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Abstract.

State-of-the-art carbon cycle prediction systems are initialized from reconstruction simulations in which state variables of the

climate system are assimilated. While currently only the
:::::::::
State-of-the

:::
art

::::::
climate

::::::::
prediction

:::::::
systems

::::::
include

::
a

:::::
carbon

::::::::::
component

:::::::
recently.

:::::
While

:
physical state variables are assimilated ,

::
in

::::::::::::
reconstruction

::::::::::
simulations,

::::
land

::::
and

:::::
ocean

:
biogeochemical state

variables adjust to the state acquired through this assimilation indirectly instead of being assimilated themselves. In the absence5

of comprehensive biogeochemical reanalysis products, such approach is pragmatic. Here we evaluate a potential advantage of

having perfect carbon cycle observational products to be used for direct carbon cycle reconstruction.

Within an idealized perfect-model framework, we define 50 years of a control simulation under pre-industrial CO2 levels

as our target representing observations
:::::::::
reconstruct

::
a
:::::::
50-year

:::::
target

::::::
period

:::::
from

:
a
:::::::

control
:::::::::
simulation. We nudge variables

from this target onto arbitrary initial conditions150 years later ,
:
mimicking an assimilation simulation generating initial con-10

ditions for hindcast experiments of prediction systems. We investigate the tracking performance, i.e. bias, correlation and

root-mean-square-error between the reconstruction and the target, when nudging an increasing set of atmospheric, oceanic and

terrestrial variables with a focus on the global carbon cycle explaining variations in atmospheric CO2. We compare indirect

versus direct carbon cycle reconstruction against a resampled threshold representing internal variability. Afterwards, we use

these reconstructions to initialize ensembles to assess how well the target can be predicted after reconstruction. Interested in the15

ability to reconstruct global atmospheric CO2, we focus on the global carbon cycle reconstruction
::::::::::
performance and predictive

skill.

We find that indirect carbon cycle reconstruction through physical fields reproduces the target variationson a global and

regional scale much better than the resampled threshold. While reproducing the large scale variations, nudging introduces

systematic regional biases in the physical state variables, on which biogeochemical cycles react very sensitively. Global annual20

surface oceanic pCO2 initial conditions are indirectly reconstructed with an anomaly correlation coefficient (ACC) of 0.8

and debiased root mean square error (RMSE) of 0.3 ppm
:::::
Initial

:::::::::
conditions

::
in

:::
the

:::::::
oceanic

::::::
carbon

:::::
cycle

:::
are

::::::::::
sufficiently

::::
well

:::::::::::
reconstructed

::::::::
indirectly. Direct reconstruction slightly improves initial conditionsin ACC by +0.1 and debiased RMSE by

-0.1 ppm. Indirect reconstruction of global terrestrial carbon cycle initial conditions for vegetation carbon pools track the

target by ACC of 0.5 and debiased RMSE of 0.5 PgC
:::
are

::::
also

:::::::::
sufficiently

:::::
good

:::::::::::
reconstructed

:::
by

:::
the

:::::::
physics

::::::::::::
reconstruction25
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::::
only. Direct reconstruction brings negligible improvements for

::::::::
improves air-land CO2 flux

:::::::::
negligibly. Global atmospheric

::::::::::
Atmospheric

:
CO2 is indirectly tracked by ACC of 0.8 and debiased RMSE of 0.4 ppm

:::
very

::::
well

:::::::::
indirectly

:::::::::::
reconstructed.

Direct reconstruction of the marine and terrestrial carbon cycles improves ACC by 0.1 and debiased RMSE by -0.1 ppm.

::::::
slightly

:::::::
improve

::::::::::::
reconstruction

:::::
while

:::::::::::
establishing

::::::::
persistent

::::::
biases. We find improvements in global carbon cycle predic-

tive skill from direct reconstruction compared to indirect reconstruction. After correcting for mean bias, indirect and direct30

reconstruction both predict the target similarly well and only moderately worse than perfect initialization after the first lead

year.

Our perfect-model study shows that indirect carbon cycle reconstruction yields satisfying initial conditions for global CO2

flux and atmospheric CO2. Direct carbon cycle reconstruction adds little improvements in the global carbon cycle, because im-

perfect reconstruction of the physical climate state impedes better biogeochemical reconstruction. These minor improvements35

in initial conditions yield little improvement in initialized perfect-model predictive skill. We label these minor improvements

due to direct carbon cycle reconstruction trivial, as mean bias reduction yields similar improvements. As reconstruction bi-

ases in real-world prediction systems are even
::::
likely

:
stronger, our results add confidence to the current practice of indirect

reconstruction in carbon cycle prediction systems.

Copyright statement. TEXT40
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1 Introduction

Predicting variations in weather and climate yields numerous benefits for economic, social, and environmental decision-making

(Merryfield et al., 2020). Carbon cycle prediction systems have the ability of predicting the near-term evolution of CO2 fluxes

(Li et al., 2019; Lovenduski et al., 2019a, b) and atmospheric CO2 (Spring and Ilyina, 2020; Ilyina et al., 2021) to constrain the85

large internal variability of the global carbon cycle (Spring et al., 2020). Predictions require a forecasting model and initial con-

ditions representing observations, where the forecast is started from. However, due to sparse and temporally incomplete records,

there is currently no global biogeochemical reanalysis product to initialize Earth System Models (ESMs). Therefore,
:
direct ini-

tialization of the carbon cycle,
:::
i.e.

::::::::::
assimilating

::::::
carbon

:::::
cycle

::::::::
variables

::
in

::::::
ESMs, is not possible. Practically, all state-of-the-art

::::::::::::
State-of-the-art

:
carbon prediction systems only initialize the physical climate

:::::::
initialize

:::
the

::::::
carbon

:::::
cycle

::::::::
indirectly,

:::
by

:::::::
nudging90

::
the

::::::::
physical

::::::
climate

::::
only, assuming that carbon cycle follows the initialized climate indirectly. However, this indirect carbon

cycle initialization leaves the initial conditions of the carbon cycle unconstrained.

Here, we test how well indirect and direct carbon cycle reconstructions in an ESM initialize the carbon cycle in a perfect-

model target reconstruction framework [Tab.
:::::
Table 1 presents an overview which variables are reconstructed in which simula-95

tion]. We use the term reconstruction to describe methods of initialization of climate and the carbon cycle. Reconstructions aim

to reproduce the evolution of the target, like a reanalysis product, in the ESM. Furthermore, we use the term "carbon cycle" to

describe the processes exchanging carbon across the surface boundary between land, atmosphere and ocean, represented here

by the air-land and air-sea CO2 fluxes. We ask the following research questions:

– How well can initial conditions be reconstructed in the global carbon cycle?100

– Can initialization of the carbon cycle improve predictive skill of the carbon cycle?

In this perfect-model target reconstruction framework, we have perfect knowledge about the ground truth and a perfect

model. Literally speaking, this asks how well could perfect observations be reconstructed in an ESM.

Originally, data assimilation is used to align the model state to an observations-based state, generally a reanalysis product105

::::::::::::::::::::::::::::::::::::::::
(Schneider and Griffies, 1999; Meehl et al., 2009). However, here we use the same data assimilation technique to assess how

well variables can be reconstructed in an idealized setup.

Thus, reconstruction in a climate model interferes with the freely running climate model yielding gains and drawbacks.

:
: The main advantage of climate reconstruction is that the reconstruction forces the climate model to follow the target .

::::::::::::::::::::::::::::::::
(Jeuken et al., 1996; Meehl et al., 2009).

:
The main handicap associated with reconstruction is that the violation of mass110

conservation
::::
mass

:::::::::::
conservation

::
is
:::::::
violated

:
and that the model dynamics and feedbacks are obstructed (Zhu and Kumar,

2018). Consequently, circulation fields may change,
:
and this has severe consequences on

:::
for the biogeochemical tracer dis-

tributions in the ocean and carbon pools on land, because they are so sensitive and adapted to the previous climate state
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::::::::::::::::::::
(Toggweiler et al., 1989). Therefore, reconstructions often lead to biases. A partial solution can be bias removal by post-

processing, which is feasible if the bias does not change the climate or ecosystem regime alltogether.115

::
all

::::::::
together.

:::::::
Another

:::::::
solution

:::
is

:::::::
omitting

::::::::
nudging

::
in

:::::::
regions

:::::::
strongly

::::::
biased

:::
by

::::::::::::
reconstruction

:::::
such

::
as

:::
the

:::::::
tropics,

:::
as

:::::::::::
demonstrated

::
by

:::::::::::::::
(Park et al., 2018)

:
. Even if biogeochemical reanalysis products were available, it is unclear whether the re-

construction benefits correct these handicaps.

The lack of reanalysis products available for the reconstruction of carbon cycle initial conditions is often assumed as a120

weakness of the current predictions systems (Li et al., 2016; Séférian et al., 2018; Lovenduski et al., 2019b, a; Li et al., 2019;

Ilyina et al., 2021), but to our knowledge an elaborate assessment is missing. The literature presents two alternative approaches

to test the quality of reconstructed initial conditions:

::
In

:
a
::::::::::::

perfect-model
::::::
study, Servonnat et al. (2015) nudge only ocean surface temperature, salinity and sea-ice and assess

how well this surface reconstruction penetrates into the subsurface ocean physics, without addressing biogeochemistry in their125

analysis. This target reconstruction approach in a perfect-model framework allows
::::::
allows

::
us to directly assess the quality of

reconstructed initial conditions, which is useful and practical to know for forecaster issuing a forecast.
::::::::::::::
Luo et al. (2017)

::
use

:::
an

::::::::
equivalent

:::::::::
simulation

::::::
design,

::
so

::::::
called

::::::::
observing

::::::
system

:::::::::
simulation

::::::::::
experiments

::::::::
(OSSEs),

::
in

:::::
which

::::
they

:::::::::
assimilate

:::
sea

::::::
surface

::::::::::
temperature,

:::
sea

::::::
surface

:::::::
salinity

:::
and

:::
sea

::::::
surface

::::::
height.

:

In a recent study Fransner et al. (2020) ask whether the initial conditions of ocean biogeochemistry or the initial conditions130

of ocean physics have a stronger influence on multi-year predictions using perfect-model twin perturbed initial conditions

experiments. In the first set of hindcasts, they take identical initial conditions of the ocean physics to ensure identical climate

evolution but completely different states from different members for ocean biogeochemistry. In the other set of hindcasts, they

slightly perturb the ocean physics to force members on disseminated
:::::::
differing

:
climate evolutions while keeping the ocean

biogeochemistry initial conditions identical. They find that ocean biogeochemistry initial conditions did not affect predic-135

tive skill later than the first lead year. Their approach asks the more theoretical question whether initial conditions of ocean

biogeochemistry matter compared to ocean physics initial conditions.

