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Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts
and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic
perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the
sensitivity of specific modes of climate variability, such as the El Nifio-Southern Oscillation. However, our knowledge of
forced changes in the overall spectrum of climate variability and higher order statistics is relatively limited. Here we present a
new 100-member Large Ensemble of climate change projections conducted with the Community Earth System Model version
2 over 1850-2100 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented
simulations reveal that changes in variability, considered broadly in terms of probability, distribution, amplitude, frequency,
phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and
temporal scales. Greenhouse warming in the model in alters variance spectra of Earth system variables that are characterized
by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have
important implications for climate adaptation efforts, resource management, seasonal predictions, and for assessing potential

stressors for terrestrial and marine ecosystems.
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1 Introduction

Faced with the prospect of substantial future climate change, mitigation and adaptation strategies are increasingly paramount.
While mitigation efforts are concerned chiefly with limiting mean state changes, successful adaptation will also require
understanding the potentially altered variability of the climate system (Sarachik, 2010). However, the way in which climate
variability will change due to anthropogenic radiative forcing has not been extensively explored. The spectrum of observed
regional-to-global climate fluctuations exhibits relatively sharp peaks and a broad noise background (Hasselmann, 1976;
Franzke et al., 2020). Spectral peaks can emerge from a range of mechanisms, including astronomical forcings or internal
climate instabilities such as for the El Nifio-Southern Oscillation (ENSO). Moreover, these distinct features can be further
influenced by climate processes acting on different timescales. Examples of non-linear “timescale interactions” are
multiplicative (state-dependent) noise (Miiller, 1987; Majda et al., 2009; Sardeshmukh and Sura, 2009; Sardeshmukh and
Penland, 2015; Jin et al., 2007; Levine and Jin, 2010; Jin et al., 2020) and combination mode dynamics (Stuecker et al., 2015b).
How modes of variability will respond to greenhouse warming has been addressed in a number of previous modeling studies
(Timmermann et al., 1999; Cai et al., 2018), albeit with conflicting results. In contrast, the sensitivity of the spectral background
to human-induced climate change is less well-known. Identifying and characterizing human-induced changes in this spectral
background, using for example Climate Model Intercomparison Project (CMIP)-type coordinated modeling efforts, has proven

difficult due to limited statistics.

The relatively recent advent of Large Ensemble simulations (henceforth termed Large Ensembles) conducted with Earth
system models provides a new resource for addressing how climate and ecosystem statistics may evolve in response to
anthropogenic forcing across a wide range of timescales (Deser et al., 2020; Schlunegger et al., 2020). Such Large Ensembles
with global climate models have existed for more than 15 years (Zelle et al., 2005; Drijfhout et al., 2008; Branstator and Selten,
2009), but earlier studies expressed concern with aspects of process representation and therefore their results with regard to
variability changes were inconclusive. Other studies have employed individual model simulations, small (<10 members)
ensembles, or CMIP multi-model ensembles (Rind et al., 1989; Raisanen, 2002; Huntingford et al., 2013; Screen, 2014;
Stouffer and Wetherald, 2007; Wetherald, 2009) to address whether surface temperature and precipitation variability may
change under global warming. To date Large Ensemble studies of changes in variance have mainly focused on specific
quantities, timescales, or regions (Deser et al., 2020; Pendergrass et al., 2017; Maher et al., 2019; Haszpra et al., 2020; Maher
et al., 2021). However, to our knowledge, the full power of the Large Ensemble framework has not been harvested to gauge
broad-scale forced changes in climate statistics, including changes in variance, spectrum, patterns, and phase, for a wide range

of quantities, regions, or timescales.

To study the sensitivity of higher-order climate statistics to anthropogenic climate change, we conducted a new 100-member
ensemble of climate change simulations using the Community Earth System Model version 2 (CESM2) (Danabasoglu et al.,
2020), which we refer to as CESM2-LE (Methods). The initialization and forcing are described in the Methods section and in
figs. S1-S3 of the Supplementary Materials. An ensemble of this size and duration with a CMIP6-generation Earth system
model at 1° spatial resolution is unprecedented. A large number of improvements have occurred since the CESM1-LE (Kay et
al., 2015), as documented in the Methods section. In addition to improved parameterizations and process-represenation that
increase model skill in representing a number of phenomena, a notable improvement is also in land processes within the

Community Land Model Version 5 (CLMS).

CESM2-LE promises to provide an enhanced framework for documenting and understanding robust forced changes in internal
variability, complementing our knowledge of mean-state changes (Simpson et al., 2020; Fasullo, 2020). The simulations were

performed for the 1850-2100 period with historical (1850-2014) and SSP3-7.0 (2015-2100) forcings. The choice to use 100
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members was motivated by the challenges associated with identifying trends in higher statistical moments. A previous set of
analyses performed with the Max Planck Institute Grand Ensemble (MPI-GE) (Milinski et al., 2020) explored the relationship
between ensemble size and the accuracy of identifying forced changes in higher-order moments. Even taking into account
differences in model architecture, and thereby model uncertainty in such estimates, their analysis with the MPI-GE
nevertheless supports our decision to expand well beyond the 40 members chosen for the CESM1 LE (Kay et al., 2015). To
facilitate analysis over a broad range of timescales, substantial resources have been devoted to providing high-frequency output
for the atmosphere, land, ocean, and cryosphere. Providing a clearer view of the patterns of altered climate variability should
enable investigation of the mechanistic drivers of such changes and their implications for impacts of societal and ecosystems
relevance. This study presents initial results on forced changes in internal variability across a range of fields and timescales in

CESM2-LE, and it will serve as the reference publication for CESM2-LE.

2 Methods
2.1 Model Configuration

The simulations consist of a 100-member Large Ensemble suite conducted with CESM2 with the Community Atmosphere
Model version 6 (CAM6) (Danabasoglu et al., 2020), referred to here as the CESM2-LE. The simulations cover the period
from 1850-2100 and follow the historical and SSP3-7.0 forcing protocols provided by the CMIP6 (Eyring et al., 2016),
although with some differences noted below for the representation of biomass burning in 50 of the 100 ensemble members.
CESM2 has been demonstrated to fare well when evaluated against skill metrics with other models (Fasullo, 2020). The choice
of the SSP3-7.0 scenario forcing follows CMIP6 recommendations (O'Neill et al., 2016) that emphasize the value of this
relatively high forcing level precisely for the purpose of quantifying forced changes in natural variability. This choice should

also provide a useful contribution towards an eventual CMIP6 Large Ensemble intercomparison.

