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Abstract. The root zone storage capacity (Sr) is the maximum volume of water in the subsurface that can potentially be ac-

cessed by vegetation for transpiration. It influences the seasonality of transpiration as well as fast and slow runoff processes.

Many studies have shown that Sr is heterogeneous as controlled by local climate conditions, which affect vegetation strategies

in sizing their root system able to support plant growth and to prevent water shortages. Root zone parameterization in most

land surface models does not account for this climate control on root development, being based on look-up tables that prescribe5

worldwide the same root zone parameters for each vegetation class. These look-up tables are obtained from measurements of

rooting structure that are scarce and hardly representative of the ecosystem scale. The objective of this research is to quan-

tify and evaluate the effects of a climate controlled representation of Sr on the water fluxes modeled by the HTESSEL land

surface model. Climate controlled Sr is here estimated with the "memory method" (MM) in which Sr is derived from the

vegetation’s memory of past root zone water storage deficits. Sr,MM is estimated for 15 river catchments over Australia across10

three contrasting climate regions: tropical, temperate and Mediterranean. Suitable representations of Sr,MM are implemented

in an improved version of HTESSEL (MD) by accordingly modifying the soil depths to obtain a model Sr,MD that matches

Sr,MM in the 15 catchments. In the control version of HTESSEL (CTR), Sr,CTR is larger than Sr,MM in 14 out of 15 catchments.

Furthermore, the variability among the individual catchments of Sr,MM (117–722 mm) is considerably larger than of Sr,CTR

(491–725 mm). The climate controlled representation of Sr in the MD version results in a significant and consistent improve-15

ment of the modeled monthly seasonal climatology (1975–2010) and inter-annual anomalies of river discharge compared with

observations. However, the effects on biases in long-term annual mean river discharge are small and mixed. The modeled

monthly seasonal climatology of the catchment discharge improved in MD compared to CTR: the correlation with observa-

tions increased significantly from 0.84 to 0.90 in tropical catchments, from 0.74 to 0.86 in temperate catchments and from

0.86 to 0.96 in Mediterranean catchments. Correspondingly, the correlations of the inter-annual discharge anomalies improve20

significantly in MD from 0.74 to 0.78 in tropical catchments, from 0.80 to 0.85 in temperate catchments and from 0.71 to 0.79

in Mediterranean catchments. The results indicate that the use of climate controlled Sr,MM can significantly improve the timing

of modeled discharge and, by extension, also evaporation fluxes in land surface models. On the other hand, the method has not

shown to significantly reduce long-term climatological model biases over the catchments considered for this study.
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1 Introduction

Vegetation controls the partitioning of precipitation into evaporation and runoff by transporting water through their roots to the

atmosphere and is thereby key in the representation of land surface-atmosphere interactions (Milly, 1994; Seneviratne et al.,

2010). The moisture flow from the land surface to the atmosphere through vegetation root water uptake is defined as transpi-

ration and is globally the largest water flux from terrestrial ecosystems (Schlesinger and Jasechko, 2014). The contribution of30

transpiration to total land evaporation is regulated by the interplay between the atmospheric water demand and the soil moisture

within the reach of vegetation’s roots. The root zone is defined as the part of the subsurface where vegetation has developed

roots and can be characterized by parameters such as root depth and root density. The importance of the root zone in land

surface and climate modelling is widely acknowledged and multiple studies emphasize the climate sensitivity to changes in the

vegetation’s root zone (Mahfouf et al., 1996; Desborough, 1997; Zeng et al., 1998; de Rosnay and Polcher, 1998; Norby and35

Jackson, 2000; Feddes et al., 2001; Teuling et al., 2006). However, the parameterization of the root zone in state-of-the-art land

surface models (LSMs) is a possible cause for the large uncertainties in water flux representations in these models (Gharari

et al., 2019), which is in particular true for land evaporation simulations (Pitman, 2003; Seneviratne et al., 2006; Wartenburger

et al., 2018).

The hydrologically relevant magnitude of the vegetation’s root zone can be described by the root zone water storage capacity40

Sr, that represents the maximum subsurface moisture volume that can be accessed by the vegetation’s roots. The size of Sr

controls the variability and timing of water fluxes and specifically the ability of vegetation to maintain transpiration during the

dry season when there is little to no recharge (Milly, 1994). It is important to note that Sr is not necessarily proportional to the

depth of roots. While root depth only describes the vertical root profile, Sr also accounts for lateral root extent as well as root

density. For example, an ecosystem covered by deep rooting vegetation with roots with low density likely has a smaller Sr than45

one covered by vegetation with shallow, high density roots (Singh et al., 2020).

However, most global LSMs do not have the explicit objective to estimate Sr and rather aim for a description of root

zone parameters (e.g. root depth, root density and root distribution) for different vegetation classes combined with soil type

information and a model-dependent fixed soil depth. The generally shallow (< 2 m) (Pan et al., 2020) fixed soil depth limits

the size of Sr and, as a consequence, also the moisture extraction by roots from deep soil layers (Kleidon and Heimann,50

1998; Sakschewski et al., 2020). LSMs use look-up tables that prescribe worldwide the same root zone parameters for each

combination of vegetation and soil class as obtained from a very limited number of point-scale observations of rooting structure

(Canadell et al., 1996; Jackson et al., 1996; Zeng et al., 1998; Schenk and Jackson, 2002a, b). The spatial distribution of the

root zone parameterization in LSMs is obtained by combining these look-up table values with maps of vegetation cover and

soil texture. The limitations of this approach are as follows: the root observations are 1) uncertain due to the fact that they55

mostly vertically extrapolate root measurements while excavating only the first meter or less (Schenk and Jackson, 2002a, b),

2) do not adequately represent global distributions of root structures because observations are extremely scarce: e.g. the Schenk
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and Jackson (2002b) dataset includes 475 root profiles in 209 geographical locations, 3) observations of individual plants that

do not represent spatial variations in ecosystem composition at scales larger than the plot scale and 4) snapshots in time and,

therefore, do not represent their evolution over time due to continuous adaptation of ecosystems to changing environmental60

conditions.

An alternative to the look-up tables based on point-scale root observations for describing the vegetation’s root zone is a

climate controlled approach. The only LSM to our knowledge in which climate controlled root zone parameters are used is the

JSBACH3.2 model (Hagemann and Stacke, 2015) in which rooting depths are based on the optimisation model of net primary

production from Kleidon (2004). Yet, there is general strong evidence that climate is the dominant control of root development65

in many environments, as vegetation tends to optimize its above- and below-ground carbon investment in order to optimally

function by avoiding water shortages and maintaining transpiration and productivity (Collins and Bras, 2007; Guswa, 2008;

Sivandran and Bras, 2013). For example, it is likely that trees in a dry climate develop a larger Sr than trees in a wet climate

because trees in a dry climate need to invest more in growing roots to sustain their water demand (Gentine et al., 2012; Gao

et al., 2014).70

A widely applied climate controlled approach in catchment hydrological studies to describe Sr is the "memory method". In

this method Sr is derived from water storage deficit calculations in the root zone at catchment scale, assuming vegetation is

able to keep memory of past deficit conditions to size roots in such a way to guarantee continuous access to water (hereinafter

Sr,MM) (Gentine et al., 2012; Gao et al., 2014). Recent studies demonstrated that this method provides plausible catchment-

scale estimates of Sr (e.g., Gao et al., 2014; Nijzink et al., 2016; Wang-Erlandsson et al., 2016; Hrachowitz et al., 2020), that75

result in improvements in modelling catchment discharge compared to soil derived Sr estimates (De Boer-Euser et al., 2016).