We go beyond previous studies by using the methodology of Servonnat et al. (2015), with the aim to understand the quality

of initial conditions reconstruction. In contrast to Fransner et al. (2020), we aim to answer the questions about quality of initial

conditions produced by different reanalysis approaches. We expand the scope by addressing the global carbon cycle, including140

the land, ocean and atmospheric compartments and the interactive exchange of CO2 fluxes between them. We then assess the

influence of these previously reconstructed carbon cycle initial conditions for initialized predictions of the natural carbon sinks

and atmospheric CO2. We focus on the global carbon cycle, because atmospheric CO
::
the

::::
land

::::
and

:::::
ocean

::::::
carbon

:::::
cycle

::::::
control

::
the

:::::::
internal

:::::::::
variability

::
of

::::::::::
atmospheric

:::
CO2 is well-mixed greenhouse gas controlled by carbon cycling on land and in the ocean

(Friedlingstein et al., 2020).145

After explaining the approach of target reconstruction in section 2, we separate reconstruction and its implication on predic-

tive skill in two parts: We first evaluate physical reconstruction representing indirect biogeochemical reconstruction in sections
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??, ?? and ?? for spatial maps and global aggregated values. Furthermore, we test the potential tracking performance increase

for direct carbon cycle reconstruction
::::::::::::
reconstruction

:::::::::::
performance.

:::
We

::::
start

:::::
with

:::
the

:::::::
physical

::::::::::::
reconstruction

:
in sections ??,150

?? and ??.
:::::
section

::::
3.1.

:::::
Then

:::
we

:::::
show

::::
how

:::
the

::::::
ocean

:::
and

:::::
land

::::::
carbon

:::::
cycles

::::
are

:::::::::::
reconstructed

:::::::::
indirectly

:::
and

::::
how

::::::
direct

:::::::::::
reconstruction

::::
can

:::::::
improve

:::::::::::
initialization

:::
in

:::::::
sections

:::
3.2

::::
and

::::
3.3.

:::
We

:::::::
analyze

:::
the

:::::::::
combined

::::::
effects

::
of

:::
the

::::::
ocean

::::
and

::::
land

:::::::::::
reconstruction

::
in
:::
the

::::::::::
atmosphere

::
in

::::::
section

::::
3.4. In part two, we assess the impact of different reconstruction methods on initial

conditions predictive skill in section 4. Finally, the main findings and conclusions of this study are summarized in section 5.

2 Methods155

2.1 Model Description

We use the Max Planck Institute ESM (MPI-ESM)(Mauritsen et al., 2019)
:::::::::::::::::::::::::::::
(Mauritsen et al., 2019, MPI-ESM), which was also

used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) framework (Eyring et al., 2016). We run the model

MPI-ESM1-2-LR, the low resolution configuration with
::
63

::::::::
spherical

:::::::::
harmonics

:::
in

:::
the

::::::::::
atmosphere

::::
and

::::
with

:
a horizontal

resolution of about 1.8° in the atmosphere and on land, and about 1.5° in the ocean with daily coupling of the compart-160

ments(Mauritsen et al., 2019). The time steps of the atmosphere/land and the ocean are 600 and 4320s, respectively(Mauritsen et al., 2019)

::::
4320

::
s,

::::::::::
respectively. We run the model with prognostic atmospheric CO2 mixing ratio under pre-industrial conditions (esm-

piControl).

The marine biogeochemical cycle model HAMOCC (Ilyina et al., 2013) is embedded in the ocean general circulation

model MPIOM (Jungclaus et al., 2013). HAMOCC includes carbonate chemistry and an extended NPZD-type cycle includ-165

ing nutrient-light-temperature co-limitation and nitrogen-fixating cyanobacteria (Paulsen et al., 2017). The land carbon cycle

model JSBACH includes dynamic vegetation, wildfires, soil carbon decomposition and storage (Schneck et al., 2013). The

atmospheric general circulation model ECHAM6 transports the three-dimensional atmospheric prognostic atmospheric CO2

tracer with a flux-form semi-Lagrangian scheme (Lin and Rood, 1996; Stevens et al., 2013).

2.2 Perfect-Model Target Reconstruction Framework170

Simulations in a perfect-model target reconstruction framework aim to reproduce the target climate evolution (Griffies and

Bryan, 1997; Servonnat et al., 2015), but are started from an independent initial state, i. e. does not match .
:::::::::
Therefore the

initial conditions of the target, while
:::::::::::
reconstruction

::::::::::
simulation

:::
and

:::
the

::::
the

:::::
target

::
to

:::
not

:::::::
match.

:::
But

:
both target and initial

conditions share the same climatology. Practically, we
:::
We choose a 50-year target period from model years 1850 to 1900 and

an uncorrelated restart file from model year 2005 from the pre-industrial control simulation (esm-piControl) submitted for the175

MPI-ESM1-2-LR model for C4MIP (Jones et al., 2016) in CMIP6 (Eyring et al., 2016).

In order to assess how many variables are needed to sufficiently reconstruct climate and biogeochemical cycles, we first

perform reconstruction simulations only reconstructing physical state variables in atmosphere and/or ocean [Tab.
:::::
Table 1]. In

these simulations,
:::
the carbon cycle is only indirectly effected

:::::::
affected by the reconstruction of physical variables. In further

7



simulations, we test how much carbon cycle states improve with respect to the target , when also
::::
when

:
carbon cycle state180

variables are reconstructed directly.

2.3 Reconstruction Simulations

Newtonian or Haney (1974) relaxation, which is often called nudging, is a simple four-dimensional assimilation technique that

dynamically reconstructs variables in an ESM. A non-physical relaxation term with relaxation coefficientR (units 1/s) is added185

to the prognostic equation to drag the model variable X , which is subject to model forcing Fm, towards its target Xt:

δX

δt
= Fm(X)+R(Xt −X) (1)

Reconstructed variables for each realm (nudging relaxation time-scale)

Atmosphere: Ocean (60d): Sea-ice (60d): Ocean carbon (60d): Land:

Reconstruction

simulations

temperature (24h) temperature concentration DIC all JSBACH

surface pressure (24h) salinity thickness alkalinity (reset restart

vorticity (6h) files Jan 1st)

divergence (48h)

indirectATM only x

indirectOCEAN only x

indirect x x x

direct x x x x x

Table 1. Overview over different reconstruction simulations. The first column title marks the labels of the experiments as used in the

manuscript. The reconstruction strength as relaxation time-scales is noted in brackets, where h denotes hours and d days. The land carbon

cycle is not dynamically reconstructed at each time step, but by a hard reset of restart files each January 1st from the target run. These land

restart files include carbon and nitrogen pools, soil physics (moisture, temperature, snow cover), vegetation cover (plant functional types

distribution), and canopy (leaf area index).

For reconstruction of the dynamics of the ocean, we reconstruct three-dimensional temperature and salinity as well as sea-ice

concentration and thickness [Tab.
::::
Table

:
1]. We label this reconstruction indirect [Tab.

::::
Table

:
1] from the carbon cycle’s perspec-

tive, as the carbon cycle is not reconstructed directly, but rather
:::::
instead

:
indirectly follows the reconstructed physical climate.190

Observational ocean data is often not available at each model time step. Therefore, we interpolate (without adjustments to

conserve
::::::::
preserving the temporal mean) monthly model target output to daily frequency as done in previous studies (Pohlmann

et al., 2009). We chose
:::::
choose

:
a 60-day ocean relaxation time (converted to units 1/s) like Servonnat et al. (2015) in their

perfect-model target reconstruction study. Reconstructions towards observations usually choose a stronger nudging strength

(Pohlmann et al., 2009; Keenlyside et al., 2008).195
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We reconstruct the physics of the atmosphere by nudging temperature, vorticity, divergence and the logarithm of surface

pressure (Pohlmann et al., 2019). The high-frequency 6h
:
6
::::::
hourly

:
output serves as the target and is nudged into all 63 spherical

harmonics. Temperature and the logarithm of surface pressure is
:::
are nudged with a relaxation timescale of 24 hours, vorticity

is nudged with a relaxation timescale of 6 hours
:
, and divergence is nudged with a relaxation timescale of 48 hours. Relaxation

coefficients are converted to units 1/s and are taken from previously used setups (Rast et al., 2012; Pohlmann et al., 2019; Li200

et al., 2019). Only nudging
:::::::
Nudging the atmosphere with these quite short relaxation times is similar to the forced simulations,

such as the Model Intercomparison Projects (MIP) for ocean (OMIP) (Griffies et al., 2016; Orr et al., 2017), land (LMIP)

(van den Hurk et al., 2016) and Global Carbon Budget (Friedlingstein et al., 2019) simulations, where (atmospheric) external

boundary forcing drives the carbon cycle.

For reconstructions of oceanic carbon cycle, we use the same nudging approach and strength as for physical ocean re-205

construction but on different variables. To reconstruct the components of
::
the

:
carbonate system, we nudge three-dimensional

dissolved inorganic carbon (DIC) and total alkalinity [Tab.
:::::
Table 1].

Unfortunately, there is no nudging module available in the land surface model JSBACH. Here
:::
The

:::::::
current

:::::::
structure

:::
of

:::::::
JSBACH

::::
code

::
is
:::
not

:::::::
flexible

::::::
enough

::
to

:::::
allow

:::::::
frequent

:::::::
rewriting

::
of

:::::::
physical

:::::::
variable

:::::
fields,

::::
such

:::
as

:::
soil

:::::::
moisture

::
or

:::::::::::
temperature,

::::
with

::::::
external

:::::
data.

:::::
Here, we choose to manually reset the initial conditions every January 1st to the target values instead of the210

dynamic reconstruction at each time step. We thereby reconstruct land biogeochemistry and land surface physics such as soil

moisture by resetting all restart variables every year. In supplementary information section D, we provide several sensitivity

analysis
:::::::
analyses by resetting land only every two or five years and resetting the ocean every year in the same way.

2.3 Evaluating Tracking Performance215

We assess how well a reconstruction simulation tracks the target using various tracking performance metrics. We
:::
We

:
com-

pare the target with reconstructions in the various metrics showing different attributes of tracking performanceover 10-year

windows: bias, anomaly correlation coefficient and root-mean-square-error. For equations please consult the supplementary

sec. A. We calculate tracking performance over 10-year chunks to capture the variability within tracking performance and

reduce the influence of drifts over time.220

The non-physical relaxation terms in the prognostic equations can disturb the dynamics in the ESM and introduce biases

defined as the differences in the reconstruction compared to the freely running target over time.

The anomaly correlation coefficient skill score (ACC) shows the linear association between the reconstruction and the target

over time and therefore measures synchronous evolution while ignoring bias.

The root-mean-square-error (RMSE) takes into account bias and measures the second-order euclidian distance between225

reconstruction and target simulation over time. Under the assumption that persistent biases can be removed by post-processing,

we also assess RMSE after having the mean monthly bias removed.
:::
For

::::::::
equations

::::::
please

::::::
consult

:::
the

::::::::::::
supplementary

:
[
:::
sec.

::
A]

:
.

