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Abstract. While climate change mitigation targets necessarily concern maximum mean state changes, understanding impacts 

and developing adaptation strategies will be largely contingent on how climate variability responds to increasing anthropogenic 15 

perturbations. Thus far Earth system modeling efforts have primarily focused on projected mean state changes and the 

sensitivity of specific modes of climate variability, such as the El Niño-Southern Oscillation. However, our knowledge of 

forced changes in the overall spectrum of climate variability and higher order statistics is relatively limited. Here we present a 

new 100-member Large Ensemble of climate change projections conducted with the Community Earth System Model version 

2 over 1850-2100 to examine the sensitivity of internal climate fluctuations to greenhouse warming. Our unprecedented 20 

simulations reveal that changes in variability, considered broadly in terms of probability, distribution, amplitude, frequency, 

phasing, and patterns, are ubiquitous and span a wide range of physical and ecosystem variables across many spatial and 

temporal scales. Greenhouse warming in the model in alters variance spectra of Earth system variables that are characterized 

by non-Gaussian probability distributions, such as rainfall, primary production, or fire occurrence. Our modeling results have 

important implications for climate adaptation efforts, resource management, seasonal predictions, and for assessing potential 25 

stressors for terrestrial and marine ecosystems. 
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1 Introduction 

Faced with the prospect of substantial future climate change, mitigation and adaptation strategies are increasingly paramount.  

While mitigation efforts are concerned chiefly with limiting mean state changes, successful adaptation will also require 

understanding the potentially altered variability of the climate system (Sarachik, 2010). However, the way in which climate 35 

variability will change due to anthropogenic radiative forcing has not been extensively explored. The spectrum of observed 

regional-to-global climate fluctuations exhibits relatively sharp peaks and a broad noise background (Hasselmann, 1976; 

Franzke et al., 2020). Spectral peaks can emerge from a range of mechanisms, including astronomical forcings or internal 

climate instabilities such as for the El Niño-Southern Oscillation (ENSO). Moreover, these distinct features can be further 

influenced by climate processes acting on different timescales. Examples of non-linear “timescale interactions” are 40 

multiplicative (state-dependent) noise (Müller, 1987; Majda et al., 2009; Sardeshmukh and Sura, 2009; Sardeshmukh and 

Penland, 2015; Jin et al., 2007; Levine and Jin, 2010; Jin et al., 2020) and combination mode dynamics (Stuecker et al., 2015b). 

How modes of variability will respond to greenhouse warming has been addressed in a number of previous modeling studies 

(Timmermann et al., 1999; Cai et al., 2018), albeit with conflicting results. In contrast, the sensitivity of the spectral background 

to human-induced climate change is less well-known. Identifying and characterizing human-induced changes in this spectral 45 

background, using for example Climate Model Intercomparison Project (CMIP)-type coordinated modeling efforts, has proven 

difficult due to limited statistics. 

 

The relatively recent advent of Large Ensemble simulations (henceforth termed Large Ensembles) conducted with Earth 

system models provides a new resource for addressing how climate and ecosystem statistics may evolve in response to 50 

anthropogenic forcing across a wide range of timescales (Deser et al., 2020; Schlunegger et al., 2020). Such Large Ensembles 

with global climate models have existed for more than 15 years (Zelle et al., 2005; Drijfhout et al., 2008; Branstator and Selten, 

2009), but earlier studies expressed concern with aspects of process representation and therefore their results with regard to 

variability changes were inconclusive. Other studies have employed individual model simulations, small (≤10 members) 

ensembles, or CMIP multi-model ensembles (Rind et al., 1989; Raisanen, 2002; Huntingford et al., 2013; Screen, 2014; 55 

Stouffer and Wetherald, 2007; Wetherald, 2009) to address whether surface temperature and precipitation variability may 

change under global warming. To date Large Ensemble studies of changes in variance have mainly focused on specific 

quantities, timescales, or regions (Deser et al., 2020; Pendergrass et al., 2017; Maher et al., 2019; Haszpra et al., 2020; Maher 

et al., 2021). However, to our knowledge, the full power of the Large Ensemble framework has not been harvested to gauge 

broad-scale forced changes in climate statistics, including changes in variance, spectrum, patterns, and phase, for a wide range 60 

of quantities, regions, or timescales.   

 

To study the sensitivity of higher-order climate statistics to anthropogenic climate change, we conducted a new 100-member 

ensemble of climate change simulations using the Community Earth System Model version 2 (CESM2) (Danabasoglu et al., 

2020), which we refer to as CESM2-LE (Methods). The initialization and forcing are described in the Methods section and in 65 

figs. S1-S3 of the Supplementary Materials. An ensemble of this size and duration with a CMIP6-generation Earth system 

model at 1° spatial resolution is unprecedented. A large number of improvements have occurred since the CESM1-LE (Kay et 

al., 2015), as documented in the Methods section.  In addition to improved parameterizations and process-represenation that 

increase model skill in representing a number of phenomena, a notable improvement is also in land processes within the 

Community Land Model Version 5 (CLM5).   70 

 

CESM2-LE promises to provide an enhanced framework for documenting and understanding robust forced changes in internal 

variability, complementing our knowledge of mean-state changes (Simpson et al., 2020; Fasullo, 2020). The simulations were 

performed for the 1850-2100 period with historical (1850-2014) and SSP3-7.0 (2015-2100) forcings. The choice to use 100 
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members was motivated by the challenges associated with identifying trends in higher statistical moments. A previous set of 

analyses performed with the Max Planck Institute Grand Ensemble (MPI-GE) (Milinski et al., 2020) explored the relationship 

between ensemble size and the accuracy of identifying forced changes in higher-order moments. Even taking into account 

differences in model architecture, and thereby model uncertainty in such estimates, their analysis with the MPI-GE 90 

nevertheless supports our decision to expand well beyond the 40 members chosen for the CESM1 LE (Kay et al., 2015). To 

facilitate analysis over a broad range of timescales, substantial resources have been devoted to providing high-frequency output 

for the atmosphere, land, ocean, and cryosphere. Providing a clearer view of the patterns of altered climate variability should 

enable investigation of the mechanistic drivers of such changes and their implications for impacts of societal and ecosystems 

relevance. This study presents initial results on forced changes in internal variability across a range of fields and timescales in 95 

CESM2-LE, and it will serve as the reference publication for CESM2-LE.    

