9
	2.31e-06***
	0.39 [-0.84,-0.60]
	2


R2 = 0,92 | Significance Levels: 99.9% ‘***’ 99% ‘**’ 95% ‘*’

Table 2.2 displays the results of the regression analysis of the model . The coefficient of determination value is R2 = 0.92, meaning that 92% of the variation in Nw is explained by the model. The p-values highlights if the relationship between u, r, μ and Nr is statistically significant. The scaling parameters ration r has a significant positive influence at a 95% level on the number of wind cluster according to the regression analysis. However, this influence remains weak compared to the one of u and μ. The extreme threshold u has a strong negative influence on the number of clusters, while the density threshold μ has a positive effect on Nw. (Table S2.2).
[bookmark: _Toc51240588]Table S2.3 Results for the regression analysis on the number of precipitation clusters Nr
	Parameters
	Regression coefficients
	P-value
	SRC
	Rank

	u
	-13800.8
	<2e-16***
	-0.59 [-0.69,-0.48]
	2

	r
	2.7
	0.58
	0.02 [-0.06,0.10]
	3

	μ
	-25.7
	<2e-16***
	-0.75 [-0.84,-0.60]
	1


R2 = 0,66 | Significance Levels: 99.99% ‘***’ 99.9% ‘**’ 99% ‘*’

In Table S2.3 are displayed the results of the regression analysis of the model . The coefficient of determination value is R2 = 0.66, meaning that 66% of the variation in Nr is explained by the model. Despite being low, this value does not entirely disqualify the model. The p-values highlights if the relationship between u, r, μ and Nr are statistically significant. The scaling parameters ration r has an insignificant influence on the number of precipitation clusters according to the regression analysis. However, the extreme threshold and the density threshold both have a strong negative influence on the number of clusters, with the density threshold being the most important variable (Table S2.3).
[bookmark: _Toc51240589]Table S2.4 Results for the regression analysis on the number of compound clusters Nc
	Parameters
	Regression coefficients
	P-value
	SRC
	Rank

	u
	-1.15e+04
	<2e-16***
	-0.92 [-0.99,-0.83]
	1

	r
	-5.54
	0,03*
	-0.08 [-0.16,-0.01]
	3

	μ
	-5.15
	1.06e-10***
	-0.28 [-0.35,-0.20]
	2


R2 = 0,93 | Significance Levels: 99.99% ‘***’ 99.9% ‘**’ 99% ‘*’

In Table S2.4 are displayed the results of the regression analysis of the model . The coefficient of determination value is R2 = 0.93, meaning that 93% of the variation in Nc is explained by the model. The p-values highlights if the relationship between u, r, μ and Nc are statistically significant. The scaling parameters ration r has a significant positive influence at a 95% level on the number of compound clusters according to the regression analysis. However, the extreme threshold and the density threshold both have a negative influence on the number of clusters, with the extreme threshold being by far the most important variable (Table S2.4).

Figure S2.1 displays the absolute value of the SRC of the three input variables on the outcomes Nw, Nr and Nc. It indicates which variables are the most influent on the outcomes. The threshold parameter u has the most important influence on the Nw and Nc. The scaling parameter ratio r has low influence (insignificant for Nr) while the density threshold μ has the most important effect on Nr. It appears that Nr is not influenced by the same input parameters as Nw and Nc which are highly dominated by the value of the extreme threshold u. It is important to note that the linear regression models fitted on Nw and Nc both have a high R2, while the one fitted on Nr has a low R2, highlighting the difference between precipitation extremes and wind gust extremes.
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[bookmark: _Toc51174414][bookmark: _Toc51174884][bookmark: _Toc51240680]Figure S2.1: Results of the sensitivity analysis on the three output variables (Nr, Nw, Nc). U is the extreme threshold, r is the scaling parameter ration and μ is the density threshold. The absolute value of the standardized regression coefficient of each input variables is displayed for each output variable.
2.4 [bookmark: _Toc51174164][bookmark: _Toc51174346][bookmark: _Toc51240912][bookmark: _Toc52125570][bookmark: _Toc75964849]Conclusion
In this appendix, variables that can influence the result of the SI-CH method have been identified and highlighted. The output variables retained to assess the influence of the procedure to the input variables are the number of precipitation, wind and compound hazard clusters created. These output variables are believed to have a significant influence on spatiotemporal attributes of clusters. A Sensitivity Analysis has been conducted on a sample of 60 combinations of the three input variables u, r and μ (Table 2.1). The Sensitivity Analysis was done over one year of reanalysis data (2016) with a regression-based approach. The SRC was used as a sensitivity index to assess the importance of each input parameter. For compound hazard cluster, the most dominant variable is the threshold for the sampling of extreme events which has a strong negative correlation with the number of clusters created, meaning that an increase of the threshold reduces the number of clusters. In the article, the highest value of u tested in the Sensitivity Analysis was selected (0.99). With the parameter set used in the article, 109 compound hazard clusters were identified. The large size of the sample created justifies the use of a high threshold which is the main parameter influencing the number of clusters created.
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