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Abstract. The US agriculture system supplies more than one-third of globally-traded soybean and with 90% of US soybean
produced under rainfed agriculture, soybean trade is particularly sensitive to weather and climate variability. Average growing
season climate conditions can explain about one-third of US soybean yield variability. Additionally, crops can be sensitive to
specific short-term weather extremes, occurring in isolation or compounding at key moments throughout crop development.
Here, we identify the dominant within-season climate drivers that can explain soybean yield variability in the US, and explore
synergistic effects between drivers that can lead to severe impacts. The study combines weather data from reanalysis and
satellite-informed root-zone soil moisture fields with sub-national crop yields using statistical methods that account for
interaction effects. Our models can explain on average about two thirds of the year-to-year yield variability (70% on all years
and 60% on out-of-sample predictions). The largest negative influence on soybean yields is driven by high temperature and
low soil moisture during the summer crop reproductive period. Moreover, due to synergistic effects, heat is considerably more
damaging to soybean crops during dry conditions, and less so during wet conditions. Compound and interacting hot and dry
summer conditions (defined by the 95" and 5™ percentiles of temperature and soil moisture, respectively) reduce yields by 2
standard deviation. This sensitivity is, respectively, 4 and 3 times larger than the sensitivity to hot or dry conditions alone.
Other relevant drivers of negative yield responses are lower temperatures early and late in the season, excessive precipitation
in early season and dry conditions in late season. The sensitivity to the identified drivers varies across the spatial domain with
higher latitudes, and thus colder regions, positively affected by high temperature during the summer period. On the other hand,
warmer south-eastern regions are positively affected by low temperature late season. Historic trends in identified drivers
indicates that US soybean has generally benefited from recent shifts in weather except for increasing rainfall in the early
season. Overall warming conditions have reduced the risk of frost in early and late-season and potentially allowed for earlier
sowing dates. More importantly, summers have been getting cooler and wetter over eastern US. Still, despite these positive
changes, we show that the frequency of compound hot-dry summer events has remained unchanged over 1946-2016. In the
longer term, climate models project substantially warmer summers for the continental US but uncertainty remains whether this
will be accompanied by drier conditions. This highlights a critical element to explore in future studies focused on US

agricultural production risk under climate change.
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1 Introduction

Soybean is one of the most in-demand crops worldwide, with the largest increases in production-area over the last two decades
when compared to all other major staple crops (Hartman et al., 2011). A considerably large portion of this production is
dedicated to animal feed accommodating the current global increase in demand for animal products (Cassidy et al., 2013). A
recent estimate based on FAOSTAT data in 2013 reports that soybean ranks second in terms of globally-produced kilocalories
(~20% of the total kcal traded on the global food market) and first among staple crops in terms of globally-aggregated trade
monetary value (Torreggiani et al., 2018). The US agriculture system alone supplies more than one-third of globally-traded
soybean, of which 90% is produced under rainfed agriculture (Jin et al., 2017). The recent surge in global soybean demands is
expected to increase further in the future due to increasing global population and associated shifts in dietary preferences
(Fehlenberg et al., 2017). At the same time, climate change is expected to increase annual mean and extreme temperature levels
over the US (Dirmeyer et al., 2013; Winter et al., 2015; Wuebbles et al., 2014a). To support adaptation measures that reduce
the potential impacts of these future challenges, we need a quantitative understanding of crop sensitivity to climate and weather

variables.

Climate variability can strongly impact crop yields. The effects of growing season temperature and precipitation conditions
can explain about one-third of US soybean year-to-year yield variability (Leng et al., 2016; Lobell et al., 2011; Ray et al.,
2015; Vogel et al., 2019). In particular, heat and drought conditions are among the most limiting environmental factors
affecting crops (Lesk et al., 2016). These are increasingly detrimental when coinciding with vulnerable stages of the crop
growth cycle (Troy et al., 2015). Such conditions can occur separately or in combination, in the latter case, leading often to
more severe impacts (Leonard et al., 2014). For instance, it is reported that US economic agricultural losses between 1980
and 2012 are four times larger during hot and dry conditions compared to drought events alone (Suzuki et al., 2014). Moreover,
the response to multiple climatic stressors is complex and can be subject to interaction effects where climatic drivers create
more damage in combination than the sum of each in isolation (Ben-Ari et al., 2018; Haqiqi et al., 2021; Matiu et al., 2017,
Rigden et al., 2020). Interestingly, multiple climatic stressors can also result in positive interactions with beneficial effects on
crop yields (Carter et al., 2016; Suzuki et al., 2014). Such features, positive or negative, are likely to have important
implications on future impacts and adaptation strategies to climate change. Nevertheless, these have received little attention in

current assessments so far (Matiu et al., 2017; Zscheischler et al., 2017).