2 Methods 

2.1 Model Configuration 

The simulations consist of a 100-member Large Ensemble suite conducted with CESM2 with the Community Atmosphere 

Model version 6 (CAM6) (Danabasoglu et al., 2020), referred to here as the CESM2-LE. The simulations cover the period 100 

from 1850-2100 and follow the historical and SSP3-7.0 forcing protocols provided by the CMIP6 (Eyring et al., 2016), 

although with some differences noted below for the representation of biomass burning in 50 of the 100 ensemble members. 

CESM2 has been demonstrated to fare well when evaluated against skill metrics with other models (Fasullo, 2020). The choice 

of the SSP3-7.0 scenario forcing follows CMIP6 recommendations (O'Neill et al., 2016) that emphasize the value of this 

relatively high forcing level precisely for the purpose of quantifying forced changes in natural variability. This choice should 105 

also provide a useful contribution towards an eventual CMIP6 Large Ensemble intercomparison. 

 

The CESM2 components use nominal 1° horizontal resolution. Specifically, CAM6 has a resolution of 1.25° in longitude and 

0.9° in latitude, and 32 vertical levels with a top at 2.26 hPa, or approximately 40km. The ocean and sea ice models are the 

Parallel Ocean Program version 2 (POP2) (Danabasoglu et al., 2020; Smith et al., 2010) and the CICE Version 5.1.2 (CICE5) 110 

(Bailey et al., 2020). The nominal resolution of the ocean is 1° horizontally, with uniform spacing of 1.125° in the zonal 

direction and varying significantly in the meridional direction, with the finest resolution of ~0.25° at the equator. The ocean 

model provides 60 vertical levels, with 20 of these layers represented in the upper 200m of the water column. CESM2 offers 

a number of improvements pertinent to our scientific interests relative to what was available for the CESM1-LE (Kay et al., 

2015).  These improvements include advances in the surface boundary layer representation for the ocean (Li et al., 2016), as 115 

well as for cloud microphysics (Gettelman et al., 2015). The ocean biogeochemistry model used with the POP2 model is the 

Marine Biogeochemistry Library (MARBL), which represents an updated version of what was previously known as the 

Biogeochemistry Elemental Cycle (BEC) (Moore et al., 2001; Moore et al., 2004; Moore et al., 2013; Long et al., 2021).  

 

An important advance of great value to Large Ensemble investigations is achieved through new developments incorporated 120 

into the CLM5 (Danabasoglu et al., 2020; Lawrence et al., 2019; Lombardozzi et al., 2020). The model addresses a number of 

well-known limitations relative to previous versions of CLM, including major improvements in simulated cumulative CO2 

uptake over the historical period (Bonan et al., 2019) and improved representation of the seasonal cycle of net ecosystem 

production (NEP) (Lawrence et al., 2019), which is highlighted in our analysis of projected forced phenology changes. Other 

notable features also included in CLM5 are the explicit representation of agricultural management and improvements in the 125 

implementation of the prognostic fire model (Lombardozzi et al., 2020; Li et al., 2013; Li and Lawrence, 2017). All CLM5 

improvements found broadly across a range of simulated variables have been documented through evaluation of model 
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simulations against the International Land Model Benchmarking (ILAMBv2.1) package and other analyses (Collier et al., 

2018; Danabasoglu et al., 2020). We note that land model trajectories are sensitive to SSP scenarios that determine the spatial 

distribution and extent of land use and land cover changes (O'Neill et al., 2016). 150 

 

As a more general complement to the research results considered in this study, we have also made available results from 

running the Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) 

(https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/) (Phillips et al., 2020) for the CESM2-LE, with graphical output 

available under https://climatedata.ibs.re.kr/data/cesm2-lens/lens-diagnostics.   155 

2.2 Large Ensemble Initialization 

For the CESM2-LE initialization procedure, the experimental configuration was designed to respond to broad community 

demand for a mix of macro- and micro-perturbations (where for micro-perturbations members differ only in a small random 

perturbation applied at initialization). To satisfy this demand and allow for exploration of the impact of initialization type, it 

was decided to initialize members from various years between 1001 and 1301 of a pre-industrial simulation conducted with 160 

CESM2 (Danabasoglu et al., 2020). This was as far as the CESM2(CAM6) pre-industrial simulation had reached at the time 

when the CESM2-LE project began, and by this point the top-of-the-atmoshphere (TOA) global energy imbalance was 

relatively small an stable with a correspondingly small model drift (Danabasoglu et al., 2020). The years from the pre-industrial 

control run for initialization are highlighted in fig. S1.   

 165 

Micro-initializations start from four different years: 1231, 1251, 1281, and 1381. Twenty members were run for each start 

year, with ensemble spread introduced by a random perturbation to the atmospheric temperature field at initialization (through 

a CAM6 namelist variable referred to as “pertlim”), as was used for all members of the CESM1 LE (Kay et al., 2015). Macro-

initialization (one run for each initialization date) used initialization years {1001,1011, 1021, …,1091} by using 20 

independent restart files at 10-year intervals over 1001-1091. It warrants mention for the case of the macro-perturbations that 170 

no explicit perturbation was required from the pre-industrial control simulation. Taken together, if one includes one member 

from each of the micro-perturbation runs, then a total of 24 macro-perturbation runs are available. 

 

Importantly, as can be seen in fig. S1b, for the initialization points of years 1231, 1251, 1281, and 1301 were specifically 

chosen for the micro-initializations to correspond to years of maximum, decreasing, minimum, and increasing Atlantic 175 

Meridional Overturning Circulation (AMOC) transport, respectively, relative to the preindustrial control simulation. It is 

important to note that when using the Large Ensemble output the initialization procedure should not be considered to produce 

members that are independent, or to have randomized modes of climate variability, for the years immediately subsequent to 

1850.  Considering the AMOC strength at 26.5°N as an example (fig. S2a), the ensemble mean AMOC strength for each of 

the micro-perturbation clusters initialized for years 1231, 1251, 1281, and 1301 of the pre-industrial control run (averaged 180 

across 20 members for each case) converge only after several decades, indicative of the timescale over which the initial 

condition memory persists for AMOC. For this reason, our analysis with internal variability focuses on the period after 1960, 

more than a full century after initialization. Further quantitative exploration of the specific duration over which initial condition 

memory is retained is the subject of a separate ongoing study. 

 185 

A generalized schematic for the initialization procedure is shown in fig. S3, illustrating the organization of the simulations. 