:::
We

:::::::
calculate

::::::::
tracking

::::::::::
performance

:::::
over

::::::
running

:::::::
10-year

:::::::
chunks

::
to

::::::
capture

::::
the

::::::::
variability

::::::
within

:::::::
tracking

:::::::::::
performance

::::
and

:::::
reduce

:::
the

::::::::
influence

::
of

:::::
drifts

::::
over

:::::
time.
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How do we evaluate that a reconstruction is good enough? While good enough is a subjective judgement, we resample the230

target simulation along the time dimension with a block length of ten years to check the metric of two randomly compared

10-year chunks. We consider the 95th quantile threshold for ACC and 5th quantile threshold for the remaining distance-based

metrics as a baseline of internal variability to be a good enough reconstruction (Efron and Tibshirani, 1993)
:
,
:::::
which

:::
we

::::
will

::::
refer

::
to

::
as

::::::::::
"resampling

:::::::::
threshold"

::
in

:::
the

::::::::
following.

2.3 Perfect-Model Predictive skill
::::
Skill

:
Framework235

In the second part of this study, we perform initialized perfect-model experiments (as in Spring and Ilyina, 2020). The simu-

lations in the perfect-model framework are started from the indirect and direct reconstructions as well the target representing

perfect initial conditions. We take 19 initialization states chosen every second January 1st between 1860 and 1896, after al-

lowing a 10 years adjustment phase after reconstructions were started. From each of those states from different reconstruction

simulations, we fork five ensemble members and simulate three lead years.
:::
The

:::::::
perfectly

:::::::::
initialized

:::::::::
ensembles

:::
are

:::::
started

:::::
from240

::
the

::::::
target

:::::
initial

:::::::::
conditions

:::::::
without

:::
any

::::::::
previous

::::::::::::
reconstruction

::::::::::
simulation.

:
We generate ensemble members by perturbing

the stratospheric horizontal diffusion by
:
a
:::::
factor

:::
of 1.0000{member} in the first year.

:
,
::::
e.g.,

:::
the

:::::
factor

::
is
::::::
1.0005

:::
for

::::
the

:::
5th

::::::::
ensemble

:::::::
member. This member generating approach provokes only tiny initial perturbations to the climate system as the ocean

and land initial conditions remain identical.

2.4 Predictive Skill Quantification245

We compute predictive skill as the root-mean-square-error (RMSE) between the ensemble member mean and the target as ver-

ification (Wilks, 2006; Jolliffe and Stephenson, 2011) [sec.
::::::::
Appendix

:
A]. RMSE measures the second-order euclidian distance

between forecast members and the verification target. RMSE describes how the individual ensemble members spread over

lead time. Please find additional details about the predictive skill metrics and the uninitialized bootstrapping in Spring and

Ilyina (2020).
::::::::::::
Acknowledging

::::
that

:::
our

::::::::::::
reconstruction

:::::::::
simulation

:::::::::
developed

::::::
biases

:::
and

::::
that

:::::
biases

:::
are

:::::::::
commonly

:::::::
reduced

:::
by250

:::::::::::::
post-processing

::
in

:::::::::::
predictability

::::::::
research,

:::
we

::::
also

:::::
apply

:
a
::::::
simple

::::::::
lead-time

:::::::::
dependent

:::::
mean

::::
bias

::::::::
reduction

::
to

:::
the

:::::::::
initialized

::::::::
ensembles

::
to
:::::
show

:::::::
whether

::::
skill

::::::::::::
improvements

::
go

:::::::
beyond

::::
what

:
a
::::::
simple

:::::::::::::
post-processing

:::::
could

:::::::
deliver.

:::
For

::::
each

:::::::::::
initialization

::
in

:::::
turns,

:::
we

:::
first

::::::::
calculate

:::
the

:::::
mean

::::
bias

:::
for

:::
all

:::
but

::::
that

:::::
given

::::::::::
initialization

::::
and

::::
then

:::::::
remove

:::
that

:::::
mean

::::
bias

:::::
from

:::
the

:::::
given

:::::::::::
initialization.

::::
This

::::::
implies

:::::
using

::::::::::
information

:::::
about

::::::
future

:::::::::::
initializations

:::
as

::
in

:::::::::::
bias-reduced

::::::::
hindcasts

:::::::::::::::::::
(Marotzke et al., 2016)

:
.
:::
We

::::
also

:::::::
evaluate

::::::::
predictive

::::
skill

:::::
from

:
a
::::::::
perfectly

:::::::::
initialized

::::::::
ensemble,

::::::
which

:::
are

::::::
started

::::
from

:::
the

:::::::
perfect

:::::
initial

:::::::::
conditions255

::::
taken

:::::
from

:::::
target

:::::::::
simulation,

:::::::
whereas

:::
the

:::::::::
ensembles

::::
from

::::::::::::
reconstructed

:::::
initial

:::::::::
conditions

:::
are

:::::
biased

::::
with

:::::::
respect

::
to

:::
the

:::::
target

[
:::
Fig.

::
5]

:
.
::::
This

:::::::::
initialized

::::::::
predictive

::::
skill

::
is
::::

also
:::::::::

compared
::::
with

:::::::::::
uninitialized

:::::::::
ensembles

::::::::
randomly

:::::::::
generated

::::
from

::::
the

:::::
target

::::::::
simulation

:::::::::::
representing

:::::::::
ensembles

:::::::
without

:::::::
common

:::::::::::
initialization

:::
and

::::::
hence

::
no

::::::::
memory.

::::
This

:::::::::::
uninitialized

::::::::
reference

::::
skill

::
is

::::
used

::
in

:::::::::::
predictability

:::::::
research

::::::::::
community

::
to

:::::
assign

:::::::
whether

:::
the

::::
skill

:::::::
increase

:::::
stems

:::::
from

:::::::::::
initialization.

260
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3 Reconstruction in an Earth-System-Model

As the carbon cycle is sensitive to the climate evolution, we first assess how well the physical climate is reconstructed. There-

fore, we first evaluate the physical climate state after reconstruction in subsection 3.1]. Afterwards, we assess how these

different reconstructions of physical climate indirectly reconstruct the ocean, land and atmospheric carbon cycle in subsec-

tions ??, ?? and ??
::
and

::::
how

:::::
direct

::::::::::::
reconstruction

:::::
could

::::::::
improve

:::::
initial

:::::::::
conditions

::
in

::::::::::
subsections

:::
3.2,

:::
3.3

::::
and

:::
3.4]. The direct265

reconstructions are shown in subsections ??, ?? and ??.

3.1 Reconstruction of Physical Climate

Reconstructing the ocean and/or the atmosphere systematically disturbs the freely evolving model, which leads to annual mean

biases with respect to the original target.
:::
We

::::::
identify

:::::::::::
atmospheric

:::::::::
circulation

:::::::::
represented

:::
by

:::::
winds

::::
and

:::::::
resulting

:::::::::::
precipitation

:::
and

::::::::::
temperature

::
to

::
be

::::::::::
descriptive

::
for

:::
the

::::::
impact

::
of

:::::::::
circulation

:::
on

:::
the

::::::
carbon

:::::
cycle.

:
The gray stippling in figure 1 shows where270

this reconstruction bias is larger than the randomly resampled 95%
:::::::::
resampling

:::
5th

::::::::
percentile

:
mean absolute error threshold and

therefore labeled significantly exceeding
::::::
labeling

:::
the

::::::::::::
reconstruction

:::
not

:::::::::::
significantly

:::::
better

::::
than internal variability.

All reconstruction yielded
::::::::::::
reconstructions

::::
yield

:
identical results for winds and precipitation tracking performance. Recon-

structing the ocean and/or the atmosphere introduces biases of up to 0.6 m/s in zonal and 0.9 m/s in meridional 10-m wind

speeddepicting a southward-shift ,
::::::::
depicting

::
a
::::::::
southward

:::::
shift of the Intertropical Convergence Zone (ITCZ). This bias results275

in a significant weakening of the equator-ward latitudinal winds, whereas extra-tropical latitudinal intensifies
:::::
winds

::::::::
intensify

[Fig. 1a]. The intensification and equator-ward shift of the easterly trade winds and weakening of the southern hemisphere

westerlies are both not significant [Fig. 1b]. Precipitation is heavily impacted by these biases in atmospheric transport across

many regions of the globe. Precipitation significantly shifts southward at the equator with changes of more than 1 mm/day

and increases in Western Canada, Western Russia and Southern Australia [Fig. 1c]. Unlike the previously described variables,280

the 2m-temperature bias depends on whether the ocean is reconstructed or not. Just reconstructing the ocean temperature and

salinity (indirectOCEAN only) leads to small, negative and significant biases in the tropical Atlantic and West Pacific. Also North-

ern and Southern Africa as well as the Amazon and China is
::
are

:
subject to a small cold bias, whereas Saharan Africa and

Southeast Asia gets substantially warmer. The polar regions cool significantly [Fig. 1d]. Only reconstructing the atmosphere

(indirectATM only) leads to a warm bias nearly across the all oceans, but less cold bias over Northern and Southern Africa as well285

as China [Fig. 1e]. Combining atmosphere and ocean reconstruction (indirect) reduces the overall temperature bias, especially

over the oceans [Fig. 1f].

While the above explained biases are liabilities of reconstructions, the linear association measured by the Anomaly Corre-

lation Coefficient (ACC) clearly benefits from reconstruction. Reconstruction clearly recreates climate variability of the target290

[Fig. 1g-l]. The running 10-year correlation between the target and the reconstruction in atmospheric variables is in most grid

cells above 0.4 and significantly better than the randomly resampled
:::::::::
resampling threshold. Reconstruction over the oceans is

more successful in the tropics than in the extra-tropics, where the Northern and Southern Hemisphere mid-latitude westerlies

11



Figure 1. Spatial distribution of the bias (construction - target) (a-f) and anomaly correlation coefficient (ACC) (g-l) of different indirect

carbon cycle reconstructions relative to the target over 10-year running windows of annual means [see
:::::::
Appendix

:
A]. The reconstruction

metrics for 2m temperature are shown for the indirectATM only (d,j), indirectOCEAN only (e,k) and indirect reconstruction (f,l). Because of identical

reconstruction skill for all indirect methods, only the
::
one

:
indirect reconstruction is shown for other variables,

:
zonal westward 10m wind (a,g),

and meridional northward 10m wind (b,h), and precipitation (c,i).
:
Gray stippling shows where the metric exceeds the 95

:
5th (for a-f) or 5

::
95th

(for g-l) percentile threshold from random target block resampling, i.e. the reconstruction is statistically
:::
not significantly exceeding

::::
better

:::
than

:
internal variability.

have low, but still significant correlation. Generally, the atmosphere above the ocean is better reconstructed than above land
:
,

showing the stabilizing effect of an internally consistent ocean reconstruction on the atmosphere [Fig. 1g-l]. The Southern295

Hemisphere tropical convergence of winds is well reconstructed, but the meridional winds in central Canada and tropical

Africa are not significantly reconstructed [Fig. 1g]. Also zonal winds across North America, Southern Africa and Siberia have

low correlation with the target, but the tropical zonal winds are very well reconstructed [Fig. 1h]. Precipitation from the central

Atlantic over central Africa is worse reconstructed than the resampled threshold, also
:::::::::
resampling

:::::::::
threshold,

:::
and the extratropi-

cal westerlies have low correlation with the target [Fig. 1i]. Temperature is well reconstructed in the tropical oceans [Fig. 1j-l].300

12



Reconstructing both atmosphere and ocean (indirect) improves 2m temperature correlation better than only reconstructing a

single realm. The indirect carbon cycle reconstruction is significantly better than the resampled
:::::::::
resampling

:
threshold except in

central Africa, where the ITCZ shift changes the climate regime [Fig. 1l].

