Atmospheric regional climate projections for the Baltic Sea Region until 2100

Ole B. Christensen^{1,4}, Erik Kjellström², Christian Dieterich^{2,3}, Matthias Gröger³Gröger⁴, H.E. Markus Meier³Meier^{4,2}

1

¹Danish Meteorological Institute, Copenhagen, Denmark
 ²Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
 ³Leibniz³Deceased

⁴Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

10 ⁴Corresponding author: <u>obc@dmi.dk</u>

1

Comment [OBC1]: To reviewers: This is a Word comparison file between the second and the first manuscript revisions. However, several figure changes have been accepted when they only affected formatting (e.g. row and column headlines) in order to make the document a bit less confusing. Atmospheric regional climate projections for the Baltic Sea Region until 2100

Ole B. Christensen1,4, Erik Kjellström2, Christian Dieterich2, Matthias Gröger3, H.E. Markus Meier3

1Danish Meteorological Institute, Copenhagen, Denmark

2Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 15

3Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

4Corresponding author: obc@dmi.dk

20 Abstract

Correspondence to: Ole B. Christensen (obc@dmi.dk)

Abstract. The Baltic Sea Region is very sensitive to climate change; it is a region with spatially varying climate and diverse ecosystems, but it is also under pressure due to a high population in large parts of the area. Climate change impacts could easily exacerbate other anthropogenic stressors such as biodiversity stress from society and eutrophication of the Baltic Sea

- 25 considerably. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. In this reviewoverview paper, we will concentrate on a presentation of recent climate projections from both 12.5 km horizontal resolution atmosphere-only andregional climate models from EURO-CORDEX. Comparison will also be done with corresponding prior results as well as with coupled atmosphere-ocean regional climate models. The recent regional climate model projections strengthen the picture conclusions from previous assessments. This includes a strong warming, in
- 30 particular in the north in winter. Precipitation is projected to increase in the whole region apart from the southern half during summer. Consequently, the new results lend more credibility to estimates of uncertainties and robust features of future climate change. Furthermore, the larger number of scenarios gives opportunities to better address impacts of mitigation measures. The In simulations with a coupled atmosphere-ocean model locally modifies, the climate change signal is locally modified relative to that in the corresponding stand-alone atmosphere regional climate model. Differences are largest in 35 areas where the coupled system arrives at different sea-surface temperatures and sea-ice conditions.

1 Introduction

For many years, hundreds of global climate projections have been produced according to various scenarios of future greenhouse gas emissions and other forcing factors including changes in aerosols and land use. This has been coordinated in model inter-comparison projects (CMIPsMIPs), that have provided fundamental input to the Working Group I assessment reports of the Intergovernmental Panel on Climate Change (IPCC) Working Group I assessment reports (; IPCC 2001, 2007, 2013, 2021). The fifth IPCC assessment report (AR5; IPCC 2013; AR5)) was built on the World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model data (Taylor et al., 2012) with the participation of many). Many general circulation models (GCMs) and use ofparticipated in simulations according to several Representative Concentration Pathway (RCP) scenarios (van Vuuren et al., 2011). The most recent, sixth, assessment
45 report (IPCC 2021; AR6) builds on the successor CMIP6 (Eyring et al., 2016) that involves a new set of Shared Socioeconomic Pathway (SSP) scenarios (O'Neill et al., 2017). This has, however, not been addressed here as, at this point, downscaling activities based on CMIP6 projections are still lacking.

The Baltic Sea Region is highly diverse with considerable spatial variability over small distances compared to typical GCM resolutions. Consequently, GCMs do not represent all relevant processes at adequate scales and results are often biased (e.g.

- 50 Graham et al., 2008). High-resolution regional climate models, nested in the GCMs, have been shown to add value to the GCM results and to promote detailed analysis on regional to local scales (e.g_{7,2} Giorgi and Gao, 2018). At the European level, considerable efforts have therefore been undertaken to downscale GCM simulations to a higher horizontal resolution with RCMs. The history of coordinated RCM simulations started in the PRUDENCE project with RCMs mostly operated at 50 km spatial resolution (Christensen and Christensen 2007), continued with the ENSEMBLES project (van der Linden and
- 55 Mitchell 2009;. Hanel and Buishand 2011; Kyselý et al. 2011; Räisänen and Eklund 2011; Déqué et al. 2012; Kjellström et al. 2013) and more recently in the EuroEURO-CORDEX initiative, which forms part of the Coordinated Regional climate Downscaling EXperiment (CORDEX, www.cordex.org; e.g. www.cordex.org; e.g. Jacob et al., 2013; Kotlarski et al., 2014; Keuler et al., 2016; Kjellström et al., 2018). Most recently, the European Copernicus Climate Change Services has supported an extension of the available CMIP5-driven RCM downscaling simulations in the EuroEURO-CORDEX setup with around
- 60 12 km spatial resolution (Vautard et al., 2021; Coppola et al., 2021). This has led to the public availability of a large amount, currently 127, different simulations following the RCP2.6, RCP4.5, and RCP8.5 scenarios (some simulations with known errors are not counted).

In addition toRegional climate models have been used not only for downscaling of climate change scenarios. Also, observation-based reanalysis datasets have also-been extensively downscaled with RCMs, particularly in recent years (e.g.
 Feser et al. 2001; Hagemann et al. 2004; Christensen et al. 2010; Samuelsson et al. 2011; Kotlarski et al., 2014; Prein et al., 2015). These experiments allow a comparison of are useful for comparing RCM results and observational data for the most recent decades, and thereby amfor evaluation of the RCMsRCM models. The RCMs are found to capture many features of

the climate in a realistic way albeit with some systematic errors and biases (Wibig et al., 2015; Kjellström and Christensen, 2020). As a remedy, bias-correction is sometimes applied to the results (e.g. Dosio et al., 2016). Biases are generally larger when GCMs are downscaled instead of reanalysis data as these show systematic biases in their representation of the large-

- 70 when GCMs are downscaled instead of reanalysis data as these show systematic biases in their representation of the largescale-atmospheric circulation, at large scales, of temperature-and, humidity conditions as well as and sea surface conditions. For an area like the Baltic Sea region, this implies that sea surface properties (sea surface temperatures –(SSTs–) and sea ice) from the coarse-scale driving GCM may not be completely adequate as input to an RCM, and; this constitutes an additional source of potential uncertainty forof the downscaled regional scenarios (Kjellström and Ruosteenoja, 2007).
- 75 During the past decades a number of regional coupled atmosphere-ocean-sea-ice models with focus on the Baltic Sea and adjacent marginal seas have therefore been developed for climate studies (e.g. Gustafsson et al., 1998; Döscher et al., 2002; Wang et al., 2015; Dieterich et al., 2019; Primo et al., 2019; Kelemen et al., 2019; Akhtar et al., 2019; Sein et al., 2020). In these models, prescribed boundary conditions at the sea surface (i.e. sea ice and sea surface temperature (SST)) were replaced by online coupled ocean models allowing for a direct and more realistic representation of air-sea thermal feedback
- mechanisms (see review by Gröger et al., 2021b). These coupled models exhibit a different model solution for many climate variables compared to their atmosphere stand-alone counterparts, especially over the coupled region (Gröger et al., 2015; Ho-Hagemann et al., 2017; Primo et al., 2019; Gröger et al., 2019, 20202021a). The most recent and largest ensemble of regional coupled climate change simulations was provided by Dieterich et al. (2019) and Gröger et al. (2019, 20202021a) and is based on the regional climate model RCA4 coupled interactively to the ocean model NEMO.
- 85 Available RCM studies have resulted in<u>literature describes</u> extensive analyses<u>studies</u> of possible future climate conditions for <u>many</u> areas, including the Baltic Sea basin (see, e.g., Lind and Kjellström 2008; Kjellström and Lind 2009; Benestad 2011; Kjellström et al. 2011a; Nikulin et al. 2011; Christensen et al. <u>20152015a</u>; Christensen and Kjellström 2018; Coppola et al., 2021). <u>ProbabilisticEnsembles of climate projection simulations have been used to obtain probabilistic</u> climate change information has been derived from the GCM scenarios, <u>both GCM</u> (Lind and Kjellström 2008; Räisänen 2010) and RCM
- 90 scenariosensembles (Buser et al. 2010; Donat et al. 2011). In addition, the wider range of GCM scenarios has been used to set regional scenarios in a broader context (Lind and Kjellström 2008; Kjellström et al., 2016 and 2018).

This work aims at presenting climate change in the <u>area around the Baltic Sea area, as it is</u> projected by the very large ensemble of <u>EuroEURO</u>-CORDEX RCMs at 12 km resolution. The spread in results between the projections is used to discuss uncertainties in future climate change. In addition to the uncoupled atmosphere-only EURO-CORDEX RCM

95 ensemble, we will also assess changes in an ensemble with the atmospheric regional model RCA4 coupled to the NEMO ocean model. A comparison between results from the stand-alone atmospheric model and the coupled model provides input to the assessment of uncertainties in future climate change projections for the area.

2. Data and methods

100

The main results of this study build on seasonal means from the publicly available and accessible EURO-CORDEX data, which at the time of writing consisted of the 124 simulations indicated in Tab. 1 out of a current total of 127. We will focus on data of the most commonly studied fields: surface air temperature, average total precipitation, mean wind speed at 10 m height, incoming short-wave radiation, and average winter snow and sea-ice cover.

Extreme The consequences of extreme weather events are very important for impact many aspects of society. Extreme precipitation often results in flooding, which often causes extensive damage as do extreme winds in connection with lowpressure systems. Changes in these extremes as a result of anthropogenic climate change have received considerable attention. We will therefore also report on extremes of daily precipitation and 10 m wind speed.

The main results of this study build on seasonal means from the publicly available and accessible EURO-CORDEX data, which at the time of writing consisted of the 124 simulations indicated in Tab. 1 out of a current total of 127. Three different emission scenarios have been widely used for downscaling within CORDEX. The RCP2.6 scenario is the most moderate and will require a targeted emission reduction worldwide. The RCP8.5 scenario, in contrast, is consistent with large future

- 110 will require a targeted emission reduction worldwide. The RCP8.5 scenario, in contrast, is consistent with large future increases in emissions, little emission mitigation, and a continued reliance on fossil fuels for many decades. In the middle, the RCP4.5 scenario requires a considerable amount of mitigation, but is very unlikely to achieve the 2-degree warming limit relative to pre-industrial conditions, which the Paris agreement targets.
- In this study we will concentrate on the warmer RCP8.5 scenario. In the analysis we will analyse three periods: 1981-2010, 2041-2070 and 2071-2100. Plots corresponding to the other scenarios can be found in the supplementary material. In general, the amplitude of regional climate change for varying scenarios scale with temperature change, while the spatial pattern is similar (see, e.g., Christensen et al., 2015b). This means that the RCP8.5 scenario will show expected patterns of climate change with a relative minimum of noise from interannual variability of the simulations. Furthermore, the largest of all three RCP ensembles is the RCP8.5 one (Table 1) and, hence, the analysis of these scenario simulations allows the best estimate of model uncertainties and internal variability.