The schematic also includes mention of the biomass burning emissions differences between two groups of 50 simulations, as 

described more fully in the next section. The macro-perturbation runs initialized at {1011, 1031, 1051, …, 1091} have greatly 

enhanced output at high-frequency to meet the needs of broader community interests for Large Ensemble output. The 
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temporally high-resolution output includes 6-hourly snapshots of three-dimensional temperature, winds, and specific humidity 245 

for the Coordinated Regional Climate Downscaling Experiment (https://cordex.org) simulations, as well as output appropriate 

for the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP).  

(https://climatedataguide.ucar.edu/climate-data/cosp-cloud-feedback-model-intercomparison-project-cfmip-observation-

simulator-package). 

2.3 Large Ensemble Forcing 250 

A choice was made to use two different sets of forcing fields to represent the effects of variability in biomass burning emissions 

for the CESM2-LE (see figs. S4-S5). The biomass burning aerosol fluxes in CESM2 are imposed at the surface. As such, they 

are not prognostic, meaning that they are not generated by the model’s internal prognostic fire model. The first 50 members 

of our Large Ensemble follow CMIP6 protocols (Van Marle et al., 2017), with biomass burning following the description in 

the CESM2 overview paper (Danabasoglu et al., 2020), and this forcing is referred to as BB_CMIP6. For the second set of 50 255 

members, which we refer to as BB_CMIP6_SM (for smoothed biomass burning fluxes), the BB_CMIP6 biomass burning 

emissions of all relevant species for CAM6 were smoothed in time with an 11-year running mean filter. The averaging 

impacted variability in biomass burning fluxes over 1990-2020. Due to the inclusion of observations, the variability in biomass 

burning emissions during 1990-2020 is considerably stronger for BB_CMIP6 than the preceding and following periods. The 

smoothed forcing with BB_CMIP6_SM was designed to nearly conserve total emissions while reducing the strong changes in 260 

interannual variability. The temporal smoothing of the forcing is applied to the biomass burning emissions at each grid point 

subsequent to being regridded to the CESM2 grid. The high 1990-2020 biomass burning variability case (ensemble members 

1-50, or BB_CMIP6) relative to the smoothed forcing (ensemble members 51-100, or BB_CMIP6_SM) has a discernible 

impact on large-scale climate, as documented by the accelerated loss of September Arctic sea ice and Northern Hemispheric 

and tropical Pacific warming (fig. S5a,c).  Outside of the period 1990-2010, the impact of BB_CMIP6_SM relative to 265 

BB_CMIP6 for biomass burning emissions is not pronounced for simulated surface temperature, sea ice, or precipitation. It is 

for this reason that we selected the time intervals 1960-1989 and 2070-2099 for our analysis of variance changes in Fig. 2 and 

Fig. 4, for which the 100 ensemble members can realistically be considered to be part of the same population.   

 

2.4 Minor Corrections Relative to Previous Versions 270 

 

The code base for the BB_CMIP6_SM simulations (the second set of 50 members) incorporates corrections for two sets of 

errors that were present in the first set of 50 ensemble members (BB_CMIP6).  The first pertains to the SO2, SO4, and gas 

phase semi-volatile secondary organic aerosol (SOAG) emission datasets. For SO2 and SO4, the spatial patterns of the 

“shipping” and “agriculture+solvents+waste” components of forcing were inadvertently switched during the historical-to-275 

projection transition, or more specifically at the start of 2015. The incorrect partitioning of SO2 does not impact the results 

considered here, given that its components are summed before use. In contrast, the issue with SO4 datasets can impact the 

model state evolution as the particle sizes and numbers differ for the SO4 components. The SOAG emissions are calculated 

from several hydrocarbons, and they were not recalculated after an earlier bug correction in covering units of the lumped 

species for the biomass burning emissions. This issue was corrected, and diagnostics indicate that there are not any pronounced 280 

changes in the model solutions from these particular aerosol corrections.  

 

The second correction introduced for the 50 BB_CMIP6_SM simulations concerns the presence of a sporadic large CO2 uptake 

over land that was identified for the BB_CMIP6 runs. This large uptake is associated with a negative flux of carbon occurring 

at crop harvest time over a single time step. Although these large negative carbon flux component terms in autotrophic 285 
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respiration are necessary for maintaining carbon balance, such CO2 spikes are not realistic.  To avoid these spikes, the 

associated CO2 fluxes that occur over a single time step are distributed to the atmosphere over a time scale of approximately 300 

six months for the BB_CMIP6_SM simulations. Analysis indicates that these modifications for carbon between the 

BB_CMIP6 and BB_CMIP6_SM simulations did not result in any climate-changing impacts. 

3 Results 

3.1 Mean State Changes 

During the historical period the evolution of key simulated annual-mean climate indicators in CESM2-LE (Fig. 1; fig S6) 305 

agrees well with observations. The range across the ensemble members, which results from internal variability and its forced 

changes, spans the observed climate state much of the time, with a notable exception being Southern Ocean sea ice (Fig. 1e). 

The results here and the general model behavior are qualitatively consistent with those of similarly-forced CMIP6-generaion 

models (Fasullo, 2020; Kwiatkowski et al., 2020; Arora et al., 2020), although projected temperature changes (Fig. 1c) are in 

the upper range of the CMIP6 models owing to the relatively high climate sensitivity of CESM2 (Gettelman et al., 2019). The 310 

progressive weakening of the AMOC at 26.5°N in CESM2 over the 21st century (Fig. 1f) is largely consistent with other 

CMIP6 models (Weijer et al., 2020). We also find a substantial increase in land primary productivity (Fig. 1g), which 

contributes to the uptake of carbon in the terrestrial biosphere. Marine net primary productivity (NPP) (Fig. 1h) remains 

relatively constant throughout the simulation, and the overall uptake of carbon by the ocean reflects the re-emergence of 

anthropogenic carbon into the mixed layer (Toyama et al., 2017; Rodgers et al., 2020) and changes in the CO2 buffering 315 

capacity of seawater (Revelle and Suess, 1957). For the analysis that is presented in Fig. 1 for sea ice, daily-mean output fields 

are used for both the model and the data product. In representing sea ice extent a threshold of 15% was used, whereby a grid 

cell is identified as being ice covered if it has a concentration of sea ice above 15%. For the net land fluxes of CO2, we use the 

variable net biome production which includes the effects of not only photosynthesis and respiration, but also fire and land-use 

change.  320 

 

The pattern of mean state surface temperature change, shown as the difference between the periods 2070-2099 and 1960-1989 

(Fig. 2, central; 2m reference temperature shown in fig. S6), exhibits preferential warming of the eastern relative to the western 

equatorial Pacific, Arctic amplification, and a pronounced warming hole over the subpolar North Atlantic. These features are 

associated with the known mechanisms of the enhanced equatorial warming pattern (Xie et al., 2010), and more positive polar 325 

feedbacks (Goosse et al., 2018) including the Arctic heat capacitor (Chung et al., 2021), and the slowdown of the AMOC 

(Rahmstorf et al., 2015; Menary and Wood, 2018), respectively. For precipitation (Fig. 2, central; fig. S6e), changes include 

marked precipitation increases along the equatorial Pacific, within the Arctic Ocean, and decreases over the subtropical regions 

(Stocker et al., 2013). 

