
Sedimentary microplankton distributions are shaped by
oceanographically connected areas
Peter D. Nooteboom1,2, Peter K. Bijl3, Christian Kehl1, Erik van Sebille1,2, Martin Ziegler3, Anna S. von
der Heydt1,2, and Henk A. Dijkstra1,2

1Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University
2Centre for Complex Systems Studies, Utrecht University
3Marine Palynology and Paleoceanography, Laboratory of Palaeobotany and Palynology,Department of Earth Sciences,
Utrecht University

Correspondence: P.D.Nooteboom (p.d.nooteboom@uu.nl)

Abstract. Having descended through the water column, microplankton in ocean sediments are representative for the ocean sur-

face environment, where they originated from. Sedimentary microplankton is therefore used as an archive of past and present

surface oceanographic conditions. However, these particles are advected by turbulent ocean currents during their sinking jour-

ney. So far, it is unknown to what extent this particle advection shapes the microplankton composition in sediments. Here

we use global simulations of sinking particles in a strongly eddying global ocean model, and define ocean bottom provinces5

based on the particle surface origin locations. We find that these provinces can be detected in global datasets of sedimentary

microplankton assemblages, demonstrating the effect provincialism has on the composition of sedimentary remains of surface

plankton. These provinces explain the microplankton composition, together with e.g. ocean surface environment. Connected

provinces have implications on the optimal spatial extent of microplankton sediment sample datasets that are used for palaeo-

ceanographic reconstructions, and on the optimal spatial averaging of sediment samples over global datasets.10

1 Introduction

Microplankton communities are sensitive to surface oceanographic conditions in which they live. Their remains are preserved

in the sedimentary archive of the ocean basins and are therefore used to recontruct present and past surface ocean conditions.

However, the sedimentary microplankton community is not driven by abiotic climate variables (e.g. temperature or nutrient

availability) alone. These climate variables only explain part of the sedimentary species variability, for both dinoflagellate15

cysts (Zonneveld et al., 2010; Esper and Zonneveld, 2007) and planktic foraminifera (Morey et al., 2005). As a result, there is

a large unexplained residual error in relationships between plankton composition and environmental conditions. This impacts

accuracy of recontruction of past environmental conditions using microfossil allemblages.. Hence, it is crucial to investigate

which other processes determine the species distribution in the sedimentary archive, especially when such distributions are

used to reconstruct these sea surface variables in the geologic past.20

Global surface-ocean currents, and the way in which these currents connect the ocean, are shown to shape the plankton

community structure near the ocean surface (Jonnson and Watson, 2016; Wilkins et al., 2013; Hellweger, 2014). Connectivity
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of the two-dimensional (2D) surface ocean flow is well-studied in models (Froyland et al., 2007, 2014; Onink et al., 2019;

McAdam and van Sebille, 2018). Floating particles accumulate towards the so-called garbage patches on decadal time scales

(Lebreton et al., 2012), which often match well with relatively high concentrations of surface drifters (van Sebille et al., 2012)25

and microplastics (van Sebille et al., 2015b). In addition to the ocean surface connectivity, the three-dimensional (3D) ocean

connectivity is expected to have an influence on the distribution of sedimentary particles.

Recent studies show that advection of sinking particles in 3D ocean flow has implications for sedimentary microplankton

distributions (van Sebille et al., 2015a; Nooteboom et al., 2019). An inititally uniform distribution of particles at the ocean

surface becomes more heterogeneous (i.e. mixed) when these particles are sinking (Monroy et al., 2019; Drótos et al., 2019).30

At the same time, the influence of ocean currents on sedimentary particle distributions is spatially varying (Nooteboom et al.,

2020). Hence, one might expect that the sedimentary archive is shaped by 3D particle advection by ocean currents during the

sinking process.

The behavior of sinking particles in a 3D flow is quite different compared to that in a 2D flow. For instance, a 2D flow is

divergent in an upwelling region (which drives the particle convergence in garbage patches), while a 3D flow is non-divergent.35

However, attracting structures (Bettencourt et al., 2012) and transport barriers (Bettencourt et al., 2015; Chang et al., 2018) of

3D particle paths can also emerge inside the ocean. In this way, particles can cluster in specific areas when they are collected

at a 2D surface after their sinking journey (Monroy et al., 2017; Eaton and Fessler, 1994), as is also measured at the ocean

subsurface (Mitchell et al., 2008; Logan and Wilkinson, 1990).

In this paper, we investigate how oceanographically disconnected areas shape the sedimentary microplankton composition.40

We cluster sedimentary sites based on similar ocean surface origin locations of particles that ended up at these sediment sites

after their sinking journey. We compare the clusters with well-known features of the ocean flow and detect these clusters in

measurements of sedimentary microplankton.