Not all <u>EURO-CORDEX</u> simulations have been analysed for <u>extremesevery variable considered here</u>; two WRF361H simulations do not contain solar radiation; and snow and sea ice from several simulations either do not exist in the archive or have not been downloaded. Some simulations with crCLIM are missing DJF 2005-2006 due to a problem when handling the transition between historical and scenario simulations; we have repeated DJF 2004-2005 in its place. All simulations driven 125 by HadGEM2-ES are missing the year 2100; for these simulations we have used 2070-2099 as the end-of-century period.

The second BACC report from 2015 (BACC II Author Team, 2015) showed similar maps to those presented here. These results were based on the ENSEMBLES database (van der Linden and Mitchell, 2009), consisting of simulations following

the SRES (Nakićenović et al., 2000) A1B scenario performed in 25 km grid resolution. The periods compared were 1961-1990 and 2071-2100. The mean GCM global temperature change, weighted with the number of RCM simulations in the ensemble, for the EURO-CORDEX and ENSEMBLES simulations can be seen in Tab. 2. Note that the first reference periods forperiod differs between ENSEMBLES are (1961-1990) and 2071-2100, whereas they are 1981-2010, 2041-2070 and 2071-2100 for EURO-CORDEX. (1981-2010).

To a high extent, maps over the Baltic Sea catchment of climate change in the Baltic area for the weaker emission scenarios correspond toexhibit the same patterns as the RCP8.5 climate change normalized by global temperature change; maps are available in the Supplementary Material. The weighted global warming between the relevant periods for the simulations in BACC II, driven by the SRES A1B emission scenario, is 3.00 degrees.

Table 1. Model simulations of the study. These constitute the entire set of seasonal-average fields available from the Earth System Grid Federation archive (ESGF; http://esgf-data.dkrz.de) in May 2021. There are 72 ensemble members following 140 RCP8.5, 22 following RCP4.5, and 30 following RCP2.6.

I

130

Project	Scenario	Ensemble size	Mid-century warming	End-century warming
ENSEMBLES	SRES A1B	13	-	3.00
EURO-CORDEX	RCP8.5	72	2.21	3.71
EURO-CORDEX	RCP4.5	22	1.67	2.13
EURO-CORDEX	RCP2.6	30	1.22	1.19

 Table 2
 Average global warming from driving GCMs in each scenario, weighted by the number of downscaling simulations of each. The warming is presented relative to the reference period 1981-2010 for mid-century (2041-2070) and end-of-century (2071-2100) conditions.

- 145 Three different emission scenarios have been widely used for downscaling within CORDEX. The RCP2.6 scenario is the most moderate and will require a targeted emission reduction worldwide. The RCP8.5 scenario, in contrast, is consistent with large future increases in emissions, little emission mitigation, and a continued reliance on fossil fuels for many-years. In the middle, the RCP4.5 scenario requires a considerable amount of mitigation, but is very unlikely to achieve the 2-degree warming limit relative to pre-industrial conditions, which the Paris agreement targets.
- 150 In this study we will concentrate on the warmer RCP8.5 scenario. The maps below show results based on 72 regional climate change simulations from the RCP8.5 EURO-CORDEX simulations listed in Tab. 1. Corresponding plots for other scenarios and periods can be found in the Supplementary Material. For each location, the median among ensemble members of the change is shown together with the first and third quartiles. In the maps showing the median we only display grid points where 75% of models agree on the sign, i.e., where both quartile plots show the same sign, elsewhere we indicate by white 155 colour that the changes are not robust. We will discuss only winter (DJF) and summer (JJA) in this study. The scatter plots below show results for all simulations following the three commonly used scenarios (Tab. 1). Where possible we also include results from the ENSEMBLES project, which were the basis of BACC II (Christensen et al., 20152015a). In addition
 - to the average over the entire Baltic Sea catchment region including the Baltic Sea, we divide the region into sea points and land points north and south of 60N. In the Supplementary Material, Tab. S1-S20, tables of ensemble means and ensemble

160 standard deviations can be found for temperature and precipitation, for both periods, all scenarios (including the BACC II/ENSEMBLES SRES A1B scenario), and all five areas.

We will also investigate the coupled model ensemble with RCA4-NEMO. RCA4 is set up for the EURO-CORDEX domain with a horizontal resolution of ~25 km and 40 vertical levels. NEMO simulates the hydrodynamics of the Baltic Sea as well as the North Sea at ~3.7 km resolution and 56 vertical levels (Gröger et al., 2015; Dieterich et al., 2019). Air-sea fluxes are exchanged every three hours between the ocean and the atmosphere. The RCA4-NEMO ensemble consists of 22 downscaled GCM simulations based on 8 different global models as well as a reanalysis for the historical period and the RCP2.6, RCP4.5, and RCP8.5 scenarios. In addition, there is also a reanalysis-driven simulation for the historical period.

These results will be compared to the corresponding RCA4 atmosphere-only simulations at 12.5 km resolution, which can be found in the EURO-CORDEX archive. When possible, these simulations are included into the scatter plots below.

170 3. Results and discussion

3.1. Temperature

According to the analysed EURO-CORDEX ensemble, <u>we will see increasing air temperatures temperature</u> in the Baltic Sea area will increase with time during the present century. According to this ensemble it is a robust result for all seasons, locations, simulations and scenarios.

- 175 For both seasons analysed; (winter and summer), the temperature change shows spatial gradients with the strongest warming in the north-east (Figure 1). Winter warming is larger than summer warming, and larger than the global average warming of about 3.7 degrees (Tab. 2); in the north-east it approaches twice the global average warming. HigherLarger warming than the global average is generally expected for land areas, which warmsince land heats more quickly than sea areas where also enhanced evaporation tends to reduce warming (e.g. Sutton et al., 2007); it is most clearly seen in winter in the eastern part
- 180 of the area. The strong winter increase is also influenced by the feedback mechanisms involving retreating snow and sea-ice. The north-south gradient There is a general pattern of greatesthigher warming in the north than in winter is general the south, but there is a spread in the magnitude of the change. This-spread is illustrated in the columns of the figures below. As only 8 GCMs have been used for these RCP8.5 RCM experiments, the spread between quartiles iscould be lower than what would have come from an exhaustive downscaling of all CMIP5 global simulations; Kjellström et al. (2016) compared 9 GCMs.
- 185 including the 8 GCMs analysed here, to 25 other CMIP5 GCMs and found the 9-member-ensemble spread over Sweden to be comparable in summer, but smaller than that in the larger GCM ensemble in winter.

Earlier studies have shown that the strong increase in winter temperatures is most pronouncedstrongest for the coldest episodes (Kjellström 2004). This is also the case) as well as for extreme daily maximum and minimum temperatures

(Kjellström et al. 2007; Nikulin et al. 2011) with). There is a significant decrease in probabilities<u>the probability</u> of cold
 temperatures (Benestad 2011). In<u>Warm</u> summer, warm extremes are projected to become more pronounced. For<u>; for</u> example, Nikulin et al. (2011) showed<u>used an ensemble of six RCM simulations</u>, all downscaling GCMs under the SRES
 <u>AIB scenario: the data indicate</u> that warm extremes<u>, in today's elimate with a present-day</u> (1961–1990) with a 20 yr return value (defined as the temperature that will be exceeded once every period of 20 years as a statistical average), will occur<u>will</u> be reached four times as often in Scandinavia by 2071–2100, with a frequency around once every five years in Scandinavia
 by 2071–2100 according to an ensemble of six RCM simulations, all downscaling GCMs under the SRES A1B scenario...

Summer warming in the Baltic Sea basin is smaller than that in winter warming, and it is relatively homogeneous across the area. A tendency is seen for larger warming over land areas in the most northernnorthernmost parts of the Baltic Sea basin is seen. These areas are closest to the northern rim of Scandinavia and the Kola Peninsula where warming in summer is as high as that projected for parts of southernmost Europe (Kjellström et al., 2018). The highest-percentile summer warming is 200 comparatively larger than the median in the southeastIn the north-eastern part of the region. This can, a large warming may be related to the larger temperature increases further to the north in the Arctic, potentially connected with the ice-albedo and other feedback mechanisms (IPCC, 2021). The strong warming in the south-eastern part of the Baltic Sea basin is related to the large-scale pattern of warming in Europe with, where the strongest summer warming is seen in southern Europe. In the very northeast of the region there is a large warming, probably connected to the ice-albedo feedback. Similar results also 205 exist for other GCM/RCM combinations (have been reached in, e.g., Christensen and Christensen (2007;), Kjellström et al. (2011a:), and Vautard et al. (2014). A potential source of difference between GCMs and RCMs is the different treatment of aerosols in these models. Many of the RCMs do not include time-varying anthropogenic aerosols leading to weaker future warming compared to GCMs (Boé et al., 2020). The EURO-CORDEX-based results are consistent with the RCM-results for an earlier period (2021-2050) presented by in Déqué et al. (2012). They This study found that there is a significant 210 temperature response, even for the relatively short-term 2021-2050 time frame, even though the total uncertainty related to the choice of model combination (GCM/RCM) and sampling (natural variability) is large, it is still not enough to mask the temperature response, not even for the relatively short-term 2021-2050 time frame.. Similarly, Kjellström et al. (2013) showed early emergence already in the first few decades of the 21st century of trends in both winter and summer temperature despite large natural variability as represented in the ENSEMBLES RCM projections used in BACCII.