3.2 Forced Changes in Amplitude, Frequency, and Phase 330 

Figure 2 illustrates the ensemble-aggregated Fourier amplitude spectra and probability density functions (PDFs) for five key 

climate and ecosystem quantities (complementary quantities are shown in fig. S7). The choice of variables reflects an interest 

in both climate and ecosystem dynamics, as well as societal relevance in terms of adaptation and resource management. The 

decision to represent Fourier amplitude spectra was motivated by our desire to enrich our understanding of the amplitude of 

perturbations across different timescales. For the spectral analysis in Fig. 2, each Fast Fourier Transform (FFT) spectrum is 335 

calculated for the timeseries of raw data over a given variable for the full 30-year interval. This includes all timescales shorter 

than 30 years and longer than two days (months) for daily (monthly) time-resolution data. The spectrum is calculated first at 

each horizontal grid point and for each ensemble member, and then averaged over the designated region and over the 100 
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ensemble members. Due to the relatively large degree of aggregation for each field, it was not necessary to apply windowing 

to avoid spectral leakage. The surface chlorophyll concentration fields analyzed here represent total chlorophyll concentrations 

taken as a sum of diatom, diazatroph, and small phytoplankton chlorophyll. The AMOC in fig. S7 is defined as a maximum 355 

transport at 26.5°N. For the spectrum of internal variability of the AMOC, the ensemble-mean is subtracted from the raw data 

to remove a forced response 

 

For a wide range of Earth system variables, we find substantial changes of the projected 21st century probability distributions, 

impacting mean state, variance, and higher order statistical moments (Fig. 2). Human-induced alterations of climate spectrum 360 

and probability distribution could translate into changes in the average return time of climate and extreme events. Averaging 

the spectra over 100 ensemble members and individual grid boxes within each region creates enough data to reveal spectral 

characteristics that might otherwise be obscured. The dominant feature for most quantities examined is the spectral peak at the 

annual frequency, along with higher-order harmonics that result from deviations of the seasonal cycle from a pure sinusoid. 

Future changes of the annual cycle overtone spectrum can be caused by forced non-sinusoidal distortions of the annual cycle, 365 

generated e.g. by shifts in phenology, as discussed below. For nearly all variables under consideration, the seasonal cycle 

amplitude responds to the external forcing. Near-annual combination modes (C-modes) of ENSO and the seasonal cycle 

(Stuecker et al., 2015a) and its overtones can be clearly identified in some spectra, particularly for precipitation over the 

equatorial Pacific. In addition to representing the C-modes as deterministic components of the system, CESM2-LE also 

exhibits shifts in the frequency of the C-modes due to future reductions in ENSO’s dominant frequency (Fig. 3a). The C-mode 370 

peaks also strengthen in the future, reflecting that the amplitude of precipitation and the corresponding C-mode-generating 

non-linearity increase at both ENSO and annual frequencies.   

 

For most of the variables shown in Fig. 2 (and fig. S7) there are changes in the amplitude of the spectrum across the entire 

range of frequencies from synoptic to intra-seasonal to interannual to decadal, revealing the ubiquity of variance changes.  375 

Importantly, frequency-independent shifts in variance can be seen in the three variables shown here, which exhibit a strong 

non-Gaussian skewed PDF, namely the spectra of California wildfire occurrence, surface chlorophyll concentrations over the 

subpolar North Atlantic (40°N-60°N, 60°W-15°W), and precipitation over the Niño3.4 region (5°S-5°N, 170°W-120°W). For 

these positive variables with their highly-skewed probability distributions, forced changes in the mean state are accompanied 

by a stretching (squeezing) of the associated PDFs, thereby causing enhancement (or reduction) of variance and extremes. 380 

Changes of this type have previously been considered for more specialized cases using the Wasserstein distance (Ghil, 2016; 

Robin et al., 2017; Vissio et al., 2020). For white noise processes, the associated variance changes manifest as timescale-

independent variance changes, thereby accounting for the shown spectral background shifts. For California fire counts and 

Niño3.4 precipitation, mean state increases are therefore also accompanied by increases in variance occurring over a wide 

range of timescales. For North Atlantic chlorophyll, the mean state decrease is associated with a timescale-independent 385 

decrease in variance, with expected impacts for higher trophic levels in the ocean, leading to potential disruptions to 

ecosystems. 

 

For variables that are less skewed, a diversity of responses is found. Forced changes in sea surface temperature (SST) 

variability in the Niño3.4 region are confined to interannual timescales in association with a decrease in ENSO amplitude and 390 

a slight shift toward higher frequencies. On the other hand, for NEP over the Amazon, reflecting natural CO2 exchange between 

the land and the atmosphere, there is an increase in variance over all timescales, accompanied by a shift in the broad interannual 

peak towards higher frequencies.  
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To demonstrate the significance for the spectra considered in Fig. 2 and fig. S7, an example is given in fig. S8 for precipitation 410 

over the Niño3.4 region for the same 1960-1989 (blue) and 2070-2099 (red) time intervals. The grey shading indicates the 

95% confidence interval (1.95 x standard error).  For each ensemble member, we first spatially averaged the spectra at 

individual grid points over the Niño3.4 region, and then calculated the standard error using the 100 spectra for the full 100 

ensemble members. This approach avoids sampling spatially correlated data in the calculation of the confidence intervals. The 

estimated confidence intervals in fig. S8 indicate that the spectra for 1960-1989 and 2070-2099 are statistically different. It is 415 

worth noting here that if samples at different grid points are treated as being independent samples, the confidence intervals 

become much narrower, in which case the two spectra in fig. S8 are even more statistically significant in their difference.  

