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Abstract. Climate change over High Mountain Asia (HMA, including the Tibetan Plateau) is investigated over
the period 1979–2014 and in future projections following the four Shared Socioeconomic Pathways: SSP1-2.6,
SSP2-4.5, SSP3-7.0 and SSP5-8.5. The skill of 26 Coupled Model Intercomparison Project phase 6 (CMIP6)
models is estimated for near-surface air temperature, snow cover extent and total precipitation, and 10 of them
are used to describe their projections until 2100. Similarly to previous CMIP models, this new generation of
general circulation models (GCMs) shows a mean cold bias over this area reaching −1.9 [−8.2 to 2.9] ◦C (90 %
confidence interval) in comparison with the Climate Research Unit (CRU) observational dataset, associated
with a snow cover mean overestimation of 12 % [−13 % to 43 %], corresponding to a relative bias of 52 %
[−53 % to 183 %] in comparison with the NOAA Climate Data Record (CDR) satellite dataset. The temperature
and snow cover model biases are more pronounced in winter. Simulated precipitation rates are overestimated
by 1.5 [0.3 to 2.9] mm d−1, corresponding to a relative bias of 143 % [31 % to 281 %], but this might be an
apparent bias caused by the undercatch of solid precipitation in the APHRODITE (Asian Precipitation-Highly-
Resolved Observational Data Integration Towards Evaluation of Water Resources) observational reference. For
most models, the cold surface bias is associated with an overestimation of snow cover extent, but this relationship
does not hold for all models, suggesting that the processes of the origin of the biases can differ from one model
to another. A significant correlation between snow cover bias and surface elevation is found, and to a lesser
extent between temperature bias and surface elevation, highlighting the model weaknesses at high elevation. The
models with the best performance for temperature are not necessarily the most skillful for the other variables,
and there is no clear relationship between model resolution and model skill. This highlights the need for a better
understanding of the physical processes driving the climate in this complex topographic area, as well as for
further parameterization developments adapted to such areas. A dependency of the simulated past trends on the
model biases is found for some variables and seasons; however, some highly biased models fall within the range
of observed trends, suggesting that model bias is not a robust criterion to discard models in trend analysis. The
HMA median warming simulated over 2081–2100 with respect to 1995–2014 ranges from 1.9 [1.2 to 2.7] ◦C
for SSP1-2.6 to 6.5 [4.9 to 9.0] ◦C for SSP5-8.5. This general warming is associated with a relative median
snow cover extent decrease from −9.4 % [−16.4 % to −5.0 %] to −32.2 % [−49.1 % to −25.0 %] and a relative
median precipitation increase from 8.5 % [4.8 % to 18.2 %] to 24.9 % [14.4 % to 48.1 %] by the end of the century
in these respective scenarios. The warming is 11 % higher over HMA than over the other Northern Hemisphere
continental surfaces, excluding the Arctic area. Seasonal temperature, snow cover and precipitation changes over
HMA show a linear relationship with the global surface air temperature (GSAT), except for summer snow cover
which shows a slower decrease at strong levels of GSAT.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2 M. Lalande et al.: Climate change in the High Mountain Asia in CMIP6

1 Introduction

High Mountain Asia (HMA) extends from the Himalayas in
the south and east to the Hindu Kush in the west and to Tien
Shan in the north, including also the Karakoram, the Pamir-
Alay and the Kunlun mountain ranges. HMA surrounds the
Tibetan Plateau (TP), which is the highest and most exten-
sive plateau in the world, with an average elevation of 4000 m
above sea level and an approximate surface area of 2.5 mil-
lion km2 (Du and Qingsong, 2000). Because of their high ele-
vation and complex terrain, TP and HMA affect not only the
regional climate and environment in East Asia but also the
global atmospheric circulation via thermal and mechanical
forcings (Flohn, 1957; Kutzbach et al., 1993; Webster et al.,
1998; Hsu and Liu, 2003; Duan and Wu, 2005; Liu et al.,
2007; Wu et al., 2016). The Asian summer monsoon provides
almost 80 % of the annual precipitation in the central and
eastern parts of the Himalayas during the monsoon season
(June–September) (Bookhagen and Burbank, 2010; Palazzi
et al., 2013; Sabin et al., 2020). Several studies suggested
that the geographical configuration of the TP was enhanc-
ing the triggering of the Asian monsoon, with this dry area
acting as a heat source transferred to the midtroposphere di-
rectly enhancing the vertical uplift typically found at the start
of the summer monsoon (Li and Yanai, 1996; Wu and Zhang,
1998; Yihui and Chan, 2005; Wu et al., 2012). This finding
has been partly questioned in other studies, suggesting that
the Himalayan chain is insulating the warm and moist air
found over the Indian subcontinent from the cold areas found
in TP (Boos and Kuang, 2010). Therefore, the Himalayan
chainCE1 itself and not the TP seems to be an essential ge-
ographical feature that favors vertical uplifts of warm and
moist air masses, mainly on its southern flank. In contrast,
winter precipitation contributes nearly half of the annual pre-
cipitation in the Karakoram and the Hindu Kush, mostly due
to the westerly disturbances (WDs) bringing moisture from
the Atlantic Ocean, and the Mediterranean and Caspian seas
(Singh et al., 1995; Vandenberghe et al., 2006; Palazzi et al.,
2013; Kapnick et al., 2014; Madhura et al., 2015; Cannon
et al., 2015; Hunt et al., 2018; Krishnan et al., 2019). TP and
HMA are often referred as the “Asian Water Tower” and/or
the “Third Pole” (e.g., Immerzeel et al., 2010; Qiu, 2008; Yao
et al., 2012, 2019) because they are the largest freshwater re-
source stored in the cryosphere after the polar ice sheets. In
this region, snowmelt ensures a permanent water flow to the
major Asian river systems, such as the Yangtze, Yellow, Sal-
ween and Mekong rivers (Sharma et al., 2019), contributing
to the water supply of over 1.4 billion people living down-
stream (Immerzeel and Bierkens, 2012; Yao et al., 2012; Ra-
sul, 2014; Scott et al., 2019; Wester et al., 2019).

Over 1955–1996, Liu and Chen (2000) estimated an an-
nual warming rate over the TP of 0.16 ◦C decade−1 that
reached 0.32 ◦C decade−1 in winter, while Wang et al. (2008)
observed an annual warming of 0.36 ◦C decade−1 over 1960–
2007. Precipitation and snow cover show contrasted trends

over the TP, depending on the location and the period (Kang
et al., 2010). Increasing temperature induced a reduction of
the snow cover fraction in HMA, but this has been com-
pensated by an increase in precipitation leading to stronger
snowfall rates in some regions (Viste and Sorteberg, 2015;
Notarnicola, 2020). Upon its impact on snow cover, climate
change in HMA and TP affects also the permafrost and the
glaciers (Yang et al., 2010; Yao et al., 2007), increases the
desertification (Xue et al., 2009) and affects the hydrological
cycle inducing serious threats for the water resources used for
agriculture, drinking water and hydroelectricity (Qiu, 2008;
Immerzeel et al., 2010; Sabin et al., 2020). HMA is also fac-
ing an increase in both the intensity and the frequency of
heatwaves (Ding et al., 2018). The lack of observations, es-
pecially pronounced in the western part of HMA, limits the
possibility to understand and anticipate the climate change in
this area (Orsolini et al., 2019).

Current coupled ocean–atmosphere general circulation
models (GCMs) have a overly coarse spatial resolution (from
50 km to several hundred kilometers) to reproduce the small-
scale variability of temperature, precipitation and snow cover
that is observed over complex topography areas. Neverthe-
less, they may be effective in providing a smooth but consis-
tent picture of the large-scale temporal and spatial patterns
of these key variables at the regional scale. The Coupled
Model Intercomparison Project (CMIP) organized by the
World Climate Research Programme (WCRP), recently dis-
tributed under its sixth phase (CMIP6) (Eyring et al., 2016),
is a unique opportunity to conduct comprehensive analyses
of the climate variability and change at both global and re-
gional scales, based on an ensemble of climate models.

GCM experiments show generally good skill for sur-
face temperature; however, a systematic cold bias over TP
and mountainous areas has been pointed in GCM outputs
since the first Atmospheric Model Intercomparison Project
(AMIP) experiments (Mao and Robock, 1998). Su et al.
(2013) showed that most of the CMIP5 models have a cold
bias at the surface in the eastern TP, with a mean underesti-
mation of −1.1 to −2.5 ◦C over December to May, and less
than −1 ◦C over June to October in comparison to ground
observations, while the annual climatology of precipitation
is overestimated by 62 % to 183 %. Regional climate models
show similar cold biases, a deficiency that is often associated
with an excess of precipitation in the experiments (Lee and
Suh, 2000). However, the lack of high-elevation observation
station data may also be partly responsible for the apparent
cold bias of the model (Gu et al., 2012), and high-resolution
experiments suggest that the real precipitation rates occur-
ring at high elevation are likely stronger than those estimated
from gridded products based on rain gauge measurements
(Dimri et al., 2013). GCMs show cold biases also at 500 hPa,
which may be caused by penetration of dry and cold air from
the deserts of western Asia due to an overly smoothed rep-
resentation of topography west of the TP (Boos and Hurley,
2013; Xu et al., 2017). Chen et al. (2017) suggested that im-
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provements in the parameterization of snow cover area and
boundary layer processes in CMIP5 models should allow to
improve the representation of the surface energy budget and
to reduce the cold bias over TP. Model biases are also re-
lated to inaccurate descriptions of the elevation and the at-
mospheric circulation as the Asian anticyclone or summer
monsoon (e.g., Salunke et al., 2019; Duan et al., 2013). More
recently, Zhu and Yang (2020) compared CMIP6 and CMIP5
models over 1961–2014 to finally conclude that the cold bias
and the wet bias over TP, even if reduced, still persist in the
most recent version of these models.

Our study focuses on the climate variability over HMA as
simulated with CMIP6 models. The near-surface air temper-
ature, the snow cover extent and the total precipitation are
considered to answer four questions: (1) what are the biases
in HMA in this new generation of climate models for these
three variables? (2) What are the links between the model bi-
ases in temperature, precipitation and snow cover? (3) Do the
model biases impact the simulated climate trends? (4) Which
climate projections can be expected in this area over the next
century? The datasets and methods used in this study are de-
scribed in the next section. Section 3 presents a comparison
between observations and 26 CMIP6 models over the histor-
ical period with a focus on the potential correlations between
the biases of the different variables. We then show the histor-
ical trends estimated from the CMIP6 experiments and their
potential dependency on model biases (Sect. 4). Section 5
explores future projections under different scenarios cover-
ing the 21st century. The results are discussed in Sect. 6 and
the conclusions are presented in Sect. 7.

2 Data and methods

2.1 Models

In this study, we selected 26 GCMs Table 1 in the CMIP6
database (Eyring et al., 2016) focusing on near-surface air
temperature (tas), total precipitation (pr) and snow cover ex-
tent (snc) over 1979–2014. Only 10 of these models are
available for future projections covering the ensemble of the
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 Shared Socioe-
conomic PathwaysCE2 , which are combining socioeconomic
scenarios and radiative forcing levels (O’Neill et al., 2016).
Considering the model uncertainties, such a limited number
of models might be sufficient to explore future climate trends
(Knutti et al., 2010). The resolution of the models ranges
from about 3 to 0.5◦ (∼ 300 to 50 km), while most of them
reach a 1◦ resolution. All models are regridded on a common
1◦× 1◦ grid using a bilinear interpolation before the multi-
model analysis.

Climatologies are computed with the first member (usu-
ally r1i1p1f1), whereas trend analyses are based on ensemble
means for each model, restricted to a single setup of physi-
cal parameterization (p), initialization method (i) and forc-
ing (f ), except when a different recommendation is given

by the modeling group (Table A1). The version of the model
data is the most recent one available at the time of this anal-
ysis.

2.2 Observations

Because of complex topography, severe weather and harsh
environmental conditions in HMA and TP, meteorological
observations are rare in this region. Available weather sta-
tions are usually sparse and unevenly distributed (Wang and
Zeng, 2012; Su et al., 2013). Gridded data, satellite obser-
vations and reanalyses are combined here to obtain a robust
evaluation of model biases, even if they are affected by the
uncertainties inherent to the observations.