215 Corresponding changes in the daily minimum temperature and daily maximum temperature (not shown) have the same patterns as the average temperature change, with the expected larger magnitude of warming for minimum temperature. This is a direct consequence of the fact that the greenhouse effect acts by reducing outgoing long-wave radiation, which acts to cool the surface particularly when the ground is warmer than the air, e.g., during winter and during nights. A range of factors may be responsible for this decrease in difference between minum and maximum temperatures. This could involve

220 changes in the diurnal temperature range (e.g. Lindvall and Svensson, 2015) or changes in the synoptic weather variability in

combination with reduced large-scale temperature gradients between the Atlantic Ocean and the Eurasian continent (IPCC, 2021).

mid columnPanels b,e: median value; right columnPanels c,f: higher quartile. In all following figures, the mid column 225 depicting pointwise median values is only coloured when 75% of the simulations agree on the sign of the change. The Baltic Sea Catchment is indicated in yellow.

3.2 Precipitation

235

250

The multi-model EURO-CORDEX ensemble relative precipitation change for winter and summer is shown in Fig. 2. The 230 ensemble is the same as in Fig 1.

During winter, the relative increases are quite homogeneous, although there are large differences between the lower and upper quartiles. These differences are largest west of the Baltic Sea catchment (Norway) as a result of where the amount of precipitation is particularly sensitive to different changes in the large-scale circulation. For summer there is a clear northsouth gradient: the further north, the pattern of more positive the change- in the north versus less positive change in the south. As expected, therewinter increases are greater projected increases in winter to be larger than in summer. Roughly, the winter increase is 25-35% over most of the area in the median, and the summer increase is 15-25% for the northern part of the area. This is consistent with the AR5 Climate Atlas, where median increases of precipitation in the area are 10-20% for the winter half year and 5-10% for summer, as these results correspond to the RCP4.5 scenario with around 2.5 degrees of warming for the periods mapped, whereas the EuroEURO-CORDEX results correspond to a global warming of 3.8 degrees.

240 For summer there is disagreement on the sign of climate change for most of the southern half of the area, indicated by the masked-out area defined as regions where at least 25% of the models disagree on the sign with the majority. Since the period mapped here consists of the three summer months June-August, whereas the AR5 Climate Atlas maps April-September, a comparison of the position of the no-change area is difficult. In an analysis of the older ENSEMBLES simulations,- (Déqué et al.-(., 2012) foundalmost all land points in the Baltic Sea region showed significantly positive summer precipitation signals for almost all land points in the Baltic Sea catchment. 245

This general picture of change is not surprising. Climate models generally project an intensification of the global hydrological cycle to become more intense (e.g. Held and Soden 2006). On a European scale, For Europe this implies more corresponds to increasing precipitation in northern Europe and lessdecreasing precipitation in southern Europe, both in winter and summer (Christensen et al. 2007). Between these areas of projected increase and projected decrease there is a broad zone where, only small changes or changes in different directions are projected (see e.g. Kjellström et al. 2011a). This The location of the transition zone shifts withdepends on the seasonsseason and is located farther to the south in winter and to the norththan in summer. In summer, this zone shifts into the Baltic Basin, As a consequence, winter precipitation is projected to increase over the entire Baltic Sea catchment in winter, while in-summer increased-precipitation is mostly projected forto only increase in the northern half of the basin-only. In the south, precipitation is projected to change very

255 little followingis small for the ensemble mean, with<u>and there is</u> a large spread between different models including<u>with</u> both increases and decreases. Basically, both increases and decreases are possible in the future.

Figure 2. Precipitation relative change (%) between 1981-2010 and 2071-2100 for 72 simulations from Euro<u>EURO</u>-CORDEX according to the RCP8.5 scenario. <u>Top rowa-c</u>: winter; <u>bottom rowd-e</u>: summer. <u>Left columna.d</u>: lowest quartile;

mid columnb,e: median value; right columnc,f: higher quartile. In all following figures, the mid column depicting pointwise median values is only coloured when 75% of simulations agree on the sign of the change. The Baltic Sea catchment is indicated in red.

In Fig. 3 we show scatter plots, where the change between 1981-2010 and 2071-2100 of precipitation is plotted against the corresponding relative change of temperature for each model and each scenario. Ensemble means for the three scenarios are indicated by the three larger symbols. This calculation has been performed for various subsets of the Baltic Sea catchment (see Fig. 1): The entire catchmentregion; only land points; only sea points; only land points north and south of 60 degrees

265 (see Fig. 1): The entire catchmentregion; only land points; only sea points; only land points north and south of 60 degrees north, respectively.

There is a strong correlation between temperature and precipitation in winter with significant regression slopes of around 5 percentage points per degree and <u>squared</u> correlation coefficients of 0.5 to 0.6 depending on the sub-area. This is an indication of an approximate common sensitivity of precipitation change to local temperature change. This correspondence breaks down for summer, where the plots contain much more noise, indicating large model-dependent influences on the

270 breaks down for summer, where the plots contain much more noise, indicating large model-dependent influences on the precipitation signal. The north-south gradient in summer precipitation change is apparent in the model averages (compare the northern and southern land point plots), but there is a largethe inter-model spread is large.

Due to the roughly 20% higher average global warming in the current RCP8.5 ensemble than in the GCMs underlying BACC II (see Tab. 2), we would have expected general climate change to be around 20% larger for EURO-CORDEX RCP8.5 than those presented in BACC II. It is noteworthy that this difference is not generally seen in Fig. 3, where we have plotted temperature and precipitation change for the BACC II simulations (BACC II Author Team, 2015)) simulations) along with the three scenarios of the present analysis. The BACC II results correspond to the RCP8.5 results both with respect to temperature and precipitation change— apart from land areas in summer where the BACC II change is only about 80% of the RCP8.5 result (+6.5% vs. +8.2%).

I

Figure 3 Relative change 1981-2010 to 2071-2100 of precipitation against temperature change for individual models and all
 scenarios. Scenario means are indicated by larger <u>black</u>_symbols. <u>SquaresBlue squares</u>: RCP2.6; <u>TrianglesPink triangles</u>:
 RCP4.5; <u>DiamondsRed diamonds</u>: RCP8.5; <u>CrossesGreen crosses</u>: The ENSEMBLES simulations analysed in BACC II (2015). <u>Purple-colourPlus signs in colours corresponding to the scenario</u>: The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment: The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First four panels <u>Panels a-d</u> show winter; the following four panels <u>e-h</u> show
 summer. The lines, with quoted slope and squared correlation coefficient, are best fits to all EURO-CORDEX and ENSEMBLES data, but do not include coupled-model results.

In Christensen et al. (2019) a thorough comparison of change patterns of mean temperature and precipitation has been performed for the PRUDENCE simulations behind the first BACC report (BACC Author Team, 2008), the ENSEMBLES simulations behind the second report (BACC II Author Team, 2015), and the EURO-CORDEX data behind the present report. This analysis used patterns of change scaled with global temperature change and is therefore useful for pinpointing differences between the BACC reports extraneous to the variations of general scenario strength, i.e., differences in local sensitivity and/or change patterns apart from those due to differences in emission scenarios. The most important differences

between BACC II and the current simulations are a slightly reduced winter warming per unit of global warming in EURO-CORDEX compared to BACC II; a smaller wintertime precipitation increase, but a slightly larger increase of summer precipitation over the Baltic Sea. These conclusions do not contradict the results from Fig. 3, since a scaling with global warming would increase both local precipitation and local temperature changes for the BACC II ENSEMBLES results relative to RCP8.5.

3.3 Extreme precipitation

- As the The water-holding capacity of the atmosphere increases under a warmer elimate, with increasing temperature, Therefore precipitation extremes are also-projected to increase with climate warming (e.g. Lenderink and van Meijgaard 2010). Several studies, some of which are described in the following, indicate that extreme precipitation is likely to increase in the future, even in areas and seasons, where the average precipitation does not increase. One example is the IPCC Special Report on Extreme events (Seneviratne et al., 2012) where it was shown that higher extremes of precipitation consistently show larger increases than lower extremes, and higher increases than averages.
- 310 Building on-Already simulations from the PRUDENCE project,- (Christensen and Christensen-(, 2003)-reported that even projections showing a considerable decrease in average summer precipitation in large parts of southern Europe also-<u>at the</u> same time showed an increased likelihoodprobability of very extreme precipitation in that area as well as in the north, where average precipitation was not projected to decrease. <u>MoreQuite generally, more</u> intense precipitation can be expected on <u>all</u> time scales-ranging, from single rain showers to <u>long-lasting</u> synoptic-scale precipitation.
- 315 As an example of changes in daily precipitation, Nikulin et al. (2011) investigated an ensemble of RCM simulations following the SRES A1B scenario with the RCA model-and; they showed that the 20-yryear return value of precipitation extremes in Scandinavia in the period 1961–1990 period was projected to decrease to 6–10 years in 2071–2100 for summer over northern Europe and to 2-4 years in winter in Scandinavia for the SRES A1B scenario. Similarly, Larsen et al. (2009) analysed a high-resolution RCM integration and reported that the return period for 20-yryear rainfall events on a 1-hour 320 basisat hourly duration decreased to about 4 years overfor Sweden-based on a high-resolution RCM integration.

Collected results from 90 of the models from the EuroEURO-CORDEX project are illustrated in Fig. 4, along with results from the coupled models discussed below. For data availability reasons at the time of writing, not all simulations have been analysed for extreme precipitation. The change in-We will here use the 10-year return value as representative of extreme precipitation. This is shown with 10-yr return values (the defined as the daily precipitation amount, which is so large that it will be only exceeded only once every 10 years on average). The model-median signal ishas a consistently positive sign across the domain for the areas where more than 75% of the model results have the same sign. The increaseThe temperature dependence of the increases in the Baltic Sea basin is roughly similar for both(slopes in Fig. 4) are generally larger in summer andthan in winter, but the with the southern land points as an exception, the same area where the average

precipitation (Figs 2-3) decreases. The inter-model spread is considerably larger in summer, corresponding to than in winter, 330 illustrating the greater influence of local processes in this season; it should be noted that the increase in the number of models analysed, compared to Christensen and Kjellström (2018) from 19 to 90 results in a considerably more robust positive signal in the summer 10-year return value.

