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Abstract. Despite efforts to decrease the discrepancy between simulated and observed terrestrial carbon fluxes, the uncertainty

in trends and patterns of the land carbon fluxes remains high. This difficulty raises the question to what extent the terrestrial

carbon cycle is predictable, and which processes explain the predictability. Here, the perfect model approach is used to assess

the potential predictability of net primary production (NPPpred) and heterotrophic respiration (Rhpred) by using ensemble

simulations conducted with the Max-Planck-Institute Earth System Model. In order to assess the role of local carbon flux5

predictability (CFpred) on the predictability of the global carbon cycle, we suggest a new predictability metric weighted by

the amplitude of the flux anomalies. Regression analysis is used to determine the contribution of the predictability of different

environmental drivers to NPPpred and Rhpred (soil moisture, air temperature and radiation for NPP and soil organic carbon,

air temperature and precipitation for Rh). Global NPPpred is driven to 62 and 30% by the predictability of soil moisture and

temperature, respectively. Global Rhpred is driven to 52 and 27% by the predictability of soil organic carbon and temperature,10

respectively. The decomposition of predictability shows that the relatively high Rhpred compared to NPPpred is due to the

generally high predictability of soil organic carbon. The seasonality in NPPpred and Rhpred patterns can be explained by the

change in limiting factors over the wet and dry months. Consequently, CFpred is controlled by the predictability of the currently

limiting environmental factor. Differences in CFpred between ensemble simulations can be attributed to the occurrence of wet

and dry years, which influences the predictability of soil moisture and temperature. This variability of predictability is caused15

by the state dependency of ecosystem processes. Our results reveal the crucial regions and ecosystem processes to be considered

when initializing a carbon prediction system.

1 Introduction

As a net sink for atmospheric CO2, terrestrial ecosystems absorb around one third of the anthropogenic emissions (Friedling-

stein et al., 2020). Carbon fluxes between the land-atmosphere interface have a high interannual variability with a standard20

deviation (SD) of 0.7 PgC yr−1 (Sitch et al., 2015) and cause the majority of the atmospheric CO2 fluctuations (Ciais et al.,

2013; Spring et al., 2020). The high variability of terrestrial carbon fluxes can be attributed to the sensitivity of land surface

processes to climatic drivers, however the relative importance of temperature and precipitation are still debated (Jones et al.,

2001; Beer et al., 2010; Bloom et al., 2016; Fang et al., 2017; Jung et al., 2017; Bastos et al., 2018). In accordance with the
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limited understanding of carbon flux variability, models are not able to fully reproduce the spatiotemporal patterns of the ter-25

restrial carbon cycle. This is reflected in the poor representation of soil organic carbon (SOC) in Earth System Models (ESM),

the inability to adequately model gross primary production (GPP) from eddy covariance flux tower sites (Luo et al., 2015) and

the difficulty to detect the efforts taken in emission reduction due to internal variability of atmospheric CO2 variability (Spring

et al., 2020). In order to produce more realistic predictions, efforts in model development have been directed towards using

observations to constrain model parameters (Zeng et al., 2014; Bloom et al., 2016; Mystakidis et al., 2016; Chadburn et al.,30

2017; Tziolas et al., 2020), and to refine model structure to incorporating more processes and interactions (Krull et al., 2003;

Stockmann et al., 2013; Xu et al., 2014; Luo et al., 2016). While efforts in model development are continuing to narrow the

gap between the simulated and observed carbon cycle, the lack of progress in improving the predictive ability of the models

raises the question to what extent the terrestrial carbon cycle is predictable at all (Luo et al., 2015).

The potential predictability of a system can be estimated by using the perfect model framework. Ensemble simulations35

are initialized along a control run with each member of the ensemble having slightly perturbed initial conditions. The upper

limits of predictability are then derived by analysing the divergence of the ensemble simulations. This method assumes (a)

perfect model physics which are able to reproduce the full spectrum of natural variability and (b) perfect knowledge of the

modelled system and a model whose representation of the real world is “perfect enough" (Boer et al., 2013). Séférian et al.