A compound event framework has lately been proposed to underline the need for impact-centric approaches that identify
multiple climatic drivers contributing to socio-economic risk (Leonard et al., 2014; Zscheischler et al., 2018, 2020). The types
of damaging combination of drivers on local agricultural production are various, with a specific terminology recently proposed
in Zscheischler et al. (2020). These can be temporally compounding, as in the case of the 2016 wheat production in France

where high temperatures during winter followed by heavy precipitation during spring lead to unprecedented yield losses (Ben-
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Arietal., 2018). These can be preconditioned where for instance, pre-sowing soil moisture water storage content interacts with
within-season precipitation to affect rainfed maize yield in the US (Carter et al., 2018a) or multivariate/co-occurring such as
in the case of hot-dry conditions in the growing season affecting crop yields (Feng and Hao, 2019; Matiu et al., 2017). One
way to identify such drivers is through the use of statistical methods that empirically associate drivers to impacts (Vogel et al.,
2021). Easily interpretable linear regressions in that context can be useful tools, in particular when fitted with alternative
methods that allow for the consideration of a large number of potential predictors (i.e. subset selection, shrinkage or dimension

reduction approaches) (Ben-Ari et al., 2018; Carter et al., 2018a; Laudien et al., 2020; Vogel et al., 2021).

Here we analyze soybean yields and climate time series for the U.S. at the county scale from 1982 to 2016 using regression
models that are fitted with a reduced set of variables selected via a subset selection approach. The aim is to identify (1) the
combination of climatic conditions affecting soybean yields at different stages of the growing season, and (2) potential
interaction effects between drivers modulating the final impact on yield. Furthermore, we study (3) trends in the identified
dominant climate drivers from 1946 to 2016 to assess how historic trends likely affected soybean production risk. Finally, we
explore (4) how temperature and moisture couplings differ within the growing season between hot-dry summers and normal

summers. We discuss how that potentially affects the occurrence of compound hot-dry extremes and associated crop impacts.

2 Data and Methods
2.1 Soybean yields, climate and hydrological data for the U.S.

Soybean yields are analysed at the county scale for the period 1982-2016, based on census data obtained from the US
Department of Agriculture (USDA) National Agriculture Statistics Survey (NASS) Quick Stats database

(www.nass.usda.gov/Quick_Stats). Counties are selected on (i) having no missing data for the full 35 years analysed, (ii) have

common planting dates (i.e. April-May) and (iii) a production area share of at least 90% rainfed agriculture. Consequently, a
total of 389 counties are retained for the regression analysis (Fig. 1). These together account for at least 50% of US total rainfed
soy production, where production per county is calculated as the average production over 1982-2016. In the study region,
planting dates are aligned to provide comparable crop growth stages between counties. This facilitates the interpretation of
climate sensitivities associated to timing within the growing season. Information on the soybean growing season and rainfed
vs irrigated agricultural land cover is obtained from the monthly irrigated and rainfed crop areas database around the year 2000
(MIRCA2000), a global gridded dataset at 0.5° resolution (Portmann et al., 2010). The percent rainfed area is calculated by
dividing the rainfed area in each grid cell by the total harvested area for each cell (Schauberger et al., 2017a). A linear trend is
removed from yield values at the county scale to eliminate long-term effects largely due to technological improvements over

the study period (Fig. S1) (Li et al., 2019; Zipper et al., 2016).
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Figure 1. Average total production in tonnes over the period of study (1982-2016). Counties with 35 years of data are highlighted
with a thin black perimeter. Grey regions represent filtered out counties where local agriculture is less than 90% rainfed.