However, climate controlled root zone parameters have not yet been widely incorporated in LSMs.

The objective of this study is to quantify and evaluate the effects of a climate controlled representation of Sr on the water

fluxes modeled by the HTESSEL land surface model. Specifically we will test the hypothesis that implementing Sr,MM in

HTESSEL can improve the modeled magnitude and timing of catchment discharge and evaporation fluxes. By applying the80

memory method for estimating ecosystem-scale Sr for use in LSMs, the first three limitations of using sparse root observations

mentioned above can be overcome, but it should be acknowledged that, although the memory method in principle allows to

adaptively update Sr, in this work we use a fixed value in time. In this study, Sr,MM values representative for the 1973–2010

time period are estimated for 15 Australian catchments across different climate regions (Sect. 2.3 and Appendix A). The Sr,MM

estimates are then used to constrain the Sr in HTESSEL (Sect. 2.5). Section 3 evaluates the effects on discharge and evaporation85

in HTESSEL by performing offline simulations with and without the improved representation of Sr. Finally in Sect. 4 and 5

the potential for a wider application of climate controlled root zone parameters is discussed.
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2 Methods

2.1 Study area

Australia is characterized by large spatial differences in precipitation (Fig. 1), vegetation coverage and temperatures, varying90

from hot and dry deserts in the interior to tropical forests with a monsoon season in the north. We have selected 15 Australian

river catchments with station observations of river discharge at the outlet of the catchment to estimate Sr applying the memory

method (Fig. 1; Table S1) (Australian Government Bureau of Meteorology, 2019). The catchments are selected based on

available discharge data (at least 30 years of station observations), size (at least one third of the land surface model grid

cell area of approximately 5500 km2 in order to spatially extrapolate catchment characteristics to grid cells) and differences95

in climate (spatial spread of the catchments across Australia for the analysis of different climate zones). The catchments are

classified in three climate regions based on their hydrological characteristics (Table 1; Fig. 2; Table S2). The tropical catchments

are characterized by pronounced seasonality of rainfall with a seasonality index of precipitation (IS) of 0.7 or higher, while

temperate and Mediterranean catchments have year-round rainfall (IS <0.7). The Mediterranean catchments are characterized

by a time-lag φ between long-term mean maximum monthly potential evaporationEp and precipitation P of five or six months,100

while in tropical and temperate catchments mean maximum monthly Ep and P occur within three months.
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Figure 1. Location of the 15 study catchments within Australia. The green, red and orange markers indicate the climate region and the blue

shades indicate long-term mean annual precipitation (Australian Government Bureau of Meteorology, 2019). A list of the catchments and

their characteristics is provided in Table S1.
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Table 1. Average hydrological characteristics of the catchments in the three climate regions for the time period 1973–2010 with long-

term mean annual discharge Q, precipitation P and potential evaporation Ep, aridity index IA = Ep/P , seasonality index of precipitation

IS =
1

Pa

∑m=12
m=1 |Pm−

Pa
12
|, with Pa the annual mean precipitation and Pm the monthly mean precipitation of month m (Gao et al., 2014)

and the time-lag φ between long-term mean maximum monthly precipitation (P ) and potential evaporation (Ep). Values for all individual

catchments are provided in Table S2.

Climate region Q (mmyear−1) P (mmyear−1) Ep (mmyear−1) IA (-) IS (-) φ (months)

Tropical 302 1101 1869 2 0.9 2.3

(7 catchments)

Temperate 57 651 1488 2.5 0.2 0.6

(5 catchments)

Mediterranean 53 879 1276 1.7 0.3 5.7

(3 catchments)
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Figure 2. Monthly seasonal climatology of precipitation (P ) and potential evaporation (Ep) for the (a) tropical, (b) temperate and (c)

Mediterranean catchments with the solid lines P and the dashed lines Ep for the time series 1973–2010. The different shades indicate the 15

individual study catchments.

2.2 Data

For this study we use daily discharge data from station observations in the catchments for the time period 1973–2010 (Aus-

tralian Government Bureau of Meteorology, 2019). For the same time period we use daily precipitation and daily mean tem-

perature data from the GSWP-3 dataset on a regular 0.5◦grid (Kim, 2017). Daily Ep is calculated applying the Hargreaves105

and Samani formulation, based on temperature and radiation (Hargreaves and Samani, 1982; Mines ParisTech Solar radiation

Data, 2016). The FLUXCOM RS+METEO dataset is used as a reference dataset to benchmark modeled actual evaporation.
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FLUXCOM provides a gridded product of interpolated monthly evaporation as a fusion of FLUXNET eddy covariance towers,

satellite observations and meteorological data (GSWP-3) for the time period 1975–2010 (Jung et al., 2019). This dataset has

shown plausible estimates of mean annual and seasonal evaporation and is generally considered as a suitable tool for global110

land model evaluations (Jung et al., 2019; Ma et al., 2020). However, we found considerable differences between the long-term

annual mean evaporation EFLUXCOM and E derived from the catchment water balance (EWB) based on observedQ and GSWP-

3 P (EWB = P −Q) (Fig. 3). Figure 3 clearly illustrates that the EFLUXCOM is consistently lower than EWB with an average

difference of 150 mm year−1, equivalent to about 20 % of the long-term water balances. EWB is likely to be more reliable than

EFLUXCOM because EWB provides an integrated catchment scale estimate as it is derived from observations of Q assuming115

that the catchments are large enough to neglect deep groundwater drainage to or from other catchments (Bouaziz et al., 2018;

Condon et al., 2020). In addition, EFLUXCOM is based on point scale estimates of FLUXNET stations that do not coincide with

and are mostly located far from the study catchments (Pastorello et al., 2020). The discrepancy between the FLUXCOM and

the catchment water balance is addressed by scaling the monthly FLUXCOM evaporation:

EFLUXCOM-WB = EFLUXCOM
EWB

EFLUXCOM
(1)120

withEFLUXCOM-WB the monthly reference evaporation representative for the catchment scale,EFLUXCOM from Jung et al. (2019)

in the catchment corresponding grid cells and EWB

EFLUXCOM
the catchment specific scaling factor.

We use gridded data of vegetation type and coverage derived from the GLCC1.2 (ECMWF, 2016) and soil texture data from

the FAO/UNESCO Digital Soil Map of the World (FAO, 2003). Characteristics of the different soil textures are based on the

Van Genuchten soil parameters (Van Genuchten, 1980). These data are needed as input of the HTESSEL model and for the125

estimation of Sr.