(2018) used the perfect model framework to assess the potential predictability of terrestrial carbon fluxes (CFpred) at annual40

time-steps. They estimated the predictive horizon of terrestrial carbon fluxes to be two years globally and up to three years in

northern latitudes. The high variability of predictability among different initializations suggests a state-dependence of CFpred,

but no further mechanisms of predictability were investigated therein. Multiple processes can being considered as the sources

of CFpred. Due to the high sensitivity of the terrestrial carbon cycle to climate, climate predictability provides carbon fluxes

with a basic prediction horizon. The main contributor to climate predictability is El Niño-Southern Oscillation (ENSO), which45

explains over 40% of the variability in global net primary production (NPP) (Bastos et al., 2013) and a large fraction of CFpred

(Zeng et al., 2008). El Niño events are associated with high temperatures and low precipitation in the tropics which cause a

reduction of the land carbon sink of 1.8 PgC yr−1 per 1 ◦C sea surface temperature (SST) anomaly in the Niño 3 region (Jones

et al., 2001). This strong relationship between SST and the carbon cycle was used by Betts et al. (2016) to predict annual CO2

growth. Their statistical model uses the annual average SST in the Niño 3.4 region to successfully predict the CO2 rise with a50

precision of 0.53 ppm yr−1. Furthermore, Spring and Ilyina (2020) showed that ESM-based initialized predictions can predict

atmospheric CO2 variations up to three years in advance.

However, CFpred is extended beyond the predictability of climate by slowly varying land surface processes that filter out

the high-frequency noise of the climate signal. As the most prominent process, soil moisture memory is known to increase the

predictability of temperature (TEMPpred) and precipitation (PRECIPpred) by several months (Chikamoto et al., 2015), but55

memory can also be attributed to phenology (Weiss et al., 2014) and SOC (Lovenduski et al., 2019). Besides the slowly chang-

ing land state variables, the memory is further extended through land-atmosphere coupling which propagates soil anomalies

back to to the atmosphere by energy and water fluxes (Bellucci et al., 2015).

2



Previous studies that focus on the mechanisms of CFpred investigated the role of various land processes and how they con-

tribute to the overall CFpred. Weiss et al. (2014) found increased predictability of evaporation and to some extent temperature60

due to a dynamic simulation of leaf area index (LAI), which would also extend CFpred. The role of land surface initialization

on CFpred was studied by Zeng et al. (2008) and Lovenduski et al. (2019). Zeng et al. (2008) isolated the fraction of CFpred

which is based solely on initial conditions and compare fully coupled dynamic simulations with statistical models. Lovenduski

et al. (2019) quantified the degree to which CFpred improves when the land surface is initialized. They also assessed the rel-

ative importance of the individual land surface processes for the variability of terrestrial carbon fluxes and found that CFpred65

depends on the correct initialization of vegetation carbon biomass and soil moisture rather than temperature. These studies

have shown the significant advantage of dynamic forecasting systems, suggesting CFpred extends beyond the predictability

of the forcing variables due to land surface processes. However, these studies were not focused on contributions of individual

drivers of carbon fluxes to CFpred or on processes responsible for maintaining CFpred.

Here, we use perfect model simulations conducted with an ESM to investigate the structure and mechanisms of the CFpred.70

Initialized ensemble simulations are created from a range of ENSO states. Analysed are the carbon fluxes with the highest

contribution to the interannual variability of the land-atmosphere CO2 exchange. These are NPP with an interannual SD of

0.99 PgCyr−1 and heterotrophic respiration (Rh) with an SD of 0.29 PgCyr−1 (Wang et al., 2016). The potential predictability

of NPP (NPPpred) and Rh (Rhpred) is derived from rate of divergence within the ensemble members. We evaluate the pre-

dictability data to find how NPPpred and Rhpred differ in their spatiotemporal patterns and variability. Lastly, we identify the75

key drivers of NPP and Rh and determine their contribution to NPPpred and Rhpred. We use this framework to explain the

attained spatiotemporal patterns of CFpred and identify the underlying land system processes producing these patterns.

2 Methods

2.1 Earth system model

This study is based on the output of the MPI-ESM version 1.2 developed for the Coupled Model Intercomparison Project 680

(Mauritsen et al., 2019). The model runs fully coupled in the LR configuration that uses the atmospheric component ECHAM

6.3.05 with a T63 spatial truncation and 47 atmospheric layers. The atmospheric model is directly coupled with the land model

JSBACH 3.20 and uses an interactive carbon cycle, which means atmospheric CO2 reacts to land and ocean carbon fluxes.

2.2 Predictability metrics

The control simulation used in this study is a 1000–year unforced simulation with a preindustrial CO2 concentration of 28585

ppm. A total of 35 10-member ensemble simulations are initialized, each starting in January with a run time of two years.