2 Method

Sedimentary data45

We use two global datasets of sedimentary microplankton, one with dinoflagellate cysts (dinocysts; Marret et al., 2019) and

the second with planktic foraminifera (Siccha and Kucera, 2017). We use the surface sediment samples from sites South of

65◦N (2849 and 4017 sites for the dinocysts and foraminifera respectively), because the OFES ocean model (which is used for

particle advection; see below) ends at 75◦N, which makes the clustering results at high Northern latitudes unreliable. For some

statistical analyses, we only consider sites in the Southern Hemisphere (725 and 1858 sites for respectively the dinocysts and50

foraminifera), in order to limit the total diversity of microplankton species in the datasets. We consider the fraction (i.e. the

relative abundance) of microplankton species for every surface sediment sample.
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Clustering methods and particle tracking

The particle tracking results from Nooteboom et al. (2019) provide us with distributions of surface origin locations for a global

1◦× 1◦ grid of sediment sites, for several sinking speeds. We use the results that are obtained in the eddying OFES model55

(Sasaki et al., 2008; Masumoto et al., 2004) with a sinking speed of 6 m day−1. Results with a sinking speed of 11, 25 and

250 m day−1 can be found in the Supporting Information. Values of 6 and 11 m day−1 are representative of single sinking

dinocysts, 25 m day−1 for small aggregates, and 250 m day−1 for large aggregates and planktic foraminifera (Anderson et al.,

1985; Nooteboom et al., 2019, 2020; van Sebille et al., 2015a).

The sinking speeds and backtracking analysis from Nooteboom et al. (2019) are specifically designed to be compatible with60

the life cycle of dinocysts (Nooteboom et al., 2019): particles are released at the bottom of the ocean every 5 days, and tracked

back in time until they reach 10 m depth, providing a particle distribution at the ocean surface (Fig. 1a). Single foraminifera

typically sink at higher velocities than dinocysts (& 100 m day −1), and most of their lateral transport occurs during their life

span, when they are passively advected while they control their buoyancy and remain at their preferential depth (van Sebille

et al., 2015a). However, we assume in this paper that the strength, direction and ‘mixing’ of planktic foraminifera by ocean65

currents has a similar spatially varying character compared to sinking dinocysts. We test whether the clustering results match

both dinocyst and foraminifera sample datasets.

Our goal is to obtain provinces of sediment sites from the back-tracked surface origin locations which are oceanographically

(i) disconnected (i.e. provinces between which particles are not likely to travel) and (ii) isolated (i.e provinces with sediment

sites which share similar origin locations compared to the sediment sites outside of the province). We quantify these areas70

by disconnected and isolated clusters of sedimentary sites. Assuming that the flow from 2000 to 2005, as simulated by the

OFES model, is representative of the real ocean flow in the past decades (during which the microplankton actually sedimented;

Jonkers et al., 2019), we ideally find the disconnectedness and isolation of clusters in the surface sediment sample datasets.

We use two types of clustering techniques. First, hierarchical clustering provides boundaries where sinking particles are less

likely to cross (hence it finds oceanographically disconnected areas). This technique starts with the full ocean as only cluster75

and splits a cluster into two clusters at every iteration (see Appendix A1 for more details). The clusters from this technique

can be compared to areas that are known to be oceanographically (dis)connected from each other, and these clusters can be

used to test if more similar microplankton species are found within each connected area compared to between connected areas.

Advantages of the hierarchical clustering method are that the cluster structure is preserved as more iterations are applied, and it

does not require many parameters. The only parameter that the hierarchical clustering uses is the stop-criterion (i.e. the iteration80

number where the algorithm stops with creating new clusters).

Second, we use the Ordering Points To Identify the Clustering Structure (OPTICS) algorithm to find oceanographically

isolated clusters. OPTICS provides a density based value (the reachability) of sedimentary sites which quantifies how strongly

a site is connected to other sites. Oceanographically isolated clusters can be obtained from the ‘dense regions’ (i.e. areas with

low reachability values), by setting a threshold on the slope that surrounds the dense values in the reachability plot (ξ; see Fig.85

1b for an example). The sediment sites outside of these clusters are less isolated, and refered to as ‘noisy.’ These clusters allow
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Figure 1. Illustration of the impact of isolated clusters on sedimentary microplankton composition. (a) Illustration of the particle back-track

analysis from Nooteboom et al. (2019), resulting in a particle distribution of origin locations for one sediment site/release location on which

the clustering methods are applied (figure adapted from Nooteboom et al. (2020))). (b) A (noisy) sediment sample site outside of the isolated

clusters (station J299) and a site within oceanographically isolated OPTICS cluster 1 (station J285) in the South Atlantic. (c), (d) Pie charts

of the dinocyst species composition in the sites from (b). The clustered site contains a species composition which is less biodiverse compared

to the noisy site. The Shannon biodiversity indices of respectively the clustered and noisy site are 0.7788 and 1.6842. This illustration uses

the same OPTICS clusters as are shown later in Fig. 4.

us to test if sedimentary species compositions are more homogeneous inside isolated areas compared to outside of these areas

(see Fig.1).

The advantage of OPTICS is that parameter values have a clear interpretation. First, the parameter smin is the minimum number

of particle release locations in clusters, which represents a minimum spatial scale of clusters (in m2). The second parameter90

ξ determines the degree of isolation of the clustering: OPTICS generally finds less and smaller clusters if ξ is larger. Another
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advantage of OPTICS is that not all areas are clustered, such that it allows to distinguish between ‘noisy’ (not clustered) and

oceanographically isolated (clustered) areas (see Appendix A2 for more details about OPTICS).