This physical bias due to reconstruction, especially in the tropics, can be explained by the sensitivity of atmosphere-ocean305

coupling to perturbation induced by nudging (Milinski et al., 2016).
::::::::::
Additionally

:::::::
nudging

:::
sea

:::::::
surface

:::::
height

::::::
might

:::::::
improve

::
the

::::::
ENSO

::::::::::
thermocline

::::::::
feedback

::::::::::::::
(Luo et al., 2017)

:
. The reconstruction of ocean and atmospheric variables is perfectly aligned

with the model climatology into that same model. Hence, the reconstruction error does not arise from inconsistent observations,

but from the perturbed interaction of atmospheric and oceanic dynamics. While reconstructing an increasing set of variables

shows that nudging can be an efficient way to reconstruct variability (Jeuken et al., 1996), this reconstruction is biasing the310

climate state in the tropics at the same time (also explained in Zhu and Kumar, 2018).

Nudging atmospheric and ocean dynamics including sea-ice all at once (indirect reconstruction), as is often done in state-

of-the-art carbon cycle prediction systems, brings large-scale improvements over random resampling and atmosphere-only

(indirectATM only) reconstruction, but strong regional biases remain [Fig. 1].

3.2 Reconstruction of the Oceanic Carbon Cycle315

3.2.1 Indirect Reconstruction of the Oceanic Carbon Cycle

How do these regional physical biases affect the reconstruction of oceanic carbon cycle? In order to assess the tracking perfor-

mance in the indirect reconstruction of the oceanic carbon cycle, we focus on air-sea CO2 flux and
::::::
surface

:::::::
oceanic

:::::
pCO2 ::

as the

state variable of the ocean carbon sinksurface ocean pCO2, which is the oceanic driver of air-sea CO2 flux (Lovenduski et al.,

2019b).320

Reconstructing only the atmospheric dynamics (indirectATM only) leads to strong positive biases across large parts of the

global ocean, which can be reduced by also reconstructing oceanic temperature and salinity (indirect) [Fig. 2a,b,d,e]. The

weakening of the Southern hemisphere westerly winds decreases the magnitude of air-sea CO2 flux, but more importantly

reduces the Southern hemisphere overturning circulation and upwelling of carbon-rich waters, which leads to increased South-

ern Ocean carbon uptake [Fig. 2b,e]. The intensification of easterly trade winds [Fig. 1b] strengthens upwelling and therefore325

higher pCO2 in the tropical Atlantic [Fig. 2b] (Lefèvre et al., 2013). The bias pattern of air-sea CO2 flux is dominated by the

bias of pCO2 (Lovenduski et al., 2019b) [Fig. 2b,e].

The variations in the oceanic carbon cycle, described by the correlation coefficient, are better reconstructed than the resampled

:::::::::
resampling

:
threshold. Indirect reconstruction of oceanic and atmospheric dynamics greatly improves tracking performance

over atmosphere-only indirectATM only reconstructionand .
::::
The

:::::::::
additional

::::::::::::
reconstruction

::
of

:::
the

:::::::
physical

::::::
ocean [

:::
Fig.

::::
1e,f] en-330

ables largely a correlation above 0.7 [Fig. 3b,e].
::::
Only

:::
the

::::::
carbon

:::::
cycle

::
in

:::
the

:::::::
tropical

::::::
oceans

::::::
remain

:::::::
difficult

::
to

::::::::::
reconstruct

:::
due

::
to

:::
the

:::::
strong

::::::
biases

::
in

::::::::::
atmospheric

:::::::::
circulation

:
[
:::
Fig.

::::::
1a,b,c]

:
.
::::
Note

::::
that

:::
the

:::
land

::::
and

::::::::::
atmospheric

::::::
carbon

::::
bias

:::
due

::
to

:::::::
indirect
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Figure 2. Spatial distribution of the bias between the target and different indirect carbon cycle reconstruction methods over 10-year running

windows of annual means [see
:::::::
Appendix

:
A]. Columns show the different carbon cycle reconstruction methods [see Tab.

::::
Table1]. Rows show

the different variables: the ocean carbon cycle is represented by (a-c) the partial pressure of surface CO2 in the ocean (pCO2) and (d-f) surface

air-sea CO2 flux (negative values indicate carbon uptake by the ocean); the land carbon cycle is represented by (g-i) the vegetation carbon

pools and (j-l) air-land surface CO2 flux (negative values indicate carbon uptake by land); and the atmospheric carbon is represented by (m-o)

the atmospheric CO2 mixing ratio (XCO2). Gray stippling shows where the bias exceeds the 5th percentile mean absolute error threshold

from random target block resampling, i.e. the reconstruction is statistically
::
not

:
significantly different to

::::
better

:::
than

:
internal variability.

:::::::::::
reconstruction

:::
are

:::::::::
discussed

::
in

::::::::
subfigures

::::
2g-o

:::
in

::::::
sections

:::
3.3

::::
and

::::
3.4).
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Figure 3. As Fig. 2 but for the anomaly correlation coefficient (ACC). Gray stippling shows where the ACC exceeds
::
is

::::
lower

::::
than the 95th

percentile ACC threshold from random target block resampling, i.e. the reconstruction is
:::
not significantly different to

::::
better

:::
than

:
a
:::::::::
resampling

internal variability
::::::
threshold.

3.2.1 Direct Reconstruction of the Oceanic Carbon Cycle335

Next, we compare the previously shown indirect carbon cycle reconstruction with direct carbon cycle reconstruction by nudging

dissolved inorganic carbon (DIC) and alkalinity (ALK) towards the target.

While direct oceanic carbon cycle reconstruction reduces the magnitudes of the bias across the ocean, biases are still evident

[Fig. 2c,f]. These biases are caused by the physical biases, which the dynamical oceanic carbon cycle model is sensitive to.
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Figure 4. Evolution in global annual mean of (a) surface ocean pCO2 (b), air-sea surface CO2 flux (negative values indicate carbon uptake by

the ocean) (c), vegetation carbon pools (g-i), air-land surface CO2 flux (negative values indicate carbon uptake by land) (d) and atmospheric

CO2 mixing ratio (e). The target (gray) is quite well tracked by the indirect (green) and direct (orange) carbon cycle reconstruction. The solid

line shows the different reconstruction simulations, the dashed lines show the initialized ensembles started from the different reconstructions.
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Hence, the biased ocean physics inhibits additional improvements in tracking performance from direct ocean carbon recon-340

struction.

Direct oceanic carbon cycle reconstruction improves the already high correlations across the oceans [Fig. 3c,f]. The resampled

:::::::::
resampling threshold is surpassed nearly everywhere. Only coastal areas, especially in the Eastern tropical Atlantic with strong

wind and precipitation biases, have a correlation below 0.7.

345

Section 3.2 shows how well indirect and direct reconstruction of the ocean carbon cycle work
:::::
overall. While the direct

reconstruction has larger biases, it also brings even
::::::
slightly

::::::
larger

:::::
biases

::
in

::::::
air-sea

::::
CO2::::

flux,
:::::
direct

::::::::::::
reconstruction

::::
also

::::::
brings

higher correlation.
::::
Note

::::
that

::
the

::::
land

::::
and

::::::::::
atmospheric

::::::
carbon

::::
bias

:::
due

::
to

:::::
direct

::::::::::::
reconstruction

:::
are

::::::::
discussed

::
in

:::::::::
subfigures

::::
2g-o

::
in

::::::
sections

:::
3.3

::::
and

::::
3.4).

:

3.3 Reconstruction of the Land Carbon Cycle350

3.3.1 Indirect Reconstruction of Land Carbon Cycle

How do these regional physical biases affect the reconstruction of the land carbon cycle? In order to assess the tracking

performance in the best indirect reconstruction of the land carbon cycle, we focus on the state variable cVeg, which represents

carbon storage in vegetation (leaves, stems, roots) and drives air-land CO2 flux and hence the land carbon sink.

For the land carbon cycle, the reconstruction of the ocean temperature and salinity did not matter, when atmospheric tem-355

perature was also reconstructed [Figs. 2, 3]. Indirect reconstruction leads to biases compared to the target in carbon storage,

and in particular cVeg [Fig. 2g,h], as the land carbon cycle is very sensitive to changes in atmospheric circulation, which are

strongest in the tropics due to the ITCZ shift. In the Amazon and Southern Africa, the air-land CO2 bias increases, most likely

caused by the strong positive precipitation bias in these regions [Fig. 1c; 2j,k]. Conversely, the carbon sink in Southeast Asia

and central Africa has a carbon release bias due to less precipitation and a warm bias [Fig. 2j,k].360

The reconstruction correlations in the land carbon cycle are much lower than for the oceanic carbon cycle. cVeg is well

reconstructed in the extratropics, but the biases in the tropics result in correlations with the target lower than the resampled

:::::::::
resampling threshold [Fig. 3g,h]. Air-land CO2 shows the same patterns with lower correlations, which are below the resampled

:::::::::
resampling threshold in the tropics [Fig. 3j,k].

365

3.3.1 Direct Reconstruction of the Land Carbon Cycle

Direct reconstruction of the land carbon cycle, which is here performed by resetting all restart files of the land carbon sub-

model to the target every Jan 1st, greatly enhances tracking performance of cVeg by simulation design. A sensitivity analysis

for less frequent resetting can be found in the supplementary information [section D].

370
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This direct resetting reconstructs cVeg much better than the resampled
:::::::::
resampling

:
threshold in the extra-tropics. However,

the physical climate biases during the course of a year even introduce cVeg biases stronger than the resampled
:::::::::
resampling

threshold in the tropics [Fig. 2i]. Also, the biases in the air-land CO2 flux are not improved [Fig. 2l], which indicates that this

hard reset of restart files introduces a shock to the dynamical land model.

On the other hand, correlations in cVeg and air-land CO2 flux increased to above 0.5 everywhere expect in the tropics, where375

the ITCZ shift changes the climate regime [Fig. 3i,l].

Section 3.3 shows the direct land carbon cycle reconstruction yields stronger correlation improvements than ocean direct

carbon cycle reconstruction, because the indirect reconstruction of the ocean was already quite good. Direct reconstruction

reduces biases in land carbon cycle state variables, but the resulting air-land CO2 flux biases becomes worse.380

3.4 Reconstruction of the Global Carbon Cycle and Atmospheric CO2

Tracking performance for prognostic atmospheric CO2 integrates the air-sea and air-land CO2 fluxes over time (Spring and

Ilyina, 2020; Spring et al., 2020). As atmospheric CO2 mixes fast across the globe, we first examine globally aggregated

quantities driving globally averaged atmospheric CO2 [Fig. 4].