 

We next turn our attention to an expanded view of the temporal evolution of both frequency and amplitude modulations of 

SST and precipitation over the Niño3.4 region over the period 1960-2100. For the wavelet analysis in Fig. 3, we apply a Morlet 420 

wavelet normalized by σ"!", where σ" is the ensemble mean standard deviation of the respective timeseries. For analyses of 

patterns of changes in variance, an adjusted Welch’s t-test (Torrence and Compo, 1998) was applied. The general approach is 

to first calculate the equivalent sample size 𝑛$, to account for potential serial correlations of the time series. This is then used 

to calculate the degrees of freedom for the Welch’s t-test, which is an adjusted version of the Student’s t-test that allows for 

the two samples to have unequal variance (i.e., heteroskedasticity). First, the decorrelation timescale 𝑇# was calculated at each 425 

grid point, and for each period, based on the e-folding timescale of the autocorrelation function 𝑟(τ), defined as the smallest 

lag τ for which 𝑟(τ) < 𝑒!$. Then the equivalent sample size 𝑛$ was defined as 𝑛$ =
%
&!

 , where 𝑁 = 30 is the total sample size 

in our case. The equivalent sample size was then used to calculate the degrees of freedom of the standard Welch’s t-test. Note 

that this test may still be liberal if the equivalent sample sizes are small, i.e., in areas of high serial correlation.   

 430 

Ensemble wavelet analysis of SST (Fig. 3a) and precipitation (Fig. 3b) within the Niño3.4 region has been conducted after 

first removing the ensemble-mean trend over the full period from each ensemble member while retaining the seasonal cycle. 

The wavelet analysis is conducted for each ensemble member and then averaged. Our motivation for retaining the seasonal 

cycle stems from an interest in illustrating timescale interactions between ENSO and the seasonal cycle with the full power of 

Large Ensemble statistics. The annual cycle and ENSO interact with each other in a complex way, with the annual cycle itself 435 

being a forced coupled air-sea mode (Xie, 1994). This interaction gives rise to combination modes (Stuecker et al., 2015b), 

frequency entrainment (Timmermann et al., 2007), and ENSO’s phase-locking and seasonal variance modulations (Stein et 

al., 2014; Stein et al., 2010). Not only does the annual cycle in the equatorial Pacific influence the amplitude and phase of 

ENSO, but ENSO also impacts the seasonal cycle.   

 440 

We consider the normalized variance to highlight the amplification above the white noise level, and in contrast to Fig. 2 

represent variance with a linear scale to emphasize temporal modulation of the amplitude of the maxima. For SST a clear 

separation is seen between the maxima for interannual variability and the annual cycle (Fig. 3a). At interannual timescales, 

there are two notable features. The first is a shift in the ENSO peak period from 3.5 years to 2.5 years between the end of the 

20th century and the end of the 21st century. The second feature with interannual variability is that variance does not change 445 

monotonically, but rather exhibits a maximum midway through the 21st century, similar to what has been reported elsewhere 

(Kim et al., 2014). This stands in contrast to precipitation over the same region (Fig. 3b), for which there is a monotonic 

increase in variance, following a similar shift in the period of the peak that was found for SST. For precipitation, the amplitude 

of the seasonal cycle increases over 1960-2100, consistent with the notion of variability enhancement over the tropics due to 

thermodynamic and dynamic processes (Yun et al., 2021). 450 
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The forced changes over 1960-2100 in the structure of the seasonal cycle for the ensemble mean of SST (Fig. 3c) and 455 

precipitation (Fig. 3d), as well as the across-ensemble standard deviation of SST (Fig. 3e) and of precipitation (Fig. 3f) are 

also considered for the Niño3.4 region using daily-mean model output. The maximum (red dots) of ensemble-mean SST occurs 

in May and the minimum (blue dots) in October in the late 20th century (Fig. 3c), with both showing monotonic increases over 

1960-2100. The maximum shifts to two weeks later and the minimum shifts to two weeks earlier by the end of the 21st century, 

with this modest perturbation to the phase of the seasonal cycle being accompanied by a modulation of seasonal amplitude. 460 

The ensemble-mean seasonal amplitude in precipitation (Fig. 3d) occurs approximately one month before the ensemble-mean 

maximum in SST (Fig. 3c), and a second maximum in precipitation in late January becomes evident during the second half of 

the 21st century. On the other hand, the ensemble-mean minimum in precipitation occurs approximately two weeks after the 

local minimum in temperature. The increase in the amplitude of the seasonal cycle is thereby accompanied by changes in the 

phasing of the seasonal cycle for both SST and precipitation.   465 

 

The mechanisms responsible for the phasing of maximum precipitation leading maximum temperature over the Niño3.4 region 

over seasonal timescales (red dots in Fig. 3c and Fig. 3d) have been considered previously in published literature (Xie, 1996; 

Xie et al., 2010; Williams and Patricola, 2018; Stuecker et al., 2020). Current understanding maintains that seasonal 

precipitation phasing is largely driven by meridional SST gradients, and is thereby not directly tied to the phasing of seasonal 470 

SST variations in the Niño3.4 region. In other words, the phase relationship between precipitation and SST is not surprising 

as moisture convergence is in part determined by non-local SST conditions. 

 

The seasonally-stratified maximum across-ensemble SD in SST (Fig. 3e), associated with peak ENSO variability, exhibits a 

trend towards an earlier occurrence by approximately one month over 1960-2070. This is accompanied by a modest decrease 475 

in amplitude (line plot). The across-ensemble SD minimum for SST occurs in July for the 20th century, with a secondary 

minimum in the across-ensemble SD developing over the first half of the 21st century in May. Subsequently the across-

ensemble SD minimum in May becomes more pronounced and becomes the dominant minimum n the across-ensemble SD of 

SST by the end of the 21st century. For the across-ensemble SD of precipitation (Fig. 3f), there is a monotonic strengthening 

of the seasonal maximum in late January, corresponding roughly to the time of peak ENSO variability, and a weakening of 480 

the seasonal minimum in October, over the interval 1960-2100. Whereas the seasonal minimum in the across-ensemble SD of 

precipitation (Fig. 3f) occurs nearly in phase with the seasonal minimum of ensemble-mean SST (Fig. 3c), the seasonal 

maximum for the across-ensemble SD of precipitation does not coincide with the seasonal maximum of ensemble-mean SST. 

Rather, it coincides with the secondary seasonal maximum in ensemble-mean precipitation in late January (Fig. 3d). 

3.3 Changes in Variance and Co-variance Patterns 485 

Along with modulations in the frequency domain, the spatial patterns of variance are altered in response to changing climate 

conditions. The analysis of patterns of variance and co-variance in Fig. 4 uses across-ensemble calculations of annual-mean 

ensemble SDs. These calculations entail first calculating the SD across all ensemble members for the same time record. 

Subsequently averaging is done across time. This sequence was chosen to avoid spurious amplification of variability due to 

the non-trivial forced variations in precipitation and surface temperature driven by volcanic aerosols over the historical period. 490 

For the case of surface, averaged over December, January, February (DJF) (Fig. 4a), and precipitation for DJF (Fig. 4b), the 

across-ensemble SDs were first calculated separately over all years spanning 1960-1989 and 2070-2099, and then averaged 

over the two respective periods. The intention with the calculation of both across-ensemble SDs and correlations is to harness 

the full power of the Large Ensemble, and is analogous to the empirical orthogonal function (EOF) EOF-E snapshot method 

(Maher et al., 2018). 495 
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We begin by considering interannual variance changes in boreal winter (DJF) by evaluating relative changes in the cross-

ensemble SD of surface temperature and precipitation for the same periods as with the spectra in Fig. 2 (1960-1989 and 2070-

2099). The background cross-ensemble SD averaged over 1960-1989 is shown in shading (Fig. 4a,b). Surface temperature 

(Fig. 4a) reveals modest decreases in variability across the equatorial Pacific and Indian Oceans, consistent with Fig. 2. 

Variability decreases over much of the higher latitudes of the Northern Hemisphere (Screen, 2014; Screen et al., 2015; Holmes 525 

et al., 2016; Sun et al., 2015; Schneider et al., 2015), with exceptions over the Arctic and the North Atlantic, and with 

exceptions in the Southern Hemisphere found over Southern Africa and parts of Antarctica (Fig. 4a). For precipitation (Fig. 

4b) a relative increase in SD is seen over most regions with particularly pronounced enhancements occurring in the eastern 

equatorial Pacific, the Indo-Pacific warm pool including the South Pacific Convergence Zone, the western Arabian Sea, the 

poles, and most land areas. The equatorial Pacific changes represent an eastward broadening in the centers of convection in 530 

response to the enhanced equatorial Pacific warming and the reduction of the overall zonal SST gradient (Fig. 2, center). In 

contrast, there is a decrease in the northern equatorial Atlantic Ocean as well as in some trade wind regions of the eastern 

Pacific. 

 

Another important question to address is whether greenhouse warming can also impact the co-variability of different climate 535 

components and the global teleconnections of major modes of climate variability. This is illustrated here by examining the 

projected changes in the local correlation coefficients between the Niño3.4 SST index and surface temperature from 1960-

1989 and 2070-2099 (Fig. 4c), with the background correlation coefficients shown in shading and their respective future 

changes shown in circles. Our analysis reveals a systematic strengthening of ENSO’s remote temperature correlation over the 

Amazon basin and in the equatorial Atlantic, the Philippines and Japan in the western Pacific, throughout Africa, in Northern 540 

India and across eastern Canada and the Southern U.S. Co-variance decreases over western Canada and Alaska, and zonally 

across the equatorial Indian Ocean.   

 

The future changes in the correlation between the Niño3.4 index and precipitation (Fig. 4d) indicate a pattern of enhanced co-

variance over the western Pacific region surrounding the Philippines, much of Africa and South America, and western China, 545 

as documented by the background correlation coefficients and their future changes having the same sign. In other words, in 

these regions we see stronger ENSO teleconnections under future global warming, which in turn could translate to increased 

predictability of climate in the regions on seasonal to interannual timescales, but also stronger impacts. In contrast, decreased 

precipitation co-variance with ENSO is found for North America over the Pacific Northwest as well as much of the Southern 

U.S. and Mexico, as well as over Columbia/Venezuela, Bangladesh/Myanmar, parts of eastern Australia, and parts of eastern 550 

Siberia. Taken together, the global pattern of ENSO/precipitation co-variance changes (Fig. 4d) is due to a combination of 

simulated weakening of ENSO SST variability (Fig. 4a) and eastward expansion of the region of maximum convective activity 

in the equatorial Pacific (Fig. 4b) (analysis for the June-July August (JJA) season in shown in fig. S9), and likely other 

projected changes of the background atmospheric circulation. There are a number of outstanding challenges in interpreting 

mechanistically how ENSO teleconnections change in response to anthropogenic forcing, including the relative role of local 555 

diabatic forcing and modulations of ENSO (Taschetto et al., 2020). We anticipate that the Large Ensemble analyses here will 

complement efforts directed at understanding mechanistic controls.   

3.4 Forced Changes in Phenology of Net Ecosystem Production 

Finally in this overview, we illustrate how anthropogenic forcing impacts the phase of the seasonal cycle by focusing on the 

phenology of NEP in the Northern Hemisphere mid-to-high latitudes (over 50°N-80°N). NEP as a flux quantity represents the 560 

difference between gross primary production and ecosystem respiration, and thereby the net exchange of carbon with the 

atmosphere when fire and human land use changes are ignored. Our interest in NEP is motivated by ecological concerns that 
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a shift to an earlier spring bloom, in particular over the land regions adjacent to the Arctic, can drive a phenological mismatch 

in ecological interactions between plants and animals (Renner and Zohner, 2018). For the seasonality/phenology analysis in 

the upper panel of Fig. 5, an area-integral of daily-mean NEP, is performed for each ensemble member separately. A total of 

90 ensemble members are used, as daily-mean CLM5 output was not saved for the first 10 members, namely for members 570 

{1001.001, 1021.002, 1041.003,…,1081.010}.   

 

Ensemble-mean NEP is integrated over the region in 5-year intervals, with aggregation performed for individual years and 

with a binning interval of one day (colors in Fig. 5, upper panel). We find an evolving amplitude of the seasonal cycle and of 

the growing season length (the interval during which NEP is positive, indicating net land uptake of carbon). This representation 575 

of forced changes in the non-sinusoidal seasonal cycle reveals that the growing season length is projected to increase by almost 

four weeks, with the onset shifting three weeks earlier and termination shifting one week later. The forced changes in growing 

season length are mostly attributable to changes in the mean temperature (Lawrence et al., 2019; Lombardozzi et al., 2020). 

The analysis also reveals a more than doubling of the amplitude of the seasonal cycle in NEP as a forced response. This 

represents an increase in the “breathing” of the terrestrial high-latitude biosphere. Information from individual ensemble 580 

members in 20-year intervals regarding the timing of (i) first zero crossing, (ii) maximum NEP, (iii) second zero crossing, and 

(iv) maximum negative NEP (Fig. 5, lower panel) reveals that interannual variability (identified using one SD) is in general 

smaller than the forced trend evident in the ensemble mean in spring. Our analysis indicates that for the aggregated NEP signal, 

the phenological shift as a decadal trend already becomes emergent relative to the natural variability within the first decades 

of the 21st century. The trend itself is broadly consistent with observations (Zhu et al., 2016; Myers-Smith et al., 2020). Internal 585 

variability in the date of onset of the growing season decreases by 35% over the course of the simulations and the date of the 

end of the growing decreases by 18% (Fig. 5, lower panel). In deriving these percentages, the transitions (zero crossings) were 

first calculated individually for each ensemble member for each time interval (across 90 members). 

4 Summary and Discussion 

This study introduced a new, publicly available Large Ensemble of climate change simulations conducted with the global fully 590 

coupled CESM2 model. This Large Ensemble (CESM2-LE) is unprecedented in terms of its combination of size (100 

members), duration (1850-2100), and spatial resolution in the atmosphere and ocean (nominally 1° horizontally). As such, it 

offers a unique opportunity to study not only forced changes in the mean state, but also forced changes in internal variability, 

including higher-order statistical moments. Here we showcase aspects of the remarkable diversity of forced responses in 

amplitude, frequency, patterns, co-variance, and seasonal characteristics of internal variability in CESM2-LE across a broad 595 

suite of key physical and ecosystem quantities, spanning the atmosphere, land, cryosphere, and ocean. Importantly, and 

contrary to conventional wisdom, the changes are not solely centered on the frequency of specific climate modes such as 

ENSO and the Madden Julian Oscillation, but are instead broadly distributed over nearly all timescales (Fig. 2), in particular 

for non-Gaussian distributed variables. The mechanistic underpinnings of the changes in variability go beyond amplification 

or damping of major climate modes, and possibly include state-dependence of linear stabilities, non-linearities, rectification, 600 

and changes in damping timescales and noise characteristics, many of which will be investigated in forthcoming studies 

analyzing the breadth of the CESM2-LE output fields.   

 

If the ubiquitous changes in variance across temporal and spatial scales described here are realized in the real world, they will 

have several important implications for informing adaptation strategies and assessing potential impacts. This holds for water 605 

resource management and agriculture, fisheries, and occurrence of wildfires. Forced changes in phenology and phasing of the 

seasonal cycle for ecosystem productivity pose risks of mismatches with trophic level interactions and energy transfers. The 
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ubiquity of such changes in variability also points to the importance of moving beyond the assumption of stationary variability 

in detection and attribution studies of climate change (Hegerl et al., 2007), and underscores the necessity of recalibrating 

climate-economy models (Diaz and Moore, 2017) to account for an entirely different probability distribution for variability 

(Fig. 2, fig. S7) than what is currently used when projecting future climate change scenarios. The non-stationary nature of 

climate noise under anthropogenic forcing (Fig. 2) and the evolving teleconnections patterns (Fig. 4) also have implications 645 

for seasonal to multi-year climate predictability.   

 

Although our analysis of the CESM2-LE has revealed a broad range of forced changes in variance across physical scales and 

Earth system variables, it nevertheless should be emphasized that model-uncertainty has not been considered here. There is 

already evidence for the narrower case of interannual variability in surface temperature and precipitation that model uncertainty 650 

in forced changes exhibits pronounced differences between models (Maher et al., 2021) (their Supplementary Figures 7 and 

8). Thus, it is our hope that our work will motivate further investigations of forced change in Earth system variance across a 

broad range of timescales under existing archives of Large Ensemble simulations (Deser et al., 2020; Schlunegger et al., 2020). 

 

Taken together, we have provided support with new examples and new global emphasis that the Earth system is sensitive in 655 

its statistical characteristics to anthropogenic forcing, thereby building upon and complementing previous studies that have 

focused on mechanistic analyses for specific phenomena (Swain et al., 2018; Tamarin-Brodsky et al., 2020; Taschetto et al., 

2020; Burger et al., 2020). Although only a small fraction of such forced changes could be documented in this study, we expect 

that the diagnostic ensemble analysis tools applied here, along with the open access to our datasets, will inspire further 

investigations into the non-stationarity of Earth system processes in the presence of anthropogenic forcing.  660 
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Code Availability 

Analysis code is available from the authors by request.  The python wavelet software used for Fig. 3 was provided by Evgeniya 670 

Predybaylo (Torrence and Compo, 1998) and is available at http://atoc.colorado.edu/research/wavelets/. 

 
Data Availability 

The CESM2-LE model output is available through:  

https://www.cesm.ucar.edu/projects/community-projects/LENS2/data-sets.html 675 
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Figure 1: Annual mean evolution of global fields over 1850-2100 for 100 ensemble members. For model fields, bold lines 
represent ensemble means, and dark and light shading represent one standard deviation (SD) and two SD variability.  
Observational data are shown in red when appropriate.  Portions of the figure with light-blue background shading indicate the 735 
historical period (1850-2014) while portions with light-red background shading indicate the projection period (2015-2100).  
(a) Top of atmosphere radiative imbalance (W m-2) along with the CERES-EBAF product (Loeb et al., 2009; Loeb et al., 
2018), (b) anomalies of the global mean precipitation (mm day-1) increasing 5.4% between the 1850s and the 2090s, compared 
with the Global Precipitation Climatology Project (GPCP) (Adler et al., 2003; Adler et al., 2012), (c) anomalies of global mean 
surface temperature, increasing by 4.4°C between the 1850s and 2090s, along with HadCRUT4 (Morice et al., 2012) anomalies 740 
over 1950-2019, (d) anomalies of ocean heat content integrated over the upper 1500m, along with an observation-based product 
(Ishii et al., 2017), (e) anomalies of sea ice extent for the Arctic (black) and Southern Ocean (blue), with observed sea ice 
extent over 1979-2020 (Fetterer et al., 2017), and with the vertical scales of the anomaly plots offset to facilitate comparison, 
(f) Atlantic Meridional Overturning Circulation (AMOC) transport anomalies at 26.5°N, with RAPID array observations 
(Frajka-Williams et al., 2019), (g) globally-integrated net primary productivity (NPP) over the ocean (blue; increase of 2.7% 745 
between the 1850s and 2090s), and over land (green), and (h) globally-integrated net CO2 fluxes over the ocean (solid blue) 
and integrated net CO2 flux (net biome production, or NBP, including fire and land-use change) over land (green) with all 
quantities in (g) and (h) in units of PgC yr-1.  For each case, where observational products are included, anomalies are calculated 
with respect to the period spanned by the observations. For anomaly fields, printed numbers represent the absolute mean of 
the ensemble mean of CESM2-LE (black or blue numbers) and the observational product (red numbers).  750 
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 755 
Figure 2: Changes in the Fourier amplitude spectrum of historical (1960-1989) to future (2070-2099) climate variability 
in CESM2-LE. The center map shows historical-to-future changes in surface temperature (shaded, °C) and precipitation (solid 
blue/cyan dots, mm day-1). Each pairing of panels shows historical (cyan) and future (red) spectra and PDFs for five different 
variables over four different regions. The spectra are considered over the respective periods, 1960-1989 (historical) and 2070-
2099 (future), thereby including the trend, and PDFs are considered for all days over 1980-1989 and 2090-2099 to minimize 760 
the impact of the trend. From upper-left clockwise, each pair of panels shows fire occurrences in California (32°N-41°N, 
125°W-118°W, land only), surface chlorophyll concentrations in the North Atlantic subpolar gyre (40°N-60°N, 60°W-15°W), 
net ecosystem production (NEP) in the Amazon (10°S-10°N, 80°W-50°W, land only), precipitation over the Niño3.4 regions 
(5°S-5°N, 170°W-120°W), and sea surface temperature (SST) over the Niño3.4 region. The spectra are calculated for daily 
timeseries at individual grid points including both forced responses and internal variability and using 30-year intervals. 765 
Subsequently the spectra are averaged over the grid points in each region. Sharp spectral peaks are associated with the annual 
cycle and its non-sinusoidal components, which generate high-order harmonics. Shaded areas for spectra of precipitation and 
temperature in the Niño3.4 region correspond to the timescales of the El Niño-Southern Oscillation (ENSO) and ENSO-annual 
cycle combination modes (Stuecker et al., 2013) (C-modes). Spectra are shown as amplitude, with the units being the same as 
the x-axes for the PDFs. PDFs of positive- variables (California fire counts, N. Atlantic surface chlorophyll, and Niño3.4 770 
precipitation) are shown with logarithmic y-axes. The fields in the center panel are presented in more detail in fig. S6, except 
that there 2m reference temperature is used rather than surface temperature. A suite of complementary spectral and PDF 
analyses to those shown here are presented in fig. S7.     
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Figure 3: Changes in the dominant frequencies and seasonal variance of sea surface temperature (SST, left) and 780 
precipitation (right), in the Niño3.4 region (5°S-5°N, 170°W-120°W). (Top) The wavelet power spectra of Niño3.4 (a) SST 
and (b) precipitation using a Morlet wavelet, normalized by 𝛔"!𝟐, where 𝛔" is the ensemble mean standard deviation of the 
respective Niño3.4 time series (Torrence and Compo, 1998). The y-axis shows the equivalent Fourier period in years. The 
hatching indicates regions where the wavelet spectrum is not trustworthy due to edge effects. Prior to calculating the wavelet 
spectra, the time series were detrended by subtracting the ensemble-mean annual means, which were linearly interpolated to a 785 
monthly timestep. (Middle) The ensemble-mean of Niño3.4 (c) SST and (d) precipitation indicated for each day (ordinate) and 
year (abscissa) using daily output. The red/blue dots indicate the maximum/minimum daily values of each year. The black line 
to the right in panels (c)-(f) indicates the linear trend over 1960-2100.  (bottom) Same as for (c) and (d), but for the across-
ensemble SDs of (e) SST and (f) precipitation.   
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Figure 4: Changes in the patterns of interannual variability and Niño3.4 correlation coefficients of December-January-
February (DJF) surface temperature and precipitation. (Top) Color shading shows the time-averaged absolute across-795 
ensemble SD of the DJF seasonal mean surface temperature (a) and precipitation (b) for the period 1960-1989. Circles show 
the relative changes in the SD between 2070-2099 and 1960-1989, where insignificant change (p≥0.05) has been removed. 
Statistical significance of the changes (circles) was determined based on the p-values of the two-sample Welch’s t-tests for the 
equality of temporal means of the SDs, with the equivalent sample sizes adjusted to account for serial correlations (Methods). 
(Bottom) Color shading shows ensemble-wise correlations of the Niño3.4 index with surface temperature (c) and precipitation 800 
(d) anomalies for DJF, averaged over the period 1960-1989.  Circles show the absolute change in correlations between 2070-
2099 and 1960-1989, where statistically insignificant changes (p≥0.05) have been removed. The Niño3.4 index for ENSO is 
the spatial average of sea surface temperature within 5°S-5°N, 170°W-120°W.  Statistical significance of the changes (circles) 
was determined based on the p-values of two-sample Student’s t-test of the Fisher z-transformed correlation coefficients 
(Timmermann et al., 2014). Note that the t-test treats the ensemble standard deviations and correlations as stationary and 805 
serially uncorrelated with either of the two periods. For all four panels, the circles represent subsampled fields at 10° intervals 
over the global domain. The corresponding analysis for June-July-August (JJA) is presented in fig. S9.   
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Figure 5: Expansion of growing season length, or equivalently the carbon uptake period, over 50°N-80°N (shown here 
for all 90 members for which daily-mean land output was saved). Upper panel: Evolution of ensemble mean seasonal cycle 
(one line for every five years, color-coded) of integrated net ecosystem productivity (NEP), with positive values indicating net 815 
terrestrial carbon uptake and negative values indicating loss of carbon from the aggregated land region. The first zero crossing 
marks the start of the growing seasons, and the second zero crossing marks the end of the growing seasons; Lower panel:  
Histograms of first occurrence of zero crossing, peak, second zero crossing, and minimum as a function of the day of year. 
The horizonal axis for both panels is a climatological calendar day of the year, and aggregation is done across 90 members. 
The histograms represent model output sampled at 20-year intervals. The inlay map (upper right) shows the ensemble mean 820 
amplitude of the seasonal cycle of NEP averaged over 1960-1989 (gC m-2 day-1).  
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