We also test the seasonal dependence of hierarchical clusters (see Supporting Fig. 3 and 4), by only considering particles

that started sinking in a specific season (in the backtracking analysis of Fig. 1a). While some of the cluster boundaries changed95

between summer and winter, the change in the overall clustering structure was limited if only a specific season of origin

locations was considered (similar to van Sebille et al. (2015a), who only found a small seasonal effect in temperature offsets

due to lateral transport of foraminifera).

Statistical analyses

We apply several statistical tools to test hypotheses about the sediment sample sites and the clusters in which they are located.100

A partial Mantel test (Legendre and Legendre, 2012) is used to test whether the reachability from the OPTICS algorithm

correlates with the sediment sample taxonomy, independent of the spatial distance between sediment sample site locations. A

partial Mantel test requires at least three types of distance matrices, which contain distances between the sediment sample sites.

We calculate the Mantel correlation between taxonomic distance and a distance which is determined from the reachability of

the OPTICS clustering (see Appendix B), while we control for the spatial distance between sites.105

We use Canonical Correspondence Analysis (CCA; Braak and Verdonkschot (1995)) to infer the relation between species in

clustered sediment sites and environment parameters at the ocean surface. In this context, CCA ideally shows unique species

responses to changes in environment input parameters. We use sea surface temperature (SST) and surface nitrate (NO3) as

environmental parameters, as prior literature reported them to explain a major part of the species variability in the Southern

Ocean (Prebble et al., 2013; Esper and Zonneveld, 2007). This study infers SST and NO3 for sediment sample locations from110

1◦× 1◦ fields of the World Ocean Atlas (Locarnini et al., 2013; Garcia et al., 2013). Further parameters, such as phosphorus,

silicate, salt concentration, were tested (as in Hohmann et al. (2019)), though spurious CCA response led to their exclusion

from further analysis in this paper.

We compare the CCA’s explained variation of sedimentary samples only drawn from (i) only isolated clusters and (ii)

with samples drawn from all available locations. Comparing the explained species variation of both cases allows us to draw115

conclusions about the source of variation between both CCA results in order to quantify the significance of the clustering

approach. We apply a one-sided randomization test to investigate whether the increase of explained variance is significant.

This implies that we randomly take subsamples of the full dataset, which are equally sized to the amount of clustered sediment

samples. The p-value of the permutation test is the fraction of random subsamples that resulted in a higher explained variance

compared to the CCA analysis with the clustered samples.120

The foraminifera dataset also contains deep dwelling species, which live near the thermocline (typically a few 100 meters

depth). Although it is often assumed that these deep dwelling species relate to sea surface variables in statistical analyses, this

assumption might not be valid (Telford and Kucera, 2013). We applied the CCA analysis while only using the species which

are known to be near-surface dwelling in the subtropical Atlantic (the red group in figure 7 of Rebotim et al. (2017); supporting
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Fig. 11 in this paper). This leads to similar conclusions, although less significant values are obtained because the dataset size125

is lower.

The clusters that are obtained from the OPTICS algorithm represent areas of relative oceanographic isolation. We test

whether the species distributions in sediments outside clusters are more mixed compared than samples inside clusters during

their sinking journey. We use Shannon entropy (Shannon, 1948) to quantify taxonomic mixing, which is defined at site j

as N j
s =−∑i pij ln(pij). Here pij denotes the relative abundance of a species i at site j. Shannon entropy is often used as a130

biodiversity index (Morris et al., 2014), being a combined signal of species richness (amount of species in the sediment sample)

and evenness (how evenly these species are distributed). We choose the Shannon entropy here as biodiversity index, because it

can be compared to the mixing of sinking particles, and Shannon entropy is often used to quantify the loss of information by

mixing (e.g. in thermodynamics). We compare the average Shannon entropy of sediment sample sites within (N
c

s) and outside

(N
nc

s ) clusters.135

3 Results

Oceanographically disconnected clusters

We interpret splits of oceanographically disconnected clusters from the hierachical clustering method as boundaries with a low

connectivity across them (Fig. 2). The probability that particles cross these boundaries is larger if the iteration number is higher.

We observe that these cluster edges compare well to large-scale ocean connectivity. The first iteration splits the Mediteranean140

Sea from the global ocean, because no sinking particles travel through the Gibraltrar strait in the simulation. Next, the Pacific

is separated from the Arctic, since few particles are transported through Bering strait (Coachman and Aagaard, 1988). At

the subsequent iterations, the large-scale ocean basins disconnect: The Pacific, Atlantic and Indian ocean are split from the

Southern ocean at approximately 25◦S. We find that areas near Western boundary currents may only split into clusters at

relatively high iterations, because the sediments in these areas have a relatively large connectivity, with particles originating145

from a large area (see also Nooteboom et al. (2019)).

In the North-Atlantic region, we observe that Hudsons Bay becomes a cluster and the subtropical Atlantic is split from the

Nordic seas at the Greenland-Scotland ridge (Fratantoni, 2001; McClean et al., 2002; Bower et al., 2019). The Irminger Basin is

still connected with the Labrador Sea, where sinking of water occurs (Pickart et al., 2003; Katsman et al., 2018), which makes

transport of sinking particles outside of this area less likely. Only a few particles cross the connection between the Labrador150

Sea and Baffin Bay (McClean et al., 2002; Fischer et al., 2018).

We do not find a cluster at subpolar latitudes which isolates Antarctica along latitudinal bands (only the Weddell and the

Ross Sea are a cluster). One might expect such a cluster, because near-surface currents are known to isolate Antarctica (Fraser

et al., 2018; Dufour et al., 2015; Doos et al., 2008). However, deep passive particles advected by three-dimensional flow are

shown to move upwards along isopycnals towards Antarctica (Drake et al., 2018; Tamsitt et al., 2018). As a result, the sinking155

particles can be transported towards Antarctica at depth. The location of southward particle transport is mainly determined by
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Figure 2. Edges between oceanographically disconnected clusters of sedimentary locations from the hierarchical clustering method. (a) The

cluster edges after 90 iterations, where the color indicates at which iteration number a cluster edge is created. (b) The ANOSIM test-statistic

(red) and p-values (blue; 999 permutations; logarithmic scale) for the clusters at every iteration number, which tests whether the sedimentary

microplankton composition (both dinocysts and foraminifera; sites below 65◦N) is more similar within than between clusters.

topographic steering of the flow, resulting in five hotspots of southward particle transport (Tamsitt et al., 2017) which roughly

coincide with the Southern Ocean clusters in Fig. 2.

Some of the clusters in Fig. 2 are similar to connected regions based on the surface flow (see figure 8 from Froyland

et al. (2014)). The North and South Atlantic are split similarly from West-Africa to Venezuela. The North Pacific and South160

Pacific are split in a similar way from Australia to the south of Chile. A cluster around the Pacific cold tongue (East Tropical

Pacific) develops (Moum et al., 2013; Froyland et al., 2014). Moreover, the Benguela upwelling area (Nelson and Hutchings,

1983) (near South West Africa) is more connected with the Southern Ocean than with the Atlantic. Near-surface currents have

an important influence on the total lateral transport of sinking particles in these areas, since they are similar to the surface

connectivity areas from (Froyland et al., 2014).165
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We test whether sites within hierarchical clusters have a lower (Euclidean) taxonomic distance compared to sites of different

clusters with Analysis of similarities (ANOSIM; Clarke (1993)). The clustering corresponds to a high statistical signigicance

for (i) positive ANOSIM test-statistic together with (ii) low p-values (p-value<0.001). According to the ANOSIM tests, the

clustering of sediment samples is significant across all iterations (Fig. 2c). Hence, sediment samples within clusters are more

similar than those between clusters. The test-statistic increases at higher iteration numbers, for both the dinoflagellate cyst170

(dinocyst) and foraminifera dataset. Although these ANOSIM results look promising, it is important to note that the ANOSIM

test-statistics are partly positive because the sediment sites within clusters are closer to each other (i.e. there is a distance effect

independent of the clustering).

The hierarchical clustering is overall insensitive to the used sinking speed of particles (see the Supporting Information Fig.

1 and 2 with sinking speeds 11 and 25 m day−1 respectively; see Appendix A1 for an explanation on why we did not test a175

sinking speed of 250 m day−1). Only some minor differences occur in the North Pacific, and some cluster separations occur at

slightly different iteration numbers. The fact that similar boundaries of little cross-transport emerge at a different sinking speed

proves that the clustering does not greatly depend on the sinking speed of particles.

Oceanographically isolated clusters

The OPTICS clustering algorithm provides a density based value (the reachability) of sedimentary sites, which quantifies how180

strongly a site is connected to other sites. Oceanographically isolated clusters can be obtained from the ‘dense regions’ (i.e.

areas with low reachability values), by setting a threshold on the slope that surrounds the dense values in the reachability plot

(ξ). The sediment sites outside of these clusters are less isolated, and refered to as ‘noisy.’

According to the OPTICS algorithm, the Western boundary currents are unlikely to be part of any isolated cluster, since

the points near the Western boundary currents have a relatively high reachability (Fig. 3a). This is expected, because the185

origin locations of sediment samples near Western boundary currents comprise a large area. Dense areas are those at higher

latitudes, close to Antarctica and in the Nordic Seas, and the midlatitude gyres. Sediment sample sites within these areas have

more similar surface origin locations compared to sediment sites outside of dense areas. The high reachability values in the

Mediterranean Sea and Red Sea are rather artificial. OPTICS searches for dense regions (low reachability) by searching for

sedimentary sites with relatively many other sites having similar surface origin locations. Since the Mediterranean Sea and Red190

Sea are enclosed by land, these sedimentary sites have only few neighbouring sites, resulting in a relatively high reachability.

The reachability distance (Dr; see Appendix B) between sediment sample sites correlates positively with sediment sample

taxonomy. Furthermore, it is independent of the spatial distance between sites, according to the partial Mantel tests (Fig.3c).

Large values of smin(>600; i.e. the OPTICS parameter which determines the minimum surface area in m2 of OPTICS clusters)

tend to have the largest correlation (also at other sinking speeds; see Appendix B). This is probably because the reachability is195

smoother at higher smin, which makes the reachability distance less noisy. At small spatial scales (smin ≤ 200), the correlation

between dinocyst taxonomy andDr could be indirect, because thenDr correlates more strongly with the environment (in terms

of sea surface temperature) compared to taxonomy.
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Figure 3. Reachability plot of the sedimentary particle release locations from the OPTICS algorithm. Sediment locations in dense areas

(i.e. with low reachability values in (a)) share a similar particle distribution of back-tracked surface origin locations, while areas with high

reachability values have back-tracked particle distribution which are more spread out and share origin locations with a lot of other sedimentary

release locations. A sinking speed of 6 m day−1 is used and parameter smin = 300 (i.e. OPTICS clusters will consist of a minimum of 300

sediment sites). (a) Scatter plot of the site reachability in space: sites in dense areas with a low reachability are oceanographically isolated.

(b) A scatter plot of the ordering of the sediment locations i against their reachability r(pi). (c) Partial Mantel correlation of the reachability

distance Dr with the taxonomy (red) and SST (black), both with spatial distance held constant, for different smin values. A total of 999

permutations were used for every partial Mantel test; every test with respect to the taxonomy (red) is significant with p-value< 0.003.

We compute clusters by setting a threshold on the slope (ξ) that surrounds the reachability valleys in Fig. 3a. For ξ = 0.002

and smin = 300 (Fig. 4), we obtain 13 clusters, of which three regions are isolated by the Antarctic Circumpolar Current200

(ACC), three in the Indian ocean, one in the Pacific warm pool, the South Atlantic gyre, near the Humboldt upwelling zone,
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Figure 4. Oceanographically isolated OPTICS clusters of sedimentary particle release locations with clustering parameters smin = 300 (i.e.

the minimum size of clusters) and ξ = 0.002 (i.e. the level of isolation). The clustering is applied globally and the clusters are compared

to Southern Hemisphere sediment sample sites. The colored regions are clusters, the gray regions are "noisy", and therefore not part of a

cluster. These colors were used for all subpanels. (a) Global map of the position of the clusters (colored regions), and dinocyst- (white) and

foraminifera (black) sample locations. (b) Ordering of sedimentary locations i against their reachability r(pi). To visualize the sediment

sample site taxonomy for (c) the dinocysts and (d) the planktic foraminifera in two dimensions, we use classical multidimensional scaling

(MDS; Fouss et al. (2016)). MDS creates a two-dimensional approximation of the species composition in the sediment samples in this figure

(instead of 91 and 50 dimensions/species for the dinocysts and foraminifera respectively).

near the Caribean Sea, the Eastern North Atlantic and two clusters near the Arctic. The clusters represent locations that are

oceanographically isolated, with sediment sample sites that have backtracked origin locations which are similar to the other

sites in the cluster. The environmental variability within these clusters can be reasonably large (e.g. the sea surface temperatures

at backtracked origin locations in the cluster West of Australia range between 10-25◦C; see planktondrift.science.uu.nl).205

The comparison between the clusters and taxonomic distance of Southern Hemisphere sample sites in these clusters (Fig.

4c and 4d) becomes interesting for clusters which are spatially close (Fig. 4b). For instance, the red and yellow cluster in
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the South-Atlantic Ocean are spatially close, but sediment samples in those clusters are separated by their observed dinocysts

taxonomy (Fig. 4c). This implies that we find a signal of the oceanographic separation of these areas in the sedimentary data.

0

10

20

30 (e) (f) 

0.5 0.0 0.5 1.0 1.5 2.0

first CCA axis
0

10

20

30 (g) 

first axis  second axis

with noise (e), (g) 0.916628137 0.083371863

clusters only (f),(h) 0.954683968 0.045316032

explained variance

0.5 0.0 0.5 1.0 1.5 2.0 2.5

first CCA axis

(h) 

0

10

20

30

S
S

T 
(

C
)

(a) (b) 

0.5 0.0 0.5 1.0 1.5

first CCA axis
0

10

20

30

N
O

3 
(

m
ol

/L
)

(c) 

first axis  second axis

with noise (a), (c) 0.820381042 0.000001219

clusters only (b), (d) 0.984177931 0.000000042

explained variance

0.5 0.0 0.5 1.0 1.5

first CCA axis

(d) 

Dinocysts                                                                                                Foraminifera

Figure 5. The relation between microplankton species variability and environmental variables according to a CCA analysis, while including

and excluding unclustered sediment samples (using the isolated clusters from Fig.4). Sea surface temperature (top) and nitrate concentration

(bottom) at sediment sample sites with dinocysts (left; (a), (b), (c), (d)) and foraminifera (right; (e), (f), (g), (h)) against the first canonical

axis from the CCA analysis, including ((a),(c),(e),(g)) and excluding ((b),(d),(f),(h)) sediment sample sites outdside of the oceanographically

isolated clusters. The sediment sample sites that belong to a cluster are colored, ‘noisy’ samples (i.e. not part of any cluster) are gray.

The tables at the bottom show the proportion of total variance that is explained by the canonical axes if the noisy samples are included or

excluded. 13.5% (for dinocysts) and 10.8% (for foraminifera) of the sediment sample sites is in clusters, the remainder is in ‘noisy’ regions.

The increase of explained variance is supported by a permutation test with 999 permutations (p-values are <0.0001 and 0.024 for dinocysts

and foraminifera respectively).

To test if sedimentary sites within clusters are better correlated with environmental conditions at the surface, we applied210

CCA either including or excluding the sedimentary sites outside the isolated clusters (Fig.5). We find that the amount of

explained variation by the canonical axes increases significantly if noisy sediment samples are excluded for the foraminifera
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(∼0.92 to ∼0.95) and especially for the dinocysts (∼0.82 to ∼0.98), for the same OPTICS clusters as in Fig.4. Hence, we find

that the linear relationship between environmental variables and microplankton composition of the CCA explains a larger part

of the sedimentary species compisition if noisy sites are excluded. In that sense, the signal is ‘cleaner’ for sediment sample215

sites within compared to outside clusters, which has implications for palaeoceanographic reconstructions of SST with these

sedimentary data.

Figure 6. Increase of explained environmental variability by microplankton sediment sample sites in the CCA analyses if sediment samples

outside of the oceanographically isolated OPTICS clusters are excluded, for different parameter values smin (i.e. the minimum size of

clusters) and ξ (i.e. the level of isolation). (a) the dinocyst and (b) the foraminifera dataset. High and significant values indicate that sediment

samples within clusters have a clearer relationship with the surface environment. Blue are configurations of smin and ξ for which no sediment

sample sites are part of a cluster. Only Southern Hemisphere sedimentary microplankton data were used here. Vertical stripes indicate an

insignificant randomization test with 999 permutations at a 5% significance level.

The robustness of the relationship between sedimentary sites and environmental variables is investigated by testing the

sensitivity of the CCA results to these parameters ξ and smin (Fig. 6). For the dinocyst dataset we find an increase of explained

variation by the canonical axes for most tested values of smin and ξ. By increasing the reachability slope that surrounds the220

oceanographically isolated clusters (ξ), a higher constraint is put on the isolation of these clusters and less sediment sample

sites are part of a cluster. If this slope ξ is chosen too high, no clusters exist or they are too small to contain any sediment

sample sites at all. Moreover, a higher value of ξ means that less sedimentary sites are used in the CCA (i.e. the dataset size

is reduced), which may lead to an insignificant result according to the randomization test. A relatively low value of ξ on the
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other hand, may lead to insignificant results due to the inclusion of noisy sites in clusters. Hence, there seems to be an optimal225

value ξ, for which this increase of variance is maximized. These results are more often insignificant for the dinocysts compared

to the foraminifera, because the dinocyst dataset is smaller. If smin is higher (i.e. the OPTICS algorithm finds larger clusters;

in km2), the negative and insignificant values in Fig. 6 are partly caused by including noisy sites in clusters. These results

highlight the importance of choosing an appropriate combination of ξ and smin for the CCA to show a significant increased

explained species variability if only clustered sites are used.230

Figure 7. Sedimentary microplankton biodiversity outside minus inside isolated OPTICS clusters. The average Shannon entropy of sediment

samples inside OPTICS clusters N
c
s compared to outside clusters N

nc
s for different values of smin (i.e. the minimum size of clusters) and

ξ (i.e. the level of isolation). High values indicate that the number of species in samples within clusters are lower and species are distributed

less evenly in samples compared to samples outside clusters. Blue are configurations of smin and ξ for which no sediment sample sites are

part of a cluster.

The clustered samples are less taxonomically mixed (i.e. are less biodiverse) for most values of ξ and smin, as we can see

from the comparsion between the Shannon entropy (Ns; see method section) within and outside of clusters (Fig. 7). For the

high values of smin, we find that the clusters are less taxonomically mixed if ξ is increased. This result supports that measured

microplankton biodiversity in sediments is relatively large in areas with strong mixing of sinking particles by ocean currents.

However, the Shannon entropy is also influenced by the species distributions at the ocean surface, for which much less species235

composition data is available compared to their sedimentary remains. At smaller values of smin (smin < 200 and smin < 300

for the dinocysts and foraminifera respectively; Fig. 7) also high (surface) productivity areas are clustered (e.g. the South-West
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Atlantic or the Humboldt area; see Fig. 4). Hence, a relatively high sedimentary biodiversity in these clusters can be explained

by the high biodiversity at the ocean surface, before these particles start sinking.

We also tested the OPTICS results for sinking velocities higher than 6 m day−1 (11, 25 and 250 m day−1; see Figures240

S5-S10 and S11-S14 in the Supporting Information). Similar clusters can be found with the other sinking velocities. A higher

sinking speed decreases the particle travel time, hence the lateral transport and the mixing of sinking particles is overall lower

(Nooteboom et al., 2019). However, the spatial dependence of the lateral transport is similar: both at low and high sinking

velocities, the lateral particle transport is relatively large near Western boundary currents, and low in the middle of midlatitude

gyres (Nooteboom et al., 2020). As a result, the clusters are located in similar areas for different sinking speeds. It is only the245

spatial scale of these clusters that might be different. The spatial scale (i.e. the size) of the clusters can again be controlled

by the parameters smin and ξ. Note that high productivity areas are less likely clustered at higher sinking speeds, which has

implications for the Shannon entropy within and outside clusters (Fig. 7): Higher biodiversity is measured outside compared

to within clusters for a larger area of smin and ξ values as the sinking speed increases.

4 Discussion250

We clustered sediment sites based on the ocean surface origin locations of sinking particles that end up at these sites in an ocean

model. These clusters reveal which sedimentary areas are oceanographically (i) (dis)connected or (ii) isolated. The connectivity

which is given by the clusters is an aggregate of the ocean connectivity at all depths that the sinking particles traverse before

ending up in the sediments. This type of connectivity, and the way it shapes the sedimentary microplankton composition, is

additive to the environment and surface ocean connectivity which influences the plankton community structure at the ocean255

surface (Jonnson and Watson, 2016; Wilkins et al., 2013). Nevertheless, the near-surface flow likely has a large imprint on the

clusters since these contain the strongest ocean currents.

It was shown before, that the ocean surface ecological affinity of certain sedimentary microplankton species can improve

if the lateral advection of sinking particles is taken into account (Nooteboom et al., 2019). This paper explores reasons why

sedimentary plankton assemblages include species that occur outside their surface water habitat range. Microplankton species260

mix by turbulent ocean currents during their sinking journey, which can result in a relevant lateral displacement along transport.

The extent by which this occurs differs strongly in the world oceans, and is larger in areas that are referred to as noisy in this

paper.

We conclude that ocean sediments are to a spatially varying degree provincial, and province boundaries are governed by

near-surface and deep currents in the ocean. These provinces have an impact on sedimentary microplankton assemblages.265

Their quantification helps to determine ocean sediment regions that are oceanographically (a) (dis)connected and (b) isolated

from the area outside of these regions. Quantification of connected and isolated provinces have at least 4 implications for future

studies.

First, the clustering methods that are presented in this paper can help to improve the application of transfer functions on

microplankton assemblages. Transfer functions train a model on surface sediment samples and ocean surface environmental270
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variables (in the present-day), in order to make quantitative climate reconstructions of past climates from microplankton in

deeper sediments. Hence, these transfer function models use spatial variability of an environmental variable to predict its

temporal variability in a single location. One challenge of transfer functions is to choose a proper spatial extent to train the

prediction model (Hohmann et al. (2019); often in the present-day situation). A small spatial extent does not capture enough

of species and environment variability. If the spatial extent is too large, different processes determine the sedimentary species275

distribution which reduces the transfer function skill.

The hierarchical clustering method (which finds oceanographically disconnected clusters) can help to determine bounds on

the spatial extent that is used for the training of transfer functions, since it shows areas which are oceanographically separated

from each other. These clusters are created in a present-day configuration in this study, and may change in past climates. The

OPTICS clustering can be used to find oceanographically isolated clusters to determine the spatial extent of a regional transfer280

function model. In this case, it is advisable to check if the OPTICS cluster is large enough (i.e. the deep sediments do not

contain species outside of the cluster).

Second, the connectivity between provinces could have an effect on biogeochemical properties of microplankton species that

are applied as a proxy of the ocean surface environment. Hence, these provinces can be used to correct for ocean connectivity

if the proxies are used to assimilate e.g. global sea surface temperature fields (as in Tierney et al. (2020)). Moreover, spatially285

varying Bayesian regression is used to some of these biogeochemical proxies, because the proxy response differs across oceanic

basins (Tierney and Tingley, 2015, 2018). The disconnected provinces from this paper could provide a spatial structure that

such a regression model uses for core-top calibration.

Third, the results in this paper have implications for other types of sinking particles in the ocean. For instance, a large fraction

of marine plastic sinks to the ocean floor (Canals et al., 2020; Kooi et al., 2017). Sedimentary plastic distributions might be290

subject to similar mechanisms of mixing during their sinking journey. Clustering of sedimentary sites might indicate where the

largest inhomogenities of sedimentary plastics appear (de la Fuente et al., 2021), or boundaries where sinking plastic is less

likely to cross.

Fourth, our study provides micropalaeontologists with a tool to qualitatively assess the importance of lateral transport to

sedimentary particle assemblages, which can be used in studies that compare measured biological diversity and environmental295

conditions in surface waters with their sedimentary remains (e.g. Jonkers et al. (2019); Meilland et al. (2020)), particularly in

those regions for which we here demonstrate ‘noisy’ behaviour. These type of studies could determine the relative contribution

to the higher biodiversity outside compared to within oceanographically isolated clusters from ocean surface parameters, as

well as dissolution (Frenger et al., 2018; Taylor et al., 2018) and mixing of particles during their sinking journey.

Drivers of biodiversity at the ocean surface, such as species interactions (Lima-Mendez et al., 2015), ecological limits300

and evolutionary dynamics (Fenton et al., 2016), are complex. It is possible that oceanographically isolated provinces do not

directly drive a low biodiversity, but indirectly cause a low biodiversity through a lower variation of abiotic factors. Moreover,

these provinces are likely located in areas with relatively little eddy activity, while mesoscale eddies can explain relatively high

biodiversity values (Frenger et al., 2018).
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The backtracking analysis on which we applied the clustering was designed for dinocysts, and not for foraminifera. Clus-305

tering results compared well with the foraminifera dataset in most cases, because the areas with strong particle mixing and

lateral transport (i.e. their spatial dependence) are likely similar for foraminifera. Nevertheless, future work could apply these

clustering methods on a backtracking analysis which is designed for foraminifera (similar to van Sebille et al. (2015a); Lange

and Sebille (2017)). This means that particles are released at the ocean bottom, tracked back in time until they reach the

foraminifera dwelling depth, and finally tracked back during their life span at this dwelling depth.310

Code availability. The code used for this work and the results are distributed under the MIT license and can be found at the website

https://github.com/pdnooteboom/ClusterSinkingParticles.

Data availability. The data with back-tracked origin locations can be accessed on planktondrift.science.uu.nl. The datasets with measured

dinocysts and planktic foraminifera data are from Marret et al. (2019) and Siccha and Kucera (2017) respectively.

Appendix A: Clustering methods315

A1 Hierarchical clustering

The particle tracking results from Nooteboom et al. (2019) can be described by a bipartite graph (or transportation matrix; Fig

A1a). This bipatite graph consists of bottom and surface nodes (representative of surface and bottom boxes in the transportation

matrix; we use 1◦×1◦ boxes in this paper). Bottom and surface nodes are linked if the probability that a particle which is found

in a bottom box originates from the surface box is greater than zero. We will use the projection of this bipartite graph on the320

bottom nodes (Fig 1c). This provides us with a graph of only bottom nodes, where the weight of a link between two nodes is

determined by the amount of common surface nodes they are linked to in the bipartite graph.

Given the projection of the bipartite graph on the bottom nodes, we apply the hierarchical clustering method as described in

Wichmann et al. (2020). Starting with the largest connected component in the bottom projection as the only cluster (which

represents the full global ocean), the clustering algorithm chooses one cluster at every iteration and splits it into two clusters,325

such that the Normalized Cut (NCut) is minimized (Shi and Jitendra, 2000). For K clusters S1, · · · ,SK , the NCut is defined as:

NCut(S1, · · · ,SK) :=
K∑

i=1

Q
(
Si,S

C
i

)

Q(Si,S)
,

whereQ(Si,Sj) is the sum of all weigths connecting Si and Sj , SC
i is the complement of Si. By definition, the NCut increases

at every iteration (i.e. if the amount of clusters is higher).330

We do not test the hierarchical clustering at 250 m day−1 sinking speed of particles in the back-tracking analysis. The parti-

cle distributions spread less at this sinking velocity, and the bottom projection of the bipartite graph becomes disconnected.
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Figure A1. Illustrations for the embedding types that the hierarchical clustering method uses. (a) Illustration of the surface-bottom trans-

portation matrix (figure adapted from Nooteboom et al. (2019)). The transportation matrix contains the probabilities that a particle that is

found in a bottom box, originated from a surface box. The transportation matrix can also be interpreted as a bipartite graph in (b), which has

a bottom projection (c): the bottom nodes are linked with a weight that is determined by the amount of mutually linked surface vertices in

the bipartite graph.

Hence, these higher sinking speeds require a higher resolution binning of the input used, which exceeds given computational

limitations.

A2 OPTICS clustering335

We use OPTICS to compare clusters with the sediment sample sites, which is density based and distinguishes different clusters

from ‘noise’ (Wichmann et al., 2020). We apply OPTICS in this paper to the ‘direct embedding’ of surface origin distributions

(Fig. 1a).

The main result from OPTICS is the reachability plot (see Wichmann et al. (2021) for more details). The reachability plot is a

representation of the global and local distribution of points (which represent sedimentary sites in this paper) at once. The valleys340

correspond to dense regions with similar surface origin location, while the hills correspond to the ‘noisy’ locations. The reacha-

bility plot depends on a parameter smin, for which we test multiple values (smin ∈ [100,200,300,400,500,600,700,800,900,1000]).

smin sets the minimum amount of ‘nearby’ points in the reachability plot for every point in a cluster (MinPts in Ester et al.
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(1996)). In general, a larger smin results in a smoother reachability plot and larger clusters. If we let every particle release

location (released on a 1◦× 1◦ grid) represent an area of 1 square degree (∼104 km2), the OPTICS algorithm searches for a345

cluster with a spatial scale ∼ smin·104 km2.

In this paper, we use ξ-clustering to obtain clusters from the reachability plot (Ankerst et al., 1999). This implies that we set a

threshold on the steepness of the density (ξ), and cluster the valley of points that is surrounded by this steepness ξ. In general,

a larger ξ will reduce both the size and the amount of clusters.

Appendix B: The distance matrices defined350

We use (symmetric) distance matrices based on four different metrics. First, we use a matrix that contains Euclidean taxonomic

distances, calculated from the relative abundances (fractions) of species. Second, we use the absolute SST differences between

the sites. Third, we use a distance which is based on the reachability from the OPTICS algorithm. Specifically, if r(pk) is the

reachability of point pk and the n points are ordered from p0 · · ·pn, the reachability distance between two sediment sample sites

(located near pi and pj respectively with i≤ j) is Dr
ji =Dr

ij = maxi≤k≤j r(pk)−mini≤k≤j r(pk). Intuitively, Dr
ij represents355

how much one has to climb or descent in the reachability ‘landscape,’ if one likes to move from point i to j. Fourth, we

use a distance matrix which contains the spatial distance (in meters) between sediment sample sites. The partial Mantel test

determines the correlation between the reachability distance and either SST or taxonomy distance matrices, keeping the spatial

distance matrix constant.
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