Global hydrological and weather datasets are used for this analysis. This provides the possibility to conduct similar
assessments, in other parts of the world, whenever impact data is available. Nevertheless, other studies can benefit from
leveraging local climate and hydrological data when available for better representativeness. Root zone soil moisture (SMroot)
variable (m3/m?) is obtained from the modelled GLEAM v3.3a dataset that incorporates an observed satellite-based soil
moisture data assimilation system (Martens et al., 2017). The dataset is available at a 0.25° grid resolution and a daily time
step that covers the period of study (1982-2016). Weather data, namely maximum (Tmax) and minimum (Tmin) temperature
(°C) in addition to precipitation (mm) are obtained from the bias-adjusted WFDES reanalysis covering the same period (1982-
2016) at daily time step and a 0.5° grid resolution (Cucchi et al., 2020). Daily precipitation is further processed into number
of days with precipitation above 20 mm (Num_pr20) to explicitly account for potential negative effects of excessive
precipitation on yield (Li et al., 2019; Zhu and Troy, 2018). All variables are temporally aggregated to monthly and seasonal
windows over early- (April-May), mid- (June-July-August) and late-growing season (September-October) periods.
Additionally, variables are spatially aggregated to the county scale based on county boundary maps of the 2016 US Census
Bureau. A summary of the considered variables for the modelling analysis is presented in Table 1. Dividing the growing season
by calendar months allowed the identification of key phases throughout the season where soybean crops are most sensitive to

climate variability. These can reflect both vulnerable physiological crop growth stages and important climatic thresholds. We
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could have used a more complex characterization of crop developmental stages based on phenological heat units (Schauberger
et al., 2017b) or the consideration of sub-monthly aggregation periods for climatic time series, but these did not necessarily
improve model performance in other assessments and therefore we opted here to simply rely on monthly and seasonal estimates
(Ben-Ari et al., 2016; Ortiz-Bobea et al., 2019; Sharif et al., 2017). Full growing season averages have been tested as potential
predictors but these did not improve modelling results and have therefore been omitted from further analysis. We thus

exclusively focus on within season crop climate sensitivities.

Table 1. Climate variables calculated at seasonal and monthly time scales throughout the growing season

Variable abbreviation Variable explanation Type Unit
Tmin Average minimum Temperature Temperature related °C
Tmax Average maximum Temperature Temperature related °C
Num_pr20 Number of days with precipitation above 20 mm Moisture related days
SMroot Root zone soil moisture Moisture related m’/m’

2.2 Simulating yield variability

We used regression models to estimate yield variability at the county scale. Typically, three types of statistical models are used
in such assessments (i.e. time-series, panel, and cross-sectional models) (Lobell and Burke, 2010). Here we opted for time-
series models as these are (i) easy to interpret, (ii) often perform well compared to the other approaches, and (iii) allow for
spatially heterogeneous parameter estimation that may highlight important local and regional features (Gornott and Wechsung,
2016). Out of all possible models constructed with a single input variable at county scale, we selected the most influential
moisture- and temperature-related variables per county based on the Bayesian Information Criterion (BIC) (Ben-Ari et al.,
2018). This was done separately for early- (April-May), mid- (June-July-August) and late-growing season (September-
October) periods considering both monthly and seasonal aggregates for each, and thus, ended up with a subset of six best
predictors for each county. Finally, we applied a stepwise selection procedure to identify the best combination of these input
variables, with and without interactions, picking the model with the lowest BIC value at county level (Ben-Ari et al., 2018).
The stepwise approach considers all selected variables and all possible interactions (i.e. products of all possible pairs of selected
predictors). The procedure is then to start from a model with no predictors, sequentially adding and removing predictors until
only a subset is left resulting in the most parsimonious model with the lowest prediction error on training data (See step.lm
function of R, version 3.6.1). The performance of the resulting model was evaluated using the coefficient of determination
(R?). Further robustness tests with respect to both predictor selection and model performance are detailed in the following

subsection. A summary of the modelling framework is presented in Fig. 2.
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Figure 2. Overall modelling workflow applied for this study linking US yields to weather and climate variables.
2.3 Validating performance and testing modelling assumptions

To test robustness of the model performance and the selected predictors, we applied a two level leave-one-out cross-validation
scheme (LOOCV) (Laudien et al., 2020). Level one (LOOCV-1) consisted of training county-scale models on reduced datasets.
These are constructed by iteratively removing the to-be-forecasted year and predicting the one out of sample value using a set

of predictors per county selected using the complete dataset. Level two (LOOCV-2) is similar but repeats the predictor selection
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step for every iteration. This way, we completely eliminate information shared between training and validation sets.
Furthermore, we calculated how often selected predictors are chosen across each iteration in the cross-validation procedure of
LOOCV-2. Both elements, respectively, provide a more robust model performance estimate and predictor selection step. The
adequacy of applying linear models at the county scale for assessing the relationship between yield anomalies and selected
predictors was successfully assessed using five statistical tests (Gornott and Wechsung, 2016; Schauberger et al., 2017b). The
regression equation specification error test (RESET) assessed whether taking powers of the predictor variables would improve
the model fit. The Breusch-Pagan test examined heteroscedasticity issues with the data. The Breusch—Godfrey test was used
to assess autocorrelation and the Shapiro—Wilk test to examine normality of residuals. Multicollinearity was checked using the

variance inflation factor calculated for each independent variable while setting acceptable levels to strictly below 3.