It is apparent that the<u>The</u> relative change of the extreme precipitation in winter (Fig. 4 upper panel) looks very much likepanels) are quite similar to the relative change in average precipitation (Fig. 2), indicating no change in the shape of the intensity distribution function. The situation is different for<u>For</u> summer, where<u>however</u>, the projected change in extreme precipitation is consistently more positive than the change in average precipitation. While the temperature sensitivity (slopes in Figs 3 and 4) for winter average precipitation and winter extreme precipitation are almost identical, the sensitivity of extremes in summer is larger than for winter, while it is insignificant for the average precipitation in summer. This feature is, however, less apparent in the <u>EuroEURO</u>-CORDEX results than in the PRUDENCE results of BACC (BACC Author Team, 2008) and the ENSEMBLES results described in BACC II (BACC II Author Team, 2015). It is not clear if this difference is due to the fact that the RCMs are run at different horizontal resolutions in the three projects (i.e. 50, 25 and 12.5 km_a respectively) or if it is a consequence of different model formulations <u>in the projects</u>, or <u>onof</u> the large-scale climate change signal as imposed by the underlying GCMs that also differs between the experiments.

Recently, several research institutes have started employing convection permitting regional models (CPMs). Such models are able to run in much higher resolution, since they avoid the possible double counting, where traditional hydrostatic RCMs with fully parameterized convective precipitation release may produce convective precipitation explicitly as well as parameterized. <u>CPMs avoid this possible double counting at high resolution</u>. With CPMs grid distances below the "grey zone" of 3-5 km are possible. In Lind et al. (2020) results are presented with the CPM HARMONIE-Climate (HCLIM),

produced in a common Nordic model collaboration (NorCP) with participation from Sweden, Norway, Denmark, and

- 350 Finland. Comparing a CPM version of HCLIM in 3 km resolution with a non-CPM version in 12 km, it was concluded that the high-resolution model showed better results for precipitation intensity distribution, including extreme precipitation at sub-daily time scales, for the summer precipitation diurnal cycle, and for snow in mountains. Such better agreement now shown for the Nordic region, have previously been shown for other regions in Europe and elsewhere (e.g. Kendon et al. (2012), Lind et al. (2016), Gao et al. (2020)).
- 355 Based on convection-permitting models, it has been argued that changes in precipitation extremes of a shorter duration may exceedbe larger than those for longer time scales (e.g. Kendon et al. (2014), Lenderink and van Meijgaard (2010)). However, other results indicate (Ban et al., 2014) that convection-permitting models may give roughly the same increase also for shorter durations, consistent with the Clausius-Clapeyron scaling of around 6-7% per degree of warming. In a study of idealized warming experiments repeating present-day observed weather under warmer and moisturemoister conditions with

360 the HCLIM model, Lenderink et al (2019) showed that there is a strong dependence on moisture availability to the increase

in the precipitation extremes - is strongly dependent on moisture availability.

18

I

19

I

365

In Christensen et al. (2019) a thorough comparison of change patterns of mean temperature and precipitation has been performed for the PRUDENCE simulations behind the first BACC report (BACC Author Team, 2008), the ENSEMBLES simulations behind the second report (BACC II Author Team, 2015), and the EURO-CORDEX data behind the present report. This analysis used patterns of change scaled with global temperature change and is therefore useful for pinpointing 370 differences between the BACC reports extraneous to the variations of general scenario strength, i.e., differences in local sensitivity and/or change patterns apart from those due to differences in emission scenarios. The most important differences between BACC II and the current simulations are a slightly reduced winter warming per unit of global warming; a smaller wintertime precipitation increase, but a slightly larger increase of summer precipitation over the Baltic Sea. These conclusions do not contradict the results from Fig. 3, since a scaling with global warming would increase both local precipitation and local temperature changes for the BACC II ENSEMBLES results relative to RCP8.5.

375

Figure 4 Relative change 1981-2010 to 2071-2100 of the 10-year return value of daily precipitation against temperature change for individual models and all scenarios. Scenario means are indicated by larger <u>black</u> symbols. SquaresBlue squares: RCP2.6; TrianglesPink triangles: RCP4.5; DiamondsRed diamonds: RCP8.5. Purple colour; Green crosses: The

 ENSEMBLES simulations analysed in BACC II (2015). Plus signs in colours corresponding to the scenario: The RCA4

 380
 NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment: The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First four panels <u>Panels a-d</u> show winter; the following four panels <u>e-h</u> show summer. The lines, with quoted slope and squared correlation coefficient, are best fits to all EURO-CORDEX and ENSEMBLES data, but do not include coupled-model results.

3.4 Wind speed

385 Changes in the <u>climatology of 10-metre</u> wind <u>climate arespeed is</u> even more uncertain than <u>it</u> is the case for the precipitation climate, both for seasonal mean conditions and for extremes on shorter time scales (e.g. Kjellström et al. 2011a; Kjellström et al. 2018; Nikulin et al. 2011).

In a study by Donat et al. (2011) investigated mid-century as well as end-of-century changes in the annual 98th percentile daily maximum wind speed change in 14 ENSEMBLES RCM simulations from the ENSEMBLES project were analysed,

for 2021-2050 and 11 models for 2070-2099 of which nine are part of the 13 member ensemble employed formiddle of the present analyses, century as well as the end of the century. The ensemble average, like the driving GCMs, showed a tendency to increase increased in a beltregion from the British Isles to the Baltic Sea, and a tendency to reducedecreased in the Mediterranean area. Nikulin et al. (2011), based on an ensemble of one RCM downscaling six different GCMs under the A1B scenario, 2 found increasing wind speed expressed as extremes (20-year return periods of annual maximum 10-metre wind speed) over the Baltic Sea in five out of six simulations, based on an ensemble of one RCM downscaling six different GCMs under the A1B scenario.

In BACC II (BACC II Author Team, 2015), an analysis of 13 ENSEMBLES simulations showed a very slight and small insignificant median increase in the southern part of the Baltic Sea area; the signal is consistent with the findings by Donat et al. (2011), but with a large spread between models.

400 Figure 5 showshow average changes over the Baltic Sea for the 72 EuroEURO-CORDEX RCP8.5 simulations, the 22 RCP4.5 simulations, and the 30 RCP2.6 simulations, which are used (Tab. 4)-1) In Figs S13-S18 we show median and quartile maps for summer and winter for each of the three RCP scenarios. There is very little agreement between the models about even the direction of change for winter in the Baltic Sea area unlike the tendency for reduced average wind speed outside of the study area over the North Atlantic (not shown). Over the northernmost parts of the Baltic Sea basin, the Bothnian Bay, there is an indication of larger wind speed increase (or less decrease) over the sea than over surrounding land areas. This feature has previously been pointed out by Kjellström et al. (2011a), Meier et al. (2011) and Tobin et al (2016) and has been related to decreases in sea-ice in the future warmer climate leading to consequent changes in stability conditions of the lower atmosphere. See also the comparison between regional coupled and uncoupled simulations in Fig. 1512 where the, probably more consistent, treatment of ice-albedo feedback leads to a slightly larger increase in winter. As

410 seen in Fig. 5 panel 2, the slight increase in mean wind over the southern part of the Baltic Sea in BACC II is not projected in the current simulations.

Summer results show consistent but small reductions of wind over land of about 2-6%. Again, in summer, there are differences between land and ocean areas with generally larger increases, or smaller decreases, over the Baltic Sea than its surrounding land areas.

 Figure 5 Relative change 1981-2010 to 2071-2100 of 10m wind speed against temperature change for individual models and

 420
 all scenarios. Scenario means are indicated by larger black symbols. SquaresBlue squares: RCP2.6; TrianglesPink triangles:

 RCP4.5; DiamondsRed diamonds: RCP8.5. Crosses; Green crosses: The ENSEMBLES simulations analysed in BACC II

 (BACC II Author Team, 2015). Purple colourPlus signs in colours corresponding to the scenario: The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment: The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First-four-panels-Panels a-d_show winter; the following four-panels e-h show summer. The lines, with quoted slope and squared correlation coefficient, are best fits to all EURO-CORDEX and ENSEMBLES data, but do not include coupled-model results.

The relative change in extreme wind speed is shown in Fig. 6 as the relative change of the 10-year return value of daily maximum wind speed for 81 of the Euro<u>EURO</u>-CORDEX <u>RCP-based</u> and the <u>BACC II SRES-based</u> simulations considered. Basically nowhere do more than 75% of the models agree on, as well as for the sign of the pointwise change. It<u>coupled</u> <u>RCA4-NEMO</u> simulations. The correlation between temperature and extreme wind is noteworthy that the interquartile spread is much smaller than in Christensen and Kjellström (2018); thisquite small, which indicates that the models agree that there is no significant signal, and not just that there are too few models present to overcome natural variability.

24

I

 Figure 6 Relative change 1981-2010 to 2071-2100 of the 10-year return value of 10 m daily maximum wind speed against

 temperature change for individual models and all scenarios. Scenario means are indicated by larger black symbols.

 SquaresBlue squares: RCP2.6; TrianglesPink triangles: RCP4.5; DiamondsRed diamonds: RCP8.5, Purple colour; Green

 crosses: The ENSEMBLES simulations analysed in BACC II (2015). Plus signs in colours corresponding to the scenario:

 The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment: The

 entire catchment; sea points; land points north and south of 60 degrees north, respectively. First four panels-Panels a-d show

 winter; the following four panels e-h show summer. The lines, with quoted slope and squared correlation coefficient, are best

 fits to all EURO-CORDEX and ENSEMBLES data, but do not include coupled-model results.

445 **3.5 Solar irradiation**

In Fig. 7 we study the change in incoming solar radiation in the ensemble, where the pointwise two quartiles and the median are shown.² In winter, most of the area shows a considerable relative reduction of the order of 10%. This is attributed<u>has</u> been proposed to be linked to the more extensive cloud cover (not shown)<u>in northern Europe</u> in most models<u>EURO-CORDEX RCMs</u> for the future. <u>(Coppola et al., 2021)</u>. It should be noted (Bartók et al., 2017) that global and regional

450 models frequently disagree considerably about the change in incoming radiation in a changing climate, with global models having a more positive trend; this discrepancy is connected to different projections of cloud cover, with GCMs frequently projecting a decrease, while RCMs frequently showshow no significant change. Also<u>We repeat here that the</u> different treatment of aerosols in GCMs and RCMs play a role as many of the RCMs do not include time-varying anthropogenic aerosols leading to weaker future warming compared to GCMs (Boé et al., 2020as in GCMs (Boé et al., 2020). It has also

26

T

⁴⁵⁵ been suggested that reduced snow cover (see Ch. 3.6 below) could contribute to attenuate gross downward solar radiation flux as the reduced surface albedo reduces multiple reflection between the surface and the clouds (Ruosteenoja and Räisänen, 2013).

Figure 7. Average incoming surface solar radiation relative change between 1981-2010 and 2071-2100 for 70 simulations
 from EuroEURO-CORDEX according to the RCP8.5 scenario. Top-rowPanels a-c: Winter; bottom rowpanels d-f: Summer.
 Left columnPanels a.d: lowest quartile; mid-columnpanels b.e: median value; right columnpanels c.f: higher quartile. For the medians, only points where 75% of models agree on the sign are shown. The Baltic Sea catchment is indicated in white.

3.6 Snow and sea ice

465

Rising temperatures are Future snow cover is expected to lead to decreased snow cover, as decrease with climate warming, both because more precipitation is projected to fall as rain, and because snow melt accelerates. As an indicator of less cold conditions, Coppola et al. (2021) show that the number of frost days decrease by more than two months in large parts of the Baltic Sea basin comparing a set of EURO-CORDEX RCMs under RCP8.5 for 2071-2100 with 1981-2010. Simultaneously, there is an increase in winter precipitation in Scandinavia, which may partly compensate for these effects. Data

Räisänen and Eklund (2011) analysed data from RCM simulations from the ENSEMBLES project-were analysed by 470 Räisänen and Eklund (2011) who concluded that. The study found a decrease of snow volume will decrease across all of Europe in the future, even though with the only exception that the Scandinavian mountain areas may experience a slight and statistically insignificant increase. Such anRäisänen (2021) found a widespread future decrease in northern Europe for snow water equivalents also for a set of EURO-CORDEX RCMs. It was shown that a smaller snowfall fraction together with larger reduction of snow on ground more than compensated for increasing precipitation as seen in several of the RCMs. In 475 relative numbers the decrease was found to be larger in southern warmer parts of Scandinavia while changes in absolute numbers are larger in the north. Similarly, the results were ambiguous for the most high-altitude parts of the Scandinavian mountains where some models indicate increasing snow water and others a decrease. A potential increase in the latter region was also proposed by Schuler et al. (2006) in a detailed study for Norway based on two RCM scenarios forcedsimulations with different GCMsGCM drivers. The authors also pointed outstudy concluded that in extreme years, the maximum amount 480 of snow in extreme years could be greater than in extreme years of the recent past, even if the in spite of decreasing average snow amount-is-reduced on average.

Winter snow cover is one of the most drastically changed climatological quantities (Fig. 8). There is agreement between models about a reduction of average winter-time snow amount of around 50% on average for land grid points north of 60°N for the RCP8.5 scenario, and almost 80% reduction for land grid points south of this latitude. Northern grid points probably 485 have a lower reduction due to the generally colder climate and smaller amount of solar radiation. In addition, there is a significant amount of mountain grid points, where the warming temperature does not reach the freezing point as frequently as in lower-lying regions even if the frequency is increasing in a warmer climate (Nilsen et al. 2021). The reduction in snow amount is slightly larger than in BACC II (BACC II Author Team, 2015). This is), consistent both with the fact that the RCP8.5 scenario on average projects larger warming than the SRES A1B scenario used in BACC II and that the precipitation increase is smaller in the RCP8.5 scenario than in SRES A1B, at least north of 60°N (cf. Fig. -3c).

490

It is only in high-altitude parts of central and northern Scandinavia that changes are limited with relatively large amounts of snow also in the future. At high altitude, the increase of winter precipitation may be compensating for the increase in melting with higher temperature. Also the fact that increasing temperatures may not reach the melting point is significant-; see, e.g.,

Gröger et al. (2021a) Fig. 12b. However, also in these high-altitude regions, the warmer future climate results in a shorter
 snow season with accumulation starting later and spring melt starting earlier that acts to reduce the total amount of snow (Räisänen, 2021).

Sea ice cover is not a product of the RCM, but rather an input originating from the driving GCM. We will show the changes in interpolated sea ice field for the RCP8.5 scenario in Fig. 9, as these changes are large, and are decisive for the change in climate between the periods. In order to compare to a more consistent description of sea ice we also show in Fig. 10 the corresponding figures for the 8-member RCA4-NEMO coupled regional simulations. The main difference is that the present-day simulations with the coupled model have some extent of coastal sea ice in the southern Baltic Sea, which is disappearing

1

505 Figure 8 Relative change 1981-2010 to 2071-2100 of average winter (DJF) snow amount (kg/m²) against temperature change for 84 individual model simulations from all scenarios. Scenario means are indicated by larger symbols. Squares: RCP2.6; Triangles: RCP4.5; Diamonds: RCP8.5. Purple colour: The RCA4-NEMO atmosphere-ocean coupled simulations.

Calculation performed for subsets of land points in the Baltic Catchment: The entire catchment; land points north and south of 60 degrees north, respectively. The lines, with quoted slope and squared correlation coefficient are best fits to all EURO CORDEX data, but do not include coupled-model results.

30

I

Figure 9. Panels a-c: Average winter sea ice cover relative change between 1981-2010 and 2071-2100 for the -simulations from EuroEURO-CORDEX according to the RCP8.5 scenario driven by the GCMs where RCA4-NEMO simulations exist. These values have been interpolated before the RCM simulations from the driving coupled GCM; note that several simulations have sea ice in the Baltic Sea in the present-day period, but not in the Bothnian Bay-of Bothnia. For comparison, in the lower rowpanels d-f we also show the corresponding fields from the corresponding five coupled RCA4-NEMO

RCA

RCM4-NEMO

simulations where sea ice cover is calculated inside the regional model. Left column: lowest quartile; mid column: median value; right column: higher quartile. For the medians, only points where 75% of models agree on the sign are shown.

4. Effects of model coupling

525

530

Here, we take a more detailed look at RCM simulations driven by the five driving GCMs, which have been downscaled both
 by the standalone atmosphere RCA4 in the 12 km EURO-CORDEX ensemble and by the 24 km RCA4-NEMO coupled model version. (all coloured squares in Tab. 1 for the RCM RCA4)..

For near-surface air temperature (Fig. 10) the large-scale anomaly pattern is fairly coherent in the two ensembles but differences are found over the northern Baltic Sea where the coupled model shows a systematically stronger winter warming than the uncoupled model. Over land the coupled model displays systematically lower warming. By contrast, during summer the coupled model shows a weaker warming over the entire Baltic Sea than the while land temperatures increase more than in RCA standalone.

Due to its higher effective heat capacity, the Baltic Sea acts as a thermal buffer, which dampens the seasonal amplitude compared to the surrounding land areas. As a result, the Baltic Sea is warmer than the overlying atmosphere during winter and releases heat to the atmosphere. Hence, in regions not covered by sea ice, the SST significantly influences the sea to air heat flux. Consequently, in the uncoupled model the prescribed SSTs from the driving AOGCM serve as a restoring term for the air temperature. By contrast, in the coupled model SSTs are simultaneously modelled by the ocean model and so the air

the air temperature. By contrast, in the coupled model SS is are simultaneously modelled by the ocean model and so the air to sea heat transfer acts to cool SSTs until a new equilibrium would be reached. Despite these different dynamics in thermal coupling, over the southern Baltic Sea the solution of the two models is quite similar compared to the northern Baltic (Fig. 10). This is probably due to the fact that air temperature anomalies generated locally over the open sea disperse rapidly in the satisfies atmosphere.

In the northern Baltic Sea, the reduction of sea ice has to be considered. In the future climate, areas which today are isolatedcovered by sea ice will get more tightly thermally coupled to the water body of the Baltic Sea-(Dutheil et al., 2022). As shown by Gröger et al. (2015, 2020a, 2021b) the ocean-to-atmosphere heat transfer is largely affected by small-scale vertical mixing in the layered ocean because wind induced mixing transports warm waters from deeper water layers to the surface. These small--scale processes are most likely not well represented in the prescribed SST from the driving global ocean GCM. Furthermore, changes in the mean and turbulent wind stress due to local climate change in RCA have no impact on wind induced mixing in the ocean in the RCA standalone simulations. This further influences the local sea ice cover and thus may explain the stronger warming over the northerm Baltic Sea in the coupled model compared to the uncoupled version of RCA-, which according to Fig. 9 generally starts out with less sea ice in the present-day period and therefore experiences

⁵⁴⁵ less sea ice loss. In the atmosphere, a stronger thermal coupling to the water body changes not only near-surface

temperatures but also modifies atmospheric stability and thereby mixing of heat, moisture and momentum with potential impacts on temperature, precipitation and winds.

550

During summer when the Baltic Sea takes up heat from the atmosphere, the air - sea heat exchange is greatly influenced by the water bodies' thermocline layer which is in the order between 10 to 30 meter thicknessthick (e.g. Gröger et al., 2019). Thermocline dynamics is likely much more realistically represented when explicitly modelled by a coupled high-resolution ocean RCM rather than reflected in prescribed SST taken from a global GCM of coarse resolution. and only few vertical layers (Gröger et al., 2015). precipitation (Fig. 11) displays a fairly coherent change signal for the coupled and uncoupled RCA projections. The only noteworthy exception is the topographically elevated area along the Norwegian coast which in RCA standalone exhibits slight increases of up to 5% for the 25th for the lower quartile. In contrast to this, for the RCA coupled version the change is in the opposite direction and shows locally up to 15 % less precipitation. However, since in 555 this area precipitation is strongly affected by orography the differences are likely related to the differences in resolution (12 km vs. 24 km). During summer, the coupled model exhibits a more intense decrease of lower quantile precipitation in the south and the increase in the north is less well pronounced compared to RCA standalone. This pattern translates into less coherent signals for the median precipitation which points to a larger spread among ensemble members far into North

560 Scandinavia (Fig. 11, middle).

> Winter precipitation (Fig. 11) displays a fairly coherent spatial pattern of change for the coupled and uncoupled RCA projections. However, the coupled model simulates systematically lower increases in precipitation than the uncoupled model. This is seen for both winter and summer. The differences are most prominent over western Scandinavia and the Bothnian Sea especially during summer.

- 565 A prominent feature of winter wind speed changes (Figure 12) is the strong decreases along the Norwegian coast seen in all three quartiles in the coupled RCA model. This is also notable but less pronounced in the uncoupled runs. However, in those regions with steep topographic gradients the differencedifferences can be likely attributed to the differing grid resolutions though coupling effects cannot be excluded. For most other land regions winds are slightly weakened in the lower and slightly strengthened in the higher quartile and a consequently high uncertainty is seen for median winds. (not shown). This is probably an effect of the different resolution of the two ensembles. 570
 - A noteworthy difference between coupled and uncoupled simulations during winter is the stronger intensification for all three quartileincrease in wind speeds over the northern Baltic Sea region, especially over theBothnian Bay of Bothnia. This points to local coupled feedback processes probably related to the vanishing sea ice, higher sea-surface temperatures and altered atmospheric static stability. A larger decrease in sea-ice and a stronger coupling between the atmosphere and the water body leads to a stronger heat flux to the atmosphere and thereby reduced vertical stability. This, in turn, leads to a

more efficient downward mixing of momentum in the lower atmosphere and consequently higher wind speed close to the sea surface.

