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Abstract. The US agriculture system supplies more than one-third of globally-traded soybean and with 90% of US soybean 

produced under rainfed agriculture, soybean trade is particularly sensitive to weather and climate variability. Average growing 

season climate conditions can explain about one-third of US soybean yield variability. Additionally, crops can be sensitive to 

specific short-term weather extremes, occurring in isolation or compounding at key moments throughout crop development. 

Here, we identify the dominant within-season climate drivers that can explain soybean yield variability in the US, and explore 5 

synergistic effects between drivers that can lead to severe impacts. The study combines weather data from reanalysis, satellite-

based evapotranspiration and root-zone soil moisture with sub-national crop yields using statistical methods that account for 

interaction effects. Our model can explain on average about half of the year-to-year yield variability (60% on all years and 

40% on out-of-sample predictions). The largest negative influence on soybean yields is driven by high temperature and low 

soil moisture during the summer crop reproductive period. Moreover, due to synergistic effects, heat is considerably more 10 

damaging to soybean crops during dry conditions, and less so during wet conditions. Compound and interacting hot and dry 

August conditions (defined by the 95th and 5th percentiles of temperature and soil moisture, respectively) reduce yields by 1.25 

standard deviation. This sensitivity is, respectively, 6 and 3 times larger than the sensitivity to hot or dry conditions alone. 

Other important drivers of negative yield responses are lower evapotranspiration early in the season and lower minimum 

temperature late in the season, both likely reflecting an increased risk of frost. The sensitivity to the identified drivers varies 15 

across the spatial domain with higher latitudes, and thus colder regions, being less sensitive to hot-dry August months. Historic 

trends in identified drivers indicates that US soybean has generally benefited from recent shifts in weather. Overall warming 

conditions have reduced the risk of frost in early and late-season and potentially allowed for earlier sowing dates. More 

importantly, summers have been getting cooler and wetter over eastern US. Still, despite these positive changes, we show that 

the frequency of compound hot-dry August month has remained unchanged over 1946-2016. Moreover, in the longer term, 20 

climate models project substantially warmer summers for the continental US which likely creates risks for soybean production.  
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1 Introduction 

Soybean is one of the most in-demand crops worldwide, with the largest increases in production-area over the last two decades 

when compared to all other major staple crops (Hartman et al., 2011). A recent estimate based on FAOSTAT data in 2013 25 

reports that soybean ranks second in terms of globally-produced kilocalories (~20% of the total kcal traded on the global food 

market) and first among staple crops in terms of globally-aggregated trade monetary value (Torreggiani et al., 2018). The US 

agriculture system alone supplies more than one-third of globally-traded soybean, of which 90% is produced under rainfed 

agriculture (Jin et al., 2017). The recent surge in global soybean demands is expected to increase further in the future due to 

increasing global population and associated shifts in dietary preferences (Fehlenberg et al., 2017). At the same time, climate 30 

change is expected to increase annual mean and extreme temperature levels over the US (Dirmeyer et al., 2013; Winter et al., 

2015; Wuebbles et al., 2014a). To support adaptation measures that reduce the potential impacts of these future challenges, we 

need a quantitative understanding of crop sensitivity to climate and weather variables. 

 

Climate variability can strongly impact crop yields. The effects of growing season temperature and precipitation conditions 35 

can explain about one-third of US soybean year-to-year yield variability (Leng et al., 2016; Lobell et al., 2011; Ray et al., 

2015; Vogel et al., 2019). In particular, heat and drought conditions are among the most limiting environmental factors 

affecting crops (Lesk et al., 2016). These are increasingly detrimental when coinciding with vulnerable stages of the crop 

growth cycle (Troy et al., 2015). Such conditions can occur separately or in combination, in the latter case, leading often to 

more severe impacts (Leonard et al., 2014).  For instance, it is reported that US economic agricultural losses between 1980 40 

and 2012 are four times larger during hot and dry conditions compared to drought events alone (Suzuki et al., 2014). Moreover, 

the response to multiple climatic stressors is complex and can be subject to interaction effects where climatic drivers create 

more damage in combination than the sum of each in isolation (Ben-Ari et al., 2018; Matiu et al., 2017). Interestingly, multiple 

climatic stressors can also result in positive interactions with beneficial effects on crop yields (Carter et al., 2016; Suzuki et 

al., 2014). Such features, positive or negative, are likely to have important implications on future impacts and adaptation 45 

strategies to climate change. Nevertheless, these have received little attention in current assessments so far (Matiu et al., 2017; 

Zscheischler et al., 2017). 