The CESM2 components use nominal 1° horizontal resolution. Specifically, CAM6 has a resolution of 1.25° in longitude and
0.9° in latitude, and 32 vertical levels with a top at 2.26 hPa, or approximately 40km. The ocean and sea ice models are the
Parallel Ocean Program version 2 (POP2) (Danabasoglu et al., 2020; Smith et al., 2010) and the CICE Version 5.1.2 (CICES)
(Bailey et al., 2020). The nominal resolution of the ocean is 1° horizontally, with uniform spacing of 1.125° in the zonal
direction and varying significantly in the meridional direction, with the finest resolution of ~0.25° at the equator. The ocean
model provides 60 vertical levels, with 20 of these layers represented in the upper 200m of the water column. CESM2 offers
a number of improvements pertinent to our scientific interests relative to what was available for the CESM1-LE (Kay et al.,
2015). These improvements include advances in the surface boundary layer representation for the ocean (Li et al., 2016), as
well as for cloud microphysics (Gettelman et al., 2015). The ocean biogeochemistry model used with the POP2 model is the
Marine Biogeochemistry Library (MARBL), which represents an updated version of what was previously known as the
Biogeochemistry Elemental Cycle (BEC) (Moore et al., 2001; Moore et al., 2004; Moore et al., 2013; Long et al., 2021).

An important advance of great value to Large Ensemble investigations is achieved through new developments incorporated
into the CLMS5 (Danabasoglu et al., 2020; Lawrence et al., 2019; Lombardozzi et al., 2020). The model addresses a number of
well-known limitations relative to previous versions of CLM, including major improvements in simulated cumulative CO2
uptake over the historical period (Bonan et al., 2019) and improved representation of the seasonal cycle of net ecosystem
production (NEP) (Lawrence et al., 2019), which is highlighted in our analysis of projected forced phenology changes. Other
notable features also included in CLMS5 are the explicit representation of agricultural management and improvements in the
implementation of the prognostic fire model (Lombardozzi et al., 2020; Li et al., 2013; Li and Lawrence, 2017). All CLM5

improvements found broadly across a range of simulated variables have been documented through evaluation of model
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simulations against the International Land Model Benchmarking (ILAMBV2.1) package and other analyses (Collier et al.,
2018; Danabasoglu et al., 2020). We note that land model trajectories are sensitive to SSP scenarios that determine the spatial

distribution and extent of land use and land cover changes (O'Neill et al., 2016).

As a more general complement to the research results considered in this study, we have also made available results from
running the Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE)
(https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/) (Phillips et al., 2020) for the CESM2-LE, with graphical output

available under https://climatedata.ibs.re.kr/data/cesm2-lens/lens-diagnostics.

2.2 Large Ensemble Initialization

For the CESM2-LE initialization procedure, the experimental configuration was designed to respond to broad community
demand for a mix of macro- and micro-perturbations (where for micro-perturbations members differ only in a small random
perturbation applied at initialization). To satisfy this demand and allow for exploration of the impact of initialization type, it
was decided to initialize members from various years between 1001 and 1301 of a pre-industrial simulation conducted with
CESM2 (Danabasoglu et al., 2020). This was as far as the CESM2(CAM®6) pre-industrial simulation had reached at the time
when the CESM2-LE project began, and by this point the top-of-the-atmoshphere (TOA) global energy imbalance was
relatively small an stable with a correspondingly small model drift (Danabasoglu et al., 2020). The years from the pre-industrial

control run for initialization are highlighted in fig. S1.

Micro-initializations start from four different years: 1231, 1251, 1281, and 1381. Twenty members were run for each start
year, with ensemble spread introduced by a random perturbation to the atmospheric temperature field at initialization (through
a CAMG6 namelist variable referred to as “pertlim”), as was used for all members of the CESM1 LE (Kay et al., 2015). Macro-
initialization (one run for each initialization date) used initialization years {1001,1011, 1021, ...,1091} by using 20
independent restart files at 10-year intervals over 1001-1091. It warrants mention for the case of the macro-perturbations that
no explicit perturbation was required from the pre-industrial control simulation. Taken together, if one includes one member

from each of the micro-perturbation runs, then a total of 24 macro-perturbation runs are available.

Importantly, as can be seen in fig. S1b, for the initialization points of years 1231, 1251, 1281, and 1301 were specifically
chosen for the micro-initializations to correspond to years of maximum, decreasing, minimum, and increasing Atlantic
Meridional Overturning Circulation (AMOC) transport, respectively, relative to the preindustrial control simulation. It is
important to note that when using the Large Ensemble output the initialization procedure should not be considered to produce
members that are independent, or to have randomized modes of climate variability, for the years immediately subsequent to
1850. Considering the AMOC strength at 26.5°N as an example (fig. S2a), the ensemble mean AMOC strength for each of
the micro-perturbation clusters initialized for years 1231, 1251, 1281, and 1301 of the pre-industrial control run (averaged
across 20 members for each case) converge only after several decades, indicative of the timescale over which the initial
condition memory persists for AMOC. For this reason, our analysis with internal variability focuses on the period after 1960,
more than a full century after initialization. Further quantitative exploration of the specific duration over which initial condition

memory is retained is the subject of a separate ongoing study.

A generalized schematic for the initialization procedure is shown in fig. S3, illustrating the organization of the simulations.
The schematic also includes mention of the biomass burning emissions differences between two groups of 50 simulations, as
described more fully in the next section. The macro-perturbation runs initialized at {1011, 1031, 1051, ..., 1091} have greatly

enhanced output at high-frequency to meet the needs of broader community interests for Large Ensemble output. The
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temporally high-resolution output includes 6-hourly snapshots of three-dimensional temperature, winds, and specific humidity
for the Coordinated Regional Climate Downscaling Experiment (https://cordex.org) simulations, as well as output appropriate
for the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP).
(https://climatedataguide.ucar.edu/climate-data/cosp-cloud-feedback-model-intercomparison-project-cfmip-observation-

simulator-package).