2.2.1 Near-surface air temperature

The CRU TS (Climatic Research Unit gridded Time Series)
version 4.00 (https://doi.org/10/gbr3nj) provides a 0.5◦ grid-
ded dataset of the monthly temperature (excluding Antarc-
tica) available from 1901 until the present, based on local
weather stations and provided with an estimation of the data
quality (Harris et al., 2020). This dataset has been widely
used over HMA and TP (e.g., Gu et al., 2012; Chen et al.,
2017; Krishnan et al., 2019; Wang et al., 2021; Yi et al.,
2021). Correlation with local measurements, including at
high elevation (Wang et al., 2013b), is high in this region.
This gives confidence for model evaluation (Chen et al.,
2017).

2.2.2 Snow cover extent

In situ snow observations are sparse over HMA and
TP, and when they are available, in situ data are of-
ten not representative for snow cover analysis at the
regional scale (Gurung et al., 2017). Alternatively, re-
mote sensing datasets provide large-scale snow informa-
tion useful for spatiotemporal analyses. The satellite prod-
uct available over the longest period, but at a coarse spa-
tial resolution, is the NOAA Climate Data Record (CDR)
(Robinson et al., 1993, 2012; Estilow et al., 2015), covering
the Northern Hemisphere (NH) from 4 October 1966 to
present (referred to as NOAA CDR in this article). Data
prior to June 1999 are based on weekly satellite-derived maps
of snow cover extent, whereas posterior data have been re-
placed by daily snow cover extent estimated from the Interac-
tive Multisensor Snow and Ice Mapping System (IMS). The
weekly snow cover extent maps are digitized to a 88×88 grid
following a 190 km polar stereographic projection and con-
tain binary snow cover information. The retrieval of snow
cover information for this product is not interfered by clouds
due to the weekly aggregation prior to June 1999 and the
inclusion of passive microwave data posterior. The NOAA
CDR has been widely used in climate–snow studies over the
NH (e.g., Brown and Robinson, 2011; Hernández-Henríquez
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Table 1. TS1Description of the CMIP6 models used in this study with their institute, name, approximate spatial resolution (longi-
tude× latitude), the member considered in the one-member analyses and their reference. A cross is included in the last column when the
model projections are available for the four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5).

Institute (country) Model Resolution Primary All SSPs Reference
(long× lat) member available

BCC (China)
BCC-CSM2-MR 1.1◦× 1.1◦

r1i1p1f1
×

Wu et al. (2019)
BCC-ESM1 2.8◦× 2.8◦

CAS (China) CAS-ESM2-0 1.4◦× 1.4◦ r4i1p1f1 Zhang et al. (2020)

NCAR (USA)

CESM2 1.2◦× 0.9◦

r1i1p1f1 Danabasoglu et al. (2020)
CESM2-FV2 2.5◦× 1.9◦

CESM2-WACCM 1.2◦× 0.9◦

CESM2-WACCM-FV2 2.5◦× 1.9◦

CNRM-CERFACS (France)
CNRM-CM6-1 1.4◦× 1.4◦

r1i1p1f2 ×
Voldoire et al. (2019)

CNRM-CM6-1-HR 0.5◦× 0.5◦

CNRM-ESM2-1 1.4◦× 1.4◦ Séférian et al. (2019)

CCCma (Canada) CanESM5 2.8◦× 2.8◦ r3i1p2f1 × Swart et al. (2019)

NOAA-GFDL (USA) GFDL-CM4 1.2◦× 1.0◦ r1i1p1f1 Held et al. (2019)

NASA-GISS (USA)
GISS-E2-1-G

2.5◦× 2.0◦ r1i1p1f1 Kelley et al. (2020)
GISS-E2-1-H

MOHC (UK)
HadGEM3-GC31-LL 1.9◦× 1.2◦

r1i1p1f3 Andrews et al. (2020)
HadGEM3-GC31-MM 0.8◦× 0.6◦

IPSL (France) IPSL-CM6A-LR 2.5◦× 1.3◦ r1i1p1f1 × Boucher et al. (2020)

MIROC (Japan)
MIROC-ES2L 2.8◦× 2.8◦ r1i1p1f2

×
Hajima et al. (2020)

MIROC6 1.4◦× 1.4◦ r1i1p1f1 Tatebe et al. (2019)

MPI-M (Germany)
MPI-ESM1-2-HR 0.9◦× 0.9◦

r1i1p1f1
Gutjahr et al. (2019)

MPI-ESM1-2-LR 1.9◦× 1.9◦ Mauritsen et al. (2019)

MRI (Japan) MRI-ESM2-0 1.1◦× 1.1◦ r1i1p1f1 × Yukimoto et al. (2019)

NCC (Norway) NorESM2-LM 2.5◦× 1.9◦ r2i1p1f1 Seland et al. (2020)

SNU (South Korea) SAM0-UNICON 1.2◦× 0.9◦ r1i1p1f1 Park et al. (2019)

AS-RCEC (Taiwan) TaiESM1 1.2◦× 0.9◦ r1i1p1f1 Lee et al. (2020)

MOHC (UK), NIMS-KMA (South Korea) UKESM1-0-LL 1.9◦× 1.2◦ r1i1p1f2 × Sellar et al. (2019)

et al., 2015; Hori et al., 2017; Santolaria-Otín and Zolina,
2020) and more specifically over HMA (e.g., Xu et al.,
2016). This dataset is adapted for continental-scale studies
but shows limitations over mountainous regions (Déry and
Brown, 2007), even if the inclusion of Meteosat-5 data in
2001 significantly improved its quality over the Asian conti-
nent (Helfrich et al., 2007). Trend analyses based on NOAA
CDR data must be taken with caution because of potential
temporal heterogeneities related to changes of experimen-
tal protocols (Mudryk et al., 2020). To obtain monthly frac-
tional values, we simply average the weekly binaries values
included in each corresponding month.

The Advanced Very High Resolution Radiometer
(AVHRR) Global Area Coverage (GAC) snow cover
extent time series version 1 derived in the frame of

the European Space Agency’s Climate Change Ini-
tiative (ESA CCI+) Snow project is the most recent
long-term global snow cover product available (Naegeli
et al., 2021). It covers the period 1982–2020 at a daily
temporal and 0.05◦ spatial resolution. The product is
based on the Fundamental Climate Data Record (FCDR)
consisting of daily composites of AVHRR GAC data
(https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-
PM/V003) produced in the ESA Cloud CCI project (Stengel
et al., 2020). The data were pre-processed with an improved
geocoding and an inter-channel and inter-sensor calibration
using PyGAC (Devasthale et al., 2017). Alongside the
daily reflectance and brightness temperature information,
an excellent cloud mask including pixel-based uncertainty
information is provided (Stengel et al., 2017, 2020). Snow
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7-9
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10-14
5 notes:

15-19
5 notes:

20-25
6 notes:

26-30
5 notes:

31-35
5 notes:

36-40
5 notes:

41-45
5 notes:

46-50
5 notes:

51-55
5 notes:

56-59
4 notes:

60-63
4 notes:

https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003
https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003
Note
Remove all the references bellow from here and reference list, and add instead the ones commented on each model name (2 citations are needed for models having SSPs available) -> all citations are [data]

I also provide you the links to the webpage if you prefer to directly download the .bib reference

I hope you will understand, I added the version to each reference (YYMMDD), I hope I didn't forget one.

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.BCC.BCC-CSM2-MR.historical

Wu, Tongwen; Chu, Min; Dong, Min; Fang, Yongjie; Jie, Weihua; Li, Jianglong; Li, Weiping; Liu, Qianxia; Shi, Xueli; Xin, Xiaoge; Yan, Jinghui; Zhang, Fang; Zhang, Jie; Zhang, Li; Zhang, Yanwu (2018). BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical. Version 20181126.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2948

and 

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.BCC.BCC-CSM2-MR

Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min (2019). BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP. Version 20190314.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1732

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.BCC.BCC-ESM1.historical

Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min (2018). BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical. Version 20181214.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2949

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.CAS.CAS-ESM2-0.historical

Chai, Zhaoyang (2020). CAS CAS-ESM1.0 model output prepared for CMIP6 CMIP historical. Version 20201227.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3353

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NCAR.CESM2.historical

Danabasoglu, Gokhan (2019). NCAR CESM2 model output prepared for CMIP6 CMIP historical. Version 20190308.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7627

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NCAR.CESM2-FV2.historical

Danabasoglu, Gokhan (2019). NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical. Version 20191120.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11297

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NCAR.CESM2-WACCM.historical

Danabasoglu, Gokhan (2019). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Version 20190227.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10071

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical

Danabasoglu, Gokhan (2019). NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical. Version 20191120.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11298

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical

Voldoire, Aurore (2018). CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical. Version 20180917.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4066

and 

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Version 20190219.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1384

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1-HR.historical

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP historical. Version 20191021.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4067

and 

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1-HR

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP. Version 20200127.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1388

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.historical

Seferian, Roland (2018). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical. Version 20181206.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4068

and

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-ESM2-1

Seferian, Roland (2019). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Version 20190328.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1395

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.CCCma.CanESM5.historical

Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP historical. Version 20190429.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3610

and 

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.CCCma.CanESM5

Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael (2019). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Version 20190429.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1317

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NOAA-GFDL.GFDL-CM4.historical

Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Lin, Pu; Malyshev, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, Elena; Winton, Michael; Zhao, Ming; Zhang, Rong (2018). NOAA-GFDL GFDL-CM4 model output historical. Version 20180701.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8594

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical

NASA Goddard Institute for Space Studies (NASA/GISS) (2018). NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical. Version 20180827.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7127

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical

NASA Goddard Institute for Space Studies (NASA/GISS) (2019). NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP historical. Version 20190403.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7128

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MOHC.HadGEM3-GC31-LL.historical

Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim (2019). MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP historical. Version 20190624.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6109

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical

Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim (2019). MOHC HadGEM3-GC31-MM model output prepared for CMIP6 CMIP historical. Version 20191207.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6112

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.IPSL.IPSL-CM6A-LR.historical

Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Version 20180803.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5195

and

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR

Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Dupont, Eliott; Lurton, Thibaut (2019). IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP. Version 20190903.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1532

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MIROC.MIROC-ES2L.historical

Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru (2019). MIROC MIROC-ES2L model output prepared for CMIP6 CMIP historical. Version 20190823.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5602

and

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.MIROC.MIROC-ES2L

Tachiiri, Kaoru; Abe, Manabu; Hajima, Tomohiro; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio (2019). MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP. Version 20190823.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.936

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MIROC.MIROC6.historical

Tatebe, Hiroaki; Watanabe, Masahiro (2018). MIROC MIROC6 model output prepared for CMIP6 CMIP historical. Version 20181212.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5603

and 

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.MIROC.MIROC6

Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki (2019). MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Version 20190627.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.898

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MPI-M.MPI-ESM1-2-HR.historical

Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2019). MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical. Version 20190710.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6594

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.historical

Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2019). MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Version 20190710.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MRI.MRI-ESM2-0.historical

Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Version 20190222.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6842

and

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.MRI.MRI-ESM2-0

Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Version 20191108.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.638

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.NCC.NorESM2-LM.historical

Seland, Øyvind; Bentsen, Mats; Oliviè, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael (2019). NCC NorESM2-LM model output prepared for CMIP6 CMIP historical. Version 20190920.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8036

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.SNU.SAM0-UNICON.historical

Park, Sungsu; Shin, Jihoon (2019). SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical. Version 20190323.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7789

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.AS-RCEC.TaiESM1.historical

Lee, Wei-Liang; Liang, Hsin-Chien (2020). AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical. Version 20200623.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9755

Note
we should remove this actually because I used only MOHC data

Note
https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.CMIP.MOHC.UKESM1-0-LL.historical

Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Version 20190406.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6113

and

https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.MOHC.UKESM1-0-LL

Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till; Walton, Jeremy (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Version 20190503.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567
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cover extent was retrieved using SCAmod (Metsämäki
et al., 2015), while water bodies, permanent ice bodies and
missing values are flagged. To reduce the effect of cloud
coverage, a temporal filter of ±3 d of each individual snow
cover observation was applied after Foppa and Seiz (2012).
The AVHRR GAC FCDR snow cover product comprises
only one longer data gap of 92 d between November 1994
and January 1995, resulting in a 99 % data coverage over the
entire study period of 38 years. For the computation of the
average annual cycle over the study period, the permanent
ice bodies were assumed to be 100 % snow covered, whereas
water bodies, remaining clouds or other missing values
were not taken into account. Due to the slightly shorter time
period covered by this snow product compared to the period
investigated in this study, it was not considered for trend
analysis.