The unperturbed simulation of the control run is added to the ensembles as the 11th member. Initialization dates are selected

manually in order to attain a diversity of ENSO states. The selected dates are grouped into three categories: El Niño, La Niña

or ENSO-neutral.
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The potential predictability is assessed by using a correlation-based and a distance-based metric. The Anomaly Correlation90

Coefficient (ACC) is a commonly used metric to measure forecast skill (Jolliffe and Stephenson, 2012) which calculates the

correlation between predicted and observed anomalies as

ACCj,t =
cov(f,o)

σf ·σo
, (1)

where j and t are grid cell and lead time, cov is the covariance and f and o the forecast and validation anomalies. Similar to

(Collins and Sinha, 2003; Becker et al., 2013), the noise in the ACC is reduced by averaging over several ACC values. This is95

achieved by taking all eleven ensemble members as the validation in turn, while the mean of the remaining ensemble members

serves as the forecast. Although the ACC is an intuitive metric which is calculated from all initializations and thus provides a

robust estimation of the predictability, it does not allow to investigate the variability of predictability between initializations.

The comparison of predictabilities between initialization is achieved by the use of a distance based metric which is computed

for all initializations individually. The distance based metric used here is the normalized ensemble variance (V (t)) based on the100

method proposed by Griffies and Bryan (1997). Predictability is defined as the ensemble variance normalized by the variance

of the climatology as

V (t) =
1
M

∑M
i=1

[
Xi(t)−X(t)

]2
σ2

, (2)

where t is lead time, M the number of ensemble members, Xi the ith member, X the ensemble mean and σ2 the variance of

the control simulation. In this study, the complement of the normalized ensemble variance is used as: Vc(t) = 1−V (t). The105

resulting metric indicates perfect predictability at a value of 1, and an ensemble spread that exceeds the climatological variance

for values below zero.

While ACC and Vc allow the estimation of regional predictability, these metrics are not suitable to evaluate the impact of

local predictabilities on the predictability of the global carbon cycle. This is due to the disregard of the flux amplitude in the

calculation of the metrics. Both of the metrics are prone to producing above average predictabilities in regions where carbon110

fluxes are generally low or even close to zero, such as subtropical deserts. Here we propose a weighted predictability metric

that allows to assess local predictabilities with regard of their impact on the predictability of the global carbon cycle. Vc is

weighted by using an approach similar to risk assessment, which is calculated as the product of likelihood and impact. Here a

weighted predictability wVc is calculated by multiplying Vc with the absolute carbon flux anomaly of the ensemble mean:

wVc(t) = Vc(t)× |∆FLUX(t)|. (3)115

2.3 Decomposition of predictability

In order to investigate the drivers of CFpred, the Vc of NPP and Rh are decomposed into components contributing to the

predictability of these fluxes similar to an approach used by Jung et al. (2017). They used regression analysis to determine

the contribution of environmental variables to the anomalies in GPP and ecosystem respiration. Here the assumptions of Jung

et al. (2017) are extended from carbon flux anomalies to CFpred: a high CFpred needs to be caused by a high predictability of120
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one or more of its driving environmental variables. Using this assumption, NPPpred and Rhpred are modeled as the response

to the predictability of the individual environmental drivers. Regression analysis is used to determine the contribution of the

predictability of the environmental variables to NPPpred and Rhpred. The drivers of NPPpred are selected following the drivers

of GPP in Jung et al. (2017) as two layers of soil moisture (midSOILpred for 19 – 78 cm depth and deepSOILpred for 79 – 268

cm depth), air temperature (TEMPpred) and photosynthetically active radiation (PARpred). The drivers of Rhpred are based125

on the rate modifying factors used in JSBACH to calculate Rh, which are TEMPpred, PRECIPpred and SOCpred. Although

precipitation has no direct relationship with Rh, the Rh submodel used in JSBACH is parameterized using precipitation, because

of its strong relationship with moisture in the uppermost soil layer where most of the respiration takes place. Instead of SOC,

the content of the aboveground acid hydrolyzable carbon pool (here referred to as SOC) is used as a surrogate variable. The

contribution of of the predictability of the environmental drivers to the CFpred is calculated as130

VcFLUXj,t,i =
∑
k

[
aDRIk
j,t ×VcDRIk,j,t,i

]
+ εj,t,i (4)

with VcFLUX being the complementary normalized ensemble variance of NPP or Rh, aDRIk coefficient of the kth driver

(for example TEMPpred), VcDRI the predictability of the kth driver and ε the residual error term. Grid cell, lead time and

initialization are denoted by the indices j, t and i. The regression coefficients are calculated by using non-negative least squares

(Mullen and van Stokkum, 2012) for every grid cell and lead time by using the data from all initializations. After fitting the135

regression model to the data, the individual components of CFpred are calculated as

VcFLUX
DRIk
i,t,s = aDRIk

i,t ×VcDRIk,i,t,s, (5)

where VcFLUXDRI describes the amount of predictability of FLUX that can be contributed to the driver k.