Summer changes in wind speed are highly coherent between the coupled and uncoupled simulations. Moderate differences, however, occur over the Baltic Sea where the lower quartile decrease is more pronounced in the coupled model. The higher quartile shows wide areas of wind speed increases in the uncoupled version while in the coupled model changes are very low (< 2m/s). The latter differences might be explained by the smaller SST increase in the coupled compared to the uncoupled simulations indicating less destabilization of the near surface PBL. This difference in stratification would act to reduce wind speed changes, contrary to the winter situation.

The changes between future and present climate conditions in solar irradiation (Figs. 15 and 16Fig. 13) are closely linked to changes in cloud cover. Both RCA versions simulate a generally less pronounced reduction in solar radiation during winter than the average reduction seen in the entire EURO-CORDEX ensemble (Fig. 7). Strongest reductions are found over the Bothnian SeaBay in winter where vanishing sea ice exposes open water to the atmosphere formerly isolated by sea ice. In both models, the reduction in solar radiation is more obvious in the lower quartile and median irradiance as the higher quartile generally reflects more low-cloud or even cloud free conditions already during the historical climate. Compared to the coupled version, the uncoupled RCA reveals a stronger reduction, in particular over the Bothnian Bay for days with an irradiance lower than the median while the opposite is found for the higher quartile Sea (Fig. 1513).

To fully understand the different responses, detailed process analysis including the respective ocean dynamics would be necessary to draw general conclusions. In addition, the here described systematic coupled vs. uncoupled differences may be specific with regard to the employed RCA regional atmosphere model and the coupled NEMO ocean RCM. Also, the atmospheric part of the model, RCA, is run with different resolution in the coupled and uncoupled simulations, which may have an impact on the results. Hence, the here found systematic differences should be tested in coordinated experiments including also with other coupled and uncoupled systems.

Finally, we note that the coupling area comprising the North Sea and Baltic Sea only is relatively small compared to entire **Euro-Cordex<u>EURO-CORDEX</u>** domain and there is indication that coupling effects may be more important if other seas, such as the Mediterranean or the NE Atlantic, are included (e.g. Kelemen et al., 2019, Primo et al., 2019; Akhtar et al., 2019; Gröger et al., 2021b). The potential of different coupling techniques to influence the response of atmospheric large-scale circulation to climate change has been found to be most important during the winter season.

1

T DJF RCP8.5 end-c Lower quartile

is.

5.0 i.

T DJF RCP8.5 end-c Upper quartile

T JJA RCP8 5 end-c Lower quartile

T JJA RCP8.5 end-c Lower quartile

Figure 10. Temperature change between 1981-2010 and 2071-2100 for 5 atmosphere-only RCA4 simulations from Euro<u>EURO</u>-CORDEX according to the RCP8.5 scenario (<u>left column</u>) and for the coupled single-model RCA4-NEMO ensemble with the same driving GCMs. By row: Euro-CORDEX winter; RCA4-NEMO winter; Euro-CORDEX summer; RCA4-NEMO summer. Left column: lowest quartile; mid column: median value; right column: higher quartile. The _middle column depicting); pointwise median values is_ only coloured when 75% of simulations agree on the sign of the change. Difference between the two (right column; coupled minus uncoupled; degrees). Top row: Winter; bottom row: Summer.

T

Precip DJF RCP8.5 end-c Median

recip DJF RCP8.5 end-c Lower quartile

T

Precip DJF RCP8.5 end-c Upper quartile

13

38

T

reop JJA RCP8 5 end-c Lower quartile

Precip JJA RCP8.5 end-c Median

Precip JJA RCP8.5 end-c Upper quartile

Figure 11. Precipitation relative change (%) between 1981-2010 and 2071-2100 for 5 atmosphere-only RCA4 simulations from Euro<u>EURO</u>-CORDEX according to the RCP8.5 scenario (<u>left column</u>) and for the coupled single-model RCA4-NEMO ensemble with the same driving GCMs. By row: Euro-CORDEX winter; RCA4-NEMO winter; Euro-CORDEX summer; RCA4-NEMO summer. Left column: lowest quartile; mid column: median value; right column: higher quartile. The mid column depicting (<u>right column</u>); pointwise median values is only coloured when 75% of simulations agree on the sign of the change. Difference between the two (right column; coupled minus uncoupled; percentage points). Top row: Winter; bottom row; Summer.

41

uncoupled higher-resolution simulations exist. Model pairs are connected with lines. Scenario means are indicated by larger symbols. Squares: RCP2.6; Triangles: RCP4.5; Diamonds: RCP8.5. Pale colours: The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment: The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First 4 panels show winter; the following 4 panels show summer.

ian 10m wind DJF RCP8.5 end-c Me

15

an 10m wind DJF RCP6.5 end-c Up

10m wind DJF RCP8.5 end-c Lo

T

and shares

43

10m wind JJA RCP8.5 end-c Lower qu** tan 10m wind JJA RCP8.5 end-c Media* sen 10m wind JJA RCP8.5 end-c Uppe

44

Figure 12, Average wind speed relative change (%) between 1981-2010 and 2071-2100 for 5 atmosphere-only RCA4 simulations from Euro<u>EURO</u>-CORDEX according to the RCP8.5 scenario (left column) and for the coupled single-model RCA4-NEMO ensemble with the same driving GCMs. By row: Euro-CORDEX winter; RCA4-NEMO winter; Euro-CORDEX summer; RCA4-NEMO summer. Left column: lowest quartile; mid column: median value; right column: higher quartile. The mid column depicting (right column); pointwise median values is_a only coloured when 75% of simulations agree on the sign of the change. Difference between the two (right column; coupled minus uncoupled; percentage points). Top row: Winter; bottom row: Summer.

both coupled and uncoupled higher-resolution simulations exist. Model pairs are connected with lines. Scenario means are indicated by larger symbols. Squares: RCP2.6; Triangles: RCP4.5; Diamonds: RCP8.5. Pale colours: The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment; The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First four panels show winter; the following four panels show summer.

ming SW DJF RCP8.5 end-c Lower quertonning SW DJF RCP8.5 end-c Median coming SW DJF RCP8.5 end-c Upper querti-

ming SW JJA RCP8.5 end-c Lower quartcoming SW JJA RCP8.5 end-c Median ____ coming SW JJA RCP8.5 end-c Upper quart

655

5 Figure 13. Average incoming solar radiation relative change (%) between 1981-2010 and 2071-2100 for 5 atmosphere-only RCA4 simulations from EuroEURO-CORDEX according to the RCP8.5 scenario (left column) and for the coupled singlemodel RCA4-NEMO ensemble with the same driving GCMs. By row: Euro CORDEX winter; RCA4-NEMO winter; Euro-CORDEX summer; RCA4-NEMO summer. Left column: lowest quartile; mid column: median value; right column: higher quartile, The mid-column depicting (right column); pointwise median values-is, only coloured when 75% of simulations agree on the sign of the change. Difference between the two (right column; coupled minus uncoupled; percentage points). Top row: Winter; bottom row: Summer.

665

I

Figure 16 Relative change 1981-2010 to 2071-2100 of the incoming solar radiation against temperature change for the models where both coupled and uncoupled higher resolution simulations exist. Model pairs are connected with lines. Scenario means are indicated by larger symbols. Squares: RCP2.6; Triangles: RCP4.5; Diamonds: RCP8.5. Pale colours: The RCA4-NEMO atmosphere-ocean coupled simulations. Calculation performed for subsets of the Baltic Catchment; The entire catchment; sea points; land points north and south of 60 degrees north, respectively. First four panels show winter; the following four panels show summer.

3 Conclusions

Since the previous BACC reports from 2008 and 2015, a very large amount of high-resolution regional climate model simulations have been performed over Europe, mostly downscaling global simulations from CMIP5. We have presented
675 ensemble model results here, and we have compared the climate change results to those of BACC II (BACC II Author Team, 2015). The regional climate model simulations of BACC II were using a different emission scenario (SRES A1B) and a different set of GCMs than the currently used RCP scenarios from CMIP5. We have therefore chosen to compare the results as a function of local temperature change.

The results, illustrated for seasonal-mean precipitation (Fig. 3) and wind speed (Fig. 5), do not indicate any significant change in the relation of these fields to local temperature change since BACC II. However, the much larger ensemble of scenario simulations allows for a more reliable assessment of future climate change compared to earlier studies. This is illustrated in the figures showing how the increase in the number of simulations, particularly the many more global models considered, has given much more credibility torobust estimates of robustness-and-uncertainty. This is the case both for local climate sensitivity, as illustrated by the different temperature change values for downscaling of each individual emission scenario, and for the inter-variable relations as illustrated with the general scatter of the points. Also, the addition of several emission scenarios enables a better foundation for estimating effects of e.g. emission mitigation.

The local <u>winter</u> temperature increases of current RCP8.5 simulations are close to the A1B results of BACC II, in spite of the stronger average global warming in the underlying RCP8.5 GCM ensemble compared to that in the A1B GCM ensemble.
 TheAccording to the two suites of GCMs, the difference in global mean by the end of the century is 0.7K, i.e. about 25%.
 TheFor summer, the differences are larger and it cannot be generally concluded whether or not the regional sensitivity to global climate change is therefore somewhat smaller thandifferent from what it was in BACC II_{-r}, or whether this is just caused by the concrete selections of models included in the two model suites

The expected anthropogenic climate change for the Baltic Sea area is corroborated by the present results: Temperature will increase, in step with global warming, and with a north-south gradient. In the northern part of the area in winter, the warming
 approaches twice the average global warming.

Precipitation increases over the entire area in winter, somewhat less in summer in the northern part of the domain, and it does not change significantly in summer in the southern part. Extreme precipitation, here the 10-year return value, increases systematically, particularly in summer, in the entire domain, with some simulations showing more than 50% increase.

The large ensemble of simulations does not indicate <u>a_significant</u> change in wind speed. However, individual model simulations show strong<u>distinct</u> differences. Consequently, there is a <u>stronglarge</u> uncertainty related to future wind speed change in the area.