2.4 Changes in key climatic conditions from 1946 to 2016

Historic trends of the dominant climatic drivers were assessed for the period 1946 to 2016 using linear regressions (0.05
significance level). Furthermore, we assessed changes in concurrent hot-dry summer conditions as these were shown to be
particularly relevant for soybean production. The selected input datasets used in the crop-modelling analysis do not cover years
preceding 1981. To overcome this limitation, we used precipitation, number of wet days and temperature minimum and
maximum variables from the CRU V4 global dataset (Harris et al., 2020) covering the period 1901-2019 at a spatial resolution
of 0.5°. Number of wet days in the early season was used as a proxy for early season number of days with precipitation above
20 mm. Mean summer precipitation over June-July-August-September was used as a proxy for August-September averaged
root zone soil moisture. To check the feasibility of these assumptions, we calculated correlation maps between GLEAM
August-September averaged root zone soil moisture and CRU averaged summer precipitation and between WFDES5 spring
number of days with precipitation above 20 mm and CRU spring number of wet days for the period 1982 to 2016. The mean
Pearson’s correlation coefficient over the whole spatial domain was 0.66 for summer precipitation and root zone soil moisture
and 0.83 for spring number of wet days and number of wet days above 20 mm (Fig. S2). The 25%/10" and 75%/90" percentiles
of summer precipitation and August maximum temperature are used to jointly define the compound hot-dry events at the local
scale. Accordingly, we calculated the percent-change per grid cell based on the difference between the number of compound
events over two distinct periods (1946-1980 relative to 1982-2016) normalized by the total amount of events over the entire
analysis period. Statistical significance of this percent change is assessed using the non-parametric Wilcoxon Rank Sum test
(0.05 significance level). Moreover, we calculated a percent (%) area time series of the total rainfed producing region under
compound summer hot-dry conditions by summing the number of grid cells under such conditions for a given year and dividing
by the total number of grid cells considered, similar to the approach applied in Mazdiyasni and AghaKouchak (2015). The
trend in the aforementioned time-series was assessed with the non-parametric Mann—Kendall trend test (0.05 significance

level).
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2.5 Exploring temperature and moisture couplings during summer hot-dry events

To get insight on how key elements related to moisture and temperature couplings differ during compound summer hot-dry
years, we estimated the coevolution of actual evapotranspiration, root zone soil moisture and maximum temperature pairs
composited into hot-dry events for the period 1982-2016. Hot-dry summer events in this case are defined as years when more
than 20% of the total harvested area is under hot-dry conditions (using the 75" and 25 percentiles respectively). Coevolution
of considered variables was estimated by calculating monthly correlations across the year for all spatially averaged variable-
pair combinations. Actual evapotranspiration (AET) (mm) is retrieved from the GLEAM v3.3a dataset with the same temporal
and spatial resolution of aforementioned root zone soil moisture variable. AET within the GLEAM dataset is derived from
potential evapotranspiration model estimates multiplied by an evaporative stress factor based on observations of microwave

vegetation optical depth (VOD) and root zone soil moisture values.

3 Results
3.1 Overall model performance

Based on the selection procedure shown in Fig. 2, we identify a set of non-redundant moisture and temperature variables at
different stages of the growing season that can best explain yield variability at county scale. These varied across the spatial
domain (Fig. A1, A2) with dominant patterns summarized as follows: Excessive precipitation is highlighted as the main driver
of reduced soybean yields in the early season alongside low minimum and maximum temperature values. Low soil moisture
and high maximum temperature values are highlighted as main drivers of reduced yields in the mid-season, particularly for the
months of August and September. Finally, low soil moisture and low minimum temperature values are highlighted as main
drivers of reduced yields late in the season (Fig. 3a). The trained regression models at county level with identified predictors
are able to explain, on average, about two-thirds of the year-to-year yield variability (70% on all years and 60% on LOOCV-
1 predictions). Including interaction terms in the fitted model contributed to 10% out of the total 60% explained variability on
LOOCV-1 predictions. Testing the model with the more conservative LOOCV-2, repeating the predictor selection step at every
iteration, lowers model explained variability to 30% (Fig. 3a). This reduced performance is expected when comparing with
results of studies that applied a similar robust leave one out cross-validation approach (Laudien et al., 2020; Lehmann et al.,
2020). Still, for ~83% of the years, the LOOCV-2 model provides a correct year-to-year direction of change as well as sign of
the yield anomaly (i.e. positive or negative) (Fig. 3b). Furthermore, most frequently selected predictors and associated timing
within the season across the training sets shows high consistency and good agreement with predictors selected on the full
dataset (Fig. S3, S4, S5). This provides confidence with respect to the choice of predictors. Overall, the dominant crop yield
drivers are August/September root zone soil moisture and August maximum temperature, each selected over more than 25%
of considered counties. Averaged standardized beta coefficients for aforementioned variables reports the highest absolute value