3 Results and discussion

Out of the 35 ensemble simulations initialized along the control run, 7 simulations are part of the El Niño and 8 simulations140

part of the La Niña group (Fig. 1). The El Niño simulations peak between the September before initialization and January

with peak values between 2.2 and 3.6 ◦C (three month running mean Niño 3.4 SST anomaly). They show a fast decline of the

anomaly with most models having a negative anomaly in December of the first year and evolving into a La Niña event in the

second year. Peaks of the La Niña simulations fall between September and June and, while their relative peak anomalies are

smaller (-1.6 to 3.0 ◦C), the negative anomaly can be sustained well into the second year.145

3.1 Potential predictability

The 35 perfect model simulations are used to assess potential NPPpred and Rhpred. Zonal means of the ACC are shown in

Figure 2 (Zonal plots of predictability are limited to 30 ◦ South to 30 ◦ North to highlight the areas of high predictability).

NPPpred and Rhpred are highest in the tropics between 20◦ North and South, where carbon fluxes are at their global maximum.

However, apart from the generally high predictability in the tropics, the patterns of NPPpred and Rhpred differ in several150
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Figure 1. Three month running mean SST anomaly in the Niño 3.4 region of (a) 7 El Niño and (b) 8 La Niña simulations. Simulations are

initialized at lead time 0 and run for 24 months. Lines show the Niño 3.4 SST of the control simulation.

aspects. While the ACC of NPP has a slower temporal decline with values above 0.8 for 2 to 3 months around the equator,

the ACC of Rh drops below 0.5 within the first two months for most latitudes. However, Rh shows much higher long term

predictability, especially in the second year of the simulation where Rhpred is much higher than NPPpred.

While both predictability patterns show signs of a seasonal cycle, they are out of phase with Rhpred distinctly following the

wet season and NPPpred appearing to be higher in the dry seasons of the first year. This has a large role on the comparability of155

NPPpred and Rhpred, since high NPPpred occurs at the time of the seasonal low of NPP fluxes, while high Rhpred is associated

with the seasonal high. Another characteristic of the seasonal cycles is their continuity. Rhpred migrates continuously across

the zones, while NPPpred demonstrates a sporadic behaviour with a high predictability at around 15◦ North in JFM and another

one at 10◦ South in JAS.

The spatial patterns of ACC are shown in Figure 3 for March, June and September of the first year and September of the160

second year. Rhpred shows a very coherent pattern with a band of high predictability migrating from South to North across

all continents. The patterns of NPPpred appear to be less constrained by latitude. Although March predictability is dominated

by the northern tropics and subtropics, there are other high predictability regions based on initial memory, especially in high

latitudes. As opposed to Rhpred, there is no high-predictability band moving across the zones. Instead, NPPpred is reemerging

south of the equator in September in the southern Amazon basin, southern Africa and Southeast Asia. An aberration from165

the seasonal pattern is in the Sahel which has a relatively high NPPpred throughout both years, except in June and July (not

shown).

A large portion of the high NPPpred areas can be contributed to predictability gained by ENSO. These high predictability

areas are concurring with the carbon flux anomalies caused by ENSO related climate variability (Hashimoto et al., 2004; Bastos
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Figure 2. Zonal means of ACC derived from 35 ensemble simulations starting in January for (a) NPP and (b) Rh. Contour lines indicate

correlations above the 95% confidence level.

et al., 2013). A specific example of this is the disparity in NPPpred between the tropical rainforests of the Amazon and the170

Congo basins. It shows that the high NPPpred of the tropics is not an intrinsic property of these ecosystems. A reason for the

relatively low NPPpred within the Congo basin could be because it is not strongly impacted by ENSO (Holmgren et al., 2001).

These findings highlight the importance of correctly simulating the ESNO process. Especially the localization of ENSO related

rainfall patterns is crucial, since they provide a sustained and predictable anomaly in water availability.