2.3 Large Ensemble Forcing

A choice was made to use two different sets of forcing fields to represent the effects of variability in biomass burning emissions
for the CESM2-LE (see figs. S4-S5). The biomass burning aerosol fluxes in CESM2 are imposed at the surface. As such, they
are not prognostic, meaning that they are not generated by the model’s internal prognostic fire model. The first 50 members
of our Large Ensemble follow CMIP6 protocols (Van Marle et al., 2017), with biomass burning following the description in
the CESM2 overview paper (Danabasoglu et al., 2020), and this forcing is referred to as BB CMIP6. For the second set of 50
members, which we refer to as BB CMIP6_SM (for smoothed biomass burning fluxes), the BB CMIP6 biomass burning
emissions of all relevant species for CAM6 were smoothed in time with an 11-year running mean filter. The averaging
impacted variability in biomass burning fluxes over 1990-2020. Due to the inclusion of observations, the variability in biomass
burning emissions during 1990-2020 is considerably stronger for BB CMIP6 than the preceding and following periods. The
smoothed forcing with BB CMIP6_SM was designed to nearly conserve total emissions while reducing the strong changes in
interannual variability. The temporal smoothing of the forcing is applied to the biomass burning emissions at each grid point
subsequent to being regridded to the CESM2 grid. The high 1990-2020 biomass burning variability case (ensemble members
1-50, or BB CMIP6) relative to the smoothed forcing (ensemble members 51-100, or BB CMIP6_SM) has a discernible
impact on large-scale climate, as documented by the accelerated loss of September Arctic sea ice and Northern Hemispheric
and tropical Pacific warming (fig. S5a,c). Outside of the period 1990-2010, the impact of BB CMIP6 SM relative to
BB_CMIP6 for biomass burning emissions is not pronounced for simulated surface temperature, sea ice, or precipitation. It is
for this reason that we selected the time intervals 1960-1989 and 2070-2099 for our analysis of variance changes in Fig. 2 and

Fig. 4, for which the 100 ensemble members can realistically be considered to be part of the same population.

2.4 Minor Corrections Relative to Previous Versions

The code base for the BB CMIP6 SM simulations (the second set of 50 members) incorporates corrections for two sets of
errors that were present in the first set of 50 ensemble members (BB_CMIP6). The first pertains to the SOz, SOs, and gas
phase semi-volatile secondary organic aerosol (SOAG) emission datasets. For SOz and SOa, the spatial patterns of the
“shipping” and “agriculture+solvents+waste” components of forcing were inadvertently switched during the historical-to-
projection transition, or more specifically at the start of 2015. The incorrect partitioning of SOz does not impact the results
considered here, given that its components are summed before use. In contrast, the issue with SO4 datasets can impact the
model state evolution as the particle sizes and numbers differ for the SO4 components. The SOAG emissions are calculated
from several hydrocarbons, and they were not recalculated after an earlier bug correction in covering units of the lumped
species for the biomass burning emissions. This issue was corrected, and diagnostics indicate that there are not any pronounced

changes in the model solutions from these particular aerosol corrections.

The second correction introduced for the 50 BB CMIP6 SM simulations concerns the presence of a sporadic large CO2 uptake
over land that was identified for the BB CMIP6 runs. This large uptake is associated with a negative flux of carbon occurring

at crop harvest time over a single time step. Although these large negative carbon flux component terms in autotrophic
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respiration are necessary for maintaining carbon balance, such CO: spikes are not realistic. To avoid these spikes, the
associated COz fluxes that occur over a single time step are distributed to the atmosphere over a time scale of approximately
six months for the BB CMIP6 SM simulations. Analysis indicates that these modifications for carbon between the
BB CMIP6 and BB CMIP6 SM simulations did not result in any climate-changing impacts.

3 Results
3.1 Mean State Changes

During the historical period the evolution of key simulated annual-mean climate indicators in CESM2-LE (Fig. 1; fig S6)
agrees well with observations. The range across the ensemble members, which results from internal variability and its forced
changes, spans the observed climate state much of the time, with a notable exception being Southern Ocean sea ice (Fig. 1e).
The results here and the general model behavior are qualitatively consistent with those of similarly-forced CMIP6-generaion
models (Fasullo, 2020; Kwiatkowski et al., 2020; Arora et al., 2020), although projected temperature changes (Fig. 1¢) are in
the upper range of the CMIP6 models owing to the relatively high climate sensitivity of CESM2 (Gettelman et al., 2019). The
progressive weakening of the AMOC at 26.5°N in CESM2 over the 21 century (Fig. 1f) is largely consistent with other
CMIP6 models (Weijer et al., 2020). We also find a substantial increase in land primary productivity (Fig. 1g), which
contributes to the uptake of carbon in the terrestrial biosphere. Marine net primary productivity (NPP) (Fig. 1h) remains
relatively constant throughout the simulation, and the overall uptake of carbon by the ocean reflects the re-emergence of
anthropogenic carbon into the mixed layer (Toyama et al., 2017; Rodgers et al., 2020) and changes in the CO2 buffering
capacity of seawater (Revelle and Suess, 1957). For the analysis that is presented in Fig. 1 for sea ice, daily-mean output fields
are used for both the model and the data product. In representing sea ice extent a threshold of 15% was used, whereby a grid
cell is identified as being ice covered if it has a concentration of sea ice above 15%. For the net land fluxes of CO2, we use the
variable net biome production which includes the effects of not only photosynthesis and respiration, but also fire and land-use

change.

