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Abstract. The US agriculture system supplies more than one-third of globally-traded soybean and with 90% of US soybean 

produced under rainfed agriculture, soybean trade is particularly sensitive to weather and climate variability. Average growing 

season climate conditions can explain about one-third of US soybean yield variability. Additionally, crops can be sensitive to 

specific short-term weather extremes, occurring in isolation or compounding at key moments throughout crop development. 

Here, we identify the dominant within-season climate drivers that can explain soybean yield variability in the US, and explore 5 

synergistic effects between drivers that can lead to severe impacts. The study combines weather data from reanalysis and 

satellite-informed root-zone soil moisture fields with sub-national crop yields using statistical methods that account for 

interaction effects. Our models can explain on average about two thirds of the year-to-year yield variability (70% on all years 

and 60% on out-of-sample predictions). The largest negative influence on soybean yields is driven by high temperature and 

low soil moisture during the summer crop reproductive period. Moreover, due to synergistic effects, heat is considerably more 10 

damaging to soybean crops during dry conditions, and less so during wet conditions. Compound and interacting hot and dry 

summer conditions (defined by the 95th and 5th percentiles of temperature and soil moisture, respectively) reduce yields by 2 

standard deviation. This sensitivity is, respectively, 4 and 3 times larger than the sensitivity to hot or dry conditions alone. 

Other relevant drivers of negative yield responses are lower temperatures early and late in the season, excessive precipitation 

in early season and dry conditions in late season. The sensitivity to the identified drivers varies across the spatial domain with 15 

higher latitudes, and thus colder regions, positively affected by high temperature during the summer period. On the other hand, 

warmer south-eastern regions are positively affected by low temperature late season. Historic trends in identified drivers 

indicates that US soybean has generally benefited from recent shifts in weather except for increasing rainfall in the early 

season. Overall warming conditions have reduced the risk of frost in early and late-season and potentially allowed for earlier 

sowing dates. More importantly, summers have been getting cooler and wetter over eastern US. Still, despite these positive 20 

changes, we show that the frequency of compound hot-dry summer events has remained unchanged over 1946-2016. In the 

longer term, climate models project substantially warmer summers for the continental US but uncertainty remains whether this 

will be accompanied by drier conditions. This highlights a critical element to explore in future studies focused on US 

agricultural production risk under climate change.   
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1 Introduction 25 

Soybean is one of the most in-demand crops worldwide, with the largest increases in production-area over the last two decades 

when compared to all other major staple crops (Hartman et al., 2011). A considerably large portion of this production is 

dedicated to animal feed accommodating the current global increase in demand for animal products (Cassidy et al., 2013). A 

recent estimate based on FAOSTAT data in 2013 reports that soybean ranks second in terms of globally-produced kilocalories 

(~20% of the total kcal traded on the global food market) and first among staple crops in terms of globally-aggregated trade 30 

monetary value (Torreggiani et al., 2018). The US agriculture system alone supplies more than one-third of globally-traded 

soybean, of which 90% is produced under rainfed agriculture (Jin et al., 2017). The recent surge in global soybean demands is 

expected to increase further in the future due to increasing global population and associated shifts in dietary preferences 

(Fehlenberg et al., 2017). At the same time, climate change is expected to increase annual mean and extreme temperature levels 

over the US (Dirmeyer et al., 2013; Winter et al., 2015; Wuebbles et al., 2014a). To support adaptation measures that reduce 35 

the potential impacts of these future challenges, we need a quantitative understanding of crop sensitivity to climate and weather 

variables. 

 

Climate variability can strongly impact crop yields. The effects of growing season temperature and precipitation conditions 

can explain about one-third of US soybean year-to-year yield variability (Leng et al., 2016; Lobell et al., 2011; Ray et al., 40 

2015; Vogel et al., 2019). In particular, heat and drought conditions are among the most limiting environmental factors 

affecting crops (Lesk et al., 2016). These are increasingly detrimental when coinciding with vulnerable stages of the crop 

growth cycle (Troy et al., 2015). Such conditions can occur separately or in combination, in the latter case, leading often to 

more severe impacts (Leonard et al., 2014).  For instance, it is reported that US economic agricultural losses between 1980 

and 2012 are four times larger during hot and dry conditions compared to drought events alone (Suzuki et al., 2014). Moreover, 45 

the response to multiple climatic stressors is complex and can be subject to interaction effects where climatic drivers create 

more damage in combination than the sum of each in isolation (Ben-Ari et al., 2018; Haqiqi et al., 2021; Matiu et al., 2017; 

Rigden et al., 2020). Interestingly, multiple climatic stressors can also result in positive interactions with beneficial effects on 

crop yields (Carter et al., 2016; Suzuki et al., 2014). Such features, positive or negative, are likely to have important 

implications on future impacts and adaptation strategies to climate change. Nevertheless, these have received little attention in 50 

current assessments so far (Matiu et al., 2017; Zscheischler et al., 2017). 

 

A compound event framework has lately been proposed to underline the need for impact-centric approaches that identify 

multiple climatic drivers contributing to socio-economic risk (Leonard et al., 2014; Zscheischler et al., 2018, 2020). The types 

of damaging combination of drivers on local agricultural production are various, with a specific terminology recently proposed 55 

in Zscheischler et al. (Zscheischler et al., 2020). These can be temporally compounding, as in the case of the 2016 wheat 

production in France where high temperatures during winter followed by heavy precipitation during spring lead to 
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unprecedented yield losses (Ben-Ari et al., 2018). These can be preconditioned where for instance, pre-sowing soil moisture 

water storage content interacts with within-season precipitation to affect rainfed maize yield in the US (Carter et al., 2018a) or 

multivariate/co-occurring such as in the case of hot-dry conditions in the growing season affecting crop yields (Feng and Hao, 60 

2020; Matiu et al., 2017). One way to identify such drivers is through the use of statistical methods that empirically associate 

drivers to impacts (Vogel et al., 2021). Easily interpretable linear regressions in that context can be useful tools, in particular 

when fitted with alternative methods that allow for the consideration of a large number of potential predictors (i.e. subset 

selection, shrinkage or dimension reduction approaches) (Ben-Ari et al., 2018; Carter et al., 2018a; Laudien et al., 2020; Vogel 

et al., 2021).  65 

 

Here we analyze soybean yields and climate time series for the U.S. at the county scale from 1982 to 2016 using regression 

models that are fitted with a reduced set of variables selected via a subset selection approach. The aim is to identify (1) the 

combination of climatic conditions affecting soybean yields at different stages of the growing season, and (2) potential 

interaction effects between drivers modulating the final impact on yield. Furthermore, we study (3) trends in the identified 70 

dominant climate drivers from 1946 to 2016 to assess how historic trends likely affected soybean production risk. Finally, we 

explore (4) how temperature and moisture couplings differ within the growing season between hot-dry summers and normal 

summers. We discuss how that potentially affects the occurrence of compound hot-dry extremes and associated crop impacts. 

2 Data and Methods 

2.1 Soybean yields, climate and hydrological data for the U.S. 75 

Soybean yields are analysed at the county scale for the period 1982-2016, based on census data obtained from the US 

Department of Agriculture (USDA) National Agriculture Statistics Survey (NASS) Quick Stats database 

(www.nass.usda.gov/Quick_Stats). Counties are selected on (i) having no missing data for the full 35 years analysed, (ii) have 

common planting dates (i.e. April-May) and (iii) a production area share of at least 90% rainfed agriculture. Consequently, a 

total of 389 counties are retained for the regression analysis (Fig. 1). These together account for at least 50% of US total rainfed 80 

soy production, where production per county is calculated as the average production over 1982-2016. In the study region, 

planting dates are aligned to provide comparable crop growth stages between counties. This facilitates the interpretation of 

climate sensitivities  associated to timing within the growing season. Information on the soybean growing season and rainfed 

vs irrigated agricultural land cover is obtained from the monthly irrigated and rainfed crop areas database around the year 2000 

(MIRCA2000), a global gridded dataset at 0.5° resolution (Portmann et al., 2010). The percent rainfed area is calculated by 85 

dividing the rainfed area in each grid cell by the total harvested area for each cell (Schauberger et al., 2017a). A linear trend is 

removed from yield values at the county scale to eliminate long-term effects largely due to technological improvements over 

the study period (Fig. S1) (Li et al., 2019; Zipper et al., 2016).  

http://www.nass.usda.gov/Quick_Stats
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Figure 1. Average total production in tonnes over the period of study (1982-2016). Counties with 35 years of data are highlighted 90 
with a thin black perimeter. Grey regions represent filtered out counties where local agriculture is less than 90% rainfed. 

Global hydrological and weather datasets are used for this analysis. This provides the possibility to conduct similar 

assessments, in other parts of the world, whenever impact data is available. Nevertheless, other studies can benefit from 

leveraging local climate and hydrological data when available for better representativeness. Root zone soil moisture (SMroot) 

variable (m3/m3) is obtained from the modelled GLEAM v3.3a dataset that incorporates an observed satellite-based soil 95 

moisture data assimilation system (Martens et al., 2017). The dataset is available at a 0.25° grid resolution and a daily time 

step that covers the period of study (1982-2016). Weather data, namely maximum (Tmax) and minimum (Tmin) temperature 

(°C) in addition to precipitation (mm) are obtained from the bias-adjusted WFDE5 reanalysis covering the same period (1982-

2016) at daily time step and a 0.5° grid resolution (Cucchi et al., 2020). Daily precipitation is further processed into number 

of days with precipitation above 20 mm (Num_pr20) to explicitly account for potential negative effects of excessive 100 

precipitation on yield (Li et al., 2019; Zhu and Troy, 2018). All variables are temporally aggregated to monthly and seasonal 

windows over early- (April-May), mid- (June-July-August) and late-growing season (September-October) periods. 

Additionally, variables are spatially aggregated to the county scale based on county boundary maps of the 2016 US Census 

Bureau. A summary of the considered variables for the modelling analysis is presented in Table 1. Dividing the growing season 

by calendar months allowed the identification of key phases throughout the season where soybean crops are most sensitive to 105 

climate variability. These can reflect both vulnerable physiological crop growth stages and important climatic thresholds. We 
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could have used a more complex characterization of crop developmental stages based on phenological heat units (Schauberger 

et al., 2017b) or the consideration of sub-monthly aggregation periods for climatic time series, but these did not necessarily 

improve model performance in other assessments and therefore we opted here to simply rely on monthly and seasonal estimates 

(Ben-Ari et al., 2016; Ortiz-Bobea et al., 2019; Sharif et al., 2017). Full growing season averages have been tested as potential 110 

predictors but these did not improve modelling results and have therefore been omitted from further analysis. We thus 

exclusively focus on within season crop climate sensitivities.  

 

Table 1. Climate variables calculated at seasonal and monthly time scales throughout the growing season 

Variable abbreviation Variable explanation Type Unit 

Tmin Average minimum Temperature Temperature related °C 

Tmax Average maximum Temperature Temperature related °C 

Num_pr20 Number of days with precipitation above 20 mm Moisture related days 

SMroot Root zone soil moisture Moisture related m3/m3 

2.2 Simulating yield variability 115 

We used regression models to estimate yield variability at the county scale. Typically, three types of statistical models are used 

in such assessments (i.e. time-series, panel, and cross-sectional models) (Lobell and Burke, 2010). Here we opted for time-

series models as these are (i) easy to interpret, (ii) often perform well compared to the other approaches, and (iii) allow for 

spatially heterogeneous parameter estimation that may highlight important local and regional features (Gornott and Wechsung, 

2016). Out of all possible models constructed with a single input variable at county scale, we selected the most influential 120 

moisture- and temperature-related variables per county based on the Bayesian Information Criterion (BIC) (Ben-Ari et al., 

2018). This was done separately for early- (April-May), mid- (June-July-August) and late-growing season (September-

October) periods considering both monthly and seasonal aggregates for each, and thus, ended up with a subset of six best 

predictors for each county. Finally, we applied a stepwise selection procedure to identify the best combination of these input 

variables, with and without interactions, picking the model with the lowest BIC value at county level (Ben-Ari et al., 2018). 125 

The stepwise approach considers all selected variables and all possible interactions (i.e. products of all possible pairs of selected 

predictors). The procedure is then to start from a model with no predictors, sequentially adding and removing predictors until 

only a subset is left resulting in the most parsimonious model with the lowest prediction error on training data (See step.lm 

function of R, version 3.6.1). The performance of the resulting model was evaluated using the coefficient of determination 

(R2). Further robustness tests with respect to both predictor selection and model performance are detailed in the following 130 

subsection. A summary of the modelling framework is presented in Fig. 2. 



6 

 

 

 
Figure 2. Overall modelling workflow applied for this study linking US yields to weather and climate variables. 

2.3 Validating performance and testing modelling assumptions 135 

To test robustness of the model performance and the selected predictors, we applied a two level leave-one-out cross-validation 

scheme (LOOCV) (Laudien et al., 2020). Level one (LOOCV-1) consisted of training county-scale models on reduced datasets. 

These are constructed by iteratively removing the to-be-forecasted year and predicting the one out of sample value using a set 

of predictors per county selected using the complete dataset. Level two (LOOCV-2) is similar but repeats the predictor selection 
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step for every iteration. This way, we completely eliminate information shared between training and validation sets. 140 

Furthermore, we calculated how often selected predictors are chosen across each iteration in the cross-validation procedure of 

LOOCV-2. Both elements, respectively, provide a more robust model performance estimate and predictor selection step. The 

adequacy of applying linear models at the county scale for assessing the relationship between yield anomalies and selected 

predictors was successfully assessed using five statistical tests (Gornott and Wechsung, 2016; Schauberger et al., 2017b). The 

regression equation specification error test (RESET) assessed whether taking powers of the predictor variables would improve 145 

the model fit. The Breusch-Pagan test examined heteroscedasticity issues with the data. The Breusch–Godfrey test was used 

to assess autocorrelation and the Shapiro–Wilk test to examine normality of residuals. Multicollinearity was checked using the 

variance inflation factor calculated for each independent variable while setting acceptable levels to strictly below 3.  

2.4 Changes in key climatic conditions from 1946 to 2016 

Historic trends of the dominant climatic drivers were assessed for the period 1946 to 2016 using linear regressions (0.05 150 

significance level). Furthermore, we assessed changes in concurrent hot-dry summer conditions as these were shown to be 

particularly relevant for soybean production. The selected input datasets used in the crop-modelling analysis do not cover years 

preceding 1981. To overcome this limitation, we used precipitation, number of wet days and temperature minimum and 

maximum variables from the CRU V4 global dataset (Harris et al., 2020) covering the period 1901-2019 at a spatial resolution 

of 0.5°. Number of wet days in the early season was used as a proxy for early season number of days with precipitation above 155 

20 mm.  Mean summer precipitation over June-July-August-September was used as a proxy for August-September averaged 

root zone soil moisture. To check the feasibility of these assumptions, we calculated correlation maps between GLEAM 

August-September averaged root zone soil moisture and CRU averaged summer precipitation and between WFDE5 spring 

number of days with precipitation above 20 mm and CRU spring number of wet days for the period 1982 to 2016. The mean 

Pearson’s correlation coefficient over the whole spatial domain was 0.66 for summer precipitation and root zone soil moisture 160 

and 0.83 for spring number of wet days and number of wet days above 20 mm (Fig. S2). The 25th/10th and 75th/90th  percentiles 

of summer precipitation and August maximum temperature are used to jointly define the compound hot-dry events at the local 

scale. Accordingly, we calculated the percent-change per grid cell based on the difference between the number of compound 

events over two distinct periods (1946-1980 relative to 1982-2016) normalized by the total amount of events over the entire 

analysis period. Statistical significance of this percent change is assessed using the non-parametric Wilcoxon Rank Sum test 165 

(0.05 significance level). Moreover, we calculated a percent (%) area time series of the total rainfed producing region under 

compound summer hot-dry conditions by summing the number of grid cells under such conditions for a given year and dividing 

by the total number of grid cells considered, similar to the approach applied in Mazdiyasni and AghaKouchak (Mazdiyasni 

and AghaKouchak, 2015). The trend in the aforementioned time-series was assessed with the non-parametric Mann−Kendall 

trend test (0.05 significance level).  170 
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2.5 Exploring temperature and moisture couplings during summer hot-dry events 

 To get insight on how key elements related to moisture and temperature couplings differ during compound summer hot-dry 

years, we estimated the coevolution of actual evapotranspiration, root zone soil moisture and maximum temperature pairs 

composited into hot-dry events for the period 1982-2016. Hot-dry summer events in this case are defined as years when more 

than 20% of the total harvested area is under hot-dry conditions (using the 75th and 25th percentiles respectively). Coevolution 175 

of considered variables was estimated by calculating the interannual correlation between pairs of variables for a given month 

of the year, repeated over the various calendar months (Seneviratne et al., 2010). This calculation incorporates data from all 

counties into the correlation by first spatially averaging single variables over the entire rainfed harvested area (Fig. 1) and then 

quantifying the couplings. Moreover, we calculated correlation at the grid-cell level between actual evapotranspiration and 

maximum temperature to show how these couplings can differ at the local scale. Actual evapotranspiration (AET) (mm) is 180 

retrieved from the GLEAM v3.3a dataset with the same temporal and spatial resolution of aforementioned root zone soil 

moisture variable. AET within the GLEAM dataset is derived from potential evapotranspiration model estimates multiplied 

by an evaporative stress factor based on observations of microwave vegetation optical depth (VOD) and root zone soil moisture 

values.    

3 Results 185 

3.1 Overall model performance 

Based on the selection procedure shown in Fig. 2, we identify a set of non-redundant moisture and temperature variables at 

different stages of the growing season that can best explain yield variability at county scale. These varied across the spatial 

domain (Fig. A1, A2) with dominant patterns summarized as follows: Excessive precipitation is highlighted as the main driver 

of reduced soybean yields in the early season alongside low minimum and maximum temperature values. Low soil moisture 190 

and high maximum temperature values are highlighted as main drivers of reduced yields in the mid-season, particularly for the 

months of August and September. Finally, low soil moisture and low minimum temperature values are highlighted as main 

drivers of reduced yields late in the season (Fig. 3a). The trained regression models at county level with identified predictors 

are able to explain, on average, about two-thirds of the year-to-year yield variability (70% on all years and 60% on LOOCV-

1 predictions). Including interaction terms in the fitted model contributed to 10% out of the total 60% explained  variability on 195 

LOOCV-1 predictions. Testing the model with the more conservative LOOCV-2, repeating the predictor selection step at every 

iteration, lowers model explained variability to 30% (Fig. 3a). This reduced performance is expected when comparing with 

results of studies that applied a similar robust leave one out cross-validation approach (Laudien et al., 2020; Lehmann et al., 

2020). Still, for ~83% of the years, the LOOCV-2 model provides a correct year-to-year direction of change as well as sign of 

the yield anomaly (i.e. positive or negative) (Fig. 3b). Furthermore, most frequently selected predictors and associated timing 200 

within the season across the training sets shows high consistency and good agreement with predictors selected on the full 
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dataset (Fig. S3, S4, S5). This provides confidence with respect to the choice of predictors. Overall, the dominant crop yield 

drivers are August/September root zone soil moisture and August maximum temperature, each selected over more than 25% 

of considered counties. Averaged standardized beta coefficients for aforementioned variables reports the highest absolute value 

of around 0.4 (i.e. ~0.4 standard deviation change in soybean yields per standard deviation change in the predictor when 205 

excluding the effect of interaction terms). Furthermore, interaction effects between summer moisture and temperature variables 

are the most frequently selected type of interaction (Fig. A3). 
 

 
Figure 3. (a) summary of the strength and frequency of selected predictors across the growing season. (b-c) Explained variance (R-210 
squared) of yield anomalies due to climate variability (b) spatially averaged and (c) at the county scale. Stippling in (c) shows F-tests 

with (p < 0.05) indicating that the model chosen is significantly better than a null model (accounting for false discovery rate due to 

multiple hypotheses testing). 

Spatially, the model is statistically significant (p-value < 0.05) for all considered counties (Fig. 3c) after adjusting for multiple 

hypotheses testing using the False Discovery Rate (FDR) method (Ventura et al., 2004). Yield variability is captured 215 

particularly well in southern counties (Fig. 3c), with high performance represented by red shading (R2 ~ 0.8). On the other 

hand, the model performs slightly poorer in northern counties, consistent with the results of Schauberger et al. (Schauberger 

et al., 2017b) where regional colder and wetter climatology reduces soybean yield sensitivity to hot-dry conditions. Individual 

diagnostic tests for models built at the county scale shows that autocorrelation and heteroscedasticity did not occur for the 

majority of individual models whereas model residuals are mostly normally distributed. The RESET test shows that most 220 

models are properly specified meaning that considering quadratic variables would not have improved the model fit. Although 

quadratic associations between crop yields and climatic variables are well established, these often are highlighted for 
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seasonally averaged temperature and moisture conditions (Ray et al., 2015). Dividing the growing season into smaller periods 

in this study likely made these non-linear associations less relevant. Finally, the VIF value is strictly smaller than 3 for the 

majority of considered models and variables reflecting low multicollinearity concerns (Fig. A4). 225 

3.2 Spatial variability of model coefficients 

The spatial variability of crop yield sensitivities to the selected predictors is depicted in Fig. 4a-f. It shows county-based 

standardized model coefficients and associated patterns across the spatial domain for both moisture and temperature related 

variables and for early, mid, and late season. Specifically selected predictors and associated timing within the season per county 

are shown in Fig. A1 & A2. 230 
 

 
Figure 4. Region- and season-specific estimated sensitivity coefficients for soybean yield and selected predictors. Stippling indicates 

statistical significance from a t-test  at 95% confidence level. Values of coefficients are interpreted as the change in soybean yield 

standard deviation from a one-standard deviation change in the considered independent variable. Temperature-related variables 235 
can refer to either Tmin or Tmax depending on the selected variable in a  given county. Similarly, moisture-related variable can 

refer to either SMroot or Num_pr20. Finally, for each seasonal bracket (i.e. Early, Mid or Late), the selected time resolution for 

each variable can be either a seasonal aggregate or the value for a specific month within that bracket. We refer the reader to the 

appendix (Fig. A1, A2) for a more detailed account of selected variables per county. 

Early season reports mainly a negative relationship between yield and moisture variables (Fig. 4a) across the majority of the 240 

spatial domain in line with Ortiz-Bobea et al., (Ortiz-Bobea et al., 2019). The most frequently selected predictor is number of 

days with precipitation above 20 mm used as a proxy for excessive rain (Fig. 3a, A1). The signal is particularly strong and 

significant near Iowa and Minnesota where soils are generally poorly drained (i.e. high clay fraction, low saturated hydraulic 

conductivity) (Li et al., 2019). The temperature related variable in early season (Fig. 4b) shows a positive relationship with 
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yields, and this can reflect both minimum and maximum temperature (Fig. A1). During the mid-season, temperature-related 245 

variables negatively affect soybean yields across the spatial domain. Exceptions are for northern states (north of Iowa and 

Illinois) where the sensitivity is reversed and higher temperature lead to positive effects on yield (Fig. 4d). The selected variable 

for the negative sensitivity (for southern states) refers mostly to maximum temperature in August whereas the positive 

sensitivity (for northern states) refers mostly to minimum temperature in June and July (Fig. A1, A2). Moisture related 

variables have a strong positive influence on yields both in the mid and late season (Fig. 4e). In particular, selected predictors 250 

are predominantly soil moisture variables in August and September. Temperature sensitivities in the late season show mostly 

positive effects on yield, except for counties in south-eastern states which show strong negative sensitivities (Fig. 4f). The 

selected late-season temperature predictor is predominantly minimum temperature for the positive associations and September 

maximum temperature for the negative associations over southern states (Fig. A1, A2). Furthermore, interaction terms between 

summer soil moisture and temperature variables are included in ~10% of the considered counties across the spatial domain 255 

(Fig. A3). These interaction effects imply that the impact of summer temperature on crop yields significantly depends on the 

concurrent soil moisture levels in those areas. The negative effects of high temperatures are amplified during dry conditions 

and alleviated during wet conditions (see Sect. 3.3). Moreover, another interaction term is picked up, albeit less pronounced, 

between maximum August temperature and end of season minimum temperature mostly within Iowa (Fig. A3). This might 

reflect increased impacts whenever anomalously hot conditions in peak summer are followed by anomalously cold conditions 260 

in September-October. Optimal temperature for crop photosynthesis fluctuates due to the capacity of the crop to seasonally 

adjust its physiological response to temperature (Kumarathunge et al., 2019). It follows that consistent high temperature within 

the growing season can make crops more productive at higher temperatures. The abrupt change in temperature conditions from 

hot to cold further stresses crops and reduces the potential positive effects of crop temperature acclimation (Butler and Huybers, 

2013; Carter et al., 2016).    265 

3.3 Compound hot-dry and associated impacts 

Our results show that soybean production in southern regions is particularly sensitive to the co-occurrence of high  

August/September maximum Temperature and low August/September soil moisture (Fig. A3). The co-occurrence of low soil-

moisture (5th percentile) and high temperature conditions (95th percentile) triggers the largest crop failures estimated at -2 

standard deviations (calculated using spatially averaged model coefficients for August temperature, soil moisture and the 270 

interaction term). Extreme August hot-dry conditions (i.e. simultaneously exceeding the 95th and 5th percentiles of 

temperature and soil moisture, respectively) leads to 4 times more crop yield impacts compared to extreme hot conditions 

alone (i.e. 95th and 50th percentiles of temperature and soil moisture, respectively) and 3 times more impacts compared to 

extreme dry conditions alone (i.e. 50th and 5th percentiles of temperature and soil moisture, respectively). These results are 

qualitatively similar when we replaced August with September soil moisture. To further illustrate the implication of including 275 

interaction terms, we focus on Illinois in what follows. Illinois is the largest soybean producing region in the US and includes 

a large ratio of counties where summer moisture and temperature interactions are included in locally specified models (Fig. 



12 

 

A3b). Figure 5a shows pooled yield observations for Illinois (points) together with model predictions (contour lines) for various 

values of August root zone soil moisture (vertical-axis) and August maximum temperature (horizontal-axis). Qualitatively 

similar results are obtained when we replaced August with September root zone soil moisture. The coefficients for the 280 

sensitivity of soybean yields to August hot-dry conditions in Fig. 5 are obtained from averaging all regression coefficients (i.e. 

for August Temperature, soil moisture and the interaction term) from all county-specific models within Illinois (i.e. 51 

individual models/counties).  
  

 285 
Figure 5. (a) contour lines for modelled yield anomalies under varying levels of standardized August maximum temperature and 

root zone soil moisture in Illinois state. Points represent observed yield values. The colour scale to the right is in the units of 

standardized yield anomaly. (b) Sensitivity of Illinois US yield anomaly to temperature change for three different root zone soil 

moisture percentiles (5th, 50th, 95th ). 

Yield is shown to decrease for increasing hot-dry conditions both in observations and model predictions. In particular, the 290 

bottom-right corner (representing August temperature and soil moisture values respectively above and below the 50th 

percentile) contains 75% of all observed low yields (defined as below one standard deviation).  By including interaction terms, 

LOOCV-1 model performance improved by 17% for Illinois. In particular, we estimate that the compounding impact of hot-

dry conditions (i.e. 95th and 5th percentiles of temperature and soil moisture, respectively) in August leads to an additional 

crop-loss of 0.6 standard deviations as compared to a model that includes all selected predictors but no interaction terms. On 295 

the other hand, the effects of extreme hot-wet conditions (95th percentile for both temperature and soil moisture values) leads 

to a 0.5 standard deviation positive increase in crop yield estimates when including interaction terms. This non-linearity is 

visualized in Fig. 5b showing model-derived yield sensitivities to temperature for different levels of root zone soil moisture 

(i.e. 5th, 50th and 95th percentiles). The association between yield and August maximum temperature is strongly negative for 
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extremely dry conditions (brown dashed line) and slightly positive for extremely wet conditions (blue dashed line). This 300 

highlights the importance of accounting for interaction effects when estimating compound impacts on crops. Yield response 

to hot-wet conditions is nevertheless subject to high uncertainty (see shaded uncertainty range in Fig. 5b) as these conditions 

do not occur often and are represented by few observations (upper-right corner in Fig. 5a). The rarity of these events is expected 

owning to the negative correlation between moisture and temperature over summer (Zscheischler and Seneviratne, 2017). It 

follows that wet conditions generally limit exposure rather than sensitivity to very high temperature. Still, temperature 305 

sensitivities during wet conditions are significantly different from those during dry conditions (Fig. 5b). 

3.4 Changes in compound hot-dry from 1946 to 2016   

Linear trends for summer precipitation (JJAS) over the period 1946 to 2016 show significant increases particularly over the 

Midwest region (Fig. 6b). Only south-eastern states show significant drying trends. Maximum August temperature trends show 

significant cooling over the Midwest region but warming for north-eastern, north-western and southern states (Fig. 6a). 310 

Moreover, early and late season minimum temperature trends indicate warmer conditions across the spatial domain whereas 

early season number of wet days trend indicates wetter conditions in spring (see Fig. A5). Though summers generally got 

wetter and cooler in the eastern part of the Midwest and north eastern US regions, the percent-change in the number of 

concurrent hot and dry summer months (i.e. 90th and 10th percentiles of August maximum temperature and summer 

precipitation, respectively) between 1946-1980 and 1982-2016 shows an increase in frequency here (Fig. 6c). This might have 315 

implications as compound hot-dry events appear to have increased in frequency in high producing regions, despite the apparent 

cooling and wetting patterns identified by univariate trends.  
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Figure 6. (a) Linear regression slope of August maximum temperature. (b) Linear regression slope for summer (JJAS) precipitation. 

(c) Percent (%) change in concurrent dry (Summer JJAS precipitation < 10th percentile) and hot (August Maximum Temperature 320 
> 90th percentile) during 1982–2016 relative to 1946–1980. (d) Time-series of percent producing regions in hot and dry conditions. 

Trends in (a, b and d) are calculated for the period 1946 to 2016. Stippling in (a), (b) and (c) indicates statistical significance at the 

95% confidence level. P-value in d) corresponds to the Mann–Kendall monotonic trend test. Black dashed line in (d) represents a 

15% threshold marking years with a large (>15%) spatial hot-dry extent. 

Time series of percent production area in concurrent hot and dry conditions reflects the spatial extent of such conditions over 325 

the years (Fig. 6d). The black dashed line represents a threshold set at 20% exceeded by a number of years (i.e. 1947, 1948, 

1953, 1954, 1955, 1956, 1959, 1976, 1980, 1983, 1984, 1988, 1991, 1995, 2003, 2006, 2007, 2012 when using the 75th/25th 

percentile hot-dry time series). More than 60% of those years coincide with La Niña like conditions, which have been shown 

to impact US crop production (Anderson et al., 2019; Iizumi and Sakai, 2020). Moreover, we note a high frequency of large-

scale hot-dry events in specific periods such as the 1950s and 1980s. These segmented periods of high intensity events suggest 330 

a potential important role of decadal climate variability in the occurrence of hot-dry conditions. These can be related to low-

frequency sea surface temperature variations such as the pacific decadal oscillation (PDO) shown to have an influence on local 

precipitation and temperature levels over eastern US (Vijverberg et al., 2020). A large fraction of the production area under 
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hot-dry conditions create risks for country level agricultural production as regions are no longer able to balance out losses at 

the local scale. Here again, despite the dominant cooling and wetting trends over the US (Fig. 6a & d), no significant up- or 335 

downward trend was found in the fraction of US under hot-dry conditions over time for both the 75th/25th and 90th/10th time-

series.   

3.5 Temperature and moisture couplings during summer hot-dry events 

To better understand why compound hot-dry conditions have not changed, despite significant trends towards wetter summers 

and cooler August maximum temperatures, we analyse local land-atmosphere couplings. It has been hypothesized that during 340 

dry conditions, the actual evapotranspiration reduces, cancelling the land-change induced cooling effect and prompting a return 

to historic high temperature extremes (Mueller et al., 2016). Interannual correlation between root-zone soil-moisture (SMroot), 

maximum temperature (Tmax) and actual evapotranspiration (AET) pairs for a given month of the year, repeated over the 

various calendar months are used to estimate the coupling strength during hot-dry summer years and normal summer years. 

The subset of hot-dry events in this case is constructed from years when more than 20% of the total harvested area is under 345 

hot-dry conditions, defined using the 75th and 25th percentiles of August maximum temperature and summer precipitation 

(JJAS) respectively (i.e. years when the orange line is above the dashed black line in Fig. 6d).  
 

 
Figure 7. Interannual correlation between various pairs of temperature and moisture variables for a given month of the year, 350 
repeated over the various calendar months conditioned on hot-dry events. Dots indicate statistical significance at the 95% confidence. 

Shaded regions represent important differences in the couplings that can play a critical role in the development of hot-dry events.  

We observe that summer hot-dry years are characterized by a stronger negative coupling between soil moisture and temperature 

during spring (April-May) when compared to a typical year (Fig. 7a). We interpret this negative coupling as indicative of 
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warmer and drier springs. These conditions create a stronger negative coupling between evapotranspiration and soil moisture 355 

as evapotranspiration rates are enhanced by warmer temperatures, in turn, rapidly depleting soil moisture reserves (Fig. 7b). 

The timing when the coupling between evapotranspiration and soil moisture sign shifts reflects a critical moment in the system 

when soil moisture becomes limiting. We observe that this regime-shift is much more pronounced during hot-dry years (i.e. 

stronger negative coupling in April-May and stronger positive coupling in July-August) (Fig. 7b). June is a transition month. 

The moment of the regime shift (around June) coincides with the ceasing of the spring coupling between evapotranspiration 360 

and temperature during hot-dry years (Fig. 7c). We interpret this ceasing of the coupling between evapotranspiration and 

maximum temperature as an indicator of total depletion of moisture in the soils, and thus extra energy (via higher temperatures) 

cannot lead to more evaporation. We are thus in a moisture-limited land-atmosphere coupling regime. During normal years, 

still significant coupling between evapotranspiration and maximum temperature exists in July-September indicating that the 

soils are not fully depleted. Spatially, the ceasing of the land-surface induced cooling effect is present over most of the soybean 365 

harvesting region going from June to September for hot-dry years (Fig. A6). To summarize, we show that summer hot-dry 

events are associated with warmer and drier springs. These conditions favour fast and intense depletion of soil moisture. Dry 

soils limit the evaporative cooling effect as captured by the annulled co-variability between actual evapotranspiration and 

temperature leading to amplified hot and dry conditions in summer (Fig. 7c). This provides evidence in support of the initial 

hypothesis that highlights the important role of land-atmosphere feedbacks in explaining the absence of a trend in summer hot-370 

dry events despite summer wetting and cooling trends over the soybean production region in the US.  

4 Discussion 

Predictors here are determined statistically, nevertheless, we aimed for a restricted set of moisture and temperature variables 

for all US counties to facilitate the physical interpretation of climatic drivers affecting soybean yield variability. This is in line 

with other studies that constructed semi-empirical crop models relying on a statistical framework driven by well-known 375 

physiological variables (Ben-Ari et al., 2018; Gornott and Wechsung, 2016; Schauberger et al., 2017b). The frugal approach 

we used to select predictors implies that potentially useful and physiologically-relevant variables such as radiation and vapour 

pressure deficit are omitted. Although their effects can be implicitly accounted for in the temperature and moisture variables 

used, light exposure, for instance, certainly plays a key role in crop productivity (Farquhar et al., 2001; Rigden et al., 2020). 
Nevertheless, the choice is made as the least-squares model fit is highly sensitive to the ratio of predictors to the number of 380 

observations (James et al., 2013). Ideally, crop-observations (35 here) should be much larger than the number of predictors to 

avoid the risk of overfitting. Furthermore, including highly-correlated predictor variables (e.g. radiation and temperature) affect 

model parameter estimation and complicates physical interpretation of drivers. Future studies can disentangle these 

mechanisms for a more detailed data-driven assessment of climate and crop yield sensitivities. It is also possible to use more 

complex machine learning models such as random forests although these often tend to obscure result interpretation and do not 385 

always lead to better predictions (Vogel et al., 2019, 2021). Note that non-climatic seasonal influences on crop yields are 
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ignored in this study. These include planting densities, sowing dates, fertilizer applications and other socio-economic factors. 

This simplification is done as spatially-explicit time series for such components are rare and difficult to obtain (Schauberger 

et al., 2017b). Some of these factors were shown not to necessarily improve model performance in a case study done on crop 

yields in Germany (Gornott and Wechsung, 2016). Nevertheless, future studies should include these in whenever this becomes 390 

possible for extended time periods as climate has been shown to influence seasonal management practices for farmers in the 

US (Carter et al., 2018b).  

 

We found that soybean yields were predominantly driven by heat and drought conditions occurring during the vulnerable 

summer crop reproductive stage. In particular, August and September months were highlighted as key months for soybean 395 

production in line with results from previous studies (Mourtzinis et al., 2015; Ortiz-Bobea et al., 2019; Zipper et al., 2016). 

Furthermore, we noted a significant interaction effect between summer maximum temperature and soil moisture variables 

modulating the final impact on yield. Drought and heat induce different growth inhibition patterns that can act simultaneously 

to reduce crop photosynthetic rates and eventual yield levels (Suzuki et al., 2014). August mean maximum temperature was 

found to be negatively associated with soybean yields for values exceeding 30°C (i.e. average August maximum temperature 400 

value for a large part of the considered counties). This is in line with other studies that reported non-linear association between 

soybean and temperature where the relationship is mildly positive up until 30°C and then declines sharply due to heat stress 

(Schauberger et al., 2017a; Schlenker and Roberts, 2009). Moreover, here we found that this relationship was dependent on 

concurrent soil moisture conditions where wet soils dampen the negative effect of high temperatures on yield via evaporative 

cooling. A result that is also supported by previous studies reporting the decoupling effect of irrigation on the relationship 405 

between heat stress and yield (Carter et al., 2016; Schauberger et al., 2017a; Schlenker and Roberts, 2009; Siebert et al., 2017; 

Troy et al., 2015). On the other hand, low moisture levels induce stomatal closure which leads to reduced latent heat flux and 

an increase in canopy temperature well above atmospheric temperatures increasing the crop sensitivity to hot conditions (Carter 

et al., 2016; Siebert et al., 2017). Such dependency highlights the important need to account for both variables simultaneously 

when assessing their impacts on crop yield variability (Carter et al., 2018a; Leng et al., 2016; Siebert et al., 2017; Suzuki et 410 

al., 2014). Our analysis further reported early season excessive precipitation and minimum and maximum temperature 

conditions in addition to late season minimum temperature as important drivers of soybean yield variability. Early season 

excessive precipitation sensitivity likely reflects damaging plant field establishment conditions related to restricted root 

development, nutrient leaching and disease susceptibility (Li et al., 2019; Ortiz-Bobea et al., 2019). High minimum and 

maximum temperature in the early season positively associated to yield can imply both a reduced frost risk in addition to a 415 

potentially longer growing season where soybean yield potential is maximized (Bastidas et al., 2008; Mourtzinis et al., 2019). 

End of season frost has also been reported as an important risk factor for soybean crops particularly in the northern states, and 

we interpret the predictor of minimum temperature during September and October as reflective of such conditions. These 

identified drivers of impact can serve as a basis for effective early warning systems that provide valuable information to 

decision makers (Merz et al., 2020). Acting in advance can be critical to avoid crop loss and associated socio-economic 420 
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consequences. For instance, a short period of drought during the reproductive stage is reported to cause non-reversible damage 

to soybean yields (Daryanto et al., 2017). Hot and dry conditions in eastern US over summer has been shown to be forecastable 

at long lead times (~50 days ahead), associated with sea surface temperature anomalies over the northern Pacific Ocean 

(McKinnon et al., 2016; Vijverberg et al., 2020). Future work can further explore the link between drivers of compound hazards 

impacting yields to facilitate the development of actionable tools for stakeholders.  425 

 

We showed that historic changes in climate have not increased the overall climate risk for rainfed soybean production in the 

US. This is in line with other studies that looked at the contribution of historic climate trends on soybean and maize yields in 

the US (Butler et al., 2018; Ray et al., 2019). This is particularly the case in the most northern states where the occurrence of 

compound hot-dry events has mostly decreased (Fig. 6d). These regions are characterized by a predominantly energy-limited 430 

summer regime where the role of soil moisture in related land-atmosphere feedbacks is limited (Seneviratne et al., 2010). 

These northern states also showed reduced sensitivity to high temperatures over summer (Fig. 4d) in line with Lesk et al., 

(2021b) who highlighted reduced soybean yield sensitivity to temperature in energy limited regimes at the global scale.  

Interestingly, soybean cropping regions have also shifted north-westerly in the US taking advantage of such changes in climate 

(Sloat et al., 2020). Increasing trend in number of wet days during spring can lead to detrimental change for rainfed soybean 435 

production. Nevertheless, Lesk et al., (2020) recently highlighted that the association between heavy rainfall and US crop 

yields can be different and more complex when studied at sub-daily resolution emphasizing that further investigation is needed 

in that regards. The summertime cooling is a well-documented phenomenon over US agricultural regions and is attributable 

to agricultural intensification in the region although other driving processes such as decadal variability and aerosol emissions 

also play a role (Alter et al., 2018; Lesk and Anderson, 2021a; Mueller et al., 2016; Nikiel and Eltahir, 2019). With respect to 440 

the role of agriculture, a higher density of crops supported by increasing fertilizer rates leads to higher evapotranspiration rates 

which in turn induce large scale evaporative cooling and contribute to increasing precipitation (Basso et al., 2021; Mueller et 

al., 2016). Nevertheless, we highlighted that in key producing regions like Illinois, compound hot-dry events seem to have 

increased in frequency recently, despite the absence of a summer-mean drying or warming trend. Potentially, during dry 

conditions, the actual evapotranspiration reduces, cancelling the land-change induced cooling effect and prompting a return to 445 

historic high temperature extremes (Mueller et al., 2016). We illustrated this mechanism by analysing the evolution of land-

atmosphere coupling within the growing season, captured by interannual correlations between root-zone soil-moisture 

(SMroot), maximum temperature (Tmax) and actual evapotranspiration (AET) pairs for a given month of the year, repeated 

over the various calendar months. We interpreted positive correlation values between actual evapotranspiration and maximum 

temperature as indicative of a general land-surface induced cooling effect. During hot-dry years, this evaporative cooling 450 

ceased at the onset of summer months. We showed that this was associated to stronger negative coupling between 

evapotranspiration-soil moisture and soil moisture-temperature in spring. Such conditions lead to fast soil moisture depletion 

and favour a moisture limited regime that amplifies extreme summer hot-dry conditions and associated soybean impacts 

(Sippel et al., 2016). Although we showed that warmer and drier springs lead to higher yields, potentially connected hot and 
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dry summer conditions lead to disproportionately negative impacts on final crop yields. Future risk assessments should account 455 

for such non-linear effects. Over the Midwest US, climate models project warmer summers which is likely to enhance the 

coupling between moisture and temperature via land-atmosphere feedbacks leading to a possible increase in the amplitude and 

frequency of compound hot-dry conditions (Cheng et al., 2019; Zscheischler and Seneviratne, 2017). Although annual 

precipitation levels are expected to remain constant or even increase, climate models generally project increased dry day length 

and decreased summer soil moisture levels (Dai, 2013; Dirmeyer et al., 2013; Wuebbles et al., 2014a, 2014b). Future research 460 

should quantify whether such trends could lead to an increase of hot-dry summer months in the future. Nevertheless, high 

uncertainty remains with respect to atmospheric dynamical changes including quasi-stationary Rossby waves which are a key 

driver of hot-dry conditions in the eastern US as well as other mid-latitude regions (Di Capua et al., 2020; Coumou et al., 2014; 

Kornhuber et al., 2019; Shepherd, 2014; Winter et al., 2015). Until such contradictions are resolved, future impacts of climate 

change on US agricultural production remain uncertain. The storyline approach has been proposed as an important tool to 465 

illustrate such epistemic uncertainty and can be explored in future studies with important consequences on current and future 

policy and decision making (Shepherd, 2019).  

 

Here we focused on local types of compound events, however, global food supply is highly dependent on production in various 

countries. Spatially compounding events will be important to study in future assessments in order to understand large scale 470 

risk associated to breadbasket failures. Here we qualitatively identified that a considerable number of the large extent hot-dry 

conditions occurring over the US are coinciding with La Niña like conditions. These are also highly influential over the South 

American continent where soybean production including the US account for more than 80% of total global supply (Anderson 

et al., 2017; Iizumi and Sakai, 2020; Wellesley et al., 2017). Other examples of teleconnections are mid-latitude Rossby waves, 

particularly wave number 5, which has phase-locking behaviour in the northern hemisphere mid-latitudes driving simultaneous 475 

summer positive temperature anomalies over Midwest US, eastern Europe, and east Asia (Kornhuber et al., 2019). This is 

particularly of concern to soybean production when taking into consideration upcoming soybean hotspot production regions 

such as Russia and Ukraine (Deppermann et al., 2018).  

5 Conclusion 

We presented a simple statistical framework that can identify climatic variables influencing soybean yield variability in the 480 

US at specific moments within the growing season. We found that compound summer hot-dry conditions lead to the largest 

impacts on yield, i.e. beyond the estimated additive effects of each stressor separately. Furthermore, we identified early-season 

minimum and maximum temperature in addition to precipitation, and late-season minimum temperature and soil moisture to 

be important factors affecting soybean yield in the US. Understanding of these seasonally dependent crop-sensitivities paves 

the way for more effective early-warning tools that target timely drivers of yield variability throughout the growing season. 485 

The long-term cooling and wetting trend in summer, over large areas of our domain, has generally been beneficial for soybean. 
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Nevertheless, we showed that the frequency of extreme hot-dry conditions remained largely unchanged over the full region, 

and increased in a key region like Illinois where crops are especially sensitive to such extremes. Furthermore, we showed that 

hot-dry events are characterised by stronger negative spring coupling between evapotranspiration-soil moisture and soil 

moisture-temperature leading to fast soil moisture depletion in spring and a reversal in the land-surface cooling mechanism 490 

over summer prompting important soybean yield impacts. Given that climate models project summer warming and general 

declines in soil-moisture (albeit with substantial uncertainty) for the Midwest, crop sensitivities to compound hot-dry extremes 

are likely to present important future risks for US soybean production.  

Appendix A: Additional figures 

 495 

Figure A 1. Selected predictors per county based on the full dataset 
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Figure A 2. Selected timing of predictors per county based on the full dataset 

 

Figure A 3. (a). Standardized coefficients for interaction terms per county selected based on the full dataset. (b). Type of interactions 500 
selected per county based on the full dataset. 
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 505 

Figure A 4. Diagnostic test results for the fitted models. Green indicates a “successful” test, i.e. no problem, while red indicates a 

rejection of the respective H0 of no autocorrelation/heteroscedasticity/ misspecification/multicollinearity/un-normality. 

Multicollinearity is checked with the variance inflation factor and marked in red if any of the variables report a value >3. 
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Figure A 5. Linear trends for main identified drivers of soybean yield variability over the period 1946-2016. Stippling indicates 510 
statistical significance at the 95% confidence level. Trends for moisture and temperature variables over summer are displayed in 

the main text. 
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Figure A 6. Interannual correlation between actual evapotranspiration and maximum temperature for a given month of the year 515 
conditioned on hot-dry events and repeated for the period going from June to September. Dots indicate statistical significance at the 

95% confidence. 

 

Code availability. The code is available upon request, by contacting the corresponding author. 

 520 

Data availability. Data used in this study are freely available in the cited literature. 

 

Author contributions. RH and DC designed the study. RH performed the analysis and wrote the initial draft of the paper. All 

authors contributed to the development of the analysis, the interpretation of the results and to the writing of the paper. 

 525 

Competing interests. The authors declare that they have no conflict of interest. 

 

Special issue statement. This article is submitted to the special issue “Understanding compound weather and climate events 

and related impacts”. 

 530 

Acknowledgements. We thank the various institutes cited in the text for making the data used in this study freely available. We 

also would like to thank the reviewers for helping us improve the content of this paper and for their encouraging words. 

 

Financial support. This research has been supported by the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 820712 (project RECEIPT, REmote Climate Effects and their Impact on European 535 

sustainability, Policy and Trade). 

 



25 

 

Review Statement. This paper was edited by Jakob Zscheischler and reviewed by Corey Lesk and one anonymous referee. 

References 

Alter, R. E., Douglas, H. C., Winter, J. M. and Eltahir, E. A. B.: Twentieth Century Regional Climate Change During the 540 

Summer in the Central United States Attributed to Agricultural Intensification, Geophys. Res. Lett., 45(3), 1586–1594, 

doi:10.1002/2017GL075604, 2018. 

Anderson, W., Seager, R., Baethgen, W. and Cane, M.: Life cycles of agriculturally relevant ENSO teleconnections in North 

and South America, Int. J. Climatol., 37(8), 3297–3318, doi:10.1002/joc.4916, 2017. 

Anderson, W. B., Seager, R., Baethgen, W., Cane, M. and You, L.: Synchronous crop failures and climate-forced production 545 

variability, Sci. Adv., 5(7), 1–10, doi:10.1126/sciadv.aaw1976, 2019. 

Basso, B., Martinez-Feria, R., Rill, L. and Ritchie, J. T.: Contrasting long-term temperature trends reveal minor changes in 

projected potential evapotranspiration in the US Midwest, Nat. Commun., In Press(2021), 1–10, doi:10.1038/s41467-021-

21763-7, 2021. 

Bastidas, A. M., Setiyono, T. D., Dobermann, A., Cassman, K. G., Elmore, R. W., Graef, G. L. and Specht, J. E.: Soybean 550 

sowing date: The vegetative, reproductive, and agronomic impacts, Crop Sci., 48(2), 727–740, 

doi:10.2135/cropsci2006.05.0292, 2008. 

Ben-Ari, T., Adrian, J., Klein, T., Calanca, P., Van der Velde, M. and Makowski, D.: Identifying indicators for extreme wheat 

and maize yield losses, Agric. For. Meteorol., 220, 130–140, doi:10.1016/j.agrformet.2016.01.009, 2016. 

Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van Der Velde, M. and Makowski, D.: Causes and implications of the unforeseen 555 

2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9(1), doi:10.1038/s41467-018-04087-x, 2018. 

Butler, E. E. and Huybers, P.: Adaptation of US maize to temperature variations, Nat. Clim. Chang., 3(1), 68–72, 

doi:10.1038/nclimate1585, 2013. 

Butler, E. E., Mueller, N. D. and Huybers, P.: Peculiarly pleasant weather for US maize, Proc. Natl. Acad. Sci. U. S. A., 

115(47), 11935–11940, doi:10.1073/pnas.1808035115, 2018. 560 

Di Capua, G., Kretschmer, M., Donner, R. V., Van Den Hurk, B., Vellore, R., Krishnan, R. and Coumou, D.: Tropical and 

mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: A theory-guided causal effect network 

approach, Earth Syst. Dyn., 11(1), 17–34, doi:10.5194/esd-11-17-2020, 2020. 

Carter, E. K., Melkonian, J., Riha, S. J. and Shaw, S. B.: Separating heat stress from moisture stress: Analyzing yield response 

to high temperature in irrigated maize, Environ. Res. Lett., 11(9), doi:10.1088/1748-9326/11/9/094012, 2016. 565 

Carter, E. K., Melkonian, J., Steinschneider, S. and Riha, S. J.: Rainfed maize yield response to management and climate 

covariability at large spatial scales, Agric. For. Meteorol., 256–257(November 2017), 242–252, 

doi:10.1016/j.agrformet.2018.02.029, 2018a. 

Carter, E. K., Riha, S. J., Melkonian, J. and Steinschneider, S.: Yield response to climate, management, and genotype: A large-



26 

 

scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems, Environ. 570 

Res. Lett., 13(11), doi:10.1088/1748-9326/aae7a8, 2018b. 

Cassidy, E. S., West, P. C., Gerber, J. S. and Foley, J. A.: Redefining agricultural yields: From tonnes to people nourished per 

hectare, Environ. Res. Lett., 8(3), doi:10.1088/1748-9326/8/3/034015, 2013. 

Cheng, L., Hoerling, M., Liu, Z. and Eischeid, J.: Physical understanding of human-induced changes in U.S. hot droughts 

using equilibrium climate simulations, J. Clim., 32(14), 4431–4443, doi:10.1175/JCLI-D-18-0611.1, 2019. 575 

Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. and Schellnhuber, H. J.: Quasi-resonant circulation regimes and 

hemispheric synchronization of extreme weather in boreal summer, Proc. Natl. Acad. Sci. U. S. A., 111(34), 12331–12336, 

doi:10.1073/pnas.1412797111, 2014. 

Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Schmied, M., Hersbach, H. and Buontempo, C.: WFDE5: bias 

adjusted ERA5 reanalysis data for impact studies, Prep., (April), 1–32, doi:10.5194/essd-2020-28, 2020. 580 

Dai, A.: Increasing drought under global warming in observations and models, Nat. Clim. Chang., 3(1), 52–58, 

doi:10.1038/nclimate1633, 2013. 

Daryanto, S., Wang, L. and Jacinthe, P. A.: Global synthesis of drought effects on cereal, legume, tuber and root crops 

production: A review, Agric. Water Manag., 179, 18–33, doi:10.1016/j.agwat.2016.04.022, 2017. 

Deppermann, A., Balkovič, J., Bundle, S. C., Di Fulvio, F., Havlik, P., Leclère, D., Lesiv, M., Prishchepov, A. V. and 585 

Schepaschenko, D.: Increasing crop production in Russia and Ukraine - Regional and global impacts from intensification and 

recultivation, Environ. Res. Lett., 13(2), doi:10.1088/1748-9326/aaa4a4, 2018. 

Dirmeyer, P. A., Jin, Y., Singh, B. and Yan, X.: Trends in land-atmosphere interactions from CMIP5 simulations, J. 

Hydrometeorol., 14(3), 829–849, doi:10.1175/JHM-D-12-0107.1, 2013. 

Farquhar, G. D., Von Caemmerer, S. and Berry, J. A.: Models of photosynthesis, Plant Physiol., 125(1), 42–45, 590 

doi:10.1104/pp.125.1.42, 2001. 

Fehlenberg, V., Baumann, M., Gasparri, N. I., Piquer-Rodriguez, M., Gavier-Pizarro, G. and Kuemmerle, T.: The role of 

soybean production as an underlying driver of deforestation in the South American Chaco, Glob. Environ. Chang., 45(May), 

24–34, doi:10.1016/j.gloenvcha.2017.05.001, 2017. 

Feng, S. and Hao, Z.: Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale, Sci. 595 

Total Environ., 704, 135250, doi:10.1016/j.scitotenv.2019.135250, 2020. 

Gornott, C. and Wechsung, F.: Statistical regression models for assessing climate impacts on crop yields: A validation study 

for winter wheat and silage maize in Germany, Agric. For. Meteorol., 217, 89–100, doi:10.1016/j.agrformet.2015.10.005, 

2016. 

Haqiqi, I., Grogan, D. S., Hertel, T. W. and Schlenker, W.: Quantifying the impacts of compound extremes on agriculture, 600 

Hydrol. Earth Syst. Sci., 25(2), 551–564, doi:10.5194/hess-25-551-2021, 2021. 

Harris, I., Osborn, T. J., Jones, P. and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate 

climate dataset, Sci. Data, 7(1), 1–18, doi:10.1038/s41597-020-0453-3, 2020. 



27 

 

Hartman, G. L., West, E. D. and Herman, T. K.: Crops that feed the World 2. Soybean-worldwide production, use, and 

constraints caused by pathogens and pests, Food Secur., 3(1), 5–17, doi:10.1007/s12571-010-0108-x, 2011. 605 

Iizumi, T. and Sakai, T.: The global dataset of historical yields for major crops 1981–2016, Sci. Data, 7(1), 1–7, 

doi:10.1038/s41597-020-0433-7, 2020. 

James, G., Witten, D., Hastie, T. and Tibshirani, R.: An Introduction to Statistical Learning, 1st ed., Springer New York, New 

York, NY., 2013. 

Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V., Zobel, Z. and Kotamarthi, V. R.: The combined and separate impacts of 610 

climate extremes on the current and future US rainfed maize and soybean production under elevated CO2, Glob. Chang. Biol., 

23(7), 2687–2704, doi:10.1111/gcb.13617, 2017. 

Kornhuber, K., Coumou, D., Vogel, E., Lesk, C. and Jonathan, F.: Circumglobal Rossby waves enhance risk of simultaneous 

heat extremes in major breadbasket regions, Nat. Clim. Chang., 2–9, doi:10.1038/s41558-019-0637-z, 2019. 

Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., Battaglia, M., Cano, F. J., Carter, K. R., 615 

Cavaleri, M. A., Cernusak, L. A., Chambers, J. Q., Crous, K. Y., De Kauwe, M. G., Dillaway, D. N., Dreyer, E., Ellsworth, D. 

S., Ghannoum, O., Han, Q., Hikosaka, K., Jensen, A. M., Kelly, J. W. G., Kruger, E. L., Mercado, L. M., Onoda, Y., Reich, 

P. B., Rogers, A., Slot, M., Smith, N. G., Tarvainen, L., Tissue, D. T., Togashi, H. F., Tribuzy, E. S., Uddling, J., Vårhammar, 

A., Wallin, G., Warren, J. M. and Way, D. A.: Acclimation and adaptation components of the temperature dependence of plant 

photosynthesis at the global scale, New Phytol., 222(2), 768–784, doi:10.1111/nph.15668, 2019. 620 

Laudien, R., Schauberger, B., Makowski, D. and Gornott, C.: Robustly forecasting maize yields in Tanzania based on climatic 

predictors, Sci. Rep., 10(1), 1–12, doi:10.1038/s41598-020-76315-8, 2020. 

Lehmann, J., Kretschmer, M., Schauberger, B. and Wechsung, F.: Potential for Early Forecast of Moroccan Wheat Yields 

Based on Climatic Drivers, Geophys. Res. Lett., 47(12), 1–10, doi:10.1029/2020GL087516, 2020. 

Leng, G., Zhang, X., Huang, M., Asrar, G. R. and Leung, L. R.: The Role of Climate Covariability on Crop Yields in the 625 

Conterminous United States, Sci. Rep., 6(September), 1–11, doi:10.1038/srep33160, 2016. 

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., Mcinnes, K., Risbey, J., Schuster, S., Jakob, D. and 

Stafford-Smith, M.: A compound event framework for understanding extreme impacts, Wiley Interdiscip. Rev. Clim. Chang., 

5(1), 113–128, doi:10.1002/wcc.252, 2014. 

Lesk, C. and Anderson, W.: Decadal variability modulates trends in concurrent heat and drought over global croplands, 630 

Environ. Res. Lett., 16(5), doi:10.1088/1748-9326/abeb35, 2021. 

Lesk, C., Rowhani, P. and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 

529(7584), 84–87, doi:10.1038/nature16467, 2016. 

Lesk, C., Coffel, E. and Horton, R.: Net benefits to US soy and maize yields from intensifying hourly rainfall, Nat. Clim. 

Chang., 10(9), 819–822, doi:10.1038/s41558-020-0830-0, 2020. 635 

Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. and Peng, B.: Excessive rainfall leads to maize yield loss of a comparable 

magnitude to extreme drought in the United States, Glob. Chang. Biol., 25(7), 2325–2337, doi:10.1111/gcb.14628, 2019. 



28 

 

Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict crop yield responses to climate change, Agric. For. 

Meteorol., 150(11), 1443–1452, doi:10.1016/j.agrformet.2010.07.008, 2010. 

Lobell, D. B., Schlenker, W. and Costa-Roberts, J.: Climate trends and global crop production since 1980, Science (80-. )., 640 

333(6042), 616–620, doi:10.1126/science.1204531, 2011. 

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, 

W. A. and Verhoest, N. E. C.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 

10(5), 1903–1925, doi:10.5194/gmd-10-1903-2017, 2017. 

Matiu, M., Ankerst, D. P. and Menzel, A.: Interactions between temperature and drought in global and regional crop yield 645 

variability during 1961-2014, PLoS One, 12(5), 1–23, doi:10.1371/journal.pone.0178339, 2017. 

Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent droughts and heatwaves in the United States, Proc. 

Natl. Acad. Sci. U. S. A., 112(37), 11484–11489, doi:10.1073/pnas.1422945112, 2015. 

McKinnon, K. A., Rhines, A., Tingley, M. P. and Huybers, P.: Long-lead predictions of eastern United States hot days from 

Pacific sea surface temperatures, Nat. Geosci., 9(5), 389–394, doi:10.1038/ngeo2687, 2016. 650 

Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., Domeisen, D. I. V., Feser, F., Koszalka, I., Kreibich, 

H., Pantillon, F., Parolai, S., Pinto, J. G., Punge, H. J., Rivalta, E., Schröter, K., Strehlow, K., Weisse, R. and Wurpts, A.: 

Impact Forecasting to Support Emergency Management of Natural Hazards, Rev. Geophys., 58(4), 1–52, 

doi:10.1029/2020RG000704, 2020. 

Mourtzinis, S., Specht, J. E., Lindsey, L. E., Wiebold, W. J., Ross, J., Nafziger, E. D., Kandel, H. J., Mueller, N., Devillez, P. 655 

L., Arriaga, F. J. and Conley, S. P.: Climate-induced reduction in US-wide soybean yields underpinned by region-and in-

season-specific responses, Nat. Plants, 1(February), 8–11, doi:10.1038/nplants.2014.26, 2015. 

Mourtzinis, S., Specht, J. E. and Conley, S. P.: Defining Optimal Soybean Sowing Dates across the US, Sci. Rep., 9(1), 1–7, 

doi:10.1038/s41598-019-38971-3, 2019. 

Mueller, N. D., Butler, E. E., Mckinnon, K. A., Rhines, A., Tingley, M., Holbrook, N. M. and Huybers, P.: Cooling of US 660 

Midwest summer temperature extremes from cropland intensification, Nat. Clim. Chang., 6(3), 317–322, 

doi:10.1038/nclimate2825, 2016. 

Nikiel, C. A. and Eltahir, E. A. B.: Summer climate change in the Midwest and Great Plains due to agricultural development 

during the twentieth century, J. Clim., 32(17), 5583–5599, doi:10.1175/JCLI-D-19-0096.1, 2019. 

Ortiz-Bobea, A., Wang, H., Carrillo, C. M. and Ault, T. R.: Unpacking the climatic drivers of US agricultural yields, Environ. 665 

Res. Lett., 14(6), doi:10.1088/1748-9326/ab1e75, 2019. 

Portmann, F. T., Siebert, S. and Döll, P.: MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: 

A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cycles, 24(1), n/a-n/a, 

doi:10.1029/2008gb003435, 2010. 

Ray, D. K., Gerber, J. S., Macdonald, G. K. and West, P. C.: Climate variation explains a third of global crop yield variability, 670 

Nat. Commun., 6, 1–9, doi:10.1038/ncomms6989, 2015. 



29 

 

Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V. and Chatterjee, S.: Climate change has likely already 

affected global food production, PLoS One, 14(5), 1–18, doi:10.1371/journal.pone.0217148, 2019. 

Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. and Huybers, P.: Combined influence of soil moisture and 

atmospheric evaporative demand is important for accurately predicting US maize yields, Nat. Food, 1(2), 127–133, 675 

doi:10.1038/s43016-020-0028-7, 2020. 

Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, 

C., Pugh, T. A. M., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W. and Frieler, K.: Consistent negative 

response of US crops to high temperatures in observations and crop models, Nat. Commun., 8, doi:10.1038/ncomms13931, 

2017a. 680 

Schauberger, B., Gornott, C. and Wechsung, F.: Global evaluation of a semiempirical model for yield anomalies and 

application to within-season yield forecasting, Glob. Chang. Biol., 23(11), 4750–4764, doi:10.1111/gcb.13738, 2017b. 

Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate 

change, Proc. Natl. Acad. Sci. U. S. A., 106(37), 15594–15598, doi:10.1073/pnas.0906865106, 2009. 

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B. and Teuling, A. J.: Investigating 685 

soil moisture-climate interactions in a changing climate: A review, Earth-Science Rev., 99(3–4), 125–161, 

doi:10.1016/j.earscirev.2010.02.004, 2010. 

Sharif, B., Makowski, D., Plauborg, F. and Olesen, J. E.: Comparison of regression techniques to predict response of oilseed 

rape yield to variation in climatic conditions in Denmark, Eur. J. Agron., 82, 11–20, doi:10.1016/j.eja.2016.09.015, 2017. 

Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7(10), 703–690 

708, doi:10.1038/NGEO2253, 2014. 

Shepherd, T. G.: Storyline approach to the construction of regional climate change information, Proc. R. Soc. A Math. Phys. 

Eng. Sci., 475(2225), doi:10.1098/rspa.2019.0013, 2019. 

Siebert, S., Webber, H., Zhao, G. and Ewert, F.: Heat stress is overestimated in climate impact studies for irrigated agriculture, 

Environ. Res. Lett., 12(5), doi:10.1088/1748-9326/aa702f, 2017. 695 

Sippel, S., Zscheischler, J. and Reichstein, M.: Ecosystem impacts of climate extremes crucially depend on the timing, Proc. 

Natl. Acad. Sci. U. S. A., 113(21), 5768–5770, doi:10.1073/pnas.1605667113, 2016. 

Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West, P. C. and Mueller, N. D.: Climate adaptation by crop 

migration, Nat. Commun., 11(1), 1–9, doi:10.1038/s41467-020-15076-4, 2020. 

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R.: Abiotic and biotic stress combinations, New Phytol., 700 

203(1), 32–43, doi:10.1111/nph.12797, 2014. 

Torreggiani, S., Mangioni, G., Puma, M. J., Fagiolo, G. and Torreggiani, S, G Mangioni , M JPuma, G. F.: Identifying the 

community structure of the food-trade international multi-network, Environ. Res. Lett., 13(5), doi:10.1088/1748-9326/aabf23, 

2018. 

Troy, T. J., Kipgen, C. and Pal, I.: The impact of climate extremes and irrigation on US crop yields, Environ. Res. Lett., 10(5), 705 



30 

 

doi:10.1088/1748-9326/10/5/054013, 2015. 

Ventura, V., Paciorek, C. J. and Risbey, J. S.: Controlling the proportion of falsely rejected hypotheses when conducting 

multiple tests with climatological data, J. Clim., 17(22), 4343–4356, doi:10.1175/3199.1, 2004. 

Vijverberg, S., Schmeits, M., van der Wiel, K. and Coumou, D.: Subseasonal Statistical Forecasts of Eastern U.S. Hot 

Temperature Events, Mon. Weather Rev., 148(12), 4799–4822, doi:10.1175/MWR-D-19-0409.1, 2020. 710 

Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N. and Frieler, K.: The 

effects of climate extreme events on global agricultural yields Supplementary Information, Environ. Res. Lett., (2010), 2019. 

Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., Van Der Wiel, K., Zhang, T. and Zscheischler, J.: 

Identifying meteorological drivers of extreme impacts: An application to simulated crop yields, Earth Syst. Dyn., 12(1), 151–

172, doi:10.5194/esd-12-151-2021, 2021. 715 

Wellesley, L., Preston, F., Lehne, J. and Bailey, R.: Chokepoints in global food trade: Assessing the risk, Res. Transp. Bus. 

Manag., 25(July), 15–28, doi:10.1016/j.rtbm.2017.07.007, 2017. 

Winter, J. M., Yeh, P. J.-F., Fu, X. and Eltahir, E. A. B.: Uncertainty in modeled and observed climate change impacts on 

American Midwest hydrology, Water Resour. Res., 51(5), 3635–3646, doi:10.1002/2014WR016056, 2015. 

Wuebbles, D., Meehl, G., Hayhoe, K., Karl, T. R., Kunkel, K., Santer, B., Wehner, M., Colle, B., Fischer, E. M., Fu, R., 720 

Goodman, A., Janssen, E., Kharin, V., Lee, H., Li, W., Long, L. N., Olsen, S. C., Pan, Z., Seth, A., Sheffield, J. and Sun, L.: 

CMIP5 climate model analyses: Climate extremes in the United States, Bull. Am. Meteorol. Soc., 95(4), 571–583, 

doi:10.1175/BAMS-D-12-00172.1, 2014a. 

Wuebbles, D. J., Kunkel, K., Wehner, M. and Zobel, Z.: Severe weather in United States under a changing climate, Eos 

(Washington. DC)., 95(18), 149–150, doi:10.1002/2014EO180001, 2014b. 725 

Zhu, X. and Troy, T. J.: Agriculturally Relevant Climate Extremes and Their Trends in the World’s Major Growing Regions, 

Earth’s Futur., 6(4), 656–672, doi:10.1002/2017EF000687, 2018. 

Zipper, S. C., Qiu, J. and Kucharik, C. J.: Drought effects on US maize and soybean production: Spatiotemporal patterns and 

historical changes, Environ. Res. Lett., 11(9), doi:10.1088/1748-9326/11/9/094021, 2016. 

Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound events, Sci. Adv., 3(6), 730 

1–11, doi:10.1126/sciadv.1700263, 2017. 

Zscheischler, J., Orth, R. and Seneviratne, S. I.: Bivariate return periods of temperature and precipitation explain a large 

fraction of European crop yields, Biogeosciences, 14(13), 3309–3320, doi:10.5194/bg-14-3309-2017, 2017. 

Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, 

D. N., Leonard, M., Wahl, T. and Zhang, X.: Future climate risk from compound events, Nat. Clim. Chang., 8(6), 469–477, 735 

doi:10.1038/s41558-018-0156-3, 2018. 

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., 

Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W. and Vignotto, E.: A typology of compound 

weather and climate events, Nat. Rev. Earth Environ., 1(7), 333–347, doi:10.1038/s43017-020-0060-z, 2020. 