2.3 Memory method for estimating root zone storage capacity

Sr,MM is estimated based on catchment hydrometeorological data, according to the methodology described in the studies of

De Boer-Euser et al. (2016), Nijzink et al. (2016) and Wang-Erlandsson et al. (2016). Sr,MM is based on an extreme value

analysis of the annual maximum water storage deficits in the vegetation’s root zone (Sd). Sd maximizes during dry periods,130

and, therefore, Sr represents an upper limit of root zone storage assuming that vegetation has sufficient access to water to

overcome these dry periods. The cumulative water storage deficit Sd (mm) in the root zone is based on daily time series of

effective precipitation Pe (mm day−1) and transpiration Et (mm day−1) for the time period 1973–2010 and is described by:

Sd(t) = max(0,−
τ∫

t0

(Pe −Et)dt) (2)

with an integration from t0 that corresponds to the first day in the hydrological year 1973 to τ that corresponds to the daily time135

steps ending at the last day of the hydrological year 2010. Pe (mm day−1) is derived from the water balance of the interception

storage Si:

dSi

dt
= P −Ei −Pe (3)
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Figure 3. Long-term mean annual evaporation (E) as estimated from long-term water balance data (EWB) compared to the FLUXCOM

dataset (EFLUXCOM) for the 1975–2010 period.

with P the precipitation (mm day−1) and Ei the interception evaporation (mm day−1). Equation 3 can be solved by Eqs. 4-6.

Herein, for the sum of fluxes between two time steps the following notation is used: Ft =
∫ t
t−1

Fdt, where F is either P , Ei, Pe140

or Ep (potential evaporation (mm day−1)). The numerical solution was then thus obtained as follows using daily time steps:

Pe,t =

0 if Pt +Si,t−1 ≤ Si,max

Pt +Si,t−1 −Si,max if Pt +Si,t−1 > Si,max

(4)

S∗
i,t = Si,t−1 +Pt−Pe,t (5)

145

Ei,t =

Ep,t if Ep,t < S∗
i,t

S∗
i,t if Ep,t ≥ S∗

i,t

(6)

where Si,max the maximum interception storage (mm) that depends on the land cover, and is estimated between 2−8 mm for

a tropical forest (Herwitz, 1985) and between 0− 3 mm for a temperate forest (Gerrits et al., 2010). However, De Boer-Euser

et al. (2016) found that the sensitivity of Sr to the value of Si,max is small and, therefore, here a value of 2.5 mm is used in all

catchments for simplicity.150

Daily Et (mm day−1) in Eq. 2 was calculated by:

Et = cEp (7)
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where c (−) is a coefficient that represents the ratio between transpiration and potential evaporation c= Et/Ep.Et (mm year−1)

is the long-term mean transpiration derived from the water balance (Et = Pe −Q) and Ep (mm year−1) the long-term mean

potential evaporation. Et considered here includes both transpiration and soil evaporation, but as the latter is much smaller, we155

use the term transpiration for simplicity. The subtle interactions between atmospheric water demand and vegetation-available

water supply can lead to inter-annual variability in c. The above described approach that provided constant estimates of c is

therefore extended by an iterative procedure to estimate annually varying values of coefficient c as described in Appendix A.

Catchment Sr,MM (mm) is estimated based on the assumption that a catchment’s ecosystem designs its rooting system

while keeping memory of water stress events with certain return periods. Previous studies provide evidence that these return160

periods are likely to be larger for high vegetation (e.g. forest) than for low vegetation (e.g. grass). Based on the results of

Gao et al. (2014), De Boer-Euser et al. (2016) and Wang-Erlandsson et al. (2016) drought return periods (RP) for high and

low vegetation are set to 40 and 2 years, respectively. The Sr,MM corresponding to these drought return periods is calculated

applying the Gumbel extreme value distribution (Gumbel, 1935) to annual maximum storage deficits. Theoretically we could

treat Sr separately for high and low vegetation in HTESSEL. However, this would require changing the root distributions (see165

section 2.4), which we decided not to do as we did not want to change multiple parameters at the same time. Therefore, for

the implementation of Sr,MM in HTESSEL, catchment Sr,MM is estimated as a weighted sum of the high and low vegetation Sr,

based on the coverage fraction of high (CH) and low (CL) vegetation in the corresponding grid cell of that specific catchment,

described by:

Sr,MM = CLSr,L,2yr +CHSr,H,40yr (8)170

2.4 HTESSEL model description

In this study we use the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model

(Balsamo et al., 2009). This section presents the model parameterization of vegetated areas in the HTESSEL control model

version (hereinafter CTR) based on the IFS documentation of cycle CY43R1 and the model codes itself (ECMWF, 2016). The

core structure of this model is described by van den Hurk et al. (2000) and major changes in the hydrology parameterization175

were made by Balsamo et al. (2009) with the implementation of a global soil texture map instead of a single soil type, and a

runoff scheme accounting for subgrid variability, which resulted in improvements in global water budget simulations (Balsamo

et al., 2011).

Figure 4a represents a simplified 3D view of a single grid cell. The HTESSEL model describes eight different surface

fractions within a grid cell (ECMWF, 2016), but we only considered the vegetation covered fractions (high and low vegetation)180

because of the presence of roots. Considering exclusively vegetated areas, the grid cell surface is subdivided into high and low

vegetation covered area (CH and CL) with a dominant type of vegetation (TH and TL) based on the GLCC1.2 vegetation

database. This database distinguishes 18 different vegetation types (e.g. evergreen broadleaf; tall grass; crops), each described

with vegetation specific parameters based on experiments and literature (e.g. minimum canopy resistance; root distribution).

The subsurface has a single soil texture based on FAO (2003) and is subdivided into four model layers with a total depth z of185

2.89 m that is kept uniformly constant in the global domain.
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Figure 4. Root zone parameterization in the HTESSEL CTR version with highlighted in red the directly changed parameters in the HTESSEL

MD version. (a) 3D overview of a single grid cell. (b) Schematic image of the four layer subsurface. (c) Scheme of equations for the

calculation soil moisture, discharge and evaporation. The symbols in this figure are as follows, with i high (H) and low (L) vegetation and

k layers 1–4: C (−) vegetation coverage, T dominant vegetation type, z (m) layer depth, P (ms−1) precipitation, Pt (ms−1) precipitation

through-fall, M (ms−1) snow-melt, Q (ms−1) total discharge, Qs (ms−1) surface runoff, Qsb (ms−1) subsurface runoff, Imax (ms−1)

maximum infiltration rate, b (−) variable representing sub-grid orography,E (ms−1) total evaporation,Et (ms−1) transpiration,Es (ms−1)

soil evaporation, Ec (ms−1) canopy evaporation, R (%) root distribution, θ (m3m−3) unfrozen soil moisture, θpwp (m3m−3) soil moisture

at permanent wilting point, θcap (m3m−3) soil moisture at field capacity, θsat (m3m−3) soil moisture at saturation, Sr (m) the root zone

storage capacity, θroots (m3m−3) the root extraction efficiency, rc (sm−1) canopy resistance, ra (sm−1) atmospheric resistance,Rs (Wm−2)

downward shortwave radiation, Da (hPa) atmospheric water vapour deficit, q specific humidity (kg kg−1), rs,min (sm−1) minimum canopy

resistance, LAI (−) Leaf Area Index, Sθ (m3m−3s−1) root extraction rate, γ (ms−1) hydraulic conductivity, λ (m2s−1) hydraulic diffusivity

and ρw (kgm−3) density of water.

Figure 4b presents the connection of the subsurface with the surface, through roots and transpiration fluxes (Et) in more

detail. Sr is not explicitly described in the model parameterization and, therefore, it is formulated based on our own under-
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standing of its relation to the HTESSEL vegetation and root zone parameterizations (Eq. 9). Vegetation has roots in all four

model soil layers (except for vegetation types desert and tundra that can only access the upper layer and the upper three layers,190

respectively (ECMWF, 2016)). There is a variable root distribution across the layers that is different for each vegetation type.

The vegetation specific root distribution (Rk) describes the root fraction with respect to the total amount of roots in each model

soil layer. At a single time step, the capability of roots to extract soil moisture (θk,roots, represented by the brown boxes in 4b)

is a function of Rk and the layer unfrozen soil moisture content (θk). Thus, the more roots we have in a soil layer, the more

moisture can be extracted at each time step. In the long term, however, the vegetation is able to extract all the plant available195

soil moisture in the layers where roots are present. Therefore, Sr,CTR, represented in blue in Fig. 4b, is described by:

Sr,CTR = z(θcap − θpwp) (9)

with z representing the hydrologically active depth which corresponds to the combined depth of all soil layers with roots

(z = 2.89 m is a default value in HTESSEL for all vegetation types except for desert and tundra), and θcap − θpwp the plant

available moisture which is constant over the four soil layers. The plant available moisture is bounded by the soil texture200

specific moisture contents at field capacity (θcap), above which soil moisture drains by gravity, and at wilting point (θpwp),

below which soil moisture is not accessible to roots. It should be noted that we aimed for a physical definition of Sr,CTR, but

that the effective water used by vegetation may be different. We come back to this point more elaborately in the discussion

(Sect. 4.3).

Figure 4c presents the equation scheme of HTESSEL for calculating soil moisture and discharge and evaporation fluxes, with205

i high (H) or low vegetation cover (L) and k the four soil layers. The relative soil moisture content θ controls the calculations

of discharge and evaporation fluxes. The surface runoff (Qs) is defined by the precipitation through-fall (Pt), snow-melt (M )

and the maximum infiltration rate (Imax) (Eq. 10). Imax is a function of Pt, M , a spatially variable parameter (b), that is defined

by the standard deviation in sub-grid orography, and the vertically integrated (top 0.5 m) soil moisture (θ) and saturation soil

moisture (θsat) (Eq. 11) (Dümenil and Todini, 1992; van den Hurk and Viterbo, 2003). The subsurface runoff (Qsb) consists of210

two components: free drainage from layer 4, that is a function of hydraulic conductivity in this layer (γ4) and water density

(ρw) (Eq. 12) and the excess absolute soil moisture when θk > θsat (Eq. 13). Total discharge (Q) is the sum of Qs and Qsb (Eq.

14), and as typical in-stream travel times through the catchments are about 1 day at most, we did not consider routing to be

important at the monthly time scale for which we analyze the results. The average root extraction efficiency in all layers (θroots)

is described by Eq. 15 and Eq. 16 as the weighted sum of the vegetation specific Rk and θk. The canopy resistance (rc) (Eq.215

17) describes the resistance of vegetation to transpiration and is a function of vegetation specific values for minimum canopy

resistance (rs,min) and LAI, a function of shortwave radiation (f1(Rs)), a function of atmospheric water vapour deficit (f2(Da))

and a function of the root extraction efficiency (f3(θroots,i,θpwp,θcap). The canopy resistance defines Et,i together with specific

humidity (q) and an atmospheric resistance term (ra) (Eq. 18). Total Et is a weighted sum of the separate transpiration products

based on the sub-grid coverage CL and CH (Eq. 19) and total evaporation (E) is a sum of transpiration (Et), soil evaporation220

(Es) and canopy evaporation (Ec) fluxes (Eq. 20). The detailed formulations of the latter two fluxes are not relevant in this

study and, therefore, not included in this model description. Et,i is attributed to the different soil layers in the calculation of
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the root extraction (Sθ) based on the layer depth (zk) and θk,roots (Eq. 21). The change in soil moisture over time (∂θ/∂t) is

calculated applying the Darcy-Richards equation with γ and λ hydraulic conductivity and diffusivity (Eq. 22). This equation is

solved with top soil boundary condition of P −E−Qs, and a bottom soil boundary condition of free drainage.225

2.5 Implementation of memory method root zone storage capacity estimates in HTESSEL

Here we develop an approach to implement the climate controlled Sr,MM (results in Sect. 3.1) in HTESSEL, while maintaining

the modeling framework of the CTR model described in Sect. 2.4. We found that Sr,CTR is exclusively defined by the soil type

and the hydrologically active model soil depth (z) (Eq. 9). In our modified version of HTESSEL, hereafter referred to as the

Moisture Depth (MD) model, the soil depth for moisture calculations is changed to satisfy the following equation:230

Sr,MM = zMD(θcap − θpwp) (23)

with zMD the total soil depth in the MD model modified to satisfy Sr,MD = Sr,MM. This depth change is achieved by changing

model layer 4, except in the case this would cause the model depth of layer 4 to approach zero (z4 ≈ 0). In this case a minimum

threshold (0.2 m) is set for z4 and the depth of layer 3 is further changed to obtain Sr,MD = Sr,MM as required in Eq. 23. This

is necessary because z4 ≈ 0 in the moisture calculation would cause inconsistencies in the thermal diffusion calculations as235

the layer soil temperature is a function of the layer soil moisture. The layer depths for thermal diffusion calculations are not

modified in the MD model and we found that the soil layer temperatures are insensitive to depth changes in MD. The directly

changed parameters in MD are highlighted in red in Fig. 4. Also, the root distribution is not modified in MD, because we

aimed for a physical representation of Sr (Eq. 23) and we did not want to change multiple model parameters at the same time.

Furthermore, we would like to re-iterate that the soil depth in the model should neither be interpreted as actual soil depth nor240

rooting depth, but merely as a way to represent the plant accessible water volume.

2.6 Model simulations

Simulations are performed in a standalone version of HTESSEL (Balsamo et al., 2009) as it was implemented in the frame of

version 3 of the EC-EARTH Earth system model (http://www.ec-earth.org) for both the CTR (Sect. 2.4) and MD (Sect. 2.5)

model versions. The model is forced with 3-hourly GSWP-3 atmospheric boundary conditions (Kim, 2017) for the historical245

time series 1970–2010, with the first five years used for spin-up. The spatial resolution of the HTESSEL model is a reduced

gaussian grid (N128), with the grid cells over Australia being approximately 5500 km2.

2.7 Model evaluation

Most study catchments are smaller than single HTESSEL grid cells (Table S1). For catchments completely falling within a

single HTESSEL grid cell, this cell is selected for analysis. In the case a catchment falls within more than one grid cell,250

the average of the model output in the separate grid cells is used for analysis. The model performances of CTR and MD

are compared based on modeled monthly discharge and evaporation fluxes for 1975–2010: long-term annual means, monthly

seasonal climatology and inter-annual anomalies of monthly fluxes (monthly fluxes minus monthly climatology) are evaluated.
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Modeled Q is compared to station observations and modeled E to the FLUXCOM-WB evaporation (Sect. 2.2 and Eq. 1).

For long-term annual means, the percent-bias between the reference and modeled fluxes is calculated (evaporation p-bias =255

(Emod −Eref)/Eref). For the monthly seasonal climatology and inter-annual anomalies, the model performance is quantified

by using the Pearson correlation coefficient (r) and a variability performance metric (v = (1−α)2) that depends on the ratio

of modeled and reference standard deviation (α= σmod/σref). These performance metrics are calculated for the individual

catchments, and then averaged to evaluate model performance over tropical, temperate and Mediterranean climate regions.

To test significance of the improvement in model performance of MD compared to CTR, a Monte Carlo bootstrap method260

(1000 repetitions) is employed. The 1000 samples are taken by resampling randomly with replacement among CTR and MD

values at each time-step. The null hypothesis of getting as high or higher performance parameters simply by chance is tested

at the 5% and 10% significance levels, for the individual catchments as well as for the performance averages over the tropical,

temperate and Mediterranean climate regions. P-values of the model improvements are provided in the Supplementary Material

(Tables S5 and S6).265

3 Results

3.1 Root zone storage capacity estimates

Figure 5 shows that there is no relation between Sr,MM and Sr,CTR. The range of Sr,MM (125–722 mm) in the study catchments

is much larger than the range of Sr,CTR (491–725 mm), indicating that HTESSEL may not adequately represent the spatial

heterogeneity of Sr (Table S2). The range of Sr,MM in the catchments is consistent with Wang-Erlandsson et al. (2016), who270

found similar ranges of Sr (approximately 100–600 mm) over Australia by using gridded products of Sr based on rooting

depths from observations and optimised inverse modelling, and global Sr,MM estimated based on satellite evaporation products.

Sr,MM estimates are on average smaller in the five temperate (194 mm) catchments than in the three Mediterranean (321 mm)

and the seven tropical (437 mm) catchments. In the tropical and Mediterranean regions vegetation needs to bridge extensive

dry seasons as rainfall seasonality is high (Fig. 2, Table 1), resulting in larger Sr,MM than in temperate regions with year-round275

precipitation. In the Mediterranean, the average time-lag between P and Ep of 5.7 months results in large root zone storage

deficits in the hot and dry summers, and therefore, larger Sr,MM than in the temperate catchments.

3.2 Long-term mean annual climatology

The HTESSEL CTR version overestimates observed Q in 9 out of 15 catchments with on average 40 mm year−1 (tropical),

3 mm year−1 (temperate) and 122 mm year−1 (Mediterranean) (Table 2; Table S3; Table S4). This overestimation of observed280

Q goes together with an average underestimation of EWB by CTR. As Sr,MM is generally smaller than Sr,CTR (Fig. 5), the MD

version results in reduced E and increased Q compared to CTR, but the changes are quite small (Table 2). The MD increase

in modeled Q compared to CTR results on average in larger p-biases in tropical (+16.9 % vs. +13.7 %), temperate (+24.4 %
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Figure 5. Catchment Sr as estimated from the memory method (Sr,MM) compared to the HTESSEL CTR parameterization (Sr,CTR) in the

catchment corresponding grid-cells.

vs. +4.9 %) and Mediterranean (+263.8 % vs. +249.9 %) catchments, but the results are largely variable among the individual

catchments (Table S4).285

Table 2. Long-term annual mean modeled discharge (Q) and evaporation (E) in the HTESSEL CTR and MD versions for the tropical,

temperate and Mediterranean climate regions (catchment averages) and reference Q (station observations) and E (EWB (Sect. 2.2)). The

p-biases of the modeled climate region average Q and E are presented between brackets. Similar values for the individual catchments are

shown in Tables S3 and S4.

Q (mmyear−1) E (mmyear−1)

Climate region Observations HTESSEL CTR HTESSEL MD WB HTESSEL CTR HTESSEL MD

Tropical 291 331 (+13.7%) 345 (+18.6%) 834 790 (-5.3%) 776 (-7.1%)

Temperate 56 59 (+4.9%) 70 (+24.4%) 626 624 (-0.4%) 611 (-2.4%)

Mediterranean 49 171 (+249.9%) 177 (+263.8%) 836 717 (-14.2%) 709 (-15.2%)

3.3 Monthly seasonal climatology

Although Q does not considerably change in MD compared to CTR (Sect. 3.2), MD reproduces the seasonal variations in Q

considerably better than CTR (Fig. 6a–c and Table 3). In the tropical and Mediterranean catchments, MD increases Q in the

wet months while it decreases Q in the dry months compared to CTR, and hence improves the seasonal timing of observed
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Q (Fig. 6a,c and Table 3). In the temperate catchments, MD increases Q in the wet months (Jul–Sep) compared to CTR in290

accordance with observations, although in the other months the changes of MD compared to CTR are mixed (Fig. 6b). In terms

of the correlation between modeled and observed monthly seasonal climatology, Q improved in MD compared to CTR in 12

out of 15 catchments, with 7 catchments passing the 5% significance level for improvement (Table S5). For the climate region

averages, the correlation significantly improved in MD from 0.84 to 0.90 (tropical), from 0.74 to 0.86 (temperate) and from

0.86 to 0.96 (Mediterranean) compared to CTR (Table 3). On average, MD resulted in larger variations in monthlyQ than CTR295

(Fig. 6a–c). The variability term v = (1−σmod/σobs)
2 improved from 0.17 to 0.06 (tropical) and from 0.17 to 0.10 (temperate)

in MD compared to CTR, but in the Mediterranean catchments the models strongly overestimate the observed variations in Q

(Fig. 6c) with the variability term increasing from 2.80 in CTR to 8.73 in MD (Table 3; Table S5).

In contrast to the improvement in monthly seasonal climatology of Q in MD, the monthly seasonal cycle of E appears to be

not much affected as shown in Fig. 6d–f and Table 3.300

Table 3. Model performance parameters of monthly seasonal discharge (Q) and evaporation (E) climatologies (1975–2010), with r repre-

senting pearson correlation and v = (1−α)2 variability, with α= σmod/σobs, in tropical, temperate and Mediterranean climate regions for

the HTESSEL CTR and MD versions (catchment averages). Modeled Q is compared to station observations and modeled E to FLUXCOM-

WB (Eq. 1). For r, a value of 1 represents a perfect model, for v a value of 0 represents a perfect model. The significance test of the MD

improvements compared to CTR is represented by ∗∗ (passing 5% level) and ∗ (passing 10% level). Values of r and α for the individual

catchments and p-values of improvement are shown in Tables S5 (Q) and S6 (E).

Discharge Evaporation

Climate region HTESSEL version r (-) v (-) r (-) v (-)

Tropical CTR 0.84 0.17 0.98 0.07

MD 0.90∗∗ 0.05∗∗ 0.98 0.07

Temperate CTR 0.74 0.17 0.99 0.04

MD 0.86∗∗ 0.10∗∗ 0.98 0.05

Mediterranean CTR 0.86 2.80 0.81 0.08

MD 0.96∗ 8.73 0.80 0.07

3.4 Inter-annual monthly anomalies

Figure 7a and 7c show that MD is better in capturing the variations in inter-annual Q anomalies than CTR in the presented

tropical and temperate catchments, while in the Mediterranean catchment both models strongly overestimate the inter-annual

Q anomalies compared to observations (Fig. 7e). In 14 out of 15 catchments, the variability in the inter-annual Q anomalies

increases in MD compared to CTR (Fig. S1; Table S5). This results in an average improvement in the inter-annual anomaly305

14



Figure 6. Monthly seasonal climatology of observed discharge (Q) (top) and FLUXCOM-WB evaporation (EFLUXCOM-WB) (bottom) and

modeled values in the HTESSEL CTR and MD versions, averaged for the tropical (a, d), temperate (b, e) and Mediterranean (c, f) catchments

for the time series 1975–2010. b1 and c1 represent the same data as b2 and c2, but with a different y-axis. Similar figures for the individual

catchments are shown in Fig. S1 (Q) and Fig. S2 (E).

variability (v) from 0.12 to 0.11 (tropical) and from 0.09 to 0.06 (temperate) in MD compared to CTR (Table 4). However, in

the Mediterranean catchments, the increased variability in the Q anomalies leads to a strong overestimation of Q anomalies

with respect to observations (Fig. 7e; Fig. S1m–o), with v increasing from 0.99 in CTR to 4.26 in MD. Figures 7a, 7c and 7e

also show that the timing of the Q anomalies improves in MD compared to CTR, with in particular the improved timing of the

falling limbs clearly visible in Fig. 7a and 7e. The inter-annual Q anomaly correlation (corresponding to the timing) improves310

in 14 out of 15 catchments, with 9 catchments passing the 5% significance level for improvement (Table S5). On average, the

correlation (r) increases from 0.74 to 0.78 (tropical), from 0.80 to 0.85 (temperate) and from 0.71 to 0.79 (Mediterranean) in

MD compared to CTR. In contrast to the improvement in the inter-annual Q anomalies in MD, the inter-annual E anomalies

do not considerably change compared to CTR (Fig. 7b,d,f; Table 4, Table S6).
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Table 4. Model performance parameters of inter-annual monthly discharge (Q) and evaporation (E) anomalies (1975–2010), with r repre-

senting pearson correlation and v = (1−α)2 variability, with α= σmod/σobs, in tropical, temperate and Mediterranean climate regions for

the HTESSEL CTR and MD versions (catchment averages). Modeled Q is compared to station observations and modeled E to FLUXCOM-

WB (Eq. 1). For r, a value of 1 represents a perfect model, for v a value of 0 represents a perfect model. The significance test of the MD

improvements compared to CTR is represented by ∗∗ (passing 5% level) and ∗ (passing 10% level). Values of r and α for the individual

catchments and p-values of improvement are shown in Tables S5 (Q) and S6 (E).

Discharge Evaporation

Climate region HTESSEL version r (-) v (-) r (-) v (-)

Tropical CTR 0.74 0.12 0.79 1.39

MD 0.78∗∗ 0.11 0.80∗∗ 1.52

Temperate CTR 0.80 0.09 0.81 1.12

MD 0.85∗∗ 0.06∗ 0.82∗∗ 1.46

Mediterranean CTR 0.71 0.99 0.78 1.17

MD 0.79∗∗ 4.26 0.78 1.31

4 Discussion315

4.1 Synthesis of results

Sr,MM is lower than Sr,CTR in 14 out of 15 catchments (Fig. 5). This is seemingly in contrast with literature suggesting that the

root depth in land surface models is too low and that the absence of deep roots is a cause for uncertainties in simulated evap-

oration (Kleidon and Heimann, 1998; Pan et al., 2020; Sakschewski et al., 2020). However, Sr represents a conceptual water

volume that is accessible to roots without defining where this volume is in reality. Therefore, it is not necessarily proportional320

to root depth as a small Sr does not preclude the presence of deep roots, as illustrated in Fig. 4 in Singh et al. (2020).

The modeling results show that the difference in long-term mean Q and E fluxes between CTR and MD are small (Table

2), whereas the differences between monthly (climatological and inter-annual) variations are clearly visible (Fig. 6 and Fig.

7). This corresponds to other studies on catchment hydrology that suggest that the root zone storage mainly affects the fast

hydrological response of a catchment (Oudin et al., 2004; Euser et al., 2015; Nijzink et al., 2016; De Boer-Euser et al., 2016).325

Furthermore, previous studies found larger improvements of modeled discharge using Sr,MM in humid regions with large rainfall

seasonality (De Boer-Euser et al., 2016; Wang-Erlandsson et al., 2016). This is not found in our study, as we obtain slightly

smaller improvements in the discharge correlation for the tropical catchments than for the temperate and Mediterranean ones.

This is at least partly related to the smaller difference between Sr,MM and Sr,CTR in the tropical catchments than in temperate

and Mediterranean ones (Fig. 5). The Mediterranean catchments have large climatological biases and too large discharge330
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Figure 7. Inter-annual monthly anomalies of observed discharge (Q) (left) and FLUXCOM-WB evaporation (E) (right) fluxes and modeled

values in the HTESSEL CTR and MD versions, in an individual representative tropical (catchment Mi) (a, b), temperate (catchment Na) (c,

d) and Mediterranean (catchment K) (e, f) catchment based on the time series 1975–2010. Similar figures for the individual catchments are

shown in Fig. S1 (Q) and Fig. S2 (E).

variability in the seasonal cycle and inter-annual anomalies in CTR, and MD further degrades the performance with respect to

bias and variability (Tables 2, 3 and 4). On the other hand, the correlation of seasonal climatology and inter-annual anomalies

consistently improves in all climate regions with the implementation of Sr,MM. Therefore, it is suggested that other aspects of the

hydrology parameterization than Sr (e.g. the lack of a groundwater layer) could be primarily leading to the large climatological

biases and too large discharge variability in the seasonal cycle and inter-annual anomalies in the Mediterranean. On the other335

hand, uncertainties in the GSWP-3 forcing could also in part cause the large biases in the Mediterranean. In this climate region,

it is found that GSWP-3 P (0.5◦grid) is considerably larger than P from the SILO dataset, that provides P on a 0.05◦grid

directly derived from ground-based observational data (Jeffrey et al., 2001).

Although we found significant differences in modeled Q between CTR and MD, the discrepancy in E was very limited in

all climate regions (Table 3; Table 4; Table S6; Fig. S2). As stated before, the reliability of the FLUXCOM E is questionable340
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in our study catchments (Fig. 3). Although the model performance with respect to E fluxes is uncertain, the lack of evapo-

ration sensitivity to Sr was unexpected and requires more in depth evaluation of the results in view of the HTESSEL model

parameterization.

In order to further explain the evaporation (in)sensitivity we analyzed the modelled soil moisture, and specifically looked at

a wet period (mid 1990) and a dry period (start 1991) in a temperate catchment, as shown in Fig. 8b. During the wet period,345

soil moisture in the upper three layers is above or close to θcap for both MD and CTR, while in the fourth layer MD has larger

soil moisture than CTR. In this case evaporation is not moisture limited and controlled by the top three layers because of the

larger root distribution in these layers (Eq. 14 and Eq. 15). Therefore, the modelled transpiration is not sensitive to the increase

in layer 4 soil moisture in MD compared to CTR. During the transition from wet to dry periods, the upper three layers dry out

first as there is a reduction in precipitation input. As these layers are relatively dry, evaporation is controlled by the fourth layer350

in which θ reduces to values close to θpwp in MD, while it remains relatively wet in CTR. It is this difference in θ4 that causes

the sensitivity of transpiration in MD during the wet to dry transition. However, most of the time the modelled soil moisture

is in the wet and insensitive regime, and, therefore, the overall effect of MD on modelled evaporation tend to be small in the

catchments considered in this study. To further analyse the evaporation sensitivity to Sr changes, it would be useful to evaluate

to what extent it is model dependent and compare HTESSEL behavior with other LSMs in a multi-model context (e.g. van den355

Hurk et al. (2016) and Ardilouze et al. (2017)). On the other hand, we also expect the evaporation sensitivity to Sr to be related

to methodology applied which will be further discussed in Section 4.3.