Solar irradiation at the surface is not projected to change in summer, but the RCM simulations show some decrease in winter connected to more extensive cloud cover <u>and potentially also less snow</u> in the future. There is, however, a large uncertainty related to this, since many GCMs show the opposite sign of the trend.

705 Snow cover, measured as the average amount of snow on the ground in winter (DJF), is reduced drastically, particularly in the south of the Baltic Sea Catchmentcatchment area, where the relative decrease is close to 80%. With respect to coupled vs. uncoupled models, we find a stronger warming in the coupled model during winter which is most pronounced in areas that today are seasonally affected by sea ice. During summer the coupled model shows weaker warming compared to the uncoupled model. The comparison between coupled and uncoupled versions of a small subset of projections

710 with the RCA4 and RCA4-NEMO models generally confirms results of by Gröger et al. (2021b) who found coupling effects for <u>changes in most climate indices changes</u> most <u>importantclearly</u> over the interactively coupled-flat open sea area. Notable differences outside the coupled region occur over regions of topographically elevated terrain suggesting further significant uncertainty due to<u>likely as an artefact of different</u> model resolution.

Declarations

715 Funding

This study has been partly funded by the Copernicus Climate Change Service. ECMWF implements this Service on behalf of the European Commission. Part of the funding is by the Danish state through the National Centre for Climate Research (NCKF).

Availability of data and material

720 All data used in this publication are publicallypublicly available through the ESGF network, e.g., http://esgfdata.dkrz.dehttp://esgf-data.dkrz.de,

Code availability

All data manipulations in this study are straightforward and described in the manuscript

Acknowledgements

725 The research presented in this study is part of the Baltic Earth Assessment Reports project of the Baltic Earth program (Earth System Science of the Baltic Sea Region, <u>https://www.baltic.earthhttps://baltic.earth</u>). The authors would like to thank the <u>EuroEURO</u>-CORDEX network and WCRP CORDEX for ensuring availability of CORDEX data.

It is with great sadness that we received the news that our co-author Christian Dieterich passed away during the review of this manuscript.

730 References

Akhtar, N., Krug, A., Brauch, J., Arsouze, T., Dieterich, C., Ahrens, B.: European Marginal Seas in a regional atmosphereocean coupled model and their impact on Vb-cyclones and associated precipitation, Clim Dynam, 2019, 1-33, https://doi.org/10.1007/s00382-019-04906-x, 2019https://doi.org/10.1007/s00382-019-04906-x, 2019 BACC Author Team (2008) Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer 735 Verlag, Berlin, Heidelberg

BACC II Author Team (2015) Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer Verlag, Berlin, Heidelberg

Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, doi:10.1002/2014GL062588, 2015.

740 Bartók, B., Wild, M., Folini, D.*et al.*: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. *Clim Dyn* **49**, 2665–2683. https://doi.org/10.1007/s00382-016-3471-2https://doi.org/10.1007/s00382-016-3471-2, 2017

Boé J., Somot S., Corre L., and Nabat .: Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Clim Dyn 54, 2981–3002. https://doi.org/10.1007/s00382-020-05153-1https://doi.org/10.1007/s00382-020-05153-1 2020.

Buser, C. M., Künsch, H. R., and Schär, C.: Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results. Clim Res 4:227-241 2010.

Christensen, J. H., Larsen, M. A. D., Christensen, O. B., Drews, M., and Stendel, M.: Robustness of European climate projections from dynamical downscaling, Clim. Dyn., 2019, <u>https://doi.org/10.1007/s00382-019-04831-z</u>, 2019.

750 Christensen, J. H., and Christensen O. B.: Severe summertime flooding in Europe. Nature 421:805-806, 2003.

745

Christensen, J. H., and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Climatic Change 81:7-30, 2007.

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S,

755 Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

Christensen J. H., Kjellström E., Giorgi, F., Lenderink, G., and Rummukainen, M.: Weight assignment in regional climate models. Clim Res 44:179-194 2010.

Christensen O. B., Kjellström E., Zorita E.: Projected Change-Atmosphere. In: The BACC II Author Team (eds.). Second 760 Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, 217-234. Springer. DOI 10.1007/978-3-319-16006-1_102015 20152015a.

Christensen, O. B., S. Yang, F. Boberg, C. F. Maule, P. Thejll, M. Olesen, M. Drews, H. J. D. Sørup, J. H. Christensen 2015b: Scalability of regional climate change in Europe for high-end scenarios. Climate Research 64 (1), 25-38 doi: 10.3354/CR01286

Christensen, O. B., and Kjellström, E.: Projections for Temperature, Precipitation, Wind, and Snow in the Baltic Sea Region until 2100. Oxford Research Encyclopedia of Climate Science.

https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-695. DOI: 10.1093/acrefore/9780190228620.013.695, 2018.

- 770 Coppola E, Nogherotto R, Ciarlo JM, Giorgi F, Somot S, Nabat P, Corre L, Christensen OB, Boberg F, van Meijgaard E, Aalbers E, Lenderink G, Schwingshackl C, Sandstad M, Sillmann J, Bülow K, Teichmann C, Iles C, Kadygrov N, Vautard R. Levavasseur G. Sørland SL. Demory M-E. Kiellström E and Nikulin .: Assessment of the European climate projections as simulated by the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res.: Atmospheres, 126, e2019JD032356, DOI: 10.1029/2019JD032356, 2021.
- 775 Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C. M., Jacob, D., Lenderink, G., Christensen O. B.: The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dynam 38:951-964, 2012.

Dieterich, C, Wang, S, Schimanke, S, Gröger, M, Klein, B, Hordoir, R, Samuelsson, P, Liu, Y, Axell, L, Höglund, A, Meier, HEM: Surface heat budget over the North Sea in climate change simulations. Atmosphere, 10, 272. doi:10.3390/atmos10050272 2019.

780

765

785

Donat MG, Leckebusch GC, Wild S, Ulbrich U.: Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Nat Hazards Earth Syst Sci 11:1351-1370, 2011.

Dosio A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted highresolution EuroEURO-CORDEX regional climate models, J. Geophys. Res. Atmos., 121, 5488-5511, doi:10.1002/2015JD024411, 2016.

Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U and Graham LP .: The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research, 7, 183-192, 2002.

Dutheil, C., Meier, H.E.M, Gröger, M., and Börgel, F.: Understanding past and future sea surface temperature trends in the Baltic Sea.Climate Dynamics, accepted

790 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Feser, F., Weisse, R., von Storch, H.: Multi-decadal atmospheric modeling for Europe yields multipurpose data. EOS Trans 82:305-310, 2001.

795 Gao Y, Chen F, Jiang Y (2020) Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its infuences on the simulation of snow-cover fraction. J Hydrometeorol 21(7):1531–1548. https://doi.org/10.1175/jhm-d-19-0277.1

Giorgi F, Jones C, Asrar GR.: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175-183, 2006.

800 Giorgi, F., and Gao X-J.: Regional earth system modeling: Review and future directions. Atmospheric and Oceanic Science Letters, 11(2), 189–197, 2018.

Graham LP, Chen D, Christensen OB, Kjellström E, Krysanova V, Meier HEM, Radziejewski M, Rockel B, Ruosteenoja K and Räisänen J.: Projections of future climate change. In Assessment of Climate Change for the Baltic Sea Basin. The BACC Author Team. 2008, XXI, 473 p., Springer. ISBN: 978-3-540-72785-9, 2008.

805 Gröger M, Dieterich C, Meier HEM, Schimanke S.: Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus A Dyn Meteorol Oceanogr 67(1):26911. doi: 10.3402/tellusa.v67.26911, 2015.

Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H.E.M.: Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean-sea iceatmosphere model. *Clim Dyn* **53**, 5945–5966 doi:10.1007/s00382-019-04908-9, 2019.

810 Gröger, M., Dieterich, C., and Meier, H. E. M.: Is interactive air sea coupling relevant for simulating the future climate of Europe?. *Clim Dyn.*, 56, 491-514, https://doi.org/10.1007/s00382-020-05489-8, 2021a.

Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann, S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L. (2021b)..: Coupled regional Earth system modellingmodeling in the Baltic Sea region, Earth Syst. Dynam. Discuss. [preprint]., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021-14, in review, 2021-

815 Gustafsson N, Nyberg L and Omstedt A.: Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Monthly Weather Review, 126, 2822–2846, 1998. Hagemann S, Machenhauer B, Jones R, Christensen OB, Deque M, Vidale PL.: Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dynam 23:547-567, 2004.

Hanel M, Buishand A.: Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for
 the Rhine basin. Clim Dynam 36:1135-1153, 2011.

Held I, Soden B.: Robust response of the hydrological cycle to global warming. J Clim 19:5686-5699, 2006.

Ho-Hagemann HTM, Gröger M, Rockel B, Zahn M, Geyer B, Meier, HEM.: Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central EuropeClim Dyn 49: 3851. https://doi.org/10.1007/s00382-017-3546-8, 2017.

825 IPCC Climate Change 2001: The Scientific Basis. Contribution from Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, UK, 2001.

IPCC Climate Change 2007: The Physical Science Basis. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds), Cambridge University Press, Cambridge, UK Iversen T (2008) Preface. Tellus A 60(3):395-397, 2007.

IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, 2013.

835 IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

Jacob, D., J. Petersen, B. Eggert, A. Alias, O. B. Christensen, L. M. Bouwer, A. Braun, A. Colette, M. Déqué, G.
 Georgievski, E. Georgopoulou, A. Gobiet, L. Menut, G. Nikulin, A. Haensler, N. Hempelmann, C. Jones, K. Keuler, S. Kovats, N. Kröner, S. Kotlarski, A. Kriegsmann, E. Martin, E. van Meijgaard, C. Moseley, S. Pfeifer, S. Preuschmann, C. Radermacher, K. Radtke, D. Rechid, M. Rounsevell, P. Samuelsson, S. Somot, J.-F. Soussana, C. Teichmann, R. Valentini, R. Vautard, B. Weber and Pascal Yiou:: EURO-CORDEX: new high-resolution climate change projections for European impact research. *Regional Environmental Change*. doi: 10.1007/s10113-013-0499-2, 2013.

845 Kelemen, F.D., Primo, C., Feldmann, H., Ahrens, B.: Added Value of Atmosphere-Ocean Coupling in a Century-Long Regional Climate Simulation, Atmosphere, 10(9), 537; https://doi.org/10.3390/atmos10090537, 2019.