2.2.3 Precipitation

In this study, we use the daily APHRODITE (Asian
Precipitation-Highly-Resolved Observational Data Integra-
tion Towards Evaluation of Water Resources) product (Yata-
gai et al., 2012) version V1101 (1951–2007) and its ex-
tended version V1101EX_R1 (2007–2015) over the domain
of monsoon Asia (MA) at a 0.5◦ resolution. APHRODITE
includes a large number of local observations and includes
a correction in the interpolation process for complex topog-
raphy areas. The seasonal precipitation is correctly repre-
sented in APHRODITE (e.g., Palazzi et al., 2013; Kapnick
et al., 2014). However, most of the stations are located in
the eastern and southern parts of the TP and do not cover
the high-elevation areas. For comparison, we used the Global
Precipitation Climatology Project (GPCP) CDR version 2.3
(monthly) product at 2.5◦ (Adler et al., 2016, 2018). This
product combines satellite products with rain gauge stations
available from 1979 to the present. However, the scarcity
of high-elevation in situ stations, the interference of wind
with the sensors and the problems of satellite-based meteo-
rological radars in identifying snow crystals lead to large un-
certainties in observational snowfall datasets (Palazzi et al.,
2013; Sun et al., 2018). Total precipitation is therefore gener-
ally underestimated, especially over snow-rich areas (Sanjay
et al., 2017).

2.2.4 Topography

Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) (Danielson and Gesch, 2011) (available at
https://www.temis.nl/data/gmted2010/index.php, last access:
1 June 2021)) provide elevations and its standard deviation at
multiple resolutions and are realistic over HMA (Grohmann,
2016). In this study, we use the 1◦× 1◦ resolution as a refer-
ence grid.

2.3 Reanalyses

Reanalysis data, based on assimilation of meteorological
observations, provide an estimate of the climate variabil-
ity at the global and regional scales consistent with the ob-
served variability. An advantage over most observations is
that reanalysis data do account for total precipitation, provid-
ing separately the rainfall and snowfall rates (Palazzi et al.,
2013). However, climate trends estimated from reanalysis
data are affected by the continuous changes in the observ-
ing systems that can introduce spurious variability and trends
(Bengtsson, 2004). Global atmospheric reanalyses show poor
quality over HMA and TP also because of their coarse res-
olution and the limited number of local observations avail-
able for the assimilation process that is not adapted for such
complex topography areas (You et al., 2010; Norris et al.,
2015, 2017).

2.3.1 ERA-Interim

ERA-Interim is a global atmospheric reanalysis dataset pro-
duced by the European Centre for Medium-Range Weather
Forecasts (ECMWF), covering the period from 1979 to 2019
at approximately 80 km on 60 vertical levels (Dee et al.,
2011). ERA-Interim shows best overall performance for air
temperatures compared to other reanalyses over TP (Wang
and Zeng, 2012) and high correlations (0.97 to 0.99) with
respect to ground meteorological stations during 1979–2010
(Gao et al., 2014). Estimates of precipitation associated with
the reanalysis are produced by the forecast model, based on
the assimilation of temperature and humidity observations
(Palazzi et al., 2013). Snow depth is assimilated through
station observations (Orsolini et al., 2019), and gridded
snow cover from IMS has also been assimilated since 2004
(Drusch et al., 2004). As described in the ECMWF docu-
mentation (https://confluence.ecmwf.int/display/CKB/ERA-
Interim:+documentation#ERAInterim:documentation-
Computationofnear-surfacehumidityandsnowcoverTS2 ),
snow cover fraction (SCF) is a diagnostic variable computed
directly using snow water equivalent (i.e., parameter SD in
meters of water equivalent) as SCF=min(1,RW×SD/15),
where RW is the density of water equal to 1000.

2.3.2 ERA5

ERA5 is the most recent global atmospheric reanalysis pro-
duced by the ECMWF and replaces ERA-Interim (Hersbach
et al., 2020). The improvements, including the spatial and
temporal resolution (hourly estimates at 31 km distributed
on 137 levels), allowed for example an improved represen-
tation of the troposphere and better global balance of pre-
cipitation and evaporation. As in ERA-Interim, snow cover
fraction is a diagnostic variable that can be computed from
snow water equivalent (i.e., parameter SD in meters of water
equivalent) and snow density (i.e., RSN in kgm−3) as SCF=
min(1, (RW×SD/RSN)/0.1), where RW is the density of
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water equal to 1000. Unlike ERA-Interim, IMS data are not
used above 1500 m, i.e., in high-altitude regions which in-
clude the TP (ECMWF, 2020)CE3 .

2.4 Study area

In this study, we consider HMA as a box covering 20–45◦ N
and 60–110◦ E (Fig. 1a and b), focusing on mountain areas,
including the TP, with an elevation higher than 2500 m. As
in previous studies considering different climatic areas (e.g.,
Palazzi et al., 2013; Kapnick et al., 2014; Sanjay et al., 2017),
three subdomains are considered: Hindu Kush–Karakoram
(HK; 31–40◦ N, 70–81◦ E), Himalayas (HM; 26–31◦ N, 79–
98◦ E) and the Tibetan Plateau (TP; 31–39◦ N, 81–104◦ E)
using grid cells within each subregion above 2500 m. HK is
largely influenced by WDs, whereas most of the precipitation
over HM is related to the Asian summer monsoon. A cold
and dry continental climate is found in TP (Bookhagen and
Burbank, 2010; Palazzi et al., 2013; Sabin et al., 2020).

2.5 Numerical methods and computations

Trend computations are based on linear least-squares re-
gression. We consider a 95 % level of significance, corre-
sponding to a p valueCE4 equal to 0.05, computed with a
two-sided Wald test for which the null hypothesis corre-
sponds to a slope equal to zero (https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.linregress.html, last ac-
cess: 22 July 2021). The linear relationship between two
datasets is estimated with the Pearson correlation coefficient.

We consider a 95 % level of significance, correspond-
ing to a p value equal to 0.05, computed as follows: for
a given sample with correlation coefficient r , the p value
is the probability that |r′| of a random sample x′ and y′
drawn from the population with zero correlation would
be greater than or equal to |r| (https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.pearsonr.html, last ac-
cess: 22 July 2021). Note that the spatial correlation asso-
ciated with p values in Figs. 4 and C1–C3 does not include
any dependency on the cell area. This arbitrary choice im-
plies that the models are evaluated grid cell by grid cell and
not per unit of surface. However, the impact on the spatial
correlation is minor in our case, given that HMA is a rela-
tively small area including model grid cells with areas that
are relatively similar.

The cosine latitude is taken into account as a weight in
spatial averages and the exact number of days in each month,
depending on the calendar type, is considered in temporal av-
erages. Our analyses cover the historical period 1979–2014
and projections over 2015–2100, focusing on two seasons:
the summer extending from June to September (JJAS), a pe-
riod when the monsoon is active (Palazzi et al., 2013; P Sabin
et al., 2013), and the winter defined as the months covering
December to April (DJFMA), a period affected by WD pre-
cipitation especially pronounced over the Hindu Kush and

Karakoram areas (Palazzi et al., 2013; Kapnick et al., 2014;
Cannon et al., 2015; Hunt et al., 2018; Krishnan et al., 2019).
Annual means are also considered when the seasonal analy-
sis does not show additional information.

For model evaluation, we use two different metrics based
on spatial climatologies: the root mean square error (RMSE;
Eq. 1) and the mean bias (Eq. 2), which we slightly modified
to take into account the spatial weight (w; Eq. 3) of each grid
cell.

RMSE=

√√√√ 1∑n
i=1wi

n∑
i=1

wi(Mi −Oi)2 (1)

Mean bias=
1∑n
i=1wi

n∑
i=1

wi (Mi −Oi) (2)

w = cosλ, (3)

where λ is the latitude,Mi represents model simulations, and
Oi is the observed data.

To characterize the multimodel ensemble, mean or median
are usually considered in addition to their 5th and 95th per-
centiles (e.g., mean/median [5th, 95th]). A multimodel mean
is used in bias analysis, and projections are based on the mul-
timodel median.

3 Historical bias analysis

Model biases are computed with the CRU, APHRODITE
and NOAA CDR observation datasets used as references
for near-surface air temperature, total precipitation and snow
cover extent,CE5 respectively, over the period 1979–2014.
To get confidence in the model bias quantification, we use
further observational datasets, including GPCP precipitation,
ESA CCI snow cover as well as ERA-Interim and ERA5 re-
analysis.

3.1 Climatologies

The annual climatology computed over 1979–2014 is shown
in Fig. 1 for the CRU, NOAA CDR and APHRODITE ob-
servations (panels c, e, g) and the multimodel mean based
on 26 CMIP6 models (panels d, f, h). Over HMA, temper-
ature ranges from −8 ◦C in high-elevation areas to 13 ◦C at
lower elevation in observations with an average of −0.2 ◦C
(Fig. 1c). HMA temperature reaches −15 to 9 ◦C in winter
and 2 ◦C to 19 ◦C in summer (not shown). The multimodel
mean shows colder temperatures than observations, with val-
ues ranging from −11 to 3 ◦C and a mean value over HMA
about −2.1 ◦C (Fig. 1d). Even with a general cold bias, the
spatial pattern of temperature in the model is consistent with
the observations, with a spatial correlation of 0.87.

Snow cover extent is heterogenous over HMA (Fig. 1e),
with high values over HK reaching more than 70 %, which
are explained by strong winter snowfalls related to WDs
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Figure 1. Surface elevation (a) and its standard deviation (b) estimated from GMTED2010 at 1◦. Annual climatologies computed over
1979–2014 for temperature (c, d), snow cover (e, f) and precipitation (g, h); the left panels correspond to the observations from CRU (c),
NOAA CDR (e), and APHRODITE (g), while the right panels (d, f, h) correspond to the multimodel mean (using the first realization of
each ensemble model). The red contour highlights the HMA domain limited to areas higher than 2500 m a.s.l., and the black boxes define
the subdomains Hindu Kush–Karakoram (HK), Himalayas (HM), and the Tibetan Plateau (TP), which are also limited to areas higher than
2500 m a.s.l. (red contour) in this study.

(Cannon et al., 2015; Bao and You, 2019). Snow cover extent
is much smaller over most of the TP region, with annual val-
ues not exceeding 20 %. High values, around 50 %, are also
found over Tien Shan and the southeastern Himalayas. In the
multimodel mean (Fig. 1f), snow cover is overestimated over
most of the TP and slightly underestimated over the HK re-
gion in comparison with the observations.

Strong precipitation rates, reaching an annual mean of
more than 6 mm d−1(exceeding 2000 mm yr−1), are observed
in the eastern part of HM, mostly due to the Asian summer
monsoon, with a decreasing influence from the southeast to
the northwest Himalayan chain (Fig. 1g). In contrast, the HK
region receives moisture from both Asian summer monsoon

and WDs (Fig. 2j). Moisture-laden westerly winds are inter-
cepted by high mountain ranges in northern Pakistan, lead-
ing to moisture condensation and precipitation at high eleva-
tion (Palazzi et al., 2013), partly explaining the high values
of snow cover in this area (Fig. 1e). Due to the orographic
barrier, the TP located more on the east is much drier, with
annual mean precipitation generally lower than 1 mm d−1.
The multimodel mean (Fig. 1h) shows globally higher values
of precipitation over HMA in comparison with the observa-
tions. Precipitation tends to spread more over the TP in the
model compared to the observations, which might be partly
due to the smoothing of the topography in the models. How-
ever, precipitation rates are also generally underestimated in

https://doi.org/10.5194/esd-12-1-2021 Earth Syst. Dynam., 12, 1–38, 2021
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observational datasets because of snowfall undercatch issues,
which could lend credence in the stronger precipitation rates
modeled at high elevation.