The pattern of mean state surface temperature change, shown as the difference between the periods 2070-2099 and 1960-1989
(Fig. 2, central; 2m reference temperature shown in fig. S6), exhibits preferential warming of the eastern relative to the western
equatorial Pacific, Arctic amplification, and a pronounced warming hole over the subpolar North Atlantic. These features are
associated with the known mechanisms of the enhanced equatorial warming pattern (Xie et al., 2010), and more positive polar
feedbacks (Goosse et al., 2018) including the Arctic heat capacitor (Chung et al., 2021), and the slowdown of the AMOC
(Rahmstorf et al., 2015; Menary and Wood, 2018), respectively. For precipitation (Fig. 2, central; fig. S6e), changes include
marked precipitation increases along the equatorial Pacific, within the Arctic Ocean, and decreases over the subtropical regions

(Stocker et al., 2013).

3.2 Forced Changes in Amplitude, Frequency, and Phase

Figure 2 illustrates the ensemble-aggregated Fourier amplitude spectra and probability density functions (PDFs) for five key
climate and ecosystem quantities (complementary quantities are shown in fig. S7). The choice of variables reflects an interest
in both climate and ecosystem dynamics, as well as societal relevance in terms of adaptation and resource management. The
decision to represent Fourier amplitude spectra was motivated by our desire to enrich our understanding of the amplitude of
perturbations across different timescales. For the spectral analysis in Fig. 2, each Fast Fourier Transform (FFT) spectrum is
calculated for the timeseries of raw data over a given variable for the full 30-year interval. This includes all timescales shorter
than 30 years and longer than two days (months) for daily (monthly) time-resolution data. The spectrum is calculated first at

each horizontal grid point and for each ensemble member, and then averaged over the designated region and over the 100
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ensemble members. Due to the relatively large degree of aggregation for each field, it was not necessary to apply windowing
to avoid spectral leakage. The surface chlorophyll concentration fields analyzed here represent total chlorophyll concentrations
taken as a sum of diatom, diazatroph, and small phytoplankton chlorophyll. The AMOC in fig. S7 is defined as a maximum
transport at 26.5°N. For the spectrum of internal variability of the AMOC, the ensemble-mean is subtracted from the raw data

to remove a forced response

For a wide range of Earth system variables, we find substantial changes of the projected 21% century probability distributions,
impacting mean state, variance, and higher order statistical moments (Fig. 2). Human-induced alterations of climate spectrum
and probability distribution could translate into changes in the average return time of climate and extreme events. Averaging
the spectra over 100 ensemble members and individual grid boxes within each region creates enough data to reveal spectral
characteristics that might otherwise be obscured. The dominant feature for most quantities examined is the spectral peak at the
annual frequency, along with higher-order harmonics that result from deviations of the seasonal cycle from a pure sinusoid.
Future changes of the annual cycle overtone spectrum can be caused by forced non-sinusoidal distortions of the annual cycle,
generated e.g. by shifts in phenology, as discussed below. For nearly all variables under consideration, the seasonal cycle
amplitude responds to the external forcing. Near-annual combination modes (C-modes) of ENSO and the seasonal cycle
(Stuecker et al., 2015a) and its overtones can be clearly identified in some spectra, particularly for precipitation over the
equatorial Pacific. In addition to representing the C-modes as deterministic components of the system, CESM2-LE also
exhibits shifts in the frequency of the C-modes due to future reductions in ENSO’s dominant frequency (Fig. 3a). The C-mode
peaks also strengthen in the future, reflecting that the amplitude of precipitation and the corresponding C-mode-generating

non-linearity increase at both ENSO and annual frequencies.

For most of the variables shown in Fig. 2 (and fig. S7) there are changes in the amplitude of the spectrum across the entire
range of frequencies from synoptic to intra-seasonal to interannual to decadal, revealing the ubiquity of variance changes.
Importantly, frequency-independent shifts in variance can be seen in the three variables shown here, which exhibit a strong
non-Gaussian skewed PDF, namely the spectra of California wildfire occurrence, surface chlorophyll concentrations over the
subpolar North Atlantic (40°N-60°N, 60°W-15°W), and precipitation over the Nifio3.4 region (5°S-5°N, 170°W-120°W). For
these positive variables with their highly-skewed probability distributions, forced changes in the mean state are accompanied
by a stretching (squeezing) of the associated PDFs, thereby causing enhancement (or reduction) of variance and extremes.
Changes of this type have previously been considered for more specialized cases using the Wasserstein distance (Ghil, 2016;
Robin et al., 2017; Vissio et al., 2020). For white noise processes, the associated variance changes manifest as timescale-
independent variance changes, thereby accounting for the shown spectral background shifts. For California fire counts and
Nifio3.4 precipitation, mean state increases are therefore also accompanied by increases in variance occurring over a wide
range of timescales. For North Atlantic chlorophyll, the mean state decrease is associated with a timescale-independent
decrease in variance, with expected impacts for higher trophic levels in the ocean, leading to potential disruptions to

ecosystems.

For variables that are less skewed, a diversity of responses is found. Forced changes in sea surface temperature (SST)
variability in the Nifio3.4 region are confined to interannual timescales in association with a decrease in ENSO amplitude and
a slight shift toward higher frequencies. On the other hand, for NEP over the Amazon, reflecting natural CO2 exchange between
the land and the atmosphere, there is an increase in variance over all timescales, accompanied by a shift in the broad interannual

peak towards higher frequencies.
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To demonstrate the significance for the spectra considered in Fig. 2 and fig. S7, an example is given in fig. S8 for precipitation
over the Nifio3.4 region for the same 1960-1989 (blue) and 2070-2099 (red) time intervals. The grey shading indicates the
95% confidence interval (1.95 x standard error). For each ensemble member, we first spatially averaged the spectra at
individual grid points over the Niflo3.4 region, and then calculated the standard error using the 100 spectra for the full 100
ensemble members. This approach avoids sampling spatially correlated data in the calculation of the confidence intervals. The
estimated confidence intervals in fig. S8 indicate that the spectra for 1960-1989 and 2070-2099 are statistically different. It is
worth noting here that if samples at different grid points are treated as being independent samples, the confidence intervals

become much narrower, in which case the two spectra in fig. S8 are even more statistically significant in their difference.