 

A compound event framework has lately been proposed to underline the need for impact-centric approaches that identify 

multiple climatic drivers contributing to socio-economic risk (Leonard et al., 2014; Zscheischler et al., 2018, 2020). The types 50 

of damaging combination of drivers on local agricultural production are various, with a specific terminology recently proposed 

in Zscheischler et al. (2020). These can be temporally compounding, as in the case of the 2016 wheat production in France 

where high temperatures during winter followed by heavy precipitation during spring lead to unprecedented yield losses (Ben-

Ari et al., 2018). These can be preconditioned where for instance, pre-sowing soil moisture water storage content interacts with 

within-season precipitation to affect rainfed maize yield in the US (Carter et al., 2018a) or multivariate/co-occurring such as 55 
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in the case of hot-dry conditions in the growing season affecting crop yields (Feng and Hao, 2019; Matiu et al., 2017). One 

way to identify such drivers is through the use of statistical methods that empirically associate drivers to impacts (Vogel et al., 

2021). Easily interpretable linear regressions in that context can be useful tools, in particular when fitted with alternative 

methods that allow for the consideration of a large number of potential predictors (i.e. subset selection, shrinkage or dimension 

reduction approaches) (Ben-Ari et al., 2018; Carter et al., 2018a; Laudien et al., 2020; Vogel et al., 2021).  60 

 

Here we analyze soybean yields and climate time series for the U.S. at the county scale from 1982 to 2016 using regression 

models that are fitted with a reduced set of variables selected via a subset selection approach. The aim is to identify (1) the 

combination of climatic conditions affecting soybean yields at different stages of the growing season, and (2) potential 

interaction effects between drivers modulating the final impact on yield. Although other studies have looked at potential 65 

interactions between climate drivers (Leng et al., 2016), identifying key month and variables throughout the growing season 

(Mourtzinis et al., 2015; Troy et al., 2015), these studies did not look at such features jointly as done here. Finally, we 

investigate trends in the identified dominant climate drivers from 1946 to 2016 to assess how historic trends have affected 

current soybean production risk. 

2 Data and Methods 70 

2.1 Soybean yields and climate data for the U.S. 

Soybean yields are analysed at the county scale for the period 1982-2016, based on census data obtained from the US 

Department of Agriculture (USDA) National Agriculture Statistics Survey (NASS) Quick Stats database 

(www.nass.usda.gov/Quick_Stats). Counties are selected on (i) having no missing data for the full 35 years analysed, (ii) have 

common planting dates (i.e. April-May) and (iii) a production area share of at least 90% rainfed agriculture. Consequently, a 75 

total of 389 counties are retained for the regression analysis (Fig. 1). These together account for at least 50% of US total rainfed 

soy production, where production per county is calculated as the average production over 1982-2016. Information on the 

soybean growing season and rainfed vs irrigated agricultural land cover is obtained from the monthly irrigated and rainfed 

crop areas database around the year 2000 (MIRCA2000), a global gridded dataset at 0.5° resolution (Portmann et al., 2010). 

The percent rainfed area is calculated by dividing the rainfed area in each grid cell by the total harvested area for each cell 80 

(Schauberger et al., 2017a). A linear trend is removed from yield values at the county scale to eliminate long-term effects 

largely due to technological improvements over the study period (Li et al., 2019; Zipper et al., 2016).  
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Figure 1. Average total production in tonnes over the period of study (1982-2016). Counties with 35 years of data are highlighted 

with a thin black perimeter. Grey regions represent filtered out counties where local agriculture is less than 90% rainfed. 85 

Climate data are obtained from the bias-adjusted WFDE5 global reanalysis covering the same period (1982-2016) on a daily 

time step at a 0.5° grid resolution (Cucchi et al., 2020). Monthly values in each grid cell are calculated for the following 

variables: the monthly-mean daily maximum (Tmax) and minimum temperatures (Tmin) (°C), monthly-mean precipitation 

(mm), cumulative incident solar radiation (Wm−2) in addition to extreme indicators such as number of days with temperature 

above 30 °C (i.e. soybean critical temperature threshold) (Schlenker and Roberts, 2009), and number of days with precipitation 90 

above 1, 20, and 30 mm to account for potential negative effects of excessive precipitation on yield (Li et al., 2019). Additional 

variables are created by aggregating over the spring (April-May), summer (June-July-August) and autumn (September-

October) periods. Actual evapotranspiration (mm) and root zone soil moisture (m3/m3) from the satellite-based GLEAM dataset 

(Martens et al., 2017) are included in the analysis at the same spatio-temporal scale. All input data is then averaged over the 

area of each county. A summary of the considered variables is presented in Table 1. Dividing the growing season by calendar 95 

months allowed the identification of key phases throughout the season where soybean crops are most sensitive to climate 

variability. These can reflect both vulnerable physiological crop growth stages and important climatic thresholds. We could 

have used a more complex characterization of crop developmental stages based on phenological heat units (Schauberger et al., 

2017b) or the consideration of sub-monthly aggregation periods for climatic time series, but these did not necessarily improve 
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model performance in other assessments and therefore we opted here to simply rely on monthly and seasonal estimates (Ben-100 

Ari et al., 2016; Sharif et al., 2017).  

 

Table 1. Climate variables calculated at seasonal and monthly time scales throughout the growing season 

 Variable abbreviation Variable explanation Unit 

H
ea

t-
re

la
te

d
 

rsds Shortwave radiation W/m2 

Tmin Average minimum Temperature °C 

Tmax Average maximum Temperature °C 

Num_tx30 Number of days with temperature above 30 °C days 

M
o

is
tu

re
-r

el
at

ed
 

Precip_avg Average amount of precipitation mm 

Num_wet Number of days with precipitation above 1 mm days 

Num_pr20 Number of days with precipitation above 20 mm days 

Num_pr30 Number of days with precipitation above 30 mm days 

SMroot Root zone soil moisture m3/m3 

ETact Actual evapotranspiration mm 

2.2 Simulating yield variability 

We used regression models to estimate yield variability at the county scale. Typically, three types of statistical models are used 105 

in such assessments (i.e. time-series, panel, and cross-sectional models) (Lobell and Burke, 2010). Here we opted for time-

series model as these are (i) easy to interpret, (ii) often perform well compared to the other approaches, and (iii) allow for 

spatially heterogeneous parameter estimation that may highlight local and regional features (Gornott and Wechsung, 2016). 