4.2 Methodological uncertainty

Although the catchments were selected carefully, their location and sizes do not completely match with the HTESSEL grid

cells. Thus, assuming a one to one relation between precipitation, evaporation, river discharge and root zone storage capacities360

at the catchment and the grid cell is a potential source of error. However, this configures as random error and is therefore likely

to cancel out in multiple catchment settings as is done in this study. Another source of uncertainty is the parameterization of

the memory method for estimating catchment Sr. This method requires estimations of maximum interception storage, seasonal

and inter-annual transpiration signals and return periods, which lead to differences in Sr,MM when other values are chosen. A

sensitivity analysis of Sr,MM with a high Sr,MM (Si,max = 1.5 mm, RPlow = 3 years, RPhigh = 60 years, f = 0.15 (see Appendix365

A)) and a low Sr,MM (Si,max = 3.5 mm, RPlow = 1.5 years, RPhigh = 20 years, f = 0.35) on average deviated 45 mm from the

average Sr,MM estimates used in this study (Si,max = 2.5 mm, RPlow = 2 years, RPhigh = 40 years, f = 0.25). This deviation is

small considering the average Sr,MM being 319 mm. Besides, irrigation, as a possible external water source in catchments with

crops (Table S1), and deep groundwater, as a water source for deep-rooting vegetation, are not accounted for in the approach.

However, we think that the estimation of transpiration is the main uncertainty in the approach. The assumption that the seasonal370

variations inEt andEp are in phase may not hold in Mediterranean regions whereEp and P , and thereby the water available for

transpiration, tend to be out of phase. Applying the seasonal pattern of transpiration modeled by CTR to the memory method

in Mediterranean catchments results in smaller Sr,MM estimates in these catchments (average: 292 mm) than with the initial

approach where the seasonality of Et was based on Ep (average: 321 mm). The relatively low deviation for both the parameter
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b) Temperate c) Mediterraneana) Tropical

Figure 8. Modelled transpiration and soil moisture content in the HTESSEL CTR and MD versions in an individual representative tropical

(catchment Mi) (a), temperate (catchment Na) (b) and Mediterranean (catchment K) (c) catchment. From top to bottom: transpiration, relative

difference between CTR and MD transpiration (Et,CTR−Et,MD
Et,CTR

), soil moisture layer 1, soil moisture layer 2, soil moisture layer 3, soil moisture

layer 4. Additionally, the vegetation coverage (CL andCH) and the relative rooting distribution (Rk) for the dominant high and low vegetation

types are presented.

uncertainty and the uncertainty in the timing of Et leads us to conclude that these assumptions have a small impact on the375

general finding that Sr,MM is lower than Sr,CTR and that HTESSEL does not represent the spatial heterogeneity of Sr.

Station observations of river discharge are used in both the Sr,MM estimation and the model evaluation. However, because

the memory method is only based on observations of long term annual mean discharge (Q) and the model evaluation is mainly

based on the monthly seasonal and inter-annual variations in Q, we consider model evaluation based on these data appropriate.

4.3 Root zone storage capacity implementation380

The HTESSEL CTR version does not explicitly formulate Sr and, therefore, we formulate Sr,CTR based on the root zone

parameterization as presented in Sect. 2.4 in order to modify the model parameters in a way to make the model consistent with

the Sr,MM estimates. This formulation represents the theoretical Sr,CTR, but it may not fully correspond to the soil moisture in

the four layers that is actually used by the modeled vegetation. The effective Sr (Sr,CTR,eff) can be derived a posteriori from

the modelled soil moisture storage deficits and an extreme value analyses as done in the memory method (Sect. 2.3). Sr,CTR,eff385
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is smaller than Sr,CTR based on depths (Fig. S3c), which is likely related to the relatively small root percentage in layer 4

compared to the other layers for most vegetation types (ECMWF, 2016). On the other hand, the Sr,MM we implemented in MD

by changing soil depths is close the Sr,MD,eff based on modelled soil moisture deficits in MD (Fig. S3d).

In MD the depths for soil moisture calculations are changed, directly resulting in changes in absolute soil moisture and,

thereby in indirect changes in discharge and transpiration. This modification is relatively simple, flexible and there is no390

limitation in the possible range of soil depths for moisture calculations and, therefore, could similarly be implemented in other

land surface models. However, it should be noted that this strategy chosen for changing the HTESSEL Sr is not the only

possible. As follows from Eq. 9, also the plant available soil moisture (θcap − θpwp) defines the Sr. However, modifications in

the model’s θcap or θpwp are not desired as these parameters are soil texture specific properties. Moreover, modifications in the

formulations of the root available moisture for each time-step (θroots) appears conceptually not meaningful.395

There are several alternative hypotheses that may potentially explain the limited sensitivity of modeled E to the modified

Sr. First, the resistance of vegetation to transpiration is a function of the moisture supply (soil moisture) and the moisture

demand (atmospheric condition) (Eq. 14–16). The atmospheric conditions, that define moisture demand and thereby constrain

transpiration, are similar in both CTR and MD because the models are run in an offline version. Therefore, the soil moisture-

atmosphere feedback is not represented and the moisture demand side dominates the moisture supply side in the evaporation400

calculations. This issue could be overcome by using coupled climate simulations. Second, although Sr is changed in MD

compared to CTR, the parameterization of the vegetation water stress is kept constant. Ferguson et al. (2016) found that

different formulations of root water uptake considerably influence modeled water budgets and, therefore, it is likely that changes

in evaporation in MD compared to CTR are constrained by the vegetation water stress formulations (Eq. 14–16). Third, the

insensitivity of evaporation to the changes in model soil depth is probably also related to the fact that the resistance of vegetation405

to transpiration is a function of the relative soil moisture (θ), which is not directly affected by changing the soil depth. On the

other hand, soil depth changes directly affect the modeled Q, as modeled surface (Qs) and subsurface runoff (Qsb) directly

depend on the absolute moisture storage capacity of the soil (see Eq. 10 and Eq. 12), with Qs a function of the absolute

moisture in the top 50 cm of soil and Qsb a function of the the total excess soil moisture when the layer’s moisture content

exceeds saturation moisture content. Fourth, monthly fluxes of Q are often a full order of magnitude smaller than E. Hence410

small changes in the partitioning simply add up to larger relative changes for Q.

5 Conclusions

This study is an attempt to overcome major limitations in the representation of the vegetation’s root zone in land surface

models. Specifically, we looked at the HTESSEL land surface model and found that the root zone storage capacity Sr is only a

function of soil texture and soil depth, the latter being kept constant over the modeled global domain (in HTESSEL z = 2.89 m),415

while from the state-of-the-art literature (e.g. Collins and Bras, 2007; Guswa, 2008; Gentine et al., 2012; Gao et al., 2014) it

is indicated that Sr is, to a large extent, climate controlled. We found that indeed the HTESSEL control version (CTR) does

not adequately represent the spatial heterogeneity of Sr, with the range of Sr,CTR (491–725 mm) much narrower than the
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range obtained for the climate controlled estimate Sr,MM (125–722 mm) in 15 Australian catchments with contrasting climate

characteristics considered in this study. Furthermore, Sr,CTR was found to be considerably larger than the climate controlled420

estimate Sr,MM in 14 out of 15 catchments. It is noted that these findings could be different for other LSMs when they have

shallower soil depths.