We next turn our attention to an expanded view of the temporal evolution of both frequency and amplitude modulations of
SST and precipitation over the Nifio3.4 region over the period 1960-2100. For the wavelet analysis in Fig. 3, we apply a Morlet

wavelet normalized by 62

, where © is the ensemble mean standard deviation of the respective timeseries. For analyses of
patterns of changes in variance, an adjusted Welch’s #-test (Torrence and Compo, 1998) was applied. The general approach is
to first calculate the equivalent sample size 71, to account for potential serial correlations of the time series. This is then used
to calculate the degrees of freedom for the Welch’s #-test, which is an adjusted version of the Student’s #-test that allows for
the two samples to have unequal variance (i.e., heteroskedasticity). First, the decorrelation timescale T, was calculated at each

grid point, and for each period, based on the e-folding timescale of the autocorrelation function r(t), defined as the smallest
lag T for which r(t) < e~1. Then the equivalent sample size fi was defined as fi = Tﬂ , where N = 30 is the total sample size

in our case. The equivalent sample size was then used to calculate the degrees of freedom of the standard Welch’s #-test. Note

that this test may still be liberal if the equivalent sample sizes are small, i.e., in areas of high serial correlation.

Ensemble wavelet analysis of SST (Fig. 3a) and precipitation (Fig. 3b) within the Nifio3.4 region has been conducted after
first removing the ensemble-mean trend over the full period from each ensemble member while retaining the seasonal cycle.
The wavelet analysis is conducted for each ensemble member and then averaged. Our motivation for retaining the seasonal
cycle stems from an interest in illustrating timescale interactions between ENSO and the seasonal cycle with the full power of
Large Ensemble statistics. The annual cycle and ENSO interact with each other in a complex way, with the annual cycle itself
being a forced coupled air-sea mode (Xie, 1994). This interaction gives rise to combination modes (Stuecker et al., 2015b),
frequency entrainment (Timmermann et al., 2007), and ENSO’s phase-locking and seasonal variance modulations (Stein et
al., 2014; Stein et al., 2010). Not only does the annual cycle in the equatorial Pacific influence the amplitude and phase of
ENSO, but ENSO also impacts the seasonal cycle.

We consider the normalized variance to highlight the amplification above the white noise level, and in contrast to Fig. 2
represent variance with a linear scale to emphasize temporal modulation of the amplitude of the maxima. For SST a clear
separation is seen between the maxima for interannual variability and the annual cycle (Fig. 3a). At interannual timescales,
there are two notable features. The first is a shift in the ENSO peak period from 3.5 years to 2.5 years between the end of the
20" century and the end of the 21% century. The second feature with interannual variability is that variance does not change
monotonically, but rather exhibits a maximum midway through the 21% century, similar to what has been reported elsewhere
(Kim et al., 2014). This stands in contrast to precipitation over the same region (Fig. 3b), for which there is a monotonic
increase in variance, following a similar shift in the period of the peak that was found for SST. For precipitation, the amplitude
of the seasonal cycle increases over 1960-2100, consistent with the notion of variability enhancement over the tropics due to

thermodynamic and dynamic processes (Yun et al., 2021).
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The forced changes over 1960-2100 in the structure of the seasonal cycle for the ensemble mean of SST (Fig. 3¢) and
precipitation (Fig. 3d), as well as the across-ensemble standard deviation of SST (Fig. 3e) and of precipitation (Fig. 3f) are
also considered for the Nifio3.4 region using daily-mean model output. The maximum (red dots) of ensemble-mean SST occurs
in May and the minimum (blue dots) in October in the late 20" century (Fig. 3¢), with both showing monotonic increases over
1960-2100. The maximum shifts to two weeks later and the minimum shifts to two weeks earlier by the end of the 21 century,
with this modest perturbation to the phase of the seasonal cycle being accompanied by a modulation of seasonal amplitude.
The ensemble-mean seasonal amplitude in precipitation (Fig. 3d) occurs approximately one month before the ensemble-mean
maximum in SST (Fig. 3¢), and a second maximum in precipitation in late January becomes evident during the second half of
the 21* century. On the other hand, the ensemble-mean minimum in precipitation occurs approximately two weeks after the
local minimum in temperature. The increase in the amplitude of the seasonal cycle is thereby accompanied by changes in the

phasing of the seasonal cycle for both SST and precipitation.

The mechanisms responsible for the phasing of maximum precipitation leading maximum temperature over the Nifio3.4 region
over seasonal timescales (red dots in Fig. 3¢ and Fig. 3d) have been considered previously in published literature (Xie, 1996;
Xie et al., 2010; Williams and Patricola, 2018; Stuecker et al., 2020). Current understanding maintains that seasonal
precipitation phasing is largely driven by meridional SST gradients, and is thereby not directly tied to the phasing of seasonal
SST variations in the Nifio3.4 region. In other words, the phase relationship between precipitation and SST is not surprising

as moisture convergence is in part determined by non-local SST conditions.

The seasonally-stratified maximum across-ensemble SD in SST (Fig. 3e), associated with peak ENSO variability, exhibits a
trend towards an earlier occurrence by approximately one month over 1960-2070. This is accompanied by a modest decrease
in amplitude (line plot). The across-ensemble SD minimum for SST occurs in July for the 20" century, with a secondary
minimum in the across-ensemble SD developing over the first half of the 21% century in May. Subsequently the across-
ensemble SD minimum in May becomes more pronounced and becomes the dominant minimum n the across-ensemble SD of
SST by the end of the 21* century. For the across-ensemble SD of precipitation (Fig. 3f), there is a monotonic strengthening
of the seasonal maximum in late January, corresponding roughly to the time of peak ENSO variability, and a weakening of
the seasonal minimum in October, over the interval 1960-2100. Whereas the seasonal minimum in the across-ensemble SD of
precipitation (Fig. 3f) occurs nearly in phase with the seasonal minimum of ensemble-mean SST (Fig. 3c), the seasonal
maximum for the across-ensemble SD of precipitation does not coincide with the seasonal maximum of ensemble-mean SST.

Rather, it coincides with the secondary seasonal maximum in ensemble-mean precipitation in late January (Fig. 3d).