Kendon, E, NM Roberts, HJ Fowler, MJ Roberts, SC Chan and CA Senior: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change 4, 570–576 doi:10.1038/nclimate2258, 2014.

Keuler, K., K. Radtke, S. Kotlarski, and D. Lüthi: Regional climate change over Europe in COSMO-CLM: Influence of
 emission scenario and driving global model. *Met. Z.* 25, 121-136. https://doi.org/10.3929/ethz-b-000117030, 2016

Kjellström E.: Recent and future signatures of climate change in Europe. Ambio 33:193-198, 2004.

Kjellström E, and Ruosteenoja K.: Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climatic Change. 81 (Suppl. 1), 281-291. doi:10007/s10584-006-9219-y, 2007.

Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C.: Modelling daily temperature extremes: Recent climate and future changes over Europe. Climatic Change 81(S1):249-265, 2007.

Kjellström E, Lind P.: Changes in the water budget in the Baltic Sea drainage basin in future warmer climates as simulated by the regional climate model RCA3. Boreal Environ Res 14:114-124, 2009.

Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A.: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24-40, 2011a.

860 Kjellström E, Räisänen J, Skaugen TE, Rögnvaldsson O, Agustsson H, Olafsson H, Nawri N, Björnsson H, Ylhäisi J, Tietäväinen H, Gregow H, Jylhä K, Ruosteenoja K, Shkolnik I, Efimov S, Jokinen P, Benestad R.: Climate scenarios. In: Thorsteinsson T, Björnsson H (eds). Climate Change and Energy Systems: Impacts, Risks and Adaptation in the Nordic and Baltic countries. TemaNord 2011:502, 2011b.

Kjellström E, Thejll P, Rummukainen M, Christensen JH, Boberg F, Christensen OB, Fox Maule C.: Emerging regional climate change signals for Europe under varying large-scale circulation conditions. Clim Res 56:103-119, 2013.

Kjellström E, Bärring L, Nikulin G, Nilsson C, Persson G, and Strandberg G.: Production and use of regional climate model projections – a Swedish perspective on building climate services. Climate Services, 2-3, 15-29. Doi: 10.1016/j.cliser.2016.06.004, 2016.

Kjellström E, Nikulin G, Strandberg G, Christensen OB, Jacob D, Keuler K, Lenderink G, van Meijgaard E, Schär C, Somot 870 S, Sørland SL, Teichmann C and Vautard R,: European climate change at global mean temperature increases of 1.5 and 2°C

above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dynam., 9, 459-478, DOI: 10.5194/esd-9-459-2018, 2018.

 Kjellström E., Christensen O. B.: Regional Climate Modelling for the Baltic Sea Region. In: von Storch, H., (ed.). Climate of the Baltic Sea region. Oxford Research Encyclopedia of Climate Science. Oxford University Press USA. DOI: 10.1093/acrefore/9780190228620.013.700, 2020.

Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, vanMeijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, and Wulfmeyer V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297-1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.

880 Kyselý J, Gaál L, Beranová R, Plavcová E.: Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models. Theor Appl Climatol 104:529-542, 2011.

Larsen AN, Gregersen IB, Christensen OB, Linde JJ, Mikkelsen PS.: Potential future increase in extreme one-hour precipitation events over Europe due to climate change. Water Sci Tech 60:2205-2216, 2009.

Lenderink G, van Meijgaard E.: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5:025208. doi:10.1088/1748-9326/5/2/025208, 2010.

Lenderink G, Belušić D, Fowler H, Kjellström E, Lind P, van Meijgaard E, van Ulft B and de Vries H.: Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convectionpermitting climate model. Environ. Res. Lett. 14, 074012. DOI: 10.1088/1748-9326/ab214a, 2019.

Lind P, Kjellström E.: Temperature and precipitation changes in Sweden; a wide range of model-based projections for the 21st century. SMHI Reports Meteorology and Climatology, 113, 2008.

Lind, P., Lindstedt, D., Kjellström, E., and Jones, C., 2016: Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High- Resolution Climate Models. J. Clim., 29, 3501-3518, DOI: 10.1175/JCLI-D-15-0463.1.

Lind, P., Belušić, D., Christensen, O.B. *et al.*: Benefits and added value of convection-permitting climate modeling over
 Fenno-Scandinavia. *Clim Dyn* 55, 1893–1912 <u>https://doi.org/10.1007/s00382-020-05359-3</u>, 2020.

Lindvall J, Svensson G: The diurnal temperature range in the CMIP5 models. Clim Dyn 44, 405–421 (2015). https://doi.org/10.1007/s00382-014-2144-2

Meier HEM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E.: Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. 900 Oceanologia 53:193-227, 2011.

910

Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler et al.: Emission scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 599 pp., 2000.

Nikulin G, Kjellström E, Hansson U, Jones C, Strandberg G, Ullerstig A.: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41-55, 2011. 905

Nilsen IB, Hanssen-Bauer I, Tveito OE, Wong WK .: Projected changes in days with zero crossings for Norway. Int J Climatol. 2021; 41: 2173-2188. https://doi.org/10.1002/joc.6913, 2021.

O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Chang. 42, 169-180. doi:10.1016/j.gloenvcha.2015.01.004, 2017.

Prein AF, Gobiet A, Truehetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E and Jacob D.: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution. high benefits? Clim. Dvn., doi: 10.1007/s00382-015-2589-v, 2015.

915 Primo, C., Kelemen, F. D., Feldmann, H., Ahrens, B.: A regional atmosphere-ocean climate system model (CCLMv5.0clm7-NEMOv3.3-NEMOv3.6) over Europe including three marginal seas: on its stability and performance, Geoscientific Model Development Discussions, 2019, 1-33, doi:10.5194/gmd-2019-73, 2019.

Räisänen J.: Probabilistic projections of temperature and precipitation change for the period 2021- 2050, In: Proc. Future Climate and Renewable Energy: Impacts, Risks and Adaptation, 31 May - 2 June 2010, Oslo, p 78-79, 2010.

920 Räisänen, J.: Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change, The Cryosphere, 15, 1677–1696, https://doi.org/10.5194/tc-15-1677-2021, 2021.

Räisänen, J., Eklund, J.: 21st century changes in snow climate in northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dynam 38:2575-2591, 2011.

Ruosteenoja K, Räisänen P: Seasonal changes in solar radiation and relative humidity in Europe in response to global 925 warming. J Clim 26:2467–2481. doi:10.1175/JCLI-D-12-00007.1, 2013.

Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K.: The Rossby Centre Regional Climate Model RCA3: Model description and performance. Tellus A 63:4-23, 2011.

Schuler DV, Beldring S, Førland EJ, Roald LA, Engen-Skaugen T.: Snow cover and snow water equivalent in Norway: current conditions (1961-1990) and scenarios for the future (2071-2100). Met No Report no. 01/2006 Climate. Oslo, 930 Norway, 2006.

Sein, D.V, Gröger, M., Cabos, W., Alvarez, F., Hagemann, S., de la Vara, A., Pinto, J.G., Izquierdo, A., Koldunov, N.V., Dvornikov, A. Y., Limareva, N., Martinez, B., Jacob, D.: Regionally coupled atmosphere - ocean - marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe *J. Adv. Model. Earth Syst.*, https://doi.org/10.1029/2019MS001646 2020.

- 935 Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang,: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on
- 940 Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 109-230, 2012.

Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E, Kolax M, Kupiainen M, Nikulin G, Samuelsson P, Ullerstig A and Wang S,: CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Reports Meteorology and Climatology, 116, SMHI, SE-60176 Norrköping, Sverige, 2014.

Sutton, R. T., Dong, B., and Gregory, J. M.: Land/sea warming ratio in response to climate change: IPCC AR4 model results
 and comparison with observations, Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164, 2007.

Taylor, KE, Stouffer, RJ, Meehl, GA.: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498. http://dx.doi.org/ 10.1175/BAMS-D-11-00094.1, 2012.

Tobin I, Jerez S, Vautard R, Thais F, Déqué M, Kotlarski S, Maule CF, van Meijgaard E, Nikulin G, Noël T, Prein A & Teichmann C.: Climate change impacts on the power generation potential of a European mid-century wind farms scenario, Environmental Research Letters, 11, 034013, doi: 10.1088/1748-9326/11/3/034013, 2016.

van der Linden, P., and Mitchell, J. F. B., (eds): ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office, Hadley Centre, Exeter, UK, 2009.

van Vuuren DP, Edmonds JA, Kainuma M, Riahi,K, Weyant J.: A special issue on the RCPs. Climatic Change 109:1-4, 2011.

955 Vautard R, Gobiet A, Sobolowski S, Kjellström E, Stegehuis A, Watkiss P, Mendlik T, Landgren O, Nikulin G, Teichmann C and Jacob D.: The European climate under a 2°C global warming. Environ. Res. Lett. 9, 034006, doi:10.1088/1748-9326/9/3/034006, 2014.

Vautard R, Kadygrov N, Iles C, Boberg F, Buonomo E, Bülow K, Coppola E, Corre L, van Meijgaard E, Nogherotto R, Sandstad M, Schwingshackl C, Somot S, Aalbers E, Christensen OB, Ciarlo JM, Demory M-E, Giorgi F, Jacob D, Jones RG, Keuler K, Kjellström E, Lenderink G, Levavasseur G, Nikulin G, Sillmann J, Solidoro C, Sørland SL, Steger C, Teichmann

960 Keuler K, Kjellström E, Lenderink G, Levavasseur G, Nikulin G, Sillmann J, Solidoro C, Sørland SL, Steger C, Teichmann C, Warrach-Sagi K and Wulfmeyer V.: Evaluation of the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res. DOI: 10.1029/2019JD032344, 2020.

Wang S, Dieterich C, Döscher R, Höglund A, Hordoir R, Meier H, Samuelsson P and Schimanke S.: Development and evaluation of a new regional coupled atmosphere ocean model in the North Sea and Baltic Sea, Tellus A, 67, 24284. doi:10.3402/tellusa.v67.24284, 2015.

Wibig J., Mauran D., Benestad R., Kjellström E., Lorenz P., Christensen O. B.: Projected Change—Models and Methodology. In: The BACC II Author Team (eds.). Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, 189-216. Springer. DOI 10.1007/978-3-319-16006-1_102015, 2015.

Recommended Reading

965

970 BACC II Author Team (2015) Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer Verlag, Berlin, Heidelberg