Many of the identified spatial patterns of CFpred can be discovered in similar studies. Most models agree on the Amazon175

basin as the global hotspot of CFpred (Zeng et al., 2008; Ilyina et al., 2021), and some reflect the increased predictability in

Southeast Asia and southern Africa (Zeng et al., 2008), but the comparison of predictability horizons remain difficult due to

the use of different predictability metrics.

The results reveal different areas in which an operational NPP forecast can be used to increase food security. The high

NPPpred of the Sahel and Kalahari savanna ecosystems (Fig. 3) could be used to plan stocking rates in order to avoid grassland180
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Figure 3. ACC of NPP and Rh. The color scale is cropped at zero. Only values above the 95% confidence interval are shown.
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degradation due to overgrazing in dry years (Tews et al., 2006). Other promising regions are Northeast and central Brazil. The

high NPPpred in these areas could be used to select of crop varieties which are more or less drought tolerant depending on the

given forecast.

Figure 4. Contributing components to the weighted predictability (wVc) of NPP and Rh. The contributors to NPP predictability are the

predictability of soil moisture (SOIL), temperature (TEMP) and photosynthetically active radiation (PAR). Contributors to Rh predictability

are the predictability of soil organic carbon (SOC), TEMP and precipitation (PRECIP). The averaged predictability of the first 12 months lead

time weighted by carbon flux anomaly of the ensemble means. The sum of all components of a flux type give the modelled total predictability

of that flux.

3.2 Composition of predictability

CFpred is sufficiently captured by the regression models (4) with a correlation of 0.71 and 0.75 for NPP and Rh, respectively185

(averaged correlation between the Vc derived from the ensemble simulations and the Vc of the regression model for each grid

cell and lead time, not shown). The contributors of CFpred show strong spatiotemporal heterogeneity with drivers alternating

across seasons and regions. The temporally averaged contributions to weighted predictability are shown in Figure 4. The

drivers of NPPpred are SOILpred (sum of midSOILpred and deepSOILpred) and TEMPpred, which explain 62 and 30% of

the globally averaged NPPpred, respectively. PARpred only contributes 8% to the NPPpred, most of it in the first month of the190

simulations. The NPPpred patterns of Vc explained by SOILpred and TEMPpred are similar to the patterns of ACC, although

areas with low carbon flux densities are excluded through weighting by absolute flux anomaly. While the NPPpred explained

by SOILpred has a spatial extent that broadly covers all regions of high NPPpred, TEMPpred is concentrated to certain areas.

TEMPpred is high in a band spanning from the Amazon basin to northern South America, in southern Africa and in Southeast

Asia. The largest contributor to Rhpred is SOCpred (52%) followed by TEMPpred (27%). Similar to NPPpred, the temperature195

component is highest in the Amazon basin, southern Africa and Southeast Asia.
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In order to facilitate a system for operational NPP prediction, a network of sensors could be installed to gather data on the

initial condition of the land surface. The patterns of the role of soil moisture in predicting NPP (Fig. 4) reveal the areas on

which the efforts in establishing such a network should be focused on to maximize the impact.

There are more variables that are regarded as key drivers of NPP variability and could have been considered as predictors200

in the regression models. Most importantly, LAI and humidity play an important role in NPP variability (Schaefer et al.,

2002). Several studies show the role of a dynamical simulation of LAI in extending the predictability of land surface processes

(Zeng et al., 1999; Wang et al., 2010, 2011; Weiss et al., 2012, 2014). Here, the inclusion of LAI as a predictor is rejected

because of the susceptibility of regression models to correlated predictors. The changing concentration of atmospheric CO2 is

causing trends in NPP as global atmospheric levels are rising (Winkler et al., 2021), however, we assumed that the interannual205

variability of CO2 fertilization is below a meaningful contribution to overall variability. Although clay content plays a major

role on carbon turnover rates in soil (Coleman et al., 1997), it is not considered in the JSBACH Rh submodel (Tuomi et al.,

2009) and was not included in this study.

3.2.1 Seasonality

The seasonal patterns of NPPpred revealed in the ACC data (Fig. 2 and 3) are reproducible by the decomposed predictability210

metric Vc (Fig. 5). They show the reemergence of predictability in the dry season at various locations, and reveal that this

phenomenon can not be contributed to a single factor. The largest pattern is a reemergence in July to November at 1 ◦ to 4 ◦

South and can be associated with the high NPPpred in the southern Amazon (Fig. 3 NPP September 1st year). This pattern

is due to increased TEMPpred throughout the dry season, which is extended by high deepSOILpred in September, and even

reoccurs in the second year of the simulation. Another pattern explains the high NPPpred in southern Africa between August215

and October, which is due to deepSOILpred.