3.2 Temperature, snow cover and precipitation annual
cycle

The seasonal cycles are shown in Fig. 2 for the models and
different observational datasets and reanalyses over HMA
and the three subdomains for temperature, snow cover and
precipitation. The model biases with respect to observations
are stronger in winter than in summer for temperature and
snow cover, a feature already noticed in CMIP5 and CMIP6
(e.g., Su et al., 2013; Zhu and Yang, 2020). Indeed, the multi-
model mean temperature is around 2 to 3 ◦C below the CRU
observations in winter over HMA, while models and obser-
vations are much closer in summer (Fig. 2a). These differ-
ences are more pronounced in the HK region (Fig. 2b) with
differences noticed both in winter (4 to 5 ◦C) and summer
(∼2 ◦C). The cold bias appears in the multimodel mean (dark
blue line) from October/November onwards, peaks between
December and January, and then decreases until April/May,
except in the HK area where the bias persists in summer.
Nevertheless, the multimodel spread encompasses the ob-
servation and reanalyses datasets, suggesting a certain reli-
ability of the CMIP6 models. This spread, denoted with the
confidence intervals at 50 % and 90 % of the multimodel en-
semble (dark and light shadings), highlights a higher disper-
sion between the models in winter than in summer, except
for the HK region. It can be assumed that the larger biases in
winter may be due to excessive snowfall, leading to larger
snow cover which can amplify the phenomenon. Further-
more, due to the poor representation of fine-scale topography,
one can assume that most of the moisture fluxes condense
on the plateau at higher elevations, favoring snow precipita-
tion, instead of precipitating earlier on the mountainside. The
greater difference in the HK region can be supported by this
later hypothesis, knowing that this area is particularly subject
to winter WDs bringing a large amount of snow precipitation
on the reliefs. Alternatively, it may also be due to the fact that
there are very few weather stations in this area, especially at
high elevation, and therefore the interpolated CRU data may
be overestimated compared to the actual values (Gu et al.,
2012). More details on the possible links between the biases
are explored in Sect. 3.4.

In comparison with the NOAA CDR satellite observation,
the multimodel mean snow cover over HMA is overestimated
by 20 % in winter and is closer to the observations in sum-
mer when snow cover is lowest (Fig. 2e). The model spread is
larger for snow cover than for temperature and precipitation,
with values varying from 20 % to 90 % in winter and 0 % to
40 % in summer. This large spread highlights the difficulty to
simulate snow cover in complex topography areas and also
the large internal variability of snow cover. ERA-Interim is
again very close to the observations for snow cover, likely

because of the assimilation of IMS data in this reanalysis,
a satellite product also used in the production of the NOAA
CDR dataset (Drusch et al., 2004; Robinson et al., 2012). The
more recent ECMWF reanalysis of ERA5 shows an over-
estimation of snow cover that is comparable to the CMIP6
model ones. This behavior has already been described in Or-
solini et al. (2019), explaining this difference by the fact that
ERA5 does not assimilate IMS data beyond 1500 m a.s.l.,
while Hersbach et al. (2020) suggests that the single-layer
snow scheme does not allow enough melting in mountainous
regions. The differences found over the three subdomains are
similar to those highlighted over the whole HMA (Fig. 2f–h).
Nevertheless, we note a precocious spring melt in the multi-
model mean and ERA-Interim compared to the NOAA CDR
observations and ERA5 in HK region (Fig. 2f). The ESA CCI
product shows lower snow cover values compared to NOAA
CDR and ERA-Interim, with values around 30 % during the
winter in HMA, suggesting that model biases may be even
larger. The large difference in spatial resolution with the lat-
ter product may also play a role in this discrepancy, as valleys
and other aspects of fine-scale topography are not being well
resolved in the other products and thus lack a good represen-
tation of the spatial heterogeneity of snow cover compared
to the ESA CCI product. This suggests a general snow cover
overestimation in both model and reanalysis data based on
coarse resolution, which is especially pronounced over high
mountain areas (Fig. 2f, g). Nevertheless, the positive bias
of snow cover fraction simulated by the models over HMA
is mainly related to the overestimation of the snow cover
over TP, where the snow cover varies around 20 % for the
observations, while values above 60 % are found in the mul-
timodel mean, despite a wide dispersion among the models
(from 20 % to 90 %).

The strongest precipitation rates occur during the Asian
summer monsoon over the HM region (> 2500 m), with
precipitation rates reaching a monthly mean of 10 mm d−1

(∼ 300 mm month−1) on average in the multimodel mean,
while precipitation rates reach lower values than 2 mm d−1

during the winter (Fig. 2k). Other regions exhibit smaller pre-
cipitation amounts below 5 mm d−1 most of the year. In the
HK region, larger precipitation rates are found in late win-
ter and spring (Fig. 2j) mostly due to WDs, as explained in
Sect. 1. While the model spread generally encompasses the
observations for temperature and snow cover, APHRODITE
precipitation data are most of the time below the minimum
of the model values. This difference might be explained by
snow undercatch issues typically obtained with rain gauge
measurements (e.g., Jimeno-Sáez et al., 2020), whereas mod-
els are expected to provide both solid and liquid precipita-
tion. In addition, rain gauge measurements are generally too
sparse to estimate the heterogeneous distribution of precip-
itation over complex topography areas. Over HK, a large
part of the precipitation falls as snow in winter, a period
when strong differences between satellite/rain gauge prod-
ucts (black curves) and models/reanalyses are also appear-
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Figure 2. 1979–2014 climatology of the annual cycle of temperature (a–d), snow cover (e–h) and precipitation (i–l) averaged over HMA (a,
e, i) HK (b, f, j) HM (c, g, k) and TP (d, h, l), excluding the surface area located below 2500 m a.s.l. (red contours in Fig. 1). The multimodel
mean (dark blue line) is shown with the 50 % confidence interval (CI, dark blue shading), the 90 % CI (light blue shading) and the minimum
and maximum (dashed blue lines) of the ensemble. The black curves correspond to the observational datasets: CRU, NOAA CDR and
APHRODITE, respectively, for temperature, snow cover and precipitation. The ERA-Interim and ERA5 reanalyses are shown, respectively,
with the dashed and solid orange curves. GPCP and ESA CCI datasets are also shown for snow cover and precipitation respectively (dashed
black line). The ESA CCI covers only the 1982–2014 period.

ing during February to May, whereas the precipitation is
closer between models and observations during the summer
(Fig. 2j). Nevertheless, GPCP data (dashed black line) are
slightly closer to the models, especially over the HM do-
main. ERA5 has an early precipitation peak in June, while it
is found in July for the other products. Precipitation datasets
should be considered carefully knowing that there is no better
product than the other ones in this region, and the effective
values of precipitation rates are highly uncertain in this area
(Palazzi et al., 2013).

3.3 Spatial biases

The pattern of the temperature bias widely differs from one
model to another (Fig. 3). However, most of the models show
a cold bias, which is reflected by the multimodel mean reach-
ing an average bias of −1.9 [−8.2 to 2.9] ◦C. The cold bias
show common general features among the models, being
generally more pronounced at high elevation (Fig. 1a), in
particular over the HK region, as highlighted in Sect. 3.2.
The largest biases are found for the CNRM and IPSL mod-
els, with biases reaching almost −10 ◦C on average and ex-

ceeding −12 ◦C locally, especially over the western part of
the TP and in the Karakoram area (HK region). The other
models show slight positive or negative biases around±3 ◦C.
Some models show a positive bias at the edges of the plateau
and over Tien Shan (e.g., CESM2-FV2 and MIROC-ES2L)
which contrasts with a cold bias on the southern flank of
the Himalayas. This is probably due to the low resolution of
these models which does not allow to catch the atmospheric
circulation over this high-elevation narrow area (Fig. 1b).
The cold bias found in a large number of models is more
pronounced in winter, a season during which it extends over
almost the entire TP, whereas it is limited to the HK region
in summer (not shown). Conversely, the warm bias found in
some models is reduced in winter and exacerbated in sum-
mer.

As for temperature, the snow cover shows a general over-
estimation in the multimodel mean that extends homoge-
neously over the whole TP with slightly higher values north-
west of TP and over HM (> 30 %) (Fig. B1). Surprisingly,
the multimodel mean shows a slight underestimation of snow
cover of about 10 % over the HK region, which seems con-
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Figure 3. Annual bias (model minus observation) computed over 1979–2014 for temperature, except the top left panel that shows the
climatology estimated from the CRU observation, used as the reference for the bias computation. The panel located at the right side of the
CRU observation shows the bias of the multimodel mean based on the 26 models shown in the figure. The black contour shows the political
frontiers and the bold black line the HMA domain located above 2500 m a.s.l., for which the spatial average of the bias is given in the bottom
left of each panel.

tradictory with the intense cold bias pointed out simultane-
ously in this area. Indeed, the CRU dataset may overestimate
temperature in this area due to a lack of observations, while
the low resolution of the NOAA CDR simple binary prod-
uct (grid cells with or without snow) might overestimate the
snow cover in this often snowy area. The ESA CCI prod-
uct shows a lower snow cover in general and in particular
in this region (not shown). It is therefore possible that in the
HK region the model biases actually reflect observation defi-
ciencies, even if other factors affecting the model skill could
be involved. The annual multimodel mean of snow cover is

overestimated by 12 % [−13 % to 43 %]TS3 , corresponding
to a relative bias of 52 % [−53 % to 183 %] over HMA com-
pared to NOAA CDR and can reach locally an absolute dif-
ference of 40 %, while a minority of models show a slight un-
derestimation of snow cover (e.g., MPI-ESM1-2-HR, MPI-
ESM1-2-LR, NorESM2-LM). The annual overestimation of
the snow cover in most models arises mainly from a overly
wide extension in the inner TP in winter (not shown). While
the excess of snow meltsCE6 in summer in most of the mod-
els, leading to a moderate bias during this season (Fig. 2),
some models keep a persistent excess of snow even in sum-
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mer (e.g., HadGEM3-GC31-LL, HadGEM3-GC31-MM and
IPSL-CM6A-LR), which partly explains the large dispersion
between the models in terms of annual biases.

All models show higher precipitation rates in comparison
with APHRODITE (Fig. B2), as seen in the annual cycles
(Fig. 2). Indeed, the multimodel annual mean bias of precip-
itation over HMA is 1.5 [0.3 to 2.9] mm d−1, corresponding
to a relative bias of 143 % [31 % to 281 %]CE7 . The bias pat-
tern in terms of total precipitation is somehow proportional
to the climatological pattern of precipitation, with stronger
biases in the southeastern Himalayas, where high precipita-
tion rates are observed (Fig. B2). The quantification of the
bias should be considered carefully for precipitation, because
the APHRODITE dataset strongly underestimates the pre-
cipitation rates at high elevations (Immerzeel et al., 2015).
Anyway, the dry bias found in the southern flank of the Hi-
malayas, coupled with a positive bias of precipitation over
TP, suggests an overly coarse resolution to represent the oro-
graphic barrier that blocks the northward moisture flux, a
limitation especially pronounced during the Asian summer
monsoon that induces strong precipitation rates in the south
of HMA.

3.4 Spatial bias correlation

To investigate the potential links between the biases of the
different variables, the correlation patterns between the bi-
ases of temperature, snow cover, precipitation and surface
elevation are shown in (Fig. 4). For most of the models, a
significant negative correlation is found between the biases
of temperature and snow cover, highlighting the influence of
these two variables on each other. However, it is not possible
to deduce whether it is the snow cover bias that induces the
temperature bias or the opposite. The strongest correlations
between temperature and snow cover are found for the IPSL-
CM6A-LR and the MIROC-ES2L models, suggesting that
these biases are exacerbated by feedbacks between these two
variables, while lower correlations are found with precipita-
tion biases. On the contrary, some models (e.g., HadGEM3-
GC31-MM) show a surprisingly positive correlation between
temperature and snow cover, suggesting that other processes
can play a role in the development of biases (aerosol deposi-
tion on snow, cloud cover, tropospheric biases, etc.).