3.4.1 Indirect Reconstruction of the Oceanic and Land Carbon Cycle385

We first examine the indirect reconstruction represented by the green error bars in figure C1.

:::::
figures

::
5
::::
and

:::
C1.

:
The indirect reconstruction has a negative bias in global pCO2 in the annual mean , which is negative

in boreal winter and positive in boreal summer, indicating that the reconstruction intensifies the seasonal cycle [Fig. E1
::::
Figs.

::
4a,

:::
5a]. This bias is mostly larger the resampled

:::::::
slightly

:::::
higher

::::
than

::::
the

:::::::::
magnitude

::
as

:::
the

::::::::::
resampling mean absolute error

threshold, which resembles the temporal standard deviation [Fig. C1
:
5a]. The global oceanic CO2 flux is low biased but within390

the resampled threshold
::::::::
resampling

::::::::
threshold

:::::::::
magnitude

:::::
range

:
[Fig. C1

::::
Figs.

:::
4b,

::
5d].

On the other hand, the variations of the global oceanic carbon cycle measured by ACC are well reconstructed surpassing the

resampled
:::::::::
resampling threshold [Fig. C1

:
5b,e].

The accuracy or distance measured by root mean squared error (RMSE) has strong seasonal errors especially in boreal

winter up to 1.3 ppm. When biases are persistent, they can be reduced by a bias reduction procedure, which is often done when395

applying climate model output to a real-world application. After applying a simple mean bias reduction, RMSE is well below

the resampled threshold at below 0.5 ppm
:::::::::
resampling

::::::::
threshold [Fig. C1

:
5c,f].

The indirect reconstruction also leads to biases in the land carbon cycle [
:::
Fig.

::::
4c,d]. Vegetation carbon pools have a

::::::
(cVeg)

::::
have

:
a
::::::
strong positive bias much larger than the resampled threshold

:::::::::
resampling

:::::::
threshold

:
[
:::
Fig.

::
4c]. The bias of global air-land400

CO2 flux only surpasses the resampled threshold in August, September and November, reducing the global seasonal cycle by

25% Fig. C1j
:
is

::::
very

:::::
small

::
in

:::
the

::::::
annual

:::::
mean.

:
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Global
:::::
annual

:
cVeg has a 0.5 correlation with the target, which is lower than the resampled 0.7 correlation. The 10-year

running correlation also with a large range of ±0.3.
:::::::::
resampling

::::::::
threshold.

:
Global air-land CO2 is

::::::::
variations

:::
are

:
well recon-

structed surpassing the resampled
:::::::::
resampling

:
threshold [Fig. C1

:
5h,k].405

Without bias reduction, accuracy measured by RMSE is worse than the resampled
:::::::::
resampling cVeg threshold. After bias

reduction, cVeg accuracy is still slightly worse than the threshold, but accuracy improved
:::::::
improves

:
from 5 PgC to

:::::
below

:
1

PgC. ,
:::::
which

::
is
:::
the

:::::::::
magnitude

:::
of

:::
the

:::::::::
resampling

::::::::
threshold

:
[
:::
Fig.

:::
5i] Global air-land CO2 flux accuracy is below the threshold

until June and up to 0.3 PgC/month. But again when applying the bias mean reduction, tracking accuracy is always below the

resampled threshold at 0.1 PgC/month
:::::::::
resampling

::::::::
threshold

:
[Fig. C1i,l].410

Global atmospheric CO2 has larger variations in reconstruction skill, depending on which 10-year chunk is used to calculate

the metric. And the skill has a nearly constant level throughout the year [
:::
Fig.

::::::
C1m-o]]. The mean bias is close to zero [Fig.

C1
::::
Figs.

:::
4e,

::
5m]. Correlation with the target is above 0.7 and slightly above the resampled

:
in

:::
the

::::::
range

::
of

:::
the

::::::::::
resampling

threshold [Fig. C1n]. Accuracy is at 0.7 ppm slightly above the threshold, but below the threshold at
::
in

:::
the

:::::
range

:::
of

:::
the

::::::::::
remsampling

:::::::::
threshold.

:::::
Mean

::::
bias

::::::::
reduction

::::::::
improves

:::::::
accuracy

::
to

::::::
below 0.5 ppm after mean bias reduction

:::
ppm

:
[Fig. C1

:
5o].415

Understanding the tracking performance of the ocean and land carbon cycle, we can now evaluate the spatial distribution

of globally averaged atmospheric CO2. Reconstructing only the atmosphere warmed the globe and also increased atmospheric

CO2 globally [Figs. 1k, 2m]. Reconstructing additionally also the ocean keeps the temperature stable, but introduces a less

than 1 ppm low bias across the Southern Hemisphere, reflecting the higher uptake of the Southern Ocean carbon sink and the

Southern Hemisphere land carbon sink [Fig. 2e,k,n]. The variations in atmospheric CO2 are well reconstructed with correla-420

tion coefficients above 0.6 in the Southern Hemisphere, but across the Northern extra-tropics and the land regions with strong

physics biases correlation is at 0.5 below the resampled
:::::::::
resampling threshold [Fig. 2m,n].

3.4.1 Direct Reconstruction of the Oceanic and Land Carbon Cycle

Now, we assess the potential improvements in the global carbon cycle due to direct reconstruction of the global carbon cycle425

variables shown in orange in figure
:::::
figures

::
5

:::
and C1.

The global ocean carbon cycle improves after direct DIC and alkalinity reconstruction [
:::
Fig.

:::
5a]. Monthly biases remain but

are now within the resampled
:::::::::
resampling threshold [Fig. C1a]. Correlation improved

:::::::
improves

:
from 0.8 to above 0.9 in surface

pCO2. Air-sea CO2 did
:::::::::
correlation

::::
does not improve, but only because of correlations above 0.9 for the indirect reconstruction

were already very high [
:::
Fig.

:::
5b]. Correlation for boreal winter is above 0.95, indicating that initial conditions in winter are430

well reconstructable to initialize forecasts with for the oceanic carbon sink [Fig. C1b]. Direct reconstruction improves pCO2

accuracy to 0.3 ppm
:::
0.2

::::
ppm.

:::::
Mean

::::
bias

::::::::
reduction

:::
can

::::::
hardly

:::::::
improve

:::::::
accuracy

::::
after

:::::
direct

::::::::::::
reconstruction

:
[Fig. C1

:
5c].

::::::
Air-sea

::::
CO2 :::

flux
::::::::
accuracy

:::::::
degrades

::
in
::::::::::
comparison

::
to

:::::::
indirect

::::::::::::
reconstruction.

::::
This

::::::::::
degradation

::
is
::::::::
removed

::
by

:::
the

:::::
mean

::::
bias

::::::::
reduction

[
:::
Fig.

::
5f].

:

435
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All results for the direct reconstruction of the land carbon cycle must be understood in the context of the method chosen for

the direct reconstruction: Because we reset the restart files in Jan 1st to the target, the metrics are near to perfect in January by

design. However, then the biogeochemistry is not modified directly for twelve months and only follows the physical climate

reconstruction indirectly, so biases triggered by physical biases unaligned with the reset land biogeochemistry pools quickly

build up and may approach the metric of the indirect reconstruction. Likewise, there is no bias in global cVeg in January by440

design. The bias increases with the physical biases, until surpassing the resampled
:::::::::
resampling threshold in August increasing

until the end of the year [Fig. C1g].
::::::
Annual

:::::
cVeg

:::
bias

::
is
:::::::
strongly

::::::::
improved

:::
by

:::::
direct

::::::::::::
reconstruction

:
[
:::
Fig.

:::
5g].

:
Global air-land

CO2 flux has even a
:

stronger bias than the indirect reconstruction [Fig. C1
:
5j]. Correlation in the global cVeg is near perfect

in January by design and slowly decreases to 0.8 in December while still better than the resampled
::::::::
resampling

:
threshold [Fig.

C1h].
::::::
Annual

:::::
cVeg

::::::::
variations

:::
are

:::::
much

:::::
better

::::::::::::
reconstructed

::
by

:::
the

:::::
direct

:::::::
method

:::::::::
compared

::
to

:::
the

::::::
indirect

:
[
:::
Fig.

:::
5h]

:
. Global445

air-land CO2 flux maintains a 0.1 higher correlation than indirect reconstruction
::::::::
variations

:::::::
increase

:::
by

:::
0.2 [Fig. C1

:
5k]. Direct

reconstruction improves global cVeg accuracy. Accuracy is better than the resampled
:::::::::
resampling

:
threshold after mean bias

reduction. Direct reconstruction has worse
::::::
slightly

::::::::
improves

:
CO2 flux accuracythan the indirect, but after

:
.
:::::::::::
Furthermore,

::
a

mean bias reduction the accuracy is slightly better
::::::
slightly

:::::::
improves

::::::::
accuracy [Fig. C1

:
5i,l].

450

The global CO2 bias in the direction reconstruction increase
:::::
direct

::::::::::::
reconstruction

::::::::
increases

:
to +1.8 ppm [Fig. C1

:
5m], but

correlation increases from 0.7 to 0.9 [Fig. C1n]. The direct reconstruction has worse accuracy than the indirect due to the new

:::::::::
established bias, but after mean bias reduction the accuracy is slightly better at 0.4

:::::
below

:::
0.3

:
ppm [Fig. C1

:
5o].

How does direct carbon cycle reconstruction affect tracking performance in prognostic atmospheric CO2? Already the time

series indicate, that there is a 1-2 ppm atmospheric CO2 positive bias in the direct reconstruction [Fig. 4e]. This bias is very455

homogeneous over the oceans [Fig. 2o]. However, correlation strongly increased to 0.9 above the oceans and above 0.7 on

land except for central Africa with its persistent biases, where the reconstruction is not better than the resampled
:::::::::
resampling

threshold.

Section ??
::
3.4

:
shows that atmospheric CO2 follows the reconstructed land and ocean carbon cycle integrating their respective460

fluxes over time. The direct carbon cycle reconstruction introduces a large bias in the atmospheric CO2 distribution that the

indirect reconstruction did not suffer from, also
::::
even

:
after mean bias reduction [Fig. B3]. Globally averaged atmospheric

CO2 after direct reconstruction had a better accuracy tracking performance after the mean bias reduction, showing how global

aggregation can balance regional biases. The direct land and ocean carbon cycle reconstructions track target much better than

the indirect reconstruction, when measuring
:::::::
measured

:::
by correlation.465

Hence, in large, this first part showed how direct carbon cycle reconstruction improves linear association between recon-

struction and target (measured by ACC), but often increases biases degrading accuracy (measured by RMSE). Only after bias

reduction, accuracy improves with respect to the indirect carbon cycle reconstruction.
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Figure 5. 10-year running mean
::::
annual

:
reconstruction skill per month in bias (left), anomaly correlation coefficient (ACC, middle) and

root-mean-square-error (RMSE, right) for global aggregation of carbon cycle variables: (a-c) surface oceanic partial pressure of CO2, (d-f)

air-sea CO2 flux (negative values indicate carbon uptake by the ocean), (g-i) vegetation carbon pools, (j-l) air-land CO2 flux (negative values

indicate carbon uptake by land) and (m-o) mixing ratio of atmospheric CO2. Colors
:::::::
Errorbars show

:::
±σ

:::::::
standard

:::::::
deviation

::
of

:::
the

::::::
running

:::
skill

::::
over

::::
time.