These cases of high dry season NPPpred in the tropics are most likely due to the seasonally changing limitations of NPP.

During the productive wet season, plant growth is limited by incoming radiation (Wang et al., 2010) which has little variability

and poor predictability. Instead, most of the interannual variability of NPP can be explained by dry season variability. One

study found over 80% of western Amazon NPP variability to take place between July and September (Wang et al., 2011). The220

water limitation of NPP during the dry season (Tian et al., 2000) does not only introduce higher variability as compared with

the energy limited wet season, but the coupling of NPP to soil moisture also lends NPP the high predictability of soil moisture.

Although the seasonality of Rhpred shows a reversed tendency to NPPpred with higher predictability in the wet season,

the mechanisms explaining the seasonality are similar. The seasonally varying Rhpred can be explained by the inherently

different predictability of the seasonally dominant limiting factor of Rh (Fig. 6). During the dry season the limiting factor of225

Rh is precipitation, which has a generally low predictability. The absence of precipitation for several weeks will inhibit soil

respiration completely. There is a sharp increase in Rh variability in the dry-wet transition because the onset of precipitation

is difficult to predict. As precipitation increases, the moisture constraint is asymptotically lifted and approaches zero. At this

point, Rh becomes limited by substrate availability, which has a much higher predictability than climatic variables. The high

SOCpred is due to the persistence of SOC anomalies because of the low decomposition rates and the pause of decomposition230
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Figure 5. Zonal means of contributing components to the weighted NPP predictability (wVc). The contributing components are the pre-

dictability of soil moisture in 19 – 78 cm and 79 – 268 cm depth (midSOIL and deepSOIL), air temperature (TEMP), and photosynthetically

active radiation (PAR).

during dry seasons. Although TEMPpred is higher than PRECIPpred, it only plays a minor role in tropical Rhpred, because

tropical Rh has relatively low temperature sensitivity (Meir et al., 2008).

These pronounced seasonal patterns of Rhpred hinge on the implementation of the precipitation sensibility function in MPI-

ESM. The shape and parameterization of the rate modifying function of decomposition to moisture sets Rh to be more sensible

to precipitation in the dry than in the wet season. However, the relationship between Rh and moisture in the tropics is the highly235

debated subject of various studies coming to different conclusions. These studies suggest a parabolic or no relationship with

soil moisture (Meir et al., 2008) or linear increase with precipitation (Tian et al., 2000).
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Figure 6. Zonal means of contributing components to the weighted Rh predictability (wVc). The contributing components are the predictabil-

ity of soil organic matter (SOC), air temperature (TEMP) and precipitation (PRECIP).

3.2.2 Interannual variability

Using the distance based predictability metric Vc also allows to evaluate the variability of predictability between different

initializations. Among the regions with the highest interannual variability of NPPpred are the southern Amazon basin (Box in240

Fig. 7), with a mean Vc of 0.24 and an SD of 0.32, and northwestern Australia, with a mean of 0.16 and an SD of 0.60 (23
◦S, 122 ◦W). Figure 7 shows how the interannual variability of NPPpred is affected by initial soil moisture. The majority of

regions with a high NPPpred (Fig. 3 and 4) have a higher predictability in years initiated from wet states. Exceptions to this

trend are India and northwestern Australia, where NPPpred is higher in dry years. The strongest difference in NPPpred is in

the Amazon basin, where overall NPPpred and interannual variability of predictability are also at the global maximum.245

To determine the mechanisms responsible for this difference in predictability we focus on the composition of the NPPpred

in the southern Amazon basin (box in Fig. 7). To represent wet and dry years, a composite analysis is used based on the ENSO

states (The El Niño years are the driest extremes at initialization while soils are often saturated at the beginning of La Niña

years).

The different composition of NPPpred within the southern Amazon basin is shown in Fig. 8. La Niña years have an overall250

higher NPPpred, which even lasts throughout the second year of the simulations. However, the drivers causing the difference

of increased La Niña predictability are changing over time. At the start of the growing season, which is between December and

July, midSOILpred contributes largely to the increased La Niña predictability while deepSOILpred gains in importance around

June, when topsoils begin to dry out. An increase in TEMPpred explains a large fraction of increased La Niña predictability

throughout the first year.255
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Figure 7. Difference in NPP predictability (Vc) based on the initial soil moisture. The mean NPP predictability of the first year from the 20%

driest initializations are subtracted from the 20% wettest initializations for every grid cell. Red color means higher NPP predictability in wet

years and blue color a higher predictability in dry years. Soil moisture from 19 – 78 cm depth is used to determine initial conditions. A large

fraction of years included in the initializations are ENSO years, where the initial anomaly is further extended through persisting oceanic

forcing. The black box and yellow triangle stand for regions examined in the main text.

The increase of midSOILpred during the growing season can be explained by the relationship between precipitation and the

change in soil moisture in spring (Fig. 9 (a)). Although the variability of precipitation is comparable between the ENSO states,

there is little change in soil moisture in the La Niña years while the relationship between precipitation and soil moisture change

is more pronounced in the El Niño years. The difference in this covariance between the ENSO states is linked to the initial

water content (Fig. 9 (b)). The El Niño year is initialized at a depleted state, and precipitation is used to recharge midSOIL.260

This leads to the translation of the variability in precipitation to a variability in midSOIL. Since midSOIL is saturated at the

initialization of the La Niña year, it is hardly affected by the variability of precipitation and the excess water leaves the system

as runoff or drainage.

The same mechanism is responsible for the difference in deepSOILpred. As midSOIL dries out during the summer months,

NPP is increasingly coupled to deepSOIL. Every ensemble member of the La Niña simulation receives enough precipitation to265

saturate deepSOIL, thereby reducing its variability, while none of the members in the El Niño year can recharge the soil water

deficit.
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Figure 8. The composition of NPP predictability (Vc) in the Amazon basin by ENSO state. The contributing components are the predictability

of soil moisture in 19 – 78 cm and 79 – 268 cm depth (midSOIL and deepSOIL), air temperature (TEMP), and photosynthetically active

radiation (PAR). La Niña years have an overall higher predictability. Negative values mean an ensemble variance that is exceeding the

climatological variance.

Increased NPPpred in wet years due to TEMPpred can have multiple reasons which are difficult to disentangle. As soil

moisture and surface temperature are coupled through evapotranspiration, a reduced variability in soil moisture suggests a

reduced variability in temperature as well. Contributing to this effect is the nonlinear mechanism controlling evaporation. At270

the wet end of the spectrum, evaporation is not limited by soil moisture, meaning that a small variability in soil moisture of

a wet soil does not affect evaporation. A counteractive process that might increase predictability in dry years is described by

Koster et al. (2011). They suggested that in ecosystems which are generally at the wet end of the spectrum (which is the case

for the Amazon basin) land-atmosphere coupling is stronger in dry years when evaporation is limited by soil moisture. This

increased coupling can extend TEMPpred by linking it to soil moisture. However, their study was conducted on North America,275

where land-atmosphere coupling is generally stronger than in tropical rainforest (Guo and Dirmeyer, 2013).

To investigate processes behind the difference in temperature variability per ENSO state, we analyzed the key elements

of the surface energy balance. Almost all processes have a continuously higher variability in the El Niño years (Fig. 10).

The strongest difference in variability is in net longwave radiation, but this is most likely an effect of increased variability of

surface temperature and not the cause. The SD of net shortwave radiation and ground heat flux are evenly increased by around280

0.4Wm−2 across the first year. Except for some winter and spring months, the latent and sensible heat fluxes have an increased
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Figure 9. Soil water dynamics of different ENSO states in the Amazon basin at 8 ◦S, 54 ◦W. (a) Relationship between February precipitation

and change in soil moisture from February to March. (b) Soil water content of the 11 member ensemble simulation for one specific El Niño

and La Niña year (midSOIL and deepSOIL are the moisture content at 19 – 78 cm and 79 – 268 cm respectively).

Figure 10. Difference in standard deviation (∆σ = σ El Niño – σ La Niña) of different components of the surface energy balance in the

Amazon basin. The latent and sensible heat fluxes are pooled because of their strong negative correlation.

variability in the El Niño years. At the peak, difference in variability in August is mostly due to an increased variability in the

latent heat flux.
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Figure 11. Difference in ensemble member spread in northwestern Australia between a wet and a dry year for (a) deepSOIL and (b) PAR.

As mentioned above, there are also certain regions with an inverse relationship between wetness and NPPpred. These are

predominantly in arid regions like northwestern Australia, India, northern Caucasus and the western US (Fig 7). The mecha-285

nisms explaining the increased NPPpred in dry years are exemplified on two initialzations from the dry and wet spectrum in

northwestern Australia at 23 ◦ South, 122 ◦ East (yellow triangle in Fig. 7).

This higher NPPpred can be contributed to less variability in deepSOIL and PAR (Fig. 11). The predictability providing

mechanism of deepSOIL is comparable with the process in the Amazon basin. With soil moisture dynamics frequently oper-

ating at extreme ends of the water holding capacity, the variance can be minimized by all ensemble members being pushed290

against the boundaries of the system. As opposed to the Amazon basin, in northwestern Australia the ensemble members are

are clustered at the dry end of the water holding capacity (Fig. 11 (a) dry years), while any introduction of soil moisture will

increase the variability.

Another difference in NPPpred is caused by a differing variability of PAR (Fig. 11 (b)). Most dry years have little cloud

cover and no restriction of incoming radiation. However, in wet years it is difficult to predict the extent of precipitation and295

cloud cover, which increases the variability of PAR.

The relationship between initial soil moisture and climate predictability is noted by others. Koster et al. (2011) have de-

termined that, depending on the region, the direction of this relationship can go either way. This asymmetry of predictability

is present in areas of high land-atmosphere coupling and is caused by the nonlinear relationship of evaporative fraction with

soil moisture. Another study has investigated the predictability of European summer heat and find different weather regime300

frequencies in initially dry and wet conditions (Quesada et al., 2012). This study adds to the view that predictability is not a

mere function of location, but depends on the state of the system and predictability therefore has a strong temporal variability.
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4 Conclusions

In this study, we take a closer look at spatiotemporal patterns of terrestrial CFpred, identify the climatic and environmental

sources of predictability, and the feedback mechanisms prolonging the memory of the system. We propose a metric of CFpred305

weighted by the amplitude of carbon flux anomalies. This metric allows to evaluate the role of different regions and processes

to the predictability of the global carbon cycle.

We find that the spatiotemporal patterns of NPPpred and Rhpred are determined by (a) the predictability of the carbon flux

drivers, (b) the climatic anomalies caused by low-frequency climate modes as ENSO, (c) the seasonal change of limiting factors

and (d) threshold processes and nonlinearity of ecosystem responses.310

On the global average, NPPpred is to 62% explained by SOILpred, and to 30% by TEMPpred. Rhpred is explained by

SOCpred and TEMPpred (50 and 27%) predictability. Decomposing the predictability signal shows there is a high spatiotem-

poral variability in the drivers of predictability. SOILpred and SOCpred are distributed across all areas of high CFpred, while

TEMPpred is mostly to be found in the Northern Amazon basin for CFpred and Southern Africa, North America and Southeast

Asia for NPPpred. Rhpred can outlast NPP predictability because SOC, its main drivers, has a much higher anomaly persis-315

tence than the drivers of NPP. On the other hand, NPP is more directly affected by climatic drivers and is therefore able to

benefit from the predictability of persisting climatic anomalies like the effects of ENSO. Intraannual variability of CFpred is

controlled by the seasonally specific limiting factor of NPP and Rh. This leads to NPP gaining predictability in the dry season,

when soil moisture replaces PAR as the limiting factor, while Rhpred has its peak in the wet season, when SOC drives the

carbon fluxes instead of precipitation in the dry season. This change in limiting factors is due to the nonlinear relationships320

of transpiration to soil moisture and Rh to precipitation. Both of these relationships describe a saturation point, at which the

variability of moisture (precipitation) becomes insignificant to carbon fluxes. Lastly, interannual variability of NPPpred reveals

an asymmetry of predictability driven by initial soil moisture and subsequent precipitation. This effect is caused by ecosystems

operating at the boundary conditions of the soil moisture regime. The ensemble members of predominantly wet ecosystems are

harmonized in wet years when precipitation exceeds the water holding capacity and excess water is removed through runoff325

and drainage. The reversed effect applies for ecosystems operating at the dry end of the spectrum. These processes reduce the

covariance between precipitation and NPP.

Our results highlight the sources of CFpred and can be used for model development to improve the representation of the

terrestrial carbon cycle. Further research could be directed towards the simulation of the ENSO imprint in climate models and

the relationship between soil moisture and terrestrial carbon fluxes.330
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