The correlations between the biases of temperature and
precipitation are generally weaker but with negative and
significant values between −0.12 and −0.37 (except for
CanESM5, which has a positive correlation of 0.16). This
seems counterintuitive as we generally expect precipitation
rates to increase with temperature unless dynamical changes
of the atmosphere could induce an opposite signal at the re-
gional scale. However, the positive precipitation model bi-
ases are likely due to the underestimation of solid precip-
itation in the APHRODITE observation, which would sug-
gest an unrealistic excess of precipitation in the models.
Therefore, these negative correlations are potentially not re-

liable and have to be considered carefully. The comparison
with GPCP shows correlations between the biases of tem-
perature and precipitation that reach positive values for a
higher number of models Fig. C1. These correlations would
likely be more positive if we used an observational refer-
ence dataset that was not affected by snow undercatch is-
sues. Nevertheless, the BCC-ESM1 and CAS-ESM2-0 mod-
els show a strong correlation between snow cover and precip-
itation biases (0.48 and 0.41, respectively). This link is par-
ticularly striking for CAS-ESM2-0, for which the biases of
snow cover and precipitation show similar patterns over the
TP and HM (Figs. B1 and B2), suggesting that snow cover
biases in that case are partly due to an excess of precipitation.

The temperature and snow cover biases correlations with
the surface elevation show a more uniform behavior among
the models. In general, an anticorrelation between temper-
ature bias and elevation is found, whereas snow cover cor-
relates positively with the elevation. The higher the eleva-
tion, the greater the biases for temperature and snow cover,
suggesting that the models have difficulty representing phys-
ical processes at high elevation. The link between precipi-
tation bias and elevation is less pronounced with fewer sig-
nificant correlations (e.g., BCC-ESM1, CNRM-CM6-1-HR,
HadGEM3-GC31-MM), which can either be positive or neg-
ative.

These spatial correlations are of course region and sea-
son dependent. For example, we observe stronger correla-
tions between precipitation and snow cover biases in win-
ter over TP, while the latter is stronger in summer over HK
for most of models (Figs. C2 and C3). This may be related
to an excess of moisture supply over TP in winter, due to
the lack of orographic barrier effect because of the coarse
resolution of the models, resulting in too much snow accu-
mulation, which is more likely to persist due to winter cold
temperatures over the TP. Concerning the excess of summer
precipitation in HK, this may be due to an overextension of
precipitation towards the west of the Himalayan mountain
range during the monsoon period. However, this last correla-
tion, supporting the idea that the excess snow cover may be
due to excess precipitation for some models, does not neces-
sarily explain the cold bias at the surface. For example, the
HadGEM3 models have strong significant correlations be-
tween snow cover and precipitation biases over the TP (0.63
and 0.66 annually) but do not show a significant surface cold
bias (−0.12 and −0.18 ◦C; Fig. C3). The relationship of the
biases with altitude is not always verified either, especially
for models showing warm biases such as the CESM2 family
of models over the TP in summer.

3.5 Metrics

Spatial RMSE and mean biases are computed over HMA for
the 26 models (Fig. 5). CESM2, CESM2-WACCM and MPI-
ESM1-2-HR show the lowest temperature RMSE (∼ 2.5 ◦C),
with a mean bias smaller than 1 ◦C, while worse performing
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12 M. Lalande et al.: Climate change in the High Mountain Asia in CMIP6

Figure 4. Pattern correlations of the annual model biases. The first row shows the temperature bias normalized with the strongest temperature
bias found among the 26 models (CNRM-CM6-1-HR). The following rows show the pattern correlations computed between temperature and
snow cover biases (second row), temperature and precipitation biases (third row), snow cover and precipitation biases (fourth row). The fifth
to the seventh rows show the correlation between biases and surface elevation estimated from GMTED2010 for temperature, snow cover and
precipitation. All biases are annual and computed over 1979–2014. Bold characters highlight significant correlation (p value< 0.05).

models are CNRM-CM6-1, IPSL-CM6A-LR and CNRM-
CM6-1-HR with RMSE exceeding 7 ◦C. The best models for
temperature are not necessarily the best ones for snow cover
and precipitation (e.g., HadGEM3-GC31-LL, HadGEM3-
GC31-MM, UKESM1-0-LL). RMSE for snow cover ranges
from about 10 % to 45 %, and most of the models show a
positive snow cover bias over HMA. RMSE for precipita-
tion ranges from over 1 to 3.5 mm d−1, while mean biases are
all positive, ranging from about 0.5 mm d−1 to slightly over
2 mm d−1 (Fig. 5c), as we already discussed in Sect. 3.3.

On the right panels of Fig. 5 (b, d, f), the RMSE and
mean bias are ranked by model resolution. Finer-resolution
models do not show better skill for temperature, snow cover
and precipitation, suggesting that GCM resolution is not
the more important criterion for climate modeling over this
region. This general assumption is not the case for all
model families. For example, MPI-ESM1-2-LR (1.9◦× 1.9◦)
and MPI-ESM1-2-HR (0.9◦× 0.9◦) do show slight improve-
ments for all variables with increasing resolution. However,
for CNRM-CM6-1 (1.4◦× 1.4◦) and its high-resolution ver-
sion CNRM-CM6-1-HR (0.5◦× 0.5◦), the increase in reso-
lution leads to a degradation for temperature and snow cover,
while there is a slight improvement for precipitation.

The Taylor diagram (Taylor, 2001) shown in Fig. 6 is used
to investigate the realism of the spatial variability simulated
in the models as compared to observational references. Over-
all, the models perform better for temperature than for pre-
cipitation, whereas the model skill is even smaller for snow
cover. The pattern correlation (PCC) ranges from 0.7 to 0.9
for temperature, whereas it takes lower values for precipita-
tion varying from 0.6 to 0.8 for most of the models, except
for HadGEM3-GC31-MM, for which it reaches 0.9 and for

five other models showing a lower PCC below 0.6. For snow
cover, the model PCC is even lower and also heterogeneous
among the models, varying from negative values (−0.17 for
MIROC-ES2l) to a maximum of 0.8 (GFDL-CM4). Overall,
the spatial variance is higher for almost all the models as
compared to observations for both the temperature (the nor-
malized standard deviation reaching 1.5 for the worst model)
and the precipitation (the normalized standard deviation ex-
ceeding 4 for the worst model). This is the contrary for snow
cover, a variable for which the models show smaller spatial
heterogeneities in comparison to the observational reference,
with a normalized standard deviation generally lower than
1, and varying between 0.4 and 1.4 for all the models. The
larger temperature standard deviation found for the models is
partly explained by the general cold bias over HMA that en-
hances the temperature contrast between the high-elevation
areas and the surrounding plains. The excess of precipita-
tion found in the models over the area located under the in-
fluence of the Asian monsoons also explains the high stan-
dard deviation found in the models for this variable. In con-
trast, the low standard deviation found in the model for the
snow cover is likely related to the overly extended and overly
homogeneousCE8 snow cover over TP and its surrounding
mountains, while the TP in observations is most often free of
snow. Another interesting point is that both ERA-Interim and
ERA5 do not perform much better than the CMIP6 models
(except ERA-Interim for temperature and snow cover likely
due to IMS snow cover assimilation over HMA), suggest-
ing general weaknesses in the models used commonly for
climate modeling and for the production of atmospheric re-
analysis, while the multimodel mean has intermediate per-
formance among the models.
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Figure 5. Annual spatial RMSE and bias computed over HMA with respect to CRU, NOAA CDR and APHRODITE, respectively, for
temperature, snow cover and precipitation (a, c, e). Models are ranked by increasing RMSE for temperature and the multimodel mean
appears in the first histogram. The approximate original model’s resolution is given, but all metrics are computed on a common 1◦ × 1◦ grid
after interpolation. Panels (b, d ,f) are similar to (a, c, e) with models ranked as a function of their original mean lat/long resolution. Blue
and red crosses correspond respectively to RMSE and mean bias.

Overall, it is challenging to discard any model from this
spatial analysis, as well as RMSE and bias metrics, because
of both a large heterogeneity of skill found among the mod-
els and a skill that varies also from one variable to another for
the same model. This finding suggests that there is no reason
to exclude some models for climate analysis purposes in this
area in particular when looking at future projections. Never-
theless, to explore this question deeper, the potential relation-
ship between biases and trends is investigated in Sect. 4.2.

4 Historical trends analysis

Disentangling the trends related to internal variability from
the forced signals related to anthropogenic forcing is chal-
lenging. At midlatitudes, internal variability can contribute
until 50 % to climate trends computed over 50 years (Deser
et al., 2020). However, this contribution decreases when con-
sidering areas closer to the tropics and when integrating cli-
mate signals over large domains (Hawkins et al., 2016). The
climate trends in HMA are explored over the period 1979–
2014 by comparing observational datasets and multimodel
mean computed with a single member for each model to
give the same weighting to each model (Fig. 7). This com-
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Figure 6. Taylor diagram showing for the 26 models over HMA the 1979–2014 mean of the spatial pattern of temperature (a), precipi-
tation (b) and snow cover (c). The observational reference is shown with a black star corresponding to CRU (temperature), APHRODITE
(precipitation) and NOAA CDR (snow cover extent). ERA-Interim and ERA5 are shown with the black circles filled and unfilled, respec-
tively. The red pentagons correspond to the multimodel mean. The radial distance from the origin is proportional to the area-weighted
standard deviation of the spatial pattern (normalized by the observation standard deviation). The area-weighted normalized centered RMSE
between the model and the reference is proportional to the distance from the black star (light gray semi-circles). The area-weighted pattern
correlation coefficient between the two fields is given by the azimuthal position.

parison should be considered carefully, since observational
datasets reflect the superposition of both the internal variabil-
ity and the forced signals whereas the internal variability is
partly filtered out when averaging the model outputs. How-
ever, the 35-year period considered here is supposed to be
long enough to exclude a large part of the internal variability.
The spatial comparison between models and observations is
used in Sect. 4.1 to investigate forced signals and model de-
ficiencies at the regional scale.

The modulation of the trends by internal variability is ex-
plored in Sect. 4.2, where trends are spatially integrated sep-
arately for each ensemble member to investigate the contri-
bution of internal variability and to investigate the potential
impact of model biases on simulated trends.

4.1 Trends

Figure 7 shows a general positive trend for temperature
in observations and models during both seasons. Shading
highlights the significant trends (p value> 0.05), contours
are used for non-significant trends, and we consider that
trends are robust when > 80 % of the models agree on its
sign (hatching). In winter observations, stronger temperature
trends are found over the TP with values ranging from 0.3
to 0.6 ◦C decade−1 over 1979–2014, while weaker warming
occurred over the Indo-Gangetic Plain downward of HM,
with values not exceeding 0.3 ◦C decade−1 (Fig. 7a). The
multimodel mean shows slightly lower values of tempera-
ture trends in winter than the CRU observations, except for
the northern HMA. Summer temperature trends show a sim-
ilar pattern as the winter ones but with the highest values
over the western part of TP, reaching 0.5 ◦C decade−1 in the
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model, while the CRU observations show a northward shift
of the positive trends close to the Tarim Basin. The temper-
ature change found in CMIP6 models and observations is
consistent with previous estimations (e.g., Wang et al., 2008;
Liu and Chen, 2000) and has also been highlighted in ERA-
Interim and ERA reanalyses with slightly different patterns
(Fig. D1).

There are more discrepancies between models and ob-
servations for snow cover (Fig. 7e–h). The multimodel
mean shows a slight significant and robust decreasing
trend of snow cover in both winter and summer, reach-
ing −1 % decade−1 to −2 % decade−1 over most of HMA
(Fig. 7f, h), while observations show more pronounced trends
with a spatially heterogeneous pattern in winter (Fig. 7e)
and a significant decline in snow cover in summer over the
whole Himalayas, extending to HK and Tien Shan, with val-
ues exceeding −5 % decade−1 (Fig. 7g). Meanwhile, the ob-
servation show slightly positive trends for the TP. However,
the snow cover trends observed in the NOAA CDR dataset
should be taken with caution, due to the poor resolution
(∼ 200 km), which is problematic for mountain areas (Bor-
mann et al., 2018).

Observed trends are generally less significant for precip-
itation than for temperature. The large interannual precip-
itation variability limits the possibility to detect long-term
trends for this variable. This also explains the discrepancy
between the observation and the multimodel mean for precip-
itation (Fig. 7i–l), with signals that show a larger amplitude
in the observation than in the multimodel mean where the in-
ternal variability has been filtered out by averaging several
model outputs. In the observations, the main precipitation
signal is a significant increase in HK during both seasons
(more pronounced in summer), which extends southward in
the Indo-Gangetic Plain during the summer, ranging from
0.1 to 0.5 mm d−1 decade−1 (Fig. 7i, k). This pattern is not
found in the multimodel mean, whereas an increase in precip-
itation is simulated during the summer but shifted eastward
over HM in comparison with the observation, with values
between 0.1 and 0.3 mm d−1 decade−1 (Fig. 7j, l). This sum-
mer signal is likely related to monsoon changes, with pat-
terns that differ however between models and observations.
During both seasons, the multimodel mean suggests a robust
and significant increase in precipitation over TP, with values
around 0.1 mm d−1 decade−1. This signal is consistent with
the observation during the summer, albeit less pronounced
in the model with respect to the observation, whereas there
is no clear change of precipitation during the winter in the
observations. Nevertheless, caution is required when con-
sidering observations of precipitation that are generally un-
certain because of undercatch issues for solid precipitation
(see Sect. 2.2.3). The discrepancy between different obser-
vational datasets and reanalysis trends illustrated in Fig. D3
confirms the strong uncertainty typically found in precipita-
tion datasets. Nevertheless, a summer signal is clearly vis-
ible in both models and observations, potentially related to

monsoon changes, with an increase in precipitation rates over
wide areas of the western part of HMA and the Indian sub-
continent that is modulated by drying patterns located more
on the east, which spatially diverge among the different prod-
ucts.

4.2 Trends versus bias

Figure 8 shows the ensemble trends versus the ensemble bi-
ases for each model. Most model spreads (vertical bars) gen-
erally overlap the range of the observed trends (black shad-
ing). This suggests that the forced plus the internal variability
estimated with the model ensemble is compatible with the
observed variability. A few model spreads stand outside of
this range and should be considered carefully. However, the
observed trends can also be affected by artifacts as discussed
in Sect. 4.1 and are not fully reliable either. In addition, some
models include only a limited number of members, some-
times a unique one (Table A1), so the ensemble for these
models does not cover the full range of plausible evolutions.
Some highly biased models fall within the range of observed
trends, whereas others show a combination of small biases
and unrealistic trends. This finding suggests that model bias
is not a robust criterion to discard models in trend analysis.

Nevertheless, even with a large spread, a dependency of
the simulated past trends on the model biases is found for
some variables and seasons, and in particular for winter tem-
perature, summer precipitation and snow cover during both
the winter and the summer. The low values of snow cover
in summer over HMA might explain the limited melting for
low biased models, whereas the models with large amounts
of snow cover persisting in summer show a decreasing trend
of snow cover with the warming (Fig. 8e). This is likely to re-
sult in an overestimation of summer melting rates. The mod-
els overestimating the snow cover during the winter are also
showing small decreasing trends of snow cover (Fig. 8b).
This is likely related to attenuated warming trends found in
cold-biased models during the winter (Fig. 8a), suggesting
a damping of the warming in cold models. During the sum-
mer, there is no clear relationship between bias and trends
of temperature (Fig. 8d), but the models simulating an ex-
cess of precipitation rates also show enhanced precipitation
increases (Fig. 8f). This might be explained by the non-linear
relationship between temperature and atmospheric moisture:
at fixed warming rates, the models showing a more active hy-
drological cycle also show a stronger precipitation increase.

Even with such a relationship between biases and trends,
the number of observations is too small and their uncertain-
ties too large to allow a robust selection of the models that
could be used in climate analysis. Nevertheless, with more
observations available, these results could help to select a
subset of models to reduce the spread in future projections
for example. Still, the relationship between models and bi-
ases is less clear when considering only the 10 models for
which the full set of projections is available (orange points).
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Figure 7. DJFMA (left) and JJAS (right) trends computed over 1979–2014 for temperature (a–d), snow cover (e–h) and precipitation (i–
l). CRU temperature, NOAA CDR snow cover and APHRODITE precipitation observation trends (DJFMA: a, e, i and JJAS: c, g, k) are
compared to the multimodel mean computed with the first realization for each model (DJFMA: b, f, j and JJAS: d, h, l). Contours are used
for non-significant trends, shading for significant trends (p value> 0.05) and hatching for points where > 80 % of the models agree on the
sign of the trend.

We assume therefore that future trends shown in Sect. 5 are
not dependent on the model biases.

It should be noted that one model (CanESM5) used for
projections stands out for temperature in both seasons, with
values reaching about 1.3 ◦C decade−1 in summer, while for
the other models, summer trends range from about 0.2 to
0.5 ◦C decade−1 (Fig. 8d). However, this does not justify dis-
carding this model because recent trends are not unrealistic
for other variables and seasons. Nevertheless, one can expect
that the upper limit of the temperature projection range will
be overestimated because of that model. Because this behav-
ior could affect the multimodel mean, we use the median of
the multimodel ensemble instead.

5 Projections

In this section, we use the 10 models for which the four
SSP scenarios based on different levels of anthropogenic
emissions (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
(O’Neill et al., 2016) are available (Table 1).

5.1 Projected changes over HMA

The 10 CMIP6 models project a warming over HMA at the
end of this century (2081–2100 with respect to the 1995–
2014 average) that ranges from 1.9 [1.2 to 2.7] ◦C for SSP1-
2.6 to 6.5 [4.9 to 9.0] ◦C for SSP5-8.5 (Table 2). This warm-
ing is expected to continue beyond 2100 under the SSP5-8.5
scenario (Fig. 9), while a stabilization of temperature is sim-

ulated under the scenario SSP1-2.6 between 2060 to 2080,
followed by a slight cooling. This warming is associated with
a snow cover extent decrease ranging from−4.4 % [−10.0 %
to−0.1 %] to−14.5 [−27.4 to−6.0] (Table 2). This absolute
change corresponds to a relative loss of −9.4 % [−16.4 %
to −5.0 %] to −32.2 % [−49.1 % to −25.0 %] with respect
to the 1995–2014 average (Fig. 9b). These changes are con-
comitant with a precipitation increase from 0.2 [0.0 to 0.5] to
0.6 [0.2 to 1.2] mm d−1, corresponding respectively to a rela-
tive increase from 8.5 % [4.8 % to 18.2 %] to 24.9 % [14.4 %
to 48.1 %] with respect to the 1995–2014 average. As for
temperature, snow cover and precipitation are expected to
stabilize under the SSP1-2.6 scenario, while an acceleration
of snow cover decrease and precipitation increase is simu-
lated under SSP5-8.5. SSP2-4.5 and SSP3-7.0 show inter-
mediate pathways between SSP1-2.6 and SSP5-8.5. NOAA
CDR shows much greater interannual variability compared
to the models both in the historical period and the projec-
tions; thus, it seems difficult to model the natural variability
of snow cover.

The future warming over HMA is more pronounced in
winter than in summer (Fig. 10a–d). These seasonal con-
trasts are more pronounced in strong CO2 emissions sce-
narios, with almost no differences for SSP1-2.6 (∼ 0.1 ◦C)
to about 1 ◦C under SSP5-8.5 (5.8 ◦C in summer to 6.8 ◦C
in winter; Table 2). Enhanced winter warming is associated
with a strong decrease in snow cover by −15 % (Fig. 10e–
f) located over HK and northward (east side of Tien Shan),
HM and southeastern TP. This last reduction of snow cover
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Figure 8. Seasonal (DJFMA and JJAS) HMA multimodel ensemble trends versus model biases over 1979–2014 for temperature (a, d),
snow cover (b, e) and precipitation (c, f). Vertical (horizontal) bars correspond to the standard deviation of the trends (biases) of the ensemble
members for each model (the number of members differs among the models Table A1). Observation and reanalysis datasets are shown with
black symbols. The 10 models used for projections are shown in orange, while other models are shown in blue. The gray shading represents
the range of observation trends. The solid black line corresponds to a linear regression from the multimodel mean values (including all
models) with the p value shown in brackets following the equation at the bottom right of each panel. The light horizontal (vertical) dashed
lines correspond to a null trend (null bias with respect to the reference observation dataset).

must be amplified by an early spring melt. The snow cover
decrease is smaller in summer and is mainly located in the
western part of TP. Snow cover extent is drastically reduced
in summer from about −30 % to more than −80 % locally
(Table ETS4 ) and only in the areas where snow cover persists
during the summer. Precipitation is projected to increase both
in summer and winter. The precipitation increase in winter
in HK suggests an intensification of WDs, while the sum-
mer increase found over HM and TP corresponds to an in-
crease in monsoon-related precipitation (Fig. 10i–l). The rel-
ative increase in precipitation is slightly higher in summer
than in winter for the whole HMA domain, ranging from
6.4 % [0.7 % to 13.5 %] to 22.8 % [9.8 % to 45.8 %] in winter
and 9.1 % [5.7 % to 20.6 %] to 25.6 % [14.2 % to 50.0 %] in
summer, depending on the scenarios (Table E). The changes
simulated under the different scenarios show different ampli-
tudes but with similar patterns (Fig. 10).

5.2 Changes in the HMA region in the global context

HMA is projected to warm around 1.5 times faster than
the atmosphere at the global scale, with a quasi-linear rela-
tionship between HMA and global surface air temperature
(GSAT; Fig. 11a). This stronger signal over HMA is mainly
explained by the enhanced warming rates that occur over the
continental areas with respect to oceanic regions, since the
warming rates affecting the NH continental surfaces and the
HMA are similar (Fig. 11b). Nevertheless, the warming rate
is stronger over HMA than over the remaining continental
areas located south of 60◦ N. This amplification with respect
to other tropical to midlatitude areas reaches 11 % and is sig-
nificant at the 5 % level, and was already noticed in CMIP5
(Rangwala et al., 2013). This is potentially related to feed-
backs involving snow cover changes, namely snow–albedo
feedback, and other processes specific to mountainous areas.
Mudryk et al. (2020) showed that the projected NH spring
snow cover extent decrease is proportional to the global tem-
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Figure 9. Annual yearly anomalies (with respect to the mean com-
puted over 1995–2014) simulated in HMA over 1979–2014 (black
curves) and over 2015–2100 under four scenarios: SSP1-2.6 (dark
blue), SSP2-4.5 (yellow), SSP3-7.0 (red) and SSP5-8.5 (dark red)
for temperature (a), snow cover (b) and precipitation (c). Medians
are computed with the first member for the 10 models for which the
future projections are available (Table 1). The thick vertical black
line delimits the historical and future periods. CRU, NOAA CDR
and APHRODITE observations dataset are shown for the histori-
cal period in dashed lines, respectively, for temperature, snow cover
and precipitation. Shadings highlight the 90 % confidence interval,
corresponding to the 0.05 and 0.95 quantiles.

perature change, the slope of the relationship being inde-
pendent of the scenario. Similarly, the HMA snow cover in
DJFMA follows a linear decrease of about 4 % per degree of
GSAT increase (Fig. 11d). This relationship does not show a
linear behavior in summer, with a curved relationship high-
lighting small snow cover decrease rates at high levels of
global warming (Fig. 11e). The summer curve relationship
is explained by a fast retreat of snow cover at low elevation
under moderate warming, whereas some snow cover still per-
sists at very high elevation even under strong warming rates.
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Figure 10. Median of the model differences between the 2081–2100 and the 1995–2014 averages for temperature (a–d), snow cover (e–h)
and precipitation (i–l) under the SSP2-4.5 and SSP3-7.0 scenarios. The first realization is used for each model. The black contour corresponds
to the HMA domain (> 2500 m) for which the spatial average is shown in the lower left box.

However, almost all the summer snow cover is vanishing in
the highest CO2 emissions scenario (SSP5-8.5). The annual
precipitation increase also appears to behave linearly with
the GSAT increase, with an increase of precipitation slightly
higher than 6 % per degree of GSAT increase (Fig. 11f).

6 Discussion

The cold bias over the TP and mountainous areas has been
a persistent issue in GCMs since the first AMIP experiments
(Mao and Robock, 1998). The mean cold bias found in our
study is coherent with previous CMIP5 studies as, for exam-
ple, Su et al. (2013) that estimated a cold bias of 1.1 to 2.5 ◦C
in winter and values not exceeding 1 ◦C in summer. Zhu and
Yang (2020) showed an improvement from CMIP5 to CMIP6
with a mean bias reduction reaching 0.44 ◦C. However, the
skill changes from CMIP5 to CMIP6 are contrasted among
the models. MPI-ESM-LR CE10was the model performing
the best over HMA in terms of temperature RMSE in Ta-
ble 6 of Su et al. (2013), and it is still in the top three models
in our study in its high-resolution version, while CanESM2
was in the top five models and dropped down to the five worst
models in our study. Even if these results are not directly
comparable because the studies do not focus on exactly the
same periods, methods and area, this still gives insight on the
fact that not all models improved or maintained their abil-
ity to simulate temperature over HMA. Deteriorations might
be due to some changes in the models. This is, for example,
the case for IPSL-CM6A-LR, which contains a new snow
scheme (Wang et al., 2013a) that improved snow cover rep-

resentation over most of NH but increased the biases over
HMA (Cheruy et al., 2020).

Indeed, cold bias might be related to a misrepresentation of
snow cover in some cases. As noted by Zhu and Yang (2020),
the average model temperature bias is more pronounced in
winter, suggesting a possible role of snow–albedo parame-
terizations. However, the bias correlation between tempera-
ture, snow cover and precipitation (Fig. 4) indicates that the
temperature bias might not only be due to snow cover mis-
representation, in particular for some models that show low
correlations between temperature and snow cover (e.g., CAS-
ESM-2-0, CESM2), whereas some of them have a high cor-
relation with precipitation. However, all these variables are
connected, as an excess of precipitation can induce an over-
estimation of snow cover and generate a cold bias, but an ini-
tial cold bias in the atmosphere could also generate an over-
estimation of solid precipitation leading to an excess of snow
cover. Nevertheless, the correlation between snow cover bias
and precipitation bias is less obvious for most of the mod-
els. Exceptions are BCC-ESM1 and CAS-ESM2-0, where
these variable biases are highly correlated (0.48 and 0.41),
indicating in that case that precipitation might be partly the
cause of the temperature biases. However, models that dis-
play the strongest cold biases, such as CNRM-CM6-1-HR,
IPSL-CM6A-LR and CNRM-CM6-1, also show high anti-
correlation with snow cover bias (−0.39, −0.62 and −0.5,
respectively). This supports the recommendation by Zhu and
Yang (2020) to improve snow cover parameterizations in
models. In addition, as mentioned by Gu et al. (2012), the
lack of high-elevation observation stations in the CRU data
may also be partly responsible for the apparent cold bias of
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20 M. Lalande et al.: Climate change in the High Mountain Asia in CMIP6

Figure 11. Projected anomalies over HMA computed with respect to 1995–2014 averages for the 10 models under the SSP1-2.6 (dark
blue), SSP2-4.5 (yellow), SSP3-7.0 (red) and SSP5-8.5 (dark red) scenarios for annual temperature (a, b, c), seasonal snow cover (d, e)
and annual precipitation (f) as a function of temperature integrated globally (a, d, e, f) and over NH continental surfaces including (b)
and excluding (c)CE9 boreal areas (latitude> 60◦ N). Each point on the scatter plots corresponds to a 20-year average computed with
10-year steps from 2015 to 2095. The Global Land Data Assimilation System (GLDAS) Land/Sea Mask Dataset at 1◦ resolution (https:
//ldas.gsfc.nasa.gov/gldas/vegetation-class-mask, last access: 6 October 2020) is used to mask the continental data in the different models.
The dashed line corresponds to the line of equation y = x and the solid black line to a linear regression detailed at the top right of each panel.
In the first row (a–c), a significance Wald test is done to test if the observed trend is significantly different from the equation y = x (p value
is shown in brackets).

the models. Direct comparison from CRU and models can
also amplify this bias, knowing that differences of elevation
can be noted between GCMs. Therefore, certain studies (e.g.,
Sheffield et al., 2006; Chen et al., 2017) correct temperatures
with a common lapse rate (e.g., 6.5 ◦C km−1) to bring them to
the same elevation. However, in our case, where we wanted
to correlate the model biases of different variables and see the
impact of original model resolution, this method would have
introduced additional uncertainties due to spatially heteroge-
neous lapse rates over this region and partially corrected the
biases due to model resolution, making it difficult to compare
the variables with each other.

Other variables such as cloud cover and aerosols might
also be important factors involved in model biases. Indeed,

the aerosol effect on snow cover is often investigated. It in-
duces a reduction of the seasonal snow cover duration of a
few days, in particular over HMA (Ménégoz et al., 2014),
but regarding the large snow cover biases in models, it might
be a second-order issue for highest biased models. However,
the spatial imprint of aerosol forcing seems highly corre-
lated with snow cover biases (see Usha et al., 2020 Fig. 7d
and Fig. B1 of this paper). Usha et al. (2020) conclude that
snow darkening due to aerosols increases the surface tem-
perature by 1.33± 1.2 K, which results in the reduction of
snow cover fraction by 7± 11 %. Therefore, a misrepresen-
tation in aerosols deposition on snow might amplify snow
cover biases and/or be the main cause for some models, while
the multimodel mean absolute snow cover bias is estimated
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to 12 % [−13 % to 43 %] in this study. Zhou and Li (2002)
and Yu et al. (2004) conjectured that a poor representation
of cloud properties might lead to insufficient plateau heating,
resulting in a cold bias in the TP. The problem could also
arise from a misrepresentation of processes in the boundary
layer. Indeed, De Wekker and Kossmann (2015) and Serafin
et al. (2020) expose the lack of constraints for processes in
the planetary boundary layer over complex terrain, in addi-
tion to the limited applicability of existing turbulence theory
with frequent violation of its basic assumptions (e.g., station-
arity and isotropy of small-scale turbulence) over mountain-
ous areas. Further theoretical and observation work is thus
needed to improve model parameterizations over these re-
gions. Chen et al. (2017) focused on the surface energy bud-
get from 28 CMIP5 models and suggested that improvements
in the parameterization of the snow cover area and the bound-
ary layer processes should allow reducing the cold bias over
the TP. Further research is required to advance scientific un-
derstanding about the origins of systematic model biases in
the HMA region.

Some models also show temperature biases in the tro-
posphere at a global scale (not shown) that might am-
plify and/or even trigger surface biases in HMA. Salunke
et al. (2019) also highlighted that many models still strug-
gle to capture the large-scale atmospheric circulation, such
as the location and intensity of upper-level Asian anticy-
clone and middle troposphere temperature maximum over
the TP, which have large implications on the TP as well as
on the Indian summer monsoon. Wrong atmospheric circu-
lation, as the position of jets, could also feed the observed
biases in models over HMA. Further analyses in higher atmo-
spheres and circulation must be done to quantify this impact
on present biases.

The obvious link between topography, snow cover bias and
to a lesser extent the temperature bias (Fig. 4) indicates also
the inability of GCMs to simulate key variables over com-
plex topography. Furthermore, increasing the model resolu-
tion does not result in a systematic reduction of model bi-
ases (Fig. 5b, d, f) because resolutions of 50 km or higher are
still too coarse to represent adequately all the physical pro-
cesses peculiar to the complex topography of the HMA re-
gion. Hence, the development of subgrid-scale parameteriza-
tions appears essential to better simulate the climate of these
regions. As an example, the snow cover extent parameteriza-
tion is often too simple in actual GCMs. Many GCMs either
use a simple linear relationship with snow water equivalent
(SWE), as in the ERA-Interim reanalysis, or take also into
account a dependency to the snow density as implemented
in ERA5 and IPSL-CM6A-LR, for example. However, many
models do not include any representation of subgrid-scale
processes driven by the local topography, an essential fea-
ture for complex topography areas. This idea has been ex-
plored a few decades ago (e.g., Walland and Simmonds,
1996; Roesch et al., 2001) and more recently in Swenson
and Lawrence (2012) who considered satellite observations

to develop a subgrid-scale representation of snow cover with
a dependency on the local topography. Such approaches are
however challenged by the lack of spatialized observation of
SWE over mountainous areas at a global scale.

Regarding the disparity in observed past snow cover
trends, it has to be noted that the NOAA CDR product is
a binary product at coarse resolution (∼200 km) based on
satellite observations, and new satellites have allowed more
accurate observation of HMA over the past decades (e.g.,
Meteosat-5; Helfrich et al., 2007), in addition to a change
from manual to automatic charts and increasing observa-
tional resolution from IMS (see Sect. 2.2.2). Trends apparent
in the NOAA CDR, therefore, need to be taken with caution,
above all for mountain regions (Bormann et al., 2018). Fig-
ure D2 compares the trends from NOAA CDR, ERA-Interim
and ERA5, and shows spatial discrepancies. However, ERA-
Interim as ERA5 trends can also be affected by changes in
observational assimilation as, for example, the inclusion of
IMS snow assimilation in 2004 (Drusch et al., 2004; Hers-
bach et al., 2020). It is therefore not easy to conclude whether
the observed trends are due to a part of internal variability,
which would not be found in the multimodel mean, or to arti-
facts of the observation products themselves. Past studies on
snow cover trends show contradictory results depending on
the study zone, methods and period (e.g., Dahe et al., 2006;
Pu et al., 2007; Immerzeel et al., 2009; Shen et al., 2015;
Notarnicola, 2020). More recently, Li et al. (2018) showed
a slight snow cover decrease of about 1.1 % during 2001–
2014 over TP with high-resolution MODIS product, which
seems to be in closer agreement with the large-scale multi-
model mean snow cover trends displayed in Fig. 7f, h.

The low resolution of the NOAA CDR snow cover product
and the fact that it only provides binary values might also im-
pact the spatial distribution of biases by overestimating snow
cover where large snow amounts can be found and underesti-
mate it where low values of snow cover are found. However,
this effect should mostly be reduced by spatial averages. The
recently published ESA CCI snow cover product at a bet-
ter temporal and spatial resolution, even if not exactly on
the same period, suggests that snow cover biases in models
can even be higher over HMA. Generally, the complex and
highly variable snow cover behaviorCE11 calls for better spa-
tiotemporal resolution than currently available from present-
day snow cover products based on both observations, reanal-
yses or models and thus hampers reliable trend detection.

Precipitation is particularly uncertain over HMA. It is well
known that most of the observational datasets underestimate
solid precipitation (Palazzi et al., 2013; Sanjay et al., 2017;
Sun et al., 2018) due to gauge undercatch. An additional is-
sue is the scarce observational network in this region. Using
glacier mass balances to infer the high-altitude precipitation
in the upper Indus Basin, Immerzeel et al. (2015) suggest
an underestimation of precipitation reaching a factor of 2 to
10 in observational datasets. Most studies comparing models
and reanalyses with observational datasets also account for
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large differences from about 100 % to 200 % (e.g., Palazzi
et al., 2013; Su et al., 2013; Salunke et al., 2019). GPCP
is in closer agreement with CMIP6 models, which could be
explained by a better representation of solid precipitation.
Overall, it is challenging to estimate model biases, even if the
coarse GCM resolutions might underestimate the orographic
barrier effect of high mountains leading to a potential excess
of water vapor transport toward the TP (Lin et al., 2018).
Hence, all models and analyses regarding precipitation need
to be considered with caution.

On one hand, a general increase of precipitation and a gen-
eral decrease of snow cover is expected over most of HMA
as a response to anthropogenic forcings in future projections
(Sabin et al., 2020). On the other hand, past precipitation
trends are heterogeneous depending on the location, the sea-
son and the period (Yoon et al., 2019), a result also found
for snow cover (e.g., Li et al., 2018). A snow cover decrease
located mainly in the west border of HK and in the south-
east of TP including HM in winter is expected in future pro-
jections (Fig. 10e, f), whereas small changes are expected
for this variable in the center of the HK region, in particular
over the Karakoram, even under high CO2 scenarios emis-
sions. The glacier growth occurring in this area over the last
decades, defined as the Karakoram anomaly (e.g., Brun et al.,
2017), might be associated with an intensification of WDs
(Krishnan et al., 2019; Sabin et al., 2020), a finding con-
firmed in our study with the increase in winter precipitation
found in the projections (Fig. 10i, j) from 5.6 % [−1.9 % to
18.1 %] to 19.9 % [5.3 % to 54.1 %] depending on the SSPs
(Table E). Indeed, the increase in temperature might be off-
set by the increase of winter snowfall over the Karakoram
slowing down the decrease of snow cover in this area. Con-
cerning the summer precipitation, a declining trend of the
Indian summer monsoon precipitation during the post-1950
period has been reported (Krishnan et al., 2013, 2016; Sabin
et al., 2020), while CMIP6 analyses show the opposite under
future warming pathways (Katzenberger et al., 2021) with
an intensification of precipitation by most of CMIP6 models,
that our results also confirm with a precipitation increase over
most of TP and HM (Fig. 10i, j) with a relative increase over
HM of 7.9 % [5.3 % to 19.9 %] to 28.5 % [13.9 % to 78.7 %]
(Table E). The apparent contradiction between past and fu-
ture trends is likely related to aerosol forcing which shows
a strong variability both spatially and temporally. Das et al.
(2020) suggest an ongoing decrease of the black and organic
carbon atmospheric loads associated with an increase in sul-
fate concentration over the Indian subcontinent. This leads
to a general increase in the aerosol depth that counteracts
the warming related to greenhouse gases (GHGs) through a
scattering of the solar radiation but with a more heteroge-
neous spatial pattern that modulates precipitation changes at
the local scale. If the aerosol forcing plays a major role at
present and over the near future, the GHG forcing is expected
to dominate at the end of the 21st century, leading to a general

intensification of the hydrological cycle and a strengthening
of the Indian summer monsoon.

Recent studies suggest an overestimation of the warming
rates in CMIP6 models (Forster et al., 2020). This could be
partly related to an overestimation of the climate sensitiv-
ity in this new model generation, probably related to cloud
and cloud–aerosol schemes (Meehl et al., 2020). This ques-
tion is challenged by the cooling effect of the aerosols that
is expected to decrease in relation to the ongoing improve-
ments of air quality, potentially increasing the warming rates
at the regional scale (Turnock et al., 2020). An open ques-
tion is the possibility to exclude models that simulate past
trends incompatible with the observed ones, a way to reduce
the uncertainties in future projections by excluding, in par-
ticular, the models that go beyond or below realistic warm-
ing rates (e.g., Ribes et al., 2021). This approach is rele-
vant at the global scale, but more challenging at the regional
scale, where multi-decadal trends can originate from internal
variability (Hawkins et al., 2016), a spatial scale for which
aerosol signals might also play a major signal, in particular
over polluted areas. In any case, the models considered in
the present study show ensemble trends that encompass the
observed past trends of temperature, precipitation and snow
cover over 1979–2014, except for one model for the temper-
ature (Fig. 8a, d). It is important to remember that even some
of the strongly biased models are able to reproduce the past
trends, suggesting that a simple bias analysis would not be
sufficient to select a subset of CMIP models for climate ap-
plications. This result might justify keeping all models for
projections supposing that their biases are stationary, a hy-
pothesis that has already been shown in a modeling study
(Krinner et al., 2020).

7 Conclusions

In this study, we assessed the performance of 26 CMIP6
GCMs over HMA for the historical period 1979–2014 and
the future projections from 10 of them under the four Shared
Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0
and SSP5-8.5) through three variables: near-surface air tem-
perature, snow cover extent and total precipitation. Cold bias
over HMA is still present in this latest generation of GCMs
with an average annual underestimation of −1.9 [−8.2 to
2.9] ◦C compared to the CRU dataset, associated with an av-
erage snow cover overestimation of 12 % [−13 % to 43 %],
corresponding to a relative bias of 52 % [−53 % to 183 %]
compared to the NOAA CDR satellite observationCE12 . The
recently published ESA CCI snow cover product at a better
temporal and spatial resolution shows lower snow cover val-
ues compared to NOAA CDR, suggesting that model biases
may be even larger. The temperature and snow cover model
biases are more pronounced in winter. Precipitation is also
overestimated by 1.5 [0.3 to 2.9] mm d−1 (relative change of
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143 % [31 % to 281 %]) but this later difference might mostly
reflect the undercatch of solid precipitation in APHRODITE.

For most models, the cold surface bias is associated with
an overestimation of snow cover, but this is not the case for
all models. The snow cover bias originates from precipita-
tion biases in some models, with large amounts of snowfall
significantly affecting the snow cover. Therefore, the source
of biases might strongly differ from one model to another.
The study of temperature, snow cover and precipitation can
only partly explain these biases which might be affected by
other factors including cloud cover, aerosols and atmospheric
circulation. Some models also show temperature biases in
the troposphere that might trigger or amplify surface biases.
Hence, further analyses focusing on the higher atmosphere
are required. All models also show a significant correlation
between snow cover bias and surface elevation (and to a
lesser extent between temperature bias and elevation), un-
derlining the challenge to correctly simulate snow cover at
high elevation. Besides, best performing models for temper-
ature are not necessarily the same for the other variables and
increasing the model resolution does not show any clear im-
provement over this region, suggesting that further work on
theory and model parameterization is essential. In addition,
a dependency of the simulated past trends to the model bi-
ases is found for some variables and seasons; however, some
highly biased models fall within the range of observed trends,
suggesting that model bias is not a robust criterion to discard
models in trend analysis.

The 10 models, used with future scenarios, project a HMA
median warming at the end of this century (2081–2100 with
respect to the 1995–2014 average) that ranges from 1.9 [1.2
to 2.7] ◦C for SSP1-2.6 to 6.5 [4.9 to 9.0] ◦C for SSP5-8.5.
The overall warming is associated with a relative median
snow cover decrease from −9.4 % [−16.4 % to −5.0 %] to
−32.2 % [−49.1 % to −25.0 %] and a relative median pre-
cipitation increase from 8.5 % [4.8 % to 18.2 %] to 24.9 %
[14.4 % to 48.1 %] by the end of the century. The warming
over HMA is projected to be 11 % stronger than over the
mean of NH continental surfaces, excluding the Arctic do-
main. The HMA projected temperature, snow cover and pre-
cipitation show a linear relationship with the GSAT increase,
except for summer snow cover that shows slower melt rates
for high temperature levels.

Further work is required to build realistic climate models
over HMA domain. This task is challenging because it re-
quires model parameterizations adapted to high-elevation ar-
eas that might require high resolution. These models should
be able also to simulate the response of the climate system to
GHGs and to the regional imprint of the aerosol forcing, an
essential feature in this strongly polluted area. Finally, such
models should be also global, since the HMA area is a ma-
jor piece of the climate system with climate teleconnections
found all over the world.
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Appendix A: Members for trend analysis

Table A1. TS6Details of the members used from CMIP6 models for trends analyses for each variable.

CMIP6 institute
CMIP6 model Members for trend analysis

tas snc pr

BCC
BCC-CSM2-MR

r1-3i1p1f1 (3)
BCC-ESM1

CAS CAS-ESM2-0 r1-4i1p1f1 (4)

NCAR

CESM2 r1-11i1p1f1 (11)
CESM2-FV2

r1-3i1p1f1 (3)CESM2-WACCM
CESM2-WACCM-FV2

CNRM-CERFACS
CNRM-CM6-1 r1-30i1p1f2 (30) r1-29i1p1f2 (29)
CNRM-CM6-1-HR r1i1p1f2 (1)
CNRM-ESM2-1 r1-5,7-11i1p1f2 (10) r1-6,8-11i1p1f2 (10) r1-5,7-11i1p1f2 (10)

CCCma CanESM5 r1-40i1p2f1 (40)

NOAA-GFDL GFDL-CM4 r1i1p1f1 (1)

NASA-GISS∗
GISS-E2-1-G r1-10i1p1f1-2 (20)
GISS-E2-1-H r1-5i1p1f1, r1-10i1p1f2 (15)

MOHC
HadGEM3-GC31-LL

r1-4i1p1f3 (4)
HadGEM3-GC31-MM

IPSL IPSL-CM6A-LR r1-32i1p1f1 (32)

MIROC
MIROC-ES2L r1-10i1p1f2 (10)
MIROC6 r1-50i1p1f1 (50)

MPI-M
MPI-ESM1-2-HR

r1-10i1p1f1 (10)
MPI-ESM1-2-LR

MRI MRI-ESM2-0 r1-5i1p1f1 (5)

NCC NorESM2-LM r1-3i1p1f1 (3)

SNU SAM0-UNICON r1i1p1f1 (1)

AS-RCEC TaiESM1 r1i1p1f1 (1)

MOHC, NIMS-KMA UKESM1-0-LL r1-4,8-12,16-19i1p1f2 (13) r1-4,8-10,16-19i1p1f2 (11) r1-4,8-12,16-19i1p1f2 (13)

∗ The variations between f1 and f2 are restricted to the stratosphere, but in the troposphere, there are no detectable changes, and thus for tropospheric fields, f1 and f2 simulations can be
combined for a larger (20-member) ensemble (https://data.giss.nasa.gov/modelE/cmip6/, last access: 4 October 2021).
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Appendix B: Snow cover and precipitation biases

Figure B1. Same as Fig. 3 but for snow cover extent.
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Figure B2. Same as Fig. 3 but for total precipitation.
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Appendix C: Spatial bias correlation

Figure C1. Same as Fig. 4 but with GPCP total precipitation observations instead of APHRODITE.

Figure C2. Same as Fig. 4 but for HK regional and seasonal analysis.
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Figure C3. Same as Fig. 4 but for TP regional and seasonal analysis.
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Appendix D: Comparison of observations and
reanalyses trends

Figure D1. Same as Fig. 7 but for observations and reanalyses comparison with only near-surface air temperature.

Figure D2. Same as Fig. 7 but for observations and reanalyses comparison with only snow cover extent.

Figure D3. Same as Fig. 7 but for observations and reanalyses comparison with only total precipitation.
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Appendix E: Projected relative changes over HMA
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Code availability. All scripts to produce the figures and re-
sults are available at https://github.com/mickaellalande/CMIP6_
HMA_paper/tree/v1.0 (https://doi.org/10.5281/zenodo.5500285,
Lalande, 2021). We use Python (Oliphant, 2007; Millman
and Aivazis, 2011) version 3.8.5 and xarray (Hoyer and
Hamman, 2017) version 0.16.0 to manipulate NetCDF files.
Interpolations are performed using xESMF version 0.3.0
(https://doi.org/10.5281/zenodo.1134365TS7 ). For statistical
purposes, Scipy (Virtanen et al., 2020) version 1.5.2 is used. All
graphics are made using Proplot version 0.6.4 based on Matplotlib
(Hunter, 2007) version 3.2.2 and Cartopy version 0.18.0. The
Taylor diagrams were made thanks to the Python implementa-
tion of Yannick Copin (https://gist.github.com/ycopin/3342888,
https://doi.org/10.5281/zenodo.3700105, Zhuang et al., 2020TS8 ;
https://doi.org/10.5281/zenodo.5548061, Copin, 2012).

Data availability. The datasets from CMIP6 simula-
tions are available via the CMIP6 search interface:
https://esgf-node.llnl.gov/search/cmip6/ TS9 . CRU TS ver-
sion 4.00 is available at https://doi.org/10/gbr3nj. NOAA
CDR of NH snow cover extent version 1 is available at
https://doi.org/10.7289/V5N014G9 (Robinson et al., 2012).
The ESA CCI snow product is available at https://catalogue.
ceda.ac.uk/uuid/5484dc1392bc43c1ace73ba38a22ac56,
and the cloud gap filter used in this study can be pro-
vided upon request. The APHRODITE products are avail-
able here: http://aphrodite.st.hirosaki-u.ac.jp/download/.
GPCP CDR version 2.3 (monthly) is available at
https://doi.org/10.7289/V56971M6. GMTED2010 can be
found here: https://www.temis.nl/data/gmted2010/index.php.
The GLDAS Land/Sea Mask Dataset at 1◦ can be found
here: https://ldas.gsfc.nasa.gov/gldas/vegetation-class-mask.
We also used the ERA-Interim and ERA5 reanalyses data
that are publicly available at https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-interim and https:
//www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.
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