:::::::
Columns

::::
show

:
different reconstruction methods: indirect (green) and direct (orange). Gray stars indicate perfect skill. Gray

dots mark
::
The

::::
gray

:::
bar

:::::
marks

::
the

::::::::
magnitude

::
of
:::
the

:
95th percentile for ACC and 5th percentile for the remaining distance-based metrics

:::
bias

:::
and

:::::
RMSE

:
of

:
a random reconstruction skill block-bootstrapped from the target control simulation as an unskillful referenceskill. Crosses

show reconstruction
::::
Gray

:::
stars

::::::
indicate

::::::
perfect skillof annual mean timeseries. Thin lines

::::
black

:::::::
errorbars

:::
with

::::::
crosses show monthly RMSE

skill after a mean bias reduction.
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4 Impact of Reconstruction on Global Carbon Cycle Predictive skill
::::
Skill

The second part of the paper assesses how predictive skill improves due to direct initialization of global carbon cycle variables.470

Specifically, we verify the RMSE between the five ensemble members initialized from the indirect and direct reconstructions

across all initializations based on raw and lead-time dependent bias corrected timeseries [Figs. 4, 6]. We also evaluate predictive

skill from a perfectly initialized ensemble, which are started from the perfect initial conditions taken from target simulation,

whereas the ensembles from reconstructed initial conditions are biased with respect to the target Fig. C1. Acknowledging

that our reconstruction simulation developed biases and that biases are commonly reduced by post-processing in predictability475

research, we also apply a simple lead-time dependent mean bias reduction to the initialized ensembles to show whether skill

improvements go beyond what a simple post-processing could deliver. This initialized predictive skill is also compared with

uninitialized ensembles randomly generated from the target simulation representing ensembles without common initialization

and hence no memory. This uninitialized reference skill is used in predictability research community to assign whether the

skill increase stems from initialization.480

4.1 Oceanic Carbon Cycle

The RMSE between the initialized ensembles and the target simulations in annual globally-averaged pCO2 continuously in-

creases from lead year one to lead year three as expected. While perfectly and indirectly initialized ensembles stay below

the resampled
:::::::::
resampling uninitialized threshold for the first two lead years indicating that global pCO2 is predictable due to

initialization [Fig. 6a], the direct initialization has a larger error due to the offsets in global atmospheric CO2, which pCO2485

tries to equilibrate to [Fig. 4e]. Therefore this persistent bias causes lead year three to be not predictable. A simple mean bias

reduction resolves this issue making all three lead years predictable. Direct initialization only beats indirect initialization for

lead year one with RMSE of 0.35±0.05 ppm versus 0.45±0.05 ppm [Fig. 6f].

Global air-sea CO2 :::
flux

:
is predictable for three years in all initialization methods, which is one year longer than in Spring

and Ilyina (2020), possibly because here we use more and more equally distributed initialization dates. Direct initialization490

is advantageous over the indirect initialization, because the initial lead offset is smaller (0.14±0.01 PgC/year vs 0.18±0.02

PgC/year) [Fig. 6b]. The simple mean bias reduction improves skill of the non-perfect initializations to identical magnitudes

[Fig. 6g].

4.2 Land Carbon Cycle

Indirect initialization makes cVeg not predictable. The physical reconstruction biases drive to larger errors in lead year one than495

in later lead years, also to a lesser extent for the direct reconstruction where some biases are corrected. But both reconstructed

initialized ensembles show decreasing distances towards the target, whereas increasing distances are expected for vanishing

predictive skill as in the perfectly initialized ensembles [Fig. 6c]. Mean bias reduction eliminates the differences between direct

and perfect reconstruction making both predictable unlike the indirect reconstruction [Fig. 6h].
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Figure 6. Predictive skill measured by
::::
(a-e) root-mean-square-error (RMSE)

:
,
:::
(f-j)

:::::
RMSE

::::
after

::::
bias

:::::::
reduction

:::
and

::::
(k-o)

::::::
anomaly

:::::::::
correlation

::::::::
coefficient

:::::
(ACC) between the initialized ensemble mean and the target as a function of lead year for different initialization setups: perfect

indicating no reconstruction and hence perfect initial conditions to predict the target (gray), indirect (green) and direct (orange). Columns

show global variables: for the ocean carbon cycle (a) oceanic surface pCO2, (b) air-sea CO2 flux; for the land carbon cycle (c) total land

carbon pools, (d) air-land CO2 flux and in the atmosphere (e) atmospheric CO2 mixing ratio. (f-j) show RMSE-based predictive skill as (a-e)

after mean bias reduction. Initialized ensembles are resampled with replacement (N=500) along the initialization dimension to account for

initialization sampling uncertainty (see Spring and Ilyina, 2020), where errorbars show the resampled initialization skill uncertainty (±1σ).

Uninitialized ensembles, shown at lead 0, are resampled from the target control simulation and show the reference skill without initialization.

Global air-land CO2 flux is predictable for three years, again one year longer than found in Spring and Ilyina (2020). Both500

reconstructed initializations start with a higher error of 1.1±0.2 PgC/year in lead year one compared to perfect initialized

0.7±0.1 PgC/year [Fig. 6d]. Mean bias reduction brings non-perfect initializations within the error bars of the perfect initial-

ization after lead year one [Fig. 6i].
:
A

::::::
recent

:::::::
analysis

:::::::
focused

::
on

::::::::::::
process-based

::::::::::::
understanding

::
of

::::
land

::::::
carbon

::::::::::::
predictability

::::
using

::::::::
JSBACH

::::::::
indicates

:::
that

::::
soil

::::::::
moisture

::
as

::::
well

::
as

::::
soil

::::::
carbon

::::::
storage,

:::::
both

:::::::::::
reconstructed

:::
by

:::
the

:::::
direct

:::::::
method,

::::::::
influence

::
the

:::::::
air-land

::::
CO2::::

flux
::
at

::::
most

::::::::::::::::::::::::::::
(Dunkl et al., 2021, under review).

:
505
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4.3 Atmospheric CO2

Perfect and indirect initialization atmospheric CO2 predict the target for three years as found in Spring and Ilyina (2020). While

the perfect initialization error grows continuously from zero, the indirect initialization error stays nearly constant at 0.7±0.1

ppm, but below the initialized. The
:::
the

::::
error

:::::
stays

:::::
below

:::
the direct initialization error,

::::::
which suffers from the bias in the

:::::
direct

reconstruction simulation [Fig. 6e]. Mean bias reduction improves RMSE, making direct initialization better but still within the510

margins of the indirect initialization. After lead year one, indirect and direct initializations are similar to perfect-initialization

predictive skill at 0.7 ppm [Fig. 6j].

:::
The

:::::::
anomaly

::::::::::
correlation

::::::::
coefficient

::::::::
measures

::::
how

::::::::::
predictable

::::::::
variations

:::
are

:::
and

::
is

::::::::::
independent

::
of

:::
the

:::::
mean

::::
bias [

:::
Fig.

::::
6k-o]

:::::::::::::::::::::::::
(Jolliffe and Stephenson, 2011)

:
.
:::::::::
Measuring

::::::::
predictive

::::
skill

::::
with

::::
ACC

::::::
shows

::::
very

::::::
similar

::::::::
behaviour

::::::
across

::
all

::::::::
variables.

::::::
While515

::::::
perfect

::::::::::
initialization

::
is
::::
best

::::::::::
predictable,

:::::::
indirect

:::
and

:::::
direct

::::::
carbon

:::::
cycle

:::::::::::
initialization

:::
are

:::::
fairly

::::::
similar.

:::::::::
Predictive

:::::
ACC

::::
skill

:::::
seems

::
to

:::::::
saturate

::::
after

::::
lead

::::
year

::
2.

These initialized predictive skill results show that indirectly initialized ensembles predict the target quite reasonable
:::::::::
reasonably.

Direct initialization suffers strong shocks in some variables, when reconstruction is started and stopped, but these shocks can be

partly reduced by a mean bias reduction. The improvements of direct reconstruction over indirect reconstruction in the global520

carbon cycle predictive skill after bias reduction are not significant
:
,
:::::
except

:::
for

:::::::::
vegetation

::::::
carbon

:::::
pools

::::::
(cVeg) [Fig. 6f-j].
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5 Summary and Conclusions

In this study, we assess how well the global carbon cycle is reconstructed in an ESM and how well a ground truth target

simulation can be predicted by these initializations.

The main limitation of land carbon cycle reconstruction potential is the hard reset of restart files which is fundamen-525

tally different to the dynamical nudging applied for ocean and atmospheric physics. Our study represents a first attempt to

quantify whether initial conditions reconstruction in land carbon cycle is indeed needed for addressing predictive skill of

the global carbon sinks and atmospheric CO2 concentration. For a real-world application, our direct land carbon reconstruc-

tion method cannot
:::::
should

::::
not be used.

::
In

:::::::
practice

:::::::
satellite

:::::::
products

:::
of

::::::
carbon

:::::
cycle

::::::::
variables

:::::
could

:::
be

::::::::::
assimilated

::::
into

::
the

::::::
model

:::::::::::
periodically

::
or

::
at
:::::

each
::::
time

:::::
step.

::::::::
However,

::::
just

:::::
strong

:::::::::::
interference

::::
with

:::
the

::::::
model

::::
will

:::::
likely

::::::
result

::
in

::::::
strong530

:::::
drifts,

:::::::::
especially

::
in

:::::::::
dependent

:::::::::
variables.

:::
For

::::::
useful

:::::::::
real-world

:::::::::::
applications

::
of

::::
land

:::::::
carbon

:::::
cycle

:::::::::::
assimilation,

:::::::::
sequential

::::::::::::::::::::::::::::::::::::::::::::::::
(Evensen, 1994; Balmaseda et al., 2007; Zhang et al., 2007)

::
or

:::::::::
variational

:::::::::::::::
(Han et al., 2004)

:::
data

::::::::::
assimilation

:::::::::
techniques

:::::
could

::
be

::::
used

:::
for

:::::::::::
initialization.

:::
But

::::
still

::
the

::::::::
problem

::
of

:::
data

::::::::::
availability

:::
for

::
the

:::::::::
reforecast

:::::
period

::::::::
remains.

:::::
Haney

::::::::::::
reconstruction

::
is

:::
the

:::::::
simplest

::::::::
approach

::
to

::::
data

::::::::::
assimilation

:::::::
allowing

::::
little

:::::::::
flexibility

::
to

:::
the

::::::
model.

:::::
Many

::::::
centers

:::
are

::::
now

:::::::::::
transitioning

:::::::
towards

:::
the

::::::::
ensemble

::::::
Kalman

:::::
filter

::::
data

::::::::::
assimilation

:::::
which

::::::
allows

:::::
more

:::::::::
variability

::::::::::::::::::::::::::::::::::
(Park et al., 2019; Brune and Baehr, 2020)

:
.
::::::::
Applying535

::::
such

:::::::::
techniques

::
to

:::
the

::::::
carbon

::::
cycle

::::
may

::::
lead

::
to

:::::
better

::::::::::::::
reconstructions.

:
A
:::::
final

::::::::
limitation

::
of

:::
the

::::::
method

::
is
::::
that

:::
we

:::
use

:
a
::::::
model

::
to

:::::::::
reconstruct

::
to

:::::
itself.

::::::::
Therefore

:::
we

:::
do

:::
not

::::
have

::::
any

::::::::
structural

:::::::::
uncertainty

:::::
other

::::
than

:::
the

::::::::::::
reconstruction

::::::
method

:::::
itself

:::
and

:::
no

::::::::
processes

::::::
missing

::
in

:::
our

::::::::::
framework.

:::::
When

::::::::::::
reconstructing

:::
the

:::
real

::::::
world,

:::
our

:::::
model

:::::
lacks

::::::::
processes

:::
and

:::::::::
resolution

::::::::::
contributing

::
to

::::::::
structural

:::::::::
uncertainty.

:

We find that reconstruction, which is an interference into the freely evolving model, leads to biases in physical climate.540

Because of its sensitivity to physical climate, the global carbon cycle is heavily biased itself by these physical biases. In

ESMs, first the atmosphere, then the ocean and only then the carbon cycle is equilibrated and tuned for pre-industrial control

conditions. Once reconstruction slightly modifies the mean state in the physical climate, the sensitive carbon cycle deviates

from the near-equilibrium state. A previous study reported biases after reconstruction (Zhu and Kumar, 2018). Yet, to our

knowledge, we present the first attempt at reconstructing in a perfect-model framework, where no biases due to climatology545

differences are expectable. Zhu and Kumar (2018) also mention that reconstruction ability likely depends on the model and

application area, hence there seems to be no out-of-the-box solution for all ESMs.
:::::::
However,

::::::::::
additionally

:::::::
nudging

:::
sea

:::::::
surface

:::::
height

::::::
might

:::::::
improve

:::
the

::::::
ENSO

::::::::::
thermocline

::::::::
feedback

::::::::::::::
(Luo et al., 2017)

:
.

We furthermore find that the commonly used indirect reconstruction of carbon cycle, in which only climate physics are

reconstruct
::::::::::
reconstructed

:
and the carbon cycle follows indirectly, tracks

::
the

:
target reasonably well. A randomly resampled550

:::::::::
resampling threshold corresponding to internal variability is surpassed across large parts of the globe. Only the areas with strong

physical and consequently carbon cycle biases miss that benchmark occasionally. For the ocean carbon cycle, the initialization

:::::::::::
reconstruction

:
of the physical ocean fields is critical to reconstruct initial conditions

:::::
carbon

:::::
cycle

::::::
initial

:::::::::
conditions,

::::::
which

::::::
explain

::::
why

::::::
current

:::::::::::::
state-of-the-art

::::::
carbon

::::
cycle

:::::::::
prediction

:::::::
systems

::::
have

::::
skill

::::::
despite

:::
not

::::::::::
initializing

:::
the

:::::
ocean

::::::
carbon

:::::
cycle

::::
with

:::::
ocean

::::::
carbon

::::
cycle

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Séférian et al., 2014; Park et al., 2018; Li et al., 2019; Lovenduski et al., 2019b).555
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Direct reconstruction of ocean and land carbon cycle improves bias, association and accuracy on a grid cell level, but aggre-

gated on the global scale, direct reconstruction does not improve over the indirect reconstruction significantly. Also after a mean

bias reduction, which is a common post-processing technique applied to model output for real-word use, accuracy measured

in RMSE after direct reconstruction is only slightly better, often still overlapping with indirect reconstruction. Because the ad-

vantage of direct reconstruction can similarly be achieved by a simple mean bias reduction, we label these direct reconstruction560

improvements trivial with respect to the indirect method on the global scale.
::::
More

::::::::
advanced

::::
data

::::::::::
assimilation

::::::::
methods

::::
may

::::
yield

::::::
better

::::::::::::
reconstruction

::::
skill

:::
for

:::
the

::::::
carbon

::::
cycle

::::::::::::::::::::::::::::::::::::::::::::::::::
(Han et al., 2004; Balmaseda et al., 2007; Zhang et al., 2007).

:

When the success of atmospheric CO2 reconstruction is evaluated, caution is needed. Reconstruction of the ocean and land

carbon sink can easily introduce offsets from the target, because reconstruction violates conservation of mass by creating or

erasing carbon. This can easily lead to offsets in the sinks which quickly accumulate in atmospheric CO2. If CO2 reconstruction565

is the focus, i.e. in reconstructing the transient climate from CO2 emission, and offsets appear, adjustments of atmospheric CO2

might be needed to correct for these offsets. However, we find that these offset biases are only of the order of 1-2 ppm in a

perfect-model framework, which is small compared to the range of carbon feedbacks seen in atmospheric CO2 in transient

simulations. Hence, these offsets due to the restart files are not in
:::
our focus. Rather,

:
equilibrated land and ocean carbon sinks

with reconstructed climate determine realistic reconstructed atmospheric CO2.570

In the second part, we find that predictive skill after indirect initialization is similarly good as after direct initialization.
::::
This

:::::
means

::::
that

::::::
oceanic

:::::::
carbon

::::
cycle

::::::
initial

:::::::::
conditions

:::
are

:::::
much

:::
less

:::::::::
important

:::
that

::::::::
physical

:::::
ocean

:::::
initial

:::::::::
conditions

:::
for

:::::::
oceanic

:::::
carbon

:::::
cycle

::::::::::
predictions,

::::::
which

::::::::
confirms

:::
the

:::::::
findings

::
of

:::::::::::::::::::
(Fransner et al., 2020).

:
Reconstructed initialized predictive skill is

close to perfectly initialized predictive skill after mean bias reduction, especially after lead year one.

Because the improved global predictive skill after direct reconstruction can similarly be achieved by a simple mean bias575

reduction and predictive skill after both reconstructions mostly overlaps, we label these direct reconstruction predictive skill

improvements trivial, with respect to the indirect method on the global scale.
::::
This

:::::
result

::
is

::::::
similar

::
to
::::::::::::::::::

Fransner et al. (2020)
:
,

:::
who

::::
find

::::
that

:::::
ocean

::::::
carbon

:::::
cycle

:::::
initial

:::::::::
conditions

::::::
matter

:::::
much

:::
less

::::
than

:::::::
physical

::::::
ocean

:::::
initial

:::::::::
conditions

:::
for

::::::
annual

::::::
carbon

::::
cycle

::::::::::
predictions.

:

We conclude that the indirect carbon cycle reconstruction serves its purpose .
::
of

::::::::::::
reconstructing

::::::::
variation

::
in

::
the

::::::
global

::::::
carbon580

:::::
cycle.

::::::::
However,

:::
our

:::::
study

:
is
::::::::
designed

:::
and

:::::::::
conducted

::
in

::
an

::::::::
idealized

:::::::::
framework.

::::::
When

:::::::::
transferring

:::
our

::::::
results

::::
into

::::::::::
assimilation

::
of

:::::::::
real-world

::::::::::
observations

::::
and

::
its

:::::::::::
implications

::
on

::::::::::::
predictability,

::::::::
structural

:::::::::::
uncertainties

::::::
(model

::::::::
resolution

::
in
:::::

space
::::

and
:::::
time)

:::
and

:::::::
missing

::::::::
ecosystem

::::::::
processes

:::::
need

::
to

::::::::::
additionally

::
be

::::
dealt

:::::
with.

::::::
Future

::::::
studies,

:::::::::
especially

::::
those

::::::
aiming

::
to

:::::::
address

:::::::
regional

::::::
marine

::::::::::
ecosystems,

:::::
could

:::::::
consider

::
a
:::::
wider

:::::
range

::
of
:::::::::::

assimilation
:::::::::
techniques

::::
and

::::
data

:::::::
breadth.

:::::::::::
Furthermore,

:::::
more

::::::::
advanced

:::
data

::::::::::
assimilation

:::::::::
techniques

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Evensen, 1994; Han et al., 2004; Balmaseda et al., 2007; Zhang et al., 2007)

:::::
should

:::
be

::::::::
explored.585

Reducing the physical climate bias with its consequences for the carbon cycle holds more potential for improvements in initial

conditions and predictive skill than direct carbon cycle initialization (Saito et al., 2011; Lee and Biasutti, 2014; Hua et al.,

2019).

Our
:::::::::::
Nevertheless,

:::
our

:
results add confidence to the current practice of indirect reconstruction in carbon cycle prediction

systems (Ilyina et al., 2021).590
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:::
We

::::
now

::::::
provide

:
a
:::::::::::
climatology

:::::
figures

:::
G1

::::
and

:::
G2

::
in

:::
the

::::::::::::
supplementary

:::
for

::::::
context

::
of

:::
the

::::::
biases.

:

Code and data availability. Forecast verification was performed with the python package CLIMPRED (Brady and Spring, 2021) [https:

//github.com/pangeo-data/climpred/], which was co-developed with Riley X. Brady from University of Colorado, Boulder. Scripts and data

to reproduce this analysis are archived in http://hdl.handle.net/21.11116/0000-0007-A697-3.595
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Appendix A: Metrics

A1 ACC

The anomaly correlation coefficient (ACC) assesses the synchronous evolution over time of the forecast, here reconstruction

x(t) and the reference, here target x̂(t), (Jolliffe and Stephenson, 2011) and is defined as:

ACC(x(t), x̂(t)) =
cov(x(t), x̂(t))√

var(x(t)) · var(x̂(t))
=

1
T

∑T
t=1(x(t)−x(t))(x̂(t)− x̂(t))√∑T

t=1(x(t)−x(t))2

T ·
√∑T

t=1(x̂(t)−x̂(t))2

T

. (A1)600

A2 RMSE

In the initial conditions reconstruction part, the root-mean-square-error (RMSE) measures the second-order distance between

forecast x(t), here reconstruction x(t) and the reference, here target x̂(t), (Jolliffe and Stephenson, 2011) and is defined as:

RMSE(x(t), x̂(t)) =

√∑T
T=1(x(t)− x̂(t))2

T
. (A2)

As a predictability metric, the root-mean-square-error (RMSE) measures the second-order distance between forecast x(t)605

and the target x̂(t) over lead time t (Jolliffe and Stephenson, 2011). RMSE is calculated over all initialisations N and every

member M is used as a forecast and verified against the target. RMSE is defined as:

RMSE(x(t), x̂(t)) =

√∑N,M
i,j=1(xi,j(t)− x̂j(t))2

NM
. (A3)

A3 Bias

We set the target as the ground truth. Therefore any deviation from the reconstructions x(t) to the target x̂(t) is seen as a bias,610

analogous to the bias between a model simulation (reconstruction) and observations (ground truth).

bias(t) = x(t)− x̂(t) (A4)

A4 Removing the Bias

After removing the mean bias from reconstruction x(t) and target x̂(t), the RMSE is also calculated as debiased RMSE.