To focus on robust precursors and to enhance model interpretability, we first selected one set of predictors for the full region 

by pooling US county yields together (see Fig. 2, box ‘selection of predictors’) (Troy et al., 2015). Out of all possible models 110 

constructed with a single input variable, we selected the most influential moisture- and heat-related variables based on the 

Bayesian Information Criterion (BIC) (Ben-Ari et al., 2018). We do this for early- (spring), mid- (summer) and late-growing 

season (autumn) periods separately considering both monthly and seasonal aggregates for each, and thus, ending up with a 

subset of six best predictors (see Table A1). To avoid multicollinearity, we pruned this list of selected predictors by setting a 

maximum allowable Pearson correlation coefficient between any two predictors to 0.5. Thus, whenever a pair of predictors 115 

was strongly collinear (Pearson’s r > 0.5), we selected the predictor that preceded the other in timing within the growing season 

(i.e. we excluded soil moisture in September as August soil moisture was already selected). Finally, we applied a stepwise 

selection procedure to identify the best combination of these input variables, with and without interactions, picking the model 

with the lowest BIC value (Ben-Ari et al., 2018). The stepwise approach considers all selected variables and all possible 
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interactions (i.e. products of all possible pairs of selected predictors). The procedure is then to start from a model with no 120 

predictors, sequentially adding and removing predictors until only a subset is left resulting in the most parsimonious model 

with the lowest prediction error on training data (See step.lm function of R, version 3.6.1). Only interactions that improved the 

model out of sample performance were kept in the final model as this was shown to reduce overfitting. The final list of selected 

predictors consisted of April-May evapotranspiration, August root-zone soil moisture, August maximum temperature, 

September-October minimum temperature, and the interaction between temperature and soil moisture in August (see Fig. 2, 125 

box ‘unique set of predictors’). The resulting model is fitted at the county scale and its performance is evaluated using the 

coefficient of determination (R2). A summary of the modelling framework is presented in Fig.2. 

 

Figure 2. Overall modelling workflow applied for this study linking US yields to weather and climate variables. 

2.3 Validating performance and testing modelling assumptions 130 

To test robustness, we applied a leave-one-out cross-validation. We trained county-scale models on reduced datasets where 

we iteratively removed the to-be-forecasted year. In addition, we applied an alternative cross-validation method using a train-

test split approach where we trained the model over the first 18 years and tested its performance over the remaining 17 years 

of data. The adequacy of applying linear models at the county scale for assessing the relationship between yield anomalies and 

selected predictors was successfully assessed using five statistical tests (Gornott and Wechsung, 2016; Schauberger et al., 135 
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2017b). The regression equation specification error test (RESET) assessed whether taking powers of the predictor variables 

would improve the model fit. The Breusch-Pagan test examined heteroscedasticity issues with the data. The Breusch–Godfrey 

test was used to assess autocorrelation and the Shapiro–Wilk test to examine normality of residuals. Multicollinearity was 

checked using the variance inflation factor calculated for each independent variable while setting acceptable levels to strictly 

below 3.  140 

2.4 Changes in key climatic conditions from 1946 to 2016 

Historic trends of the dominant climatic drivers were assessed for the period 1946 to 2016 using linear regressions (0.05 

significance level). Furthermore, we assessed changes in concurrent hot-dry August conditions as these were shown to be 

particularly relevant for soybean production. The selected input datasets used in the crop-modelling analysis do not cover years 

preceding 1981. To overcome this limitation, we used precipitation and temperature minimum and maximum variables from 145 

the CRU V4 global dataset (Harris et al., 2020) covering the period 1901-2019 at a spatial resolution of 0.5°. Minimum 

temperature in the early season was used as a proxy for early season actual evapotranspiration as the latter tends to be mainly 

energy limited during spring, especially in climatologically wet regions. Moreover, minimum temperature was initially picked 

as most relevant temperature related variable for spring conditions, but later dropped in the stepwise selection. Mean summer 

precipitation over June-July-August was used as a proxy for August root zone soil moisture. To check the feasibility of these 150 

assumptions, we calculated correlation maps between GLEAM August root zone soil moisture and CRU averaged summer 

precipitation and between GLEAM spring actual evapotranspiration and CRU spring minimum temperature for the period 

1982 to 2016. The mean Pearson’s correlation coefficient over the whole spatial domain was 0.73 for summer precipitation 

and root zone soil moisture and 0.5 for spring actual evapotranspiration and minimum temperature (Fig. A1ab). The 10th and 

90th  percentiles of summer precipitation and maximum temperature are used to jointly define the compound hot-dry events at 155 

the local scale. Accordingly, we calculated the percent-change per grid cell based on the difference between the number of 

compound events over two distinct periods (1946-1980 relative to 1982-2016) normalized by the total amount of events over 

the entire analysis period. Moreover, we calculated a percent (%) area time series of the total rainfed producing region under 

compound August hot-dry conditions by summing the number of grid cells under such conditions for a given year and dividing 

by the total number of grid cells considered, similar to the approach applied in Mazdiyasni and AghaKouchak (2015). The 160 

trend in the aforementioned time series was assessed with the non-parametric Mann−Kendall trend test (0.05 significance 

level).  

3 Results 

3.1 Overall model performance 

Based on the selection procedure shown in Fig. 2, we identify a set of predictors for the full region consisting of (1) April-May 165 

evapotranspiration, (2) September-October minimum temperature, (3) August root zone soil moisture, (4) August maximum 
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temperature, and (5) the interaction between those two August variables. These unique predictors represent non-redundant 

moisture and heat conditions at different stages of the growing season. The regression models are trained on the country level 

with those identified predictors and are able to explain about half of the year-to-year yield variability (60% on all years and 

40% on out-of-sample predictions). The train-test split approach gives quantitatively similar performance results so we limit 170 

ourselves here to presenting the leave-one-out cross-validated results (See Fig. A2). In general, for almost all years, the model 

provides a correct year-to-year direction of change as well as sign of the yield anomalies (i.e. positive or negative, see Fig 3a). 

Overall, the most important crop yield drivers are August root zone soil moisture and August maximum temperature, together 

responsible for 65% of the model out-of-sample explained variability. Including the interaction term between those variables 

contributed to 12.5% out of the total 65% attributed to August heat and moisture variables. The co-occurrence of low soil-175 

moisture and hot conditions triggers the largest crop failures. Extreme  hot-dry conditions (i.e. simultaneously exceeding the 

95th and 5th percentiles of temperature and soil moisture, respectively) leads to 6 times more crop impacts compared to 

extreme hot conditions alone (i.e. 95th and 50th percentiles of temperature and soil moisture, respectively) and 3 times more 

impacts compared to extreme dry conditions alone (i.e. 50th and 5th percentiles of temperature and soil moisture, respectively). 

(Fig. 3a). 180 

 

Figure 3. Explained variance (R-squared) of yield anomalies due to climate variability (a) spatially averaged and (b) at the county 

scale. Stippling in (b) shows F-tests with (p < 0.05) indicating that the model chosen is significantly better than a null model 

(accounting for false discovery rate due to multiple hypotheses testing). 

In particular, extremely low yields occurring during heat and drought events, such as the 1988 and 2012 years, are well captured 185 

by the model. Spatially, the model is statistically significant (p-value < 0.05) for over 81% of considered counties and 77% 

when we adjusted for multiple hypotheses testing using the False Discovery Rate (FDR) method (Ventura et al., 2004). Yield 

variability is captured particularly well in southern counties (Fig. 3b), with high performance represented by red shading (R2 

~ 0.8). On the other hand, the model performs generally poorer in northern counties, consistent with the results of Schauberger 

et al. (2017b)  where regional colder and wetter climatology seems to reduce soybean yield sensitivity to climatic fluctuations. 190 

https://doi.org/10.5194/esd-2021-24
Preprint. Discussion started: 22 April 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

Individual diagnostic tests for models built at the county scale shows that autocorrelation and heteroscedasticity did not occur 

for the majority of individual models whereas model residuals are mostly normally distributed. The RESET test shows that 

most models are properly specified meaning that considering quadratic variables would not have improved the model fit. 

Finally, the VIF value is strictly smaller than 3 for almost all considered models and variables showing minimal 

multicollinearity concerns (Fig. A3). 195 

3.2 Spatial variability of model coefficients 

The coefficient distribution for all variables, summarized across the spatial domain, is shown in Fig. 4a. Wide boxplot ranges 

reflect large spatial heterogeneity in coefficient estimation. This spatial variability is depicted in Fig. 4b-f showing county-

based model coefficients and associated patterns across the spatial domain. 

  200 

Figure 4. (a) Summary coefficient distributions across counties. The band inside the box represents the median, whereas the box 

depicts the 25th and 75th percentile values. The whiskers represent the maximum and minimum values as long as these are within 

the 1.5 interquartile-range from the median. Outliers outside this range are depicted as points. (b-f) Region- and season-specific 

estimated sensitivity coefficients for soybean yield and selected predictors. Stippling indicates statistical significance from a t-test  at 

95% confidence level. Values of coefficients are interpreted as the change in soybean yield standard deviation from a one-standard 205 
deviation change in the considered independent variable. In the case of interacting variables, this interpretation only applies when 

the other interacting variable is equal to zero. 

Crop-sensitivity to maximum August temperatures shows a north-south gradient with strongly negative regression coefficients 

over the southern states and sensitivities close to zero in northern states (Fig. 4d). The climatological August maximum 
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temperature in southern states is around 30°C highlighting negative temperature influences on yield when this value is 210 

exceeded (Fig. A4). The signal is less significant and leaning towards positive values in colder regions north of Iowa and 

Illinois. August root zone soil moisture is strongly positively associated to yield, with the exception of a small region near 

Iowa and Minnesota (Fig. 4c). Summer climatology is particularly humid over this region (Fig. A4) whereas the soil is 

generally poorly drained (i.e. high clay fraction, low saturated hydraulic conductivity) (Li et al., 2019). Such combination can 

make crops sensitive to the detrimental effects of excessive water on yields which could explain the negative soil moisture 215 

sensitivities here. The interaction between August heat and soil moisture variables is positive across the majority of counties 

(Fig. 4e). This implies that the impact of heat in August depends on the soil moisture value. The negative effects of high 

temperatures are amplified during dry conditions and alleviated during wet conditions. High evapotranspiration in the early 

season is positively associated to yield across the spatial domain with particular strong association in central and northern 

states (Fig. 4b), in line with Schauberger et al. (2017b). End of season minimum temperature reveals a north-south gradient in 220 

parameter estimation with significant positive effects over the colder northern regions and weaker association over the south 

(Fig. 4f). The only exception is noted for south eastern states where strong negative association between yield and end of 

season minimum temperature is shown. Interestingly, the link between August maximum temperature and yield for those same 

counties is weak/not significant, suggesting that crops in this area might be  reaching the temperature vulnerable stage later 

during the season. 225 

3.4 Compound hot-dry and associated impacts 

Our results show that Illinois is particularly sensitive to hot and dry conditions in August (Fig. 4e), and that therefore models 

perform best over this area (average R2 of 0.6-0.7). Moreover, Illinois is the largest soybean producing region in the US and 

hence we focus here in detail on the compounding hot-dry effects in August. Figure 5a shows pooled yield observations for 

Illinois (points) together with model predictions (contour lines) for various values of August root zone soil moisture (vertical-230 

axis) and August maximum temperature (horizontal-axis). The coefficients for the sensitivity of soybean yields to August hot-

dry conditions in Fig. 5a are obtained from averaging all regression coefficients from all county-specific models within Illinois 

(i.e. 51 individual models/counties).  
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Figure 5. (a) contour lines for modelled yield anomalies under varying levels of standardized August maximum temperature and 235 
root zone soil moisture in Illinois state. Points represent observed yield values. The colour scale to the right is in the units of 

standardized yield. (b) Sensitivity of Illinois US yield anomaly to temperature change for three different root zone soil moisture 

percentiles (5th, 50th, 95th ). 

Yield is shown to decrease for increasing hot-dry conditions both in observations and model predictions. In particular, the 

bottom-right corner (representing August temperature and soil moisture values respectively above and below the 50th 240 

percentile) contain 75% of all observed low yields (defined as below one standard deviation). By including the interaction 

term, we estimate that the compounding impact of hot-dry conditions (i.e. 95th and 5th percentiles of temperature and soil 

moisture, respectively) in August leads to an additional crop-loss of 0.5 standard deviations as compared to excluding such 

interaction. On the other hand, the effects of extreme hot-wet conditions (95th percentile for both temperature and soil moisture 

values) leads to a 0.5 standard deviation positive increase in crop yield estimates when including the interaction term. This 245 

non-linearity is visualized in Fig. 5b showing model-derived yield sensitivities to temperature for different levels of root zone 

soil moisture. The association between yield and August maximum temperature is strongly negative for extremely dry 

conditions (brown dashed line) and slightly positive for extremely wet conditions (blue dashed line). This highlights the 

importance of accounting for interaction effects when estimating compound impacts on crops. Yield response to hot-wet 

conditions is nevertheless subject to high uncertainty (see shaded uncertainty range in Fig. 5b) as these conditions do not occur 250 

often and are represented by few observations (Fig. 5a). Still, The temperature sensitivities during wet conditions are 

significantly different from those during dry conditions (Fig. 5b). 
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3.5 Changes in compound hot-dry from 1946 to 2016   

Linear trends for summer precipitation over the period 1946 to 2016 show significant increases particularly over the Midwest 

region (Fig. 6b). Only south-eastern states show significant drying trends. Maximum August temperature trends show 255 

significant cooling over the Midwest region but warming for north-eastern, north-western and southern states (Fig. 6a). 

Moreover, early and late season minimum temperature trends indicate warmer conditions across the spatial domain (see 

Fig.A5). Though summers generally got wetter and cooler in the eastern part of the Midwest and north eastern US regions, the 

percent-change in the number of concurrent hot and dry August months (i.e. 90th and 10th percentiles of August maximum 

temperature and summer precipitation, respectively) between 1946-1980 and 1982-2016 shows an increase in frequency here 260 

(Fig. 6c). This might have implications as compound hot-dry events appear to have increased in frequency in high producing 

regions, despite the apparent cooling and wetting patterns identified by univariate trends.  

 

Figure 6. (a) Linear regression slope of August maximum temperature. (b) Linear regression slope for summer (JJA) precipitation. 

(c) Percent (%) change in concurrent dry (Summer JJA precipitation < 10th percentile) and hot (August Maximum Temperature > 265 
90th percentile) during 1982–2016 relative to 1946–1980. (d) Time-series of percent producing regions in hot and dry conditions. 
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Trends in (a, b and d) are calculated for the period 1946 to 2016. Stippling in (a) and (b) indicates statistical significance at the 95% 

confidence level P-value in d) corresponds to the  Mann–Kendall monotonic trend test. Red dashed line in (d) represents a 15% 

threshold marking years with a large (>15%) spatial hot-dry extent. 

Time series of percent production area in concurrent hot and dry conditions reflects the spatial extent of such conditions over 270 

the years (Fig. 6d). The red dashed line represents a threshold set at 15% exceeded by a number of years (i.e. 1956, 

1980,1983,1988 and 2007). All those years except 1980 coincided with a developing La Niña summer reported to have 

important consequences on US crop production (Anderson et al., 2019; Jong et al., 2020). A large fraction of the production 

area under such conditions imply a high risk for country level agricultural production as regions are no longer able to balance 

out losses at the local scale. Here again, despite the dominant cooling and wetting trends over the US (Fig. 6 a & d), no 275 

significant monotonic trend was found in the fraction of US under hot-dry conditions over time.   

4 Discussion 

Predictors here are determined statistically, nevertheless, we aimed for a unique set of variables for all US counties to facilitate 

the physical interpretation of climatic drivers affecting soybean yield variability. This is in line with other studies that 

constructed semi-empirical crop models at the grid-cell level relying on a statistical framework driven by well-known 280 

physiological variables (Gornott and Wechsung, 2016; Schauberger et al., 2017b). The frugal method we used to select 

predictors means leaving out potentially useful and physiologically-relevant variables such as radiation and excessive 

precipitation. This choice is made as the least-squares model fit is highly sensitive to the ratio of predictors to the number of 

observations (James et al., 2013). Ideally, crop-observations (35 here) should be much larger than the number of predictors to 

avoid overfitting. Furthermore, including highly-correlated predictor variables (e.g. radiation and temperature) affect model 285 

parameter estimation and complicate physical interpretation of drivers. A reduced set of predictor variables where shared 

information between variables is minimized provides an easily-interpretable and robust model for assessing sensitivity of 

soybean crops to climate and weather variability (Ben-Ari et al., 2018; Gornott and Wechsung, 2016; Lobell and Burke, 2010; 

Schauberger et al., 2017b). It is possible to use more complex machine learning models such as random forests although these 

often tend to obscure result interpretation and do not always yield better predictions (Vogel et al., 2019, 2021). Note that non-290 

climatic seasonal influences on crop yields are ignored in this study. These include planting densities, sowing dates, fertilizer 

applications and other socio-economic factors. This simplification is done as spatially-explicit time series for such components 

are rare and difficult to obtain (Schauberger et al., 2017b). Some of these factors were shown not to necessarily improve model 

performance in a case study done on crop yields in Germany (Gornott and Wechsung, 2016). Nevertheless, future studies 

should include these in whenever this becomes possible for extended time periods as climate has been shown to influence 295 

seasonal management practices for farmers in the US (Carter et al., 2018b).   

 

We found that soybean yields were predominantly driven by heat and drought conditions occurring during the vulnerable 

summer crop reproductive stage. In particular, August month was highlighted as key month for soybean production in line 
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with results from previous studies (Mourtzinis et al., 2015; Zipper et al., 2016). Furthermore, we noted a significant interaction 300 

effect between August variables modulating the final impact on yield. Drought and heat induce different growth inhibition 

patterns that can act simultaneously to reduce crop photosynthetic rates and eventual yield levels (Suzuki et al., 2014). August 

mean maximum temperature was found to be negatively associated with soybean yields for values exceeding 30°C in line with 

other studies reporting non-linear association between soybean and temperature where the relationship is mildly positive up 

until the 30°C mark and then declines sharply due to heat stress (Schauberger et al., 2017a; Schlenker and Roberts, 2009). 305 

Nevertheless, here we found that this relationship was dependent on concurrent soil moisture conditions where wet soils 

dampen the negative effect of high temperatures on yield via evaporative cooling. This result is in line with previous studies 

reporting the decoupling effect of irrigation on the relationship between heat stress and yield (Carter et al., 2016; Siebert et al., 

2017; Troy et al., 2015). On the other hand, low moisture levels induce stomatal closure which leads to reduced latent heat 

flux and an increase in canopy temperature well above atmospheric temperatures increasing the crop sensitivity to hot 310 

conditions (Carter et al., 2016, 2018a; Siebert et al., 2017; Suzuki et al., 2014). Such interaction, although well documented in 

the literature on crop physiological response to primary abiotic stressors is rarely considered in large scale statistical analyses 

of climate impact on crop yields. This suggests a potential overestimation of temperature effects during wet conditions and an 

underestimation of compound hot-dry impacts in previous reports (Carter et al., 2018a; Leng et al., 2016). Our analysis further 

highlighted early season evapotranspiration conditions in addition to late season minimum temperature as important drivers of 315 

soybean yield variability. High evapotranspiration in the early season positively associated to yield reflects mainly non-limiting 

energy conditions as moisture levels are expected to not be restrictive in early spring. This can imply both a reduced frost risk 

in addition to a potentially longer growing season where soybean yield potential is maximized (Bastidas et al., 2008; Mourtzinis 

et al., 2019). End of season frost has also been reported as an important risk factor for soybean crops particularly in the northern 

states, and we interpret the predictor of minimum temperature during September and October as reflective of such conditions. 320 

These identified drivers of impact can serve as a basis for effective early warning systems that provide valuable information 

to decision makers (Merz et al., 2020). Acting in advance can be critical to avoid crop loss and associated socio-economic 

consequences. For instance, a short period of drought during the reproductive stage is reported to cause non-reversible damage 

to soybean yields (Daryanto et al., 2017). Hot and dry conditions in eastern US over summer has been shown to be forecastable 

at long lead times (~50 days ahead), associated with sea surface temperature anomalies over the northern Pacific Ocean 325 

(McKinnon et al., 2016; Vijverberg et al., 2020). Future work can further explore the link between drivers of compound hazards 

impacting yields to facilitate the development of actionable tools for stakeholders.  

 

We showed that historic changes in climate have not increased the overall climate risk for rainfed soybean production in the 

US. This is in line with other studies that looked at the contribution of historic climate trends on soybean and maize yields in 330 

the US (Butler et al., 2018; Ray et al., 2019). This is particularly the case in the most northern states where the occurrence of 

compound hot-dry events has mostly decreased (Fig. 6d). Interestingly, soybean cropping regions have also shifted north-

westerly in the US taking advantage of such changes in climate (Sloat et al., 2020). The summertime cooling is a well-
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documented phenomenon over US agricultural regions (Nikiel and Eltahir, 2019) and is likely attributable to agricultural 

intensification in the region (Alter et al., 2018; Mueller et al., 2016; Nikiel and Eltahir, 2019). A higher density of crops 335 

supported by increasing fertilizer rates leads to higher evapotranspiration rates which in turn induce large scale evaporative 

cooling and contribute to increasing precipitation (Basso et al., 2021; Mueller et al., 2016). Nevertheless, we highlighted that 

in key producing regions like Illinois, compound hot-dry events seem to have increased in frequency recently, despite the 

absence of a drying or warming trend. Potentially, during dry conditions, the actual evapotranspiration reduces, cancelling the 

land-change induced cooling effect and prompting a return to historic high temperature extremes (Mueller et al., 2016). Future 340 

risk assessment should account for such non-linear effects. Over the Midwest US, climate models project warmer summers 

which is likely to enhance the coupling between moisture and temperature via land-atmosphere feedbacks leading to a likely 

increase in the amplitude and frequency of compound hot-dry conditions (Cheng et al., 2019; Zscheischler and Seneviratne, 

2017). Although annual precipitation levels are expected to remain constant or even increase, climate models generally project 

increased dry day length and decreased summer soil moisture levels (Dai, 2013; Dirmeyer et al., 2013; Wuebbles et al., 2014a, 345 

2014b). Future research should quantify whether such trends could lead to an increase of hot-dry August months in the future. 

Nevertheless, high uncertainty remains with respect to atmospheric dynamical changes including quasi-stationary Rossby 

waves which are a key driver of hot-dry conditions in the eastern US as well as other mid-latitude regions (Di Capua et al., 

2020; Coumou et al., 2014; Kornhuber et al., 2019; Shepherd, 2014; Winter et al., 2015). Until such contradictions are resolved, 

future impacts of climate change on US agricultural production remain uncertain. The Storyline approach has been proposed 350 

as an important tool to illustrate such epistemic uncertainty and can be explored in future studies with important consequences 

on current and future policy and decision making (Shepherd, 2019).  

 

Here we focused on local types of compound events, however, global food supply is highly dependent on production in various 

countries. Spatially compounding events will be important to study in future assessments in order to understand large scale 355 

risk associated to breadbasket failures. Here we qualitatively identified that most of the large extent hot-dry conditions 

occurring over the US are associated to ENSO teleconnections. These are also highly influential over the South American 

continent where soybean production including the US account for more than 80% of total global supply (Anderson et al., 2017; 

Wellesley et al., 2017). Other examples of teleconnections are mid-latitude Rossby waves, particularly wave number 5, which 

has phase-locking behaviour in the northern hemisphere mid-latitudes driving simultaneous summer positive temperature 360 

anomalies over Midwest US, eastern Europe, and east Asia (Kornhuber et al., 2019). This is particularly of concern to soybean 

production when taking into consideration upcoming soybean hotspot production regions such as Russia and Ukraine 

(Deppermann et al., 2018).  
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5 Conclusion 

We presented a simple statistical framework that can identify climatic variables influencing soybean yield variability in the 365 

US at specific moments within the growing season. We found that compound August hot-dry conditions lead to the largest 

impacts on yield, i.e. beyond the estimated additive effects of each stressor separately. Furthermore, we identified early-season 

evapotranspiration and late-season minimum temperature to be important factors affecting soybean yield in the US. 

Understanding of these seasonally dependent crop-sensitivities paves the way for more effective early-warning tools that target 

timely drivers of yield variability throughout the growing season. The long-term cooling and wetting trend in summer, over 370 

large areas of our domain, has generally been beneficial for soybean. Nevertheless, we showed that the frequency of extreme 

hot-dry conditions remained largely unchanged over the full region, and increased in a key region like Illinois where crops are 

especially sensitive to such extremes. Given that climate models project summer warming and general declines in soil-moisture 

(albeit with substantial uncertainty) for the Midwest, crop sensitivities to compound hot-dry extremes are likely to present 

important future risks for US soybean production.  375 

Appendix A: Additional tables and figures 

Table A 1. List of all considered variables tested individually as potential predictors for the statistical model. The selected heat and 

moisture variables per period are highlighted in red.  

Best heat and moisture related variables for each univariate model based on BIC  

Spring Summer Fall 

Name BIC Type  Name BIC Type Name BIC Type 

X4_5_ETact 38101.02 moisture X8_SMroot 35671.27 moisture X9_SMroot 35478.40 moisture 

X4_5_Tmin 38114.13 heat X6_7_8_ETact 36494.53 moisture X9_ETact 35497.50 moisture 

X4_ETact 38126.94 moisture X8_Tmax 36502.21 heat X9_10_ETact 35644.31 moisture 

X4_Tmax 38135.90 heat X8_rsds 36667.57 heat X9_10_SMroot 35782.78 moisture 

X4_5_Tmax 38158.38 heat X6_7_8_precip_avg 36672.72 moisture X10_SMroot 36388.79 moisture 

X4_SMroot 38163.37 moisture X8_precip_avg 36684.10 moisture X10_ETact 37251.21 moisture 

X5_ETact 38165.18 moisture X6_7_8_num_wet 36719.33 moisture X9_10_Tmin 37791.13 heat 

X4_Tmin 38175.23 heat X6_7_8_SMroot 36883.95 moisture X10_Tmin 37940.51 heat 

X5_Tmin 38176.42 heat X8_ETact 36981.19 moisture X9_Tmin 38003.55 heat 

X4_5_SMroot 38181.28 moisture X8_num_tx30 36986.02 heat X9_10_rsds 38062.98 heat 

X5_SMroot 38213.79 moisture X8_num_wet 37065.40 moisture X9_rsds 38095.34 heat 

X5_num_pr20 38218.38 moisture X6_7_8_rsds 37232.01 heat X9_num_wet 38159.20 moisture 

X4_5_num_pr20 38225.77 moisture X7_SMroot 37321.64 moisture X9_10_num_tx30 38179.84 heat 

X5_num_pr30 38236.84 moisture X6_7_8_Tmax 37387.85 heat X9_10_num_wet 38180.22 moisture 

X4_5_num_pr30 38239.45 moisture X8_num_pr20 37397.33 moisture X9_num_tx30 38193.27 heat 
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X4_5_precip_avg 38243.69 moisture X6_7_8_num_pr20 37413.15 moisture X10_rsds 38211.16 heat 

X5_precip_avg 38245.36 moisture X7_ETact 37457.28 moisture X10_Tmax 38219.46 heat 

X5_Tmax 38253.65 heat X7_precip_avg 37506.25 moisture X9_10_precip_avg 38225.60 moisture 

X4_num_tx30 38272.67 heat X6_7_8_num_tx30 37556.24 heat X10_num_tx30 38237.57 heat 

X4_precip_avg 38273.35 moisture X7_num_wet 37592.68 moisture X9_precip_avg 38241.65 moisture 

X4_num_wet 38274.49 moisture X7_rsds 37717.13 heat X9_Tmax 38247.62 heat 

X4_rsds 38275.85 heat X8_num_pr30 37747.78 moisture X9_10_num_pr20 38248.19 moisture 

X4_5_num_tx30 38276.22 heat X7_Tmax 37757.88 heat X9_num_pr20 38263.08 moisture 

X4_num_pr20 38276.54 moisture X6_7_8_num_pr30 37807.09 moisture X9_10_num_pr30 38271.85 moisture 

X5_num_tx30 38280.31 heat X6_ETact 37846.45 moisture X10_num_pr30 38274.50 moisture 

X4_num_pr30 38281.21 moisture X7_num_pr20 37913.19 moisture X10_precip_avg 38280.89 moisture 

X5_num_wet 38288.94 moisture X6_SMroot 37925.90 moisture X10_num_wet 38281.09 moisture 

X4_5_num_wet 38289.06 moisture X7_num_tx30 37996.85 heat X10_num_pr20 38281.21 moisture 

X4_5_rsds 38289.74 heat X8_Tmin 38054.98 heat X9_10_Tmax 38284.94 heat 

X5_rsds 38290.43 heat X7_num_pr30 38067.72 moisture X9_num_pr30 38286.41 moisture 

   
X6_num_wet 38163.44 moisture 

   

   
X6_Tmin 38186.92 heat 

   

   
X6_rsds 38221.41 heat 

   

   
X6_precip_avg 38239.57 moisture 

   

   
X6_num_tx30 38240.49 heat 

   

   
X6_7_8_Tmin 38260.96 heat 

   

   
X6_num_pr20 38263.44 moisture 

   

   
X6_Tmax 38281.99 heat 

   

   
X7_Tmin 38282.28 heat 

   

   
X6_num_pr30 38289.71 moisture 
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 380 

Figure A 1. (a) Correlation plot between CRU April-May minimum temperature and GLEAM April-May actual evapotranspiration 

over the period of study (1982-2016). (b) Correlation plot between CRU JJA precipitation average and GLEAM August root zone 

soil Moisture over the period of study (1982-2016). Stippling indicates statistical significance at the 95% confidence level.  

 

Figure A 2. Train test split validation approach where model is trained over 50% of the data (Blue line) and tested over the remaining 385 
50% (Red).  
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Figure A 3. Statistical test results for the US. Green indicates a “successful” test, i.e. no problem, while red indicates a rejection of 

the respective H0 of no autocorrelation/heteroscedasticity/ misspecification/multicollinearity/un-normality. Multicollinearity is 390 
checked with the variance inflation factor and marked in red if any of the variables report a value >3. 
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Figure A 4. Mean values for selected model predictors per county over the period of study 1982-2016. 
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 395 

Figure A 5. (a) Linear regression slope for April-May (spring) minimum temperature. (b) Linear regression slope for September-

October (fall) minimum temperature. Stippling indicates statistical significance at the 95% confidence level. 
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