We developed a new version of HTESSEL by suitably modifying the soil depths (MD) to obtain modeled Sr,MD that matches

Sr,MM over the 15 catchments considered over Australia, while maintaining the overall HTESSEL model setup (Fig. 4). This

strategy to modify the model’s Sr is relatively simple and could similarly be implemented in other land surface models. More-425

over, the applied methodology could allow for a time-varying Sr in LSMs, and hence all four limitations of using sparse root

observations mentioned in Sect. 1 could be overcome.

The comparison of the offline simulations with original (CTR) and modified (MD) versions of HTESSEL shows that the

difference of the biases in modeled long-term mean climatology of discharge and evaporation fluxes is generally small. On

the other hand, the seasonal timing of the discharge flux is significantly improved in MD indicating the beneficial effect of the430

climate controlled representation of Sr. Consistently, MD improves the correlation with observations for the monthly seasonal

climatology of discharge fluxes in 12 out of 15 catchments (with 7 catchments passing 5% significance level) and for the

inter-annual monthly discharge anomalies in 14 out of 15 catchments (with 9 catchments passing 5% significance level) (Table

S5). Considering the climate region averages, the correlations of monthly seasonal climatology significantly improve in MD

compared to CTR from 0.843 to 0.902 (tropical), from 0.741 to 0.855 (temperate) and from 0.860 to 0.951 (Mediterranean). The435

averaged correlations of the inter-annual monthly anomalies significantly improve in MD compared to CTR from 0.741 to 0.778

(tropical), from 0.795 to 0.847 (temperate) and from 0.705 to 0.785 (Mediterranean). Surprisingly the modeled evaporation is

shown to be relatively insensitive to changes in Sr. In HTESSEL evaporation only depends on the relative moisture content in

each soil layer, which in the model is not directly affected by the depth of the soil. Investigation to this insensitivity showed

that it is only sensitive during dry periods when evaporation is dominated by transpiration from the fourth layer (Fig. 8). On the440

other hand, surface and subsurface runoff in HTESSEL depend on the total moisture content of the soil at any given time. Other

than the relative moisture content this depends on the absolute moisture storage capacity of the soil that will vary together with

the change in soil depth. Moreover, small changes in absolute fluxes translated to larger relative changes for runoff compared

to evaporation (Fig. 6).

As a final conclusion, we believe that a global application of climate controlled root zone parameters has the potential to445

improve the timing of modeled water fluxes by land surface models, but from the results of this study a significant reduction

of annual-mean climatological biases cannot be expected. More work will be needed in the future to improve long-term mean

simulation of discharge and evaporation fluxes by exploiting station-based and latest-generation satellite observations. To this

aim the use of coordinated multi-model frameworks for the intercomparison of state-of-the-art LSMs could be fundamental.

Code and data availability. Catchment discharge observations were taken from the Australian Bureau of Meteorology and can be down-450

loaded from http://www.bom.gov.au/water/hrs/. FLUXCOM evaporation data were taken from the FLUXCOM initiative and can be down-
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loaded from http://www.fluxcom.org/EF-Download/. Top of the atmosphere radiation data were taken from Mines ParisTech and can be

downloaded from http://www.soda-pro.com/web-services/radiation/extraterrestrial-irradiance-and-toa/. The offline HTESSEL model was

provided by EC-EARTH, together with the GSWP-3 forcing data, vegetation and soil data. The adapted modules, model output and analysis

codes are available upon request. The python scripts used for Sr calculation and statistical significance of the results can be downloaded from455

https://github.com/fvanoorschot/Python-scripts-van-Oorschot-2021/.

Appendix A: Iterative procedure for transpiration estimation

Daily transpiration is estimated by Eq. (7) with c a coefficient that represents the ratio between transpiration and potential

evaporation (Sect. 2.3). With c= Et/Ep as a constant value, we do not account for inter-annual variability in transpiration

caused by the interplay between atmospheric water demand and vegetation-available water supply. Therefore, we add an460

iterative procedure to estimate annually varying values for c, which is described here.

Steps 1 to 6 describe the procedure used to estimate c with step 1 the initial estimates and step 2 to 6 executed iteratively. i

represents the iterations (0–9) and a the hydrological years (1973–2010). Pe,Et,Ep and Sd are daily values. After ten iterations

(i= 9) the resulting annual transpiration estimates stabilized and the corresponding storage deficits were used for the Gumbel

Sr analysis as described in Sect. 2.3.465

1. Initial estimates (i= 0) of Et and Sd with a constant c0,a = Et/Ep for a= 1973–2010.

Et,0 = c0,aEp (A1)

Sd,0 = max(0,−
2010∫

1973

(Pe −Et,0)dt) (A2)

2. Calculate the annual change in storage in the root zone (S) with t0 and t1 the start and end of a hydrological year.470

∆Si,a = Sd,i(t0)−Sd,i(t1) (A3)

3. Calculate annual transpiration following the water balance.

Et,i,a = P e,i,a−Qi,a−
∆Si,a
t1 − t0

(A4)

4. Calculate ca for each hydrological year based on the annual Et estimate from step 3 and calculate daily Et.

ci,a =
Et,i,a

Ep,a
(A5)475

Et,i = ci,aEp (A6)
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5. Calculate storage deficits based on daily Et from step 4.

Sd,i = max(0,−
2010∫

1973

(Pe −Et,i)dt) (A7)

6. The input storage deficit of iteration i+ 1 in step 2 is the average of iteration i and i− 1480

Sd,i+1 =
Sd,i +Sd,i−1

2
(A8)

The following three constraints are set to the iterations:

– The long term water balance closes (P e −Q−Et ≈ 0).

– Annual transpiration is always larger than zero and smaller than the annual potential evaporation.

– Variations in c are limited by c0,a− f c0,a < ci,a < c0,a + f c0,a with f a coefficient set to 0.25.485

Figure A1 illustrates the iterative approach for storage deficit calculations. Daily P , Ep and Et based on Eq. (A1) are

presented in Fig. A1a. Figure A1b shows annual variations of Pe and Et. During the years 1980-1984 Pe is clearly less than

average and Et,0 estimate is likely too high in these years because vegetation has less water available for transpiration this year.

The final iteration Et,9 provides a more realistic inter-annual pattern of transpiration. Initial and final iteration storage deficits

are presented in Fig. A1c.490
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(a)

(b)

(c)

Figure A1. Storage deficit iteration approach in a temperate catchment for the time period 1977–1987. (a) Daily water fluxes with P

precipitation, Ep potential evaporation and Et the initial transpiration calculation based on Eq. (7); (b) Annual water fluxes with Pe effective

precipitation, Et,0 the initial transpiration estimate and Et,9 the final iteration transpiration estimate. Mean Pe is based on the full time period

(1973-2010); (c) Daily storage deficit with Sd,0 the initial calculation and Sd,9 the final iteration.
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