RMSEdebiased(t) =RMSE
(
(x(t)−x(t), x̂(t)− x̂(t)

)
(A5)615

A5 Running Metric

We calculate the mean tracking performance (mtp) over time for all metrics as a running mean over s= 10 years. This reflects

that reconstructions are supposed to reconstruct the given climate states within months to a couple of years and the metric

should not be prone to long-term trends that are not captured by the reconstruction. We ignore the first c= 10 years (out of
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tmax = 48 years) of reconstruction, where the model experiences an initial shock after adjusting to the new reconstructed620

climate (Kröger et al., 2017).

tpm(metric) =
1

tmax − s− c

tmax−s∑
t=c

metric(x(t=t..t+s), x̂(t=t..t+s)) (A6)

A6 Resampled
::::::::::
Resampling

:
Threshold

To get an estimate of random tracking performance due to internal variability, i.e. how well one 10-year chunk tracks just

another random 10-year chunk, we randomly resample 10-year chunks from the target simulation and apply the same tracking625

metrics. As a baseline skill from this random resampling in the figures, we take the 95% threshold for ACC and the 95% for

the remaining distance-based metrics to ensure that the tracking performance from a reconstruction simulation is only worse

compared to one out of 20 randomly resampled 10-year chunks.
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Appendix B: Reconstruction RMSE Maps

Figure B1. As Fig. 1 but for Root-mean-square-error (RMSE) (a-f) and for RMSE after bias reduction (g-l).

30



Figure B2. As Fig. 2 but for the Root-mean-square-error (RMSE). Gray stippling shows where the RMSE is worse than the 5th percentile

RMSE threshold from random target block resampling, i.e. the reconstruction is not statistically significantly
::::
better

:
compared to internal

variability.
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Figure B3. As Fig. B2 but for Root-mean-square-error (RMSE) after bias reduction.
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Appendix C:
:::::::
Monthly

:::::::
Global

::::::::
Tracking

:::::::::::
Performance630

::
In

::::
order

:::
to

::::::
explain

:::
the

:::::
effect

::
of

:::
the

::::::
direct

::::::::::::
reconstruction

::
in

:::
the

::::
land

::::::
carbon

:::::
cycle

::
on

::::::
global

::::::::::::
reconstruction

:::::::::::
performance,

::::
Fig.

::
C1

::::::
shows

:::
the

:::::::
tracking

::::::::::
performance

:::
on

:::::::
monthly

:::::::::
timeseries,

:::::::
whereas

::::
Fig.

:
5
:::::
show

::::
only

::::::
results

:::
for

:::::
annual

::::::::::
timeseries.
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Figure C1.
::::::
10-year

::::::
running

:::::
mean

:::::::::::
reconstruction

::::
skill

::::
per

:::::
month

::
in
::::

bias
:::::

(left),
:::::::

anomaly
:::::::::

correlation
::::::::
coefficient

::::::
(ACC,

::::::
middle)

::::
and

:::::::::::::::::
root-mean-square-error

::::::
(RMSE,

:::::
right)

::
for

:::::
global

:::::::::
aggregation

::
of
::::::
carbon

::::
cycle

::::::::
variables:

:::
(a-c)

::::::
surface

::::::
oceanic

:::::
partial

:::::::
pressure

::
of

::::
CO2,

::::
(d-f)

:::::
air-sea

:::
CO2::::

flux
:::::::
(negative

:::::
values

::::::
indicate

:::::
carbon

:::::
uptake

:::
by

::
the

::::::
ocean),

::::
(g-i)

:::::::
vegetation

::::::
carbon

:::::
pools,

:::
(j-l)

::::::
air-land

:::
CO2::::

flux
:::::::
(negative

:::::
values

::::::
indicate

:::::
carbon

:::::
uptake

:::
by

::::
land)

:::
and

:::::
(m-o)

::::::
mixing

:::
ratio

::
of
::::::::::

atmospheric
::::
CO2.

:::::::
Whiskers

:::::
show

::
the

:::
5th

:::
and

::
5th

::::::::
percentile

::
of

:::
the

::::::
running

::::
skill

:::
over

::::
time.

::::::
Colors

::::
show

:::::::
different

:::::::::::
reconstruction

:::::::
methods:

::::::
indirect

::::::
(green)

:::
and

:::::
direct

:::::::
(orange).

::::
Gray

::::
stars

::::::
indicate

::::::
perfect

::::
skill.

::::
Gray

::::
dots

::::
mark

:::
95th

::::::::
percentile

::
for

::::
ACC

:::
and

:::
5th

:::::::
percentile

:::
for

::
the

::::::::
remaining

:::::::::::
distance-based

::::::
metrics

::
of

::::::
random

:::::::::::
reconstruction

:::
skill

:::::::::::::::
block-bootstrapped

:::
from

:::
the

:::::
target

::::::
control

::::::::
simulation

::
as

::
an

:::::::
unskillful

::::::::
reference

::::
skill.

::::::
Crosses

::::
show

:::::::::::
reconstruction

::::
skill

::
of

:::::
annual

:::::
mean

::::::::
timeseries.

::::
Thin

::::
lines

::::
show

::::::
monthly

::::::
RMSE

:::
skill

::::
after

:
a
::::
mean

::::
bias

::::::::
reduction.
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Appendix D: Sensitivity Analysis for Different Reconstruction Timestep in ...

D1 ... on Land Carbon Cycle

We perform sensitivity reconstructions of the land restart file resetting to understand how sensitive this reconstruction method635

to the frequency of resetting. We performed additional simulations resetting the land model on Jan. 1st every second or every

fifth year [orange triangles in fig. D1].

Global cVeg starts by definition with perfect skill in Jan after a reset. When resetting only every second year, the mean

January tracking performance is already decreased, and decreases further. The negative correlations for five-year resetting

shows the shock to the system if not immediately balanced by further resetting in the every (second) year case.640

The global air-land CO2 flux correlation degrades for less frequent resetting towards the indirect performance, but bias and

accuracy improve.

Global atmospheric CO2 aggregates these results and is also sensitive to biases developing in both sinks. Here, less frequent

resetting of the land carbon cycle reduces the bias and therefore accuracy.

The tracking accuracy is of similar magnitude after mean bias reduction.645

D2 ... on Ocean Carbon Cycle

We perform the same kind of restart file resetting reconstruction to the ocean model [blue line in fig. D1]. The motivation here

is to see whether a resetting of the ocean carbon cycle also yields perfect accuracy (RMSE) skill for January. But the ocean

carbon cycle is sensitive to the physical climate and hence the direct ocean carbon cycle resetting accuracy degrades compared

to the indirect tracking bias and accuracy, only correlation increases [Fig. D1a-f]. Contrary to resetting restart files in the land650

model, initial conditions accuracy measured by RMSE does not approach perfect skill of 0, because the physical climate did

not experience this hard reset but is nudged dynamically.

In general, this hard reconstruction also seems to work for the ocean carbon cycle, because the tracking performances are

not very different from the indirect method [Fig. D1a-f].

The tracking accuracy is of similar magnitude after mean bias reduction.655
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Figure D1. As Fig. C1 but for sensitivity simulations of the restart file resetting reconstruction. In all simulations the physical climate is

nudged as in indirect [Tab.
::::
Table

:
1]. directLR1ON describes land resetting every year and ocean nudging and is the indirect simulation.

directLR2ON describes land resetting every second year and ocean nudging. directLR5ON describes land resetting every fifth year and

ocean nudging. directLxOR1 describes no land reconstruction and ocean setting every year.
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Appendix E: Seasonality

In reference for figure C1 to better understand reconstruction skill in context of target seasonality:

Figure E1. Seasonality of the target simulation for global aggregated carbon cycle variables.
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Appendix F:
:::::::::
Schematics

Figure F1.
::
a)

::
a)

::::::::
Schematic

::
of

::::::
nudging

::::
with

::::::::
relaxation

::::::
constant.

::
b)
::::::::

Schematic
::

of
:::::::::::

reconstruction
::::::
towards

::
a
:::::
target,

:::::
where

:::::::::::
reconstructions

:::
are

:::::
started

::::
from

::::::::
temporally

:::::::::
independent

:::::
restart

::::
files

::::
from

::
the

::::
same

::::::::
simulation

:::
but

:::
155

:::::
years

:::
later

::
in

::::
time,

:::
i.e.,

:::::
2005.
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Figure F2.
:::::::
Schematic

::::::::
overview

::
of

:::::::::::
perfect-model

::::
target

:::::::::::
reconstruction

:::::::::
simulations

:::::::
showing

:::::
which

:::::::
variables

:::
are

:::::::::::
reconstructed

::
in

:::::
which

:::::::::
simulations.

39



Appendix G:
::::::::::
Climatology

Figure G1.
::::
Mean

:::::::::
climatology

::
of

::
the

::::::
control

:::::::::
simulations

::
for

:::
all

:::::::
variables.

Appendix H:
:::::::::
Predictive

::::
skill

::::
LAI660

:::
We

::::
used

::::
LAI

::
in

::
a

:::::::
previous

:::::::
internal

:::::::
iteration

::
of

:::
the

::::::
paper,

:::
but

:::::
chose

::
to
:::::::

replace
::::
LAI

::::
with

:::::
cVeg.

::
In

::::
our

:::::
model

:::::::::
JSBACH,

::::
LAI

:::::::
depends

::
on

:::::::
climate,

:
it
::
is
:::
not

::
a

:::::
carbon

::::::::
variable.

::::::::
Therefore

:::
we

:::
did

:::
not

::::
want

::
to

:::
use

::::
this

::::::
variable

::
in
:::
the

::::::::::
manuscript.

::::::::
However,

:::::
there

:
is
:::
an

::::::
indirect

::::
link

::::
from

::::
LAI

::
to

:::::::
air-land

::::
CO2::::

flux,
:::::::
because

::::
LAI

::::::
reflects

:::::::
droughts

::::
and

:::
the

:::
soil

:::::::
physics.

::
A

:::::
recent

:::::::
analysis

:::::::
focused

::
on

::::::::::::
process-based

::::::::::::
understanding

::
of

::::
land

::::::
carbon

:::::::::::
predictability

::::
using

::::::::
JSBACH

::::::::
indicates

:::
that

::::
soil

:::::::
moisture

::
as

::::
well

::
as

::::
soil

::::::
carbon

::::::
storage

::::::::
influence

:::
the

::::::
air-land

::::
CO2::::

flux
::
at

::::
most

::::::::::::::::::::::::::::
(Dunkl et al., 2021, under review).

:
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Figure G2.
:::::::
Temporal

::::::
internal

:::::::
variability

::::::::
expressed

::
as

:::::::
temporal

::::::
standard

:::::::
deviation

::::
from

:::
the

:::::
control

:::::::::
simulations

:::
for

::
all

:::::::
variables.

Figure H1.
::
As

:::
Fig.

:
6
:::
but

::::
with

:::
leaf

:::
area

:::::
index

::::
(LAI)

::::::
instead

::
of

:::::
carbon

::::::::
vegetation

::::
pools

::::::
(cVeg).
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