3.3 Changes in Variance and Co-variance Patterns

Along with modulations in the frequency domain, the spatial patterns of variance are altered in response to changing climate
conditions. The analysis of patterns of variance and co-variance in Fig. 4 uses across-ensemble calculations of annual-mean
ensemble SDs. These calculations entail first calculating the SD across all ensemble members for the same time record.
Subsequently averaging is done across time. This sequence was chosen to avoid spurious amplification of variability due to
the non-trivial forced variations in precipitation and surface temperature driven by volcanic aerosols over the historical period.
For the case of surface, averaged over December, January, February (DJF) (Fig. 4a), and precipitation for DJF (Fig. 4b), the
across-ensemble SDs were first calculated separately over all years spanning 1960-1989 and 2070-2099, and then averaged
over the two respective periods. The intention with the calculation of both across-ensemble SDs and correlations is to harness
the full power of the Large Ensemble, and is analogous to the empirical orthogonal function (EOF) EOF-E snapshot method
(Mabher et al., 2018).
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We begin by considering interannual variance changes in boreal winter (DJF) by evaluating relative changes in the cross-
ensemble SD of surface temperature and precipitation for the same periods as with the spectra in Fig. 2 (1960-1989 and 2070-
2099). The background cross-ensemble SD averaged over 1960-1989 is shown in shading (Fig. 4a,b). Surface temperature
(Fig. 4a) reveals modest decreases in variability across the equatorial Pacific and Indian Oceans, consistent with Fig. 2.
Variability decreases over much of the higher latitudes of the Northern Hemisphere (Screen, 2014; Screen et al., 2015; Holmes
et al., 2016; Sun et al., 2015; Schneider et al., 2015), with exceptions over the Arctic and the North Atlantic, and with
exceptions in the Southern Hemisphere found over Southern Africa and parts of Antarctica (Fig. 4a). For precipitation (Fig.
4b) a relative increase in SD is seen over most regions with particularly pronounced enhancements occurring in the eastern
equatorial Pacific, the Indo-Pacific warm pool including the South Pacific Convergence Zone, the western Arabian Sea, the
poles, and most land areas. The equatorial Pacific changes represent an eastward broadening in the centers of convection in
response to the enhanced equatorial Pacific warming and the reduction of the overall zonal SST gradient (Fig. 2, center). In
contrast, there is a decrease in the northern equatorial Atlantic Ocean as well as in some trade wind regions of the eastern

Pacific.

Another important question to address is whether greenhouse warming can also impact the co-variability of different climate
components and the global teleconnections of major modes of climate variability. This is illustrated here by examining the
projected changes in the local correlation coefficients between the Nino3.4 SST index and surface temperature from 1960-
1989 and 2070-2099 (Fig. 4c¢), with the background correlation coefficients shown in shading and their respective future
changes shown in circles. Our analysis reveals a systematic strengthening of ENSO’s remote temperature correlation over the
Amazon basin and in the equatorial Atlantic, the Philippines and Japan in the western Pacific, throughout Africa, in Northern
India and across eastern Canada and the Southern U.S. Co-variance decreases over western Canada and Alaska, and zonally

across the equatorial Indian Ocean.

The future changes in the correlation between the Nifio3.4 index and precipitation (Fig. 4d) indicate a pattern of enhanced co-
variance over the western Pacific region surrounding the Philippines, much of Africa and South America, and western China,
as documented by the background correlation coefficients and their future changes having the same sign. In other words, in
these regions we see stronger ENSO teleconnections under future global warming, which in turn could translate to increased
predictability of climate in the regions on seasonal to interannual timescales, but also stronger impacts. In contrast, decreased
precipitation co-variance with ENSO is found for North America over the Pacific Northwest as well as much of the Southern
U.S. and Mexico, as well as over Columbia/Venezuela, Bangladesh/Myanmar, parts of eastern Australia, and parts of eastern
Siberia. Taken together, the global pattern of ENSO/precipitation co-variance changes (Fig. 4d) is due to a combination of
simulated weakening of ENSO SST variability (Fig. 4a) and eastward expansion of the region of maximum convective activity
in the equatorial Pacific (Fig. 4b) (analysis for the June-July August (JJA) season in shown in fig. S9), and likely other
projected changes of the background atmospheric circulation. There are a number of outstanding challenges in interpreting
mechanistically how ENSO teleconnections change in response to anthropogenic forcing, including the relative role of local
diabatic forcing and modulations of ENSO (Taschetto et al., 2020). We anticipate that the Large Ensemble analyses here will

complement efforts directed at understanding mechanistic controls.

3.4 Forced Changes in Phenology of Net Ecosystem Production

Finally in this overview, we illustrate how anthropogenic forcing impacts the phase of the seasonal cycle by focusing on the
phenology of NEP in the Northern Hemisphere mid-to-high latitudes (over 50°N-80°N). NEP as a flux quantity represents the
difference between gross primary production and ecosystem respiration, and thereby the net exchange of carbon with the

atmosphere when fire and human land use changes are ignored. Our interest in NEP is motivated by ecological concerns that
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a shift to an earlier spring bloom, in particular over the land regions adjacent to the Arctic, can drive a phenological mismatch
in ecological interactions between plants and animals (Renner and Zohner, 2018). For the seasonality/phenology analysis in
the upper panel of Fig. 5, an area-integral of daily-mean NEP, is performed for each ensemble member separately. A total of
90 ensemble members are used, as daily-mean CLMS5 output was not saved for the first 10 members, namely for members

{1001.001, 1021.002, 1041.003,...,1081.010}.

Ensemble-mean NEP is integrated over the region in 5-year intervals, with aggregation performed for individual years and
with a binning interval of one day (colors in Fig. 5, upper panel). We find an evolving amplitude of the seasonal cycle and of
the growing season length (the interval during which NEP is positive, indicating net land uptake of carbon). This representation
of forced changes in the non-sinusoidal seasonal cycle reveals that the growing season length is projected to increase by almost
four weeks, with the onset shifting three weeks earlier and termination shifting one week later. The forced changes in growing
season length are mostly attributable to changes in the mean temperature (Lawrence et al., 2019; Lombardozzi et al., 2020).
The analysis also reveals a more than doubling of the amplitude of the seasonal cycle in NEP as a forced response. This
represents an increase in the “breathing” of the terrestrial high-latitude biosphere. Information from individual ensemble
members in 20-year intervals regarding the timing of (i) first zero crossing, (ii) maximum NEP, (iii) second zero crossing, and
(iv) maximum negative NEP (Fig. S, lower panel) reveals that interannual variability (identified using one SD) is in general
smaller than the forced trend evident in the ensemble mean in spring. Our analysis indicates that for the aggregated NEP signal,
the phenological shift as a decadal trend already becomes emergent relative to the natural variability within the first decades
of the 21% century. The trend itself is broadly consistent with observations (Zhu et al., 2016; Myers-Smith et al., 2020). Internal
variability in the date of onset of the growing season decreases by 35% over the course of the simulations and the date of the
end of the growing decreases by 18% (Fig. 5, lower panel). In deriving these percentages, the transitions (zero crossings) were

first calculated individually for each ensemble member for each time interval (across 90 members).

4 Summary and Discussion

This study introduced a new, publicly available Large Ensemble of climate change simulations conducted with the global fully
coupled CESM2 model. This Large Ensemble (CESM2-LE) is unprecedented in terms of its combination of size (100
members), duration (1850-2100), and spatial resolution in the atmosphere and ocean (nominally 1° horizontally). As such, it
offers a unique opportunity to study not only forced changes in the mean state, but also forced changes in internal variability,
including higher-order statistical moments. Here we showcase aspects of the remarkable diversity of forced responses in
amplitude, frequency, patterns, co-variance, and seasonal characteristics of internal variability in CESM2-LE across a broad
suite of key physical and ecosystem quantities, spanning the atmosphere, land, cryosphere, and ocean. Importantly, and
contrary to conventional wisdom, the changes are not solely centered on the frequency of specific climate modes such as
ENSO and the Madden Julian Oscillation, but are instead broadly distributed over nearly all timescales (Fig. 2), in particular
for non-Gaussian distributed variables. The mechanistic underpinnings of the changes in variability go beyond amplification
or damping of major climate modes, and possibly include state-dependence of linear stabilities, non-linearities, rectification,
and changes in damping timescales and noise characteristics, many of which will be investigated in forthcoming studies

analyzing the breadth of the CESM2-LE output fields.

If the ubiquitous changes in variance across temporal and spatial scales described here are realized in the real world, they will
have several important implications for informing adaptation strategies and assessing potential impacts. This holds for water
resource management and agriculture, fisheries, and occurrence of wildfires. Forced changes in phenology and phasing of the

seasonal cycle for ecosystem productivity pose risks of mismatches with trophic level interactions and energy transfers. The
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ubiquity of such changes in variability also points to the importance of moving beyond the assumption of stationary variability
in detection and attribution studies of climate change (Hegerl et al., 2007), and underscores the necessity of recalibrating
climate-economy models (Diaz and Moore, 2017) to account for an entirely different probability distribution for variability
(Fig. 2, fig. S7) than what is currently used when projecting future climate change scenarios. The non-stationary nature of
climate noise under anthropogenic forcing (Fig. 2) and the evolving teleconnections patterns (Fig. 4) also have implications

for seasonal to multi-year climate predictability.

Although our analysis of the CESM2-LE has revealed a broad range of forced changes in variance across physical scales and
Earth system variables, it nevertheless should be emphasized that model-uncertainty has not been considered here. There is
already evidence for the narrower case of interannual variability in surface temperature and precipitation that model uncertainty
in forced changes exhibits pronounced differences between models (Maher et al., 2021) (their Supplementary Figures 7 and
8). Thus, it is our hope that our work will motivate further investigations of forced change in Earth system variance across a

broad range of timescales under existing archives of Large Ensemble simulations (Deser et al., 2020; Schlunegger et al., 2020).

Taken together, we have provided support with new examples and new global emphasis that the Earth system is sensitive in
its statistical characteristics to anthropogenic forcing, thereby building upon and complementing previous studies that have
focused on mechanistic analyses for specific phenomena (Swain et al., 2018; Tamarin-Brodsky et al., 2020; Taschetto et al.,
2020; Burger et al., 2020). Although only a small fraction of such forced changes could be documented in this study, we expect
that the diagnostic ensemble analysis tools applied here, along with the open access to our datasets, will inspire further

investigations into the non-stationarity of Earth system processes in the presence of anthropogenic forcing.
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Code Availability
Analysis code is available from the authors by request. The python wavelet software used for Fig. 3 was provided by Evgeniya

Predybaylo (Torrence and Compo, 1998) and is available at http://atoc.colorado.edu/research/wavelets/.

Data Availability
The CESM2-LE model output is available through:
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Figure 1: Annual mean evolution of global fields over 1850-2100 for 100 ensemble members. For model fields, bold lines
represent ensemble means, and dark and light shading represent one standard deviation (SD) and two SD variability.
Observational data are shown in red when appropriate. Portions of the figure with light-blue background shading indicate the
historical period (1850-2014) while portions with light-red background shading indicate the projection period (2015-2100).
(a) Top of atmosphere radiative imbalance (W m2) along with the CERES-EBAF product (Loeb et al., 2009; Loeb et al.,
2018), (b) anomalies of the global mean precipitation (mm day!) increasing 5.4% between the 1850s and the 2090s, compared
with the Global Precipitation Climatology Project (GPCP) (Adler et al., 2003; Adler et al., 2012), (c) anomalies of global mean
surface temperature, increasing by 4.4°C between the 1850s and 2090s, along with HadCRUT4 (Morice et al., 2012) anomalies
over 1950-2019, (d) anomalies of ocean heat content integrated over the upper 1500m, along with an observation-based product
(Ishii et al., 2017), (e) anomalies of sea ice extent for the Arctic (black) and Southern Ocean (blue), with observed sea ice
extent over 1979-2020 (Fetterer et al., 2017), and with the vertical scales of the anomaly plots offset to facilitate comparison,
(f) Atlantic Meridional Overturning Circulation (AMOC) transport anomalies at 26.5°N, with RAPID array observations
(Frajka-Williams et al., 2019), (g) globally-integrated net primary productivity (NPP) over the ocean (blue; increase of 2.7%
between the 1850s and 2090s), and over land (green), and (h) globally-integrated net COz fluxes over the ocean (solid blue)
and integrated net COz flux (net biome production, or NBP, including fire and land-use change) over land (green) with all
quantities in (g) and (h) in units of PgC yr'!. For each case, where observational products are included, anomalies are calculated
with respect to the period spanned by the observations. For anomaly fields, printed numbers represent the absolute mean of
the ensemble mean of CESM2-LE (black or blue numbers) and the observational product (red numbers).
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Figure 2: Changes in the Fourier amplitude spectrum of historical (1960-1989) to future (2070-2099) climate variability
in CESM2-LE. The center map shows historical-to-future changes in surface temperature (shaded, °C) and precipitation (solid
blue/cyan dots, mm day™!). Each pairing of panels shows historical (cyan) and future (red) spectra and PDFs for five different
variables over four different regions. The spectra are considered over the respective periods, 1960-1989 (historical) and 2070-
2099 (future), thereby including the trend, and PDFs are considered for all days over 1980-1989 and 2090-2099 to minimize
the impact of the trend. From upper-left clockwise, each pair of panels shows fire occurrences in California (32°N-41°N,
125°W-118°W, land only), surface chlorophyll concentrations in the North Atlantic subpolar gyre (40°N-60°N, 60°W-15°W),
net ecosystem production (NEP) in the Amazon (10°S-10°N, 80°W-50°W, land only), precipitation over the Nifio3.4 regions
(5°S-5°N, 170°W-120°W), and sea surface temperature (SST) over the Nifio3.4 region. The spectra are calculated for daily
timeseries at individual grid points including both forced responses and internal variability and using 30-year intervals.
Subsequently the spectra are averaged over the grid points in each region. Sharp spectral peaks are associated with the annual
cycle and its non-sinusoidal components, which generate high-order harmonics. Shaded areas for spectra of precipitation and
temperature in the Nifio3.4 region correspond to the timescales of the El Nifio-Southern Oscillation (ENSO) and ENSO-annual
cycle combination modes (Stuecker et al., 2013) (C-modes). Spectra are shown as amplitude, with the units being the same as
the x-axes for the PDFs. PDFs of positive- variables (California fire counts, N. Atlantic surface chlorophyll, and Nifio3.4
precipitation) are shown with logarithmic y-axes. The fields in the center panel are presented in more detail in fig. S6, except
that there 2m reference temperature is used rather than surface temperature. A suite of complementary spectral and PDF
analyses to those shown here are presented in fig. S7.
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Figure 3: Changes in the dominant frequencies and seasonal variance of sea surface temperature (SST, left) and
precipitation (right), in the Nifi0o3.4 region (5°S-5°N, 170°W-120°W). (Top) The wavelet power spectra of Nifio3.4 (a) SST
and (b) precipitation using a Morlet wavelet, normalized by =2, where @ is the ensemble mean standard deviation of the
respective Nifio3.4 time series (Torrence and Compo, 1998). The y-axis shows the equivalent Fourier period in years. The
hatching indicates regions where the wavelet spectrum is not trustworthy due to edge effects. Prior to calculating the wavelet
spectra, the time series were detrended by subtracting the ensemble-mean annual means, which were linearly interpolated to a
monthly timestep. (Middle) The ensemble-mean of Nifio3.4 (¢) SST and (d) precipitation indicated for each day (ordinate) and
year (abscissa) using daily output. The red/blue dots indicate the maximum/minimum daily values of each year. The black line
to the right in panels (c)-(f) indicates the linear trend over 1960-2100. (bottom) Same as for (c) and (d), but for the across-
ensemble SDs of () SST and (f) precipitation.
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Figure 4: Changes in the patterns of interannual variability and Nifio3.4 correlation coefficients of December-January-
February (DJF) surface temperature and precipitation. (Top) Color shading shows the time-averaged absolute across-
ensemble SD of the DJF seasonal mean surface temperature (a) and precipitation (b) for the period 1960-1989. Circles show
the relative changes in the SD between 2070-2099 and 1960-1989, where insignificant change (p>0.05) has been removed.
Statistical significance of the changes (circles) was determined based on the p-values of the two-sample Welch’s #-tests for the
equality of temporal means of the SDs, with the equivalent sample sizes adjusted to account for serial correlations (Methods).
(Bottom) Color shading shows ensemble-wise correlations of the Nifio3.4 index with surface temperature (c) and precipitation
(d) anomalies for DJF, averaged over the period 1960-1989. Circles show the absolute change in correlations between 2070-
2099 and 1960-1989, where statistically insignificant changes (p>0.05) have been removed. The Nifio3.4 index for ENSO is
the spatial average of sea surface temperature within 5°S-5°N, 170°W-120°W. Statistical significance of the changes (circles)
was determined based on the p-values of two-sample Student’s #-test of the Fisher z-transformed correlation coefficients
(Timmermann et al., 2014). Note that the #-test treats the ensemble standard deviations and correlations as stationary and
serially uncorrelated with either of the two periods. For all four panels, the circles represent subsampled fields at 10° intervals
over the global domain. The corresponding analysis for June-July-August (JJA) is presented in fig. S9.
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Figure 5: Expansion of growing season length, or equivalently the carbon uptake period, over S0°N-80°N (shown here
for all 90 members for which daily-mean land output was saved). Upper panel: Evolution of ensemble mean seasonal cycle
(one line for every five years, color-coded) of integrated net ecosystem productivity (NEP), with positive values indicating net
terrestrial carbon uptake and negative values indicating loss of carbon from the aggregated land region. The first zero crossing
marks the start of the growing seasons, and the second zero crossing marks the end of the growing seasons; Lower panel:
Histograms of first occurrence of zero crossing, peak, second zero crossing, and minimum as a function of the day of year.
The horizonal axis for both panels is a climatological calendar day of the year, and aggregation is done across 90 members.
The histograms represent model output sampled at 20-year intervals. The inlay map (upper right) shows the ensemble mean
amplitude of the seasonal cycle of NEP averaged over 1960-1989 (gC m™ day™).
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