of around 0.4 (i.e. ~0.4 standard deviation change in soybean yields per standard deviation change in the predictor when
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excluding the effect of interaction terms). Furthermore, interaction effects between summer moisture and temperature variables

are the most frequently selected type of interaction (Fig. A3).
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Figure 3. (a) summary of the strength and frequency of selected predictors across the growing season. (b-c¢) Explained variance (R-
squared) of yield anomalies due to climate variability (b) spatially averaged and (c) at the county scale. Stippling in (c) shows F-tests
with (p < 0.05) indicating that the model chosen is significantly better than a null model (accounting for false discovery rate due to
multiple hypotheses testing).

Spatially, the model is statistically significant (p-value < 0.05) for all considered counties (Fig. 3c) after adjusting for multiple
hypotheses testing using the False Discovery Rate (FDR) method (Ventura et al., 2004). Yield variability is captured
particularly well in southern counties (Fig. 3c), with high performance represented by red shading (R? ~ 0.8). On the other
hand, the model performs slightly poorer in northern counties, consistent with the results of Schauberger et al. (2017b) where
regional colder and wetter climatology reduces soybean yield sensitivity to hot-dry conditions. Individual diagnostic tests for
models built at the county scale shows that autocorrelation and heteroscedasticity did not occur for the majority of individual
models whereas model residuals are mostly normally distributed. The RESET test shows that most models are properly
specified meaning that considering quadratic variables would not have improved the model fit. Although quadratic associations
between crop yields and climatic variables are well established, these often are highlighted for seasonally averaged temperature
and moisture conditions (Ray et al., 2015). Dividing the growing season into smaller periods in this study likely made these
non-linear associations less relevant. Finally, the VIF value is strictly smaller than 3 for the majority of considered models and

variables reflecting low multicollinearity concerns (Fig. A4).
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3.2 Spatial variability of model coefficients

The spatial variability of crop yield sensitivities to the selected predictors is depicted in Fig. 4a-f. It shows county-based
standardized model coefficients and associated patterns across the spatial domain for both moisture and temperature related
variables and for early, mid, and late season. Specifically selected predictors and associated timing within the season per county

are shown in Fig. A1 & A2.

April-May (Early-season) June-July-August (Mid-season) September-October (Late-season)

pajejal-ainisIop

pajejal-ainjesadws |

Figure 4. Region- and season-specific estimated sensitivity coefficients for soybean yield and selected predictors. Stippling indicates
statistical significance from a t-test at 95% confidence level. Values of coefficients are interpreted as the change in soybean yield
standard deviation from a one-standard deviation change in the considered independent variable. In the case of interacting variables,
this interpretation only applies when the other interacting variable is equal to zero.

Early season reports mainly a negative relationship between yield and moisture variables (Fig. 4a) across the majority of the
spatial domain in line with Ortiz-Bobea et al., (2019). The most frequently selected predictor is number of days with
precipitation above 20 mm used as a proxy for excessive rain (Fig. 3a, Al). The signal is particularly strong and significant
near lowa and Minnesota where soils are generally poorly drained (i.e. high clay fraction, low saturated hydraulic conductivity)
(Li et al., 2019). The temperature related variable in early season (Fig. 4b) shows a positive relationship with yields, and this
can reflect both minimum and maximum temperature (Fig. Al). During the mid-season, temperature-related variables
negatively affect soybean yields across the spatial domain. Exceptions are for northern states (north of lowa and Illinois) where
the sensitivity is reversed and higher temperature lead to positive effects on yield (Fig. 4d). The selected variable for the
negative sensitivity (for southern states) refers mostly to maximum temperature in August whereas the positive sensitivity (for

northern states) refers mostly to minimum temperature in June and July (Fig. A1, A2). Moisture related variables have a strong

10
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positive influence on yields both in the mid and late season (Fig. 4¢). In particular, selected predictors are predominantly soil
moisture variables in August and September. Temperature sensitivities in the late season show mostly positive effects on yield,
except for counties in south-eastern states which show strong negative sensitivities (Fig. 4f). The selected late-season
temperature predictor is predominantly minimum temperature for the positive associations and September maximum
temperature for the negative associations over southern states (Fig. A1, A2). Furthermore, interaction terms between summer
soil moisture and temperature variables are included in ~10% of the considered counties across the spatial domain (Fig. A3).
These interaction effects imply that the impact of summer temperature on crop yields significantly depends on the concurrent
soil moisture levels in those areas. The negative effects of high temperatures are amplified during dry conditions and alleviated
during wet conditions (see Sect. 3.3). Moreover, another interaction term is picked up, albeit less pronounced, between
maximum August temperature and end of season minimum temperature mostly within lowa (Fig. A3). This might reflect
increased impacts whenever anomalously hot conditions in peak summer are followed by anomalously cold conditions in
September-October. The abrupt change in temperature conditions further stresses crops and reduces the potential positive

effects of crop temperature acclimation (Butler and Huybers, 2013; Carter et al., 2016).

3.3 Compound hot-dry and associated impacts

Our results show that soybean production in southern regions is particularly sensitive to the co-occurrence of high
August/September maximum Temperature and low August/September soil moisture (Fig. 4). The co-occurrence of low soil-
moisture (5™ percentile) and high temperature conditions (95" percentile) triggers the largest crop failures estimated at -2
standard deviations (calculated using spatially averaged model coefficients for August temperature, soil moisture and the
interaction term). Extreme August hot-dry conditions (i.e. simultaneously exceeding the 95th and 5th percentiles of
temperature and soil moisture, respectively) leads to 4 times more crop yield impacts compared to extreme hot conditions
alone (i.e. 95th and 50th percentiles of temperature and soil moisture, respectively) and 3 times more impacts compared to
extreme dry conditions alone (i.e. 50th and 5th percentiles of temperature and soil moisture, respectively). These results are
qualitatively similar when we replaced August with September soil moisture. To further illustrate the implication of including
interaction terms, we focus on Illinois in what follows. Illinois is the largest soybean producing region in the US and includes
a large ratio of counties where summer moisture and temperature interactions are included in locally specified models (Fig.
A3Db). Figure 5a shows pooled yield observations for Illinois (points) together with model predictions (contour lines) for various
values of August root zone soil moisture (vertical-axis) and August maximum temperature (horizontal-axis). Qualitatively
similar results are obtained when we replaced August with September root zone soil moisture. The coefficients for the
sensitivity of soybean yields to August hot-dry conditions in Fig. 5 are obtained from averaging all regression coefficients (i.e.
for August Temperature, soil moisture and the interaction term) from all county-specific models within Illinois (i.e. 51

individual models/counties).

11
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Figure 5. (a) contour lines for modelled yield anomalies under varying levels of standardized August maximum temperature and
root zone soil moisture in Illinois state. Points represent observed yield values. The colour scale to the right is in the units of
standardized yield anomaly. (b) Sensitivity of Illinois US yield anomaly to temperature change for three different root zone soil
moisture percentiles (5™, 50, 95t ),

Yield is shown to decrease for increasing hot-dry conditions both in observations and model predictions. In particular, the
bottom-right corner (representing August temperature and soil moisture values respectively above and below the 50
percentile) contains 75% of all observed low yields (defined as below one standard deviation). By including interaction terms,
LOOCV-1 model performance improved by 17% for Illinois. In particular, we estimate that the compounding impact of hot-
dry conditions (i.e. 95 and 5 percentiles of temperature and soil moisture, respectively) in August leads to an additional
crop-loss of 0.6 standard deviations as compared to a model that includes all selected predictors but no interaction terms. On
the other hand, the effects of extreme hot-wet conditions (95% percentile for both temperature and soil moisture values) leads
to a 0.5 standard deviation positive increase in crop yield estimates when including interaction terms. This non-linearity is
visualized in Fig. 5b showing model-derived yield sensitivities to temperature for different levels of root zone soil moisture
(i.e. 5™, 50% and 95 percentiles). The association between yield and August maximum temperature is strongly negative for
extremely dry conditions (brown dashed line) and slightly positive for extremely wet conditions (blue dashed line). This
highlights the importance of accounting for interaction effects when estimating compound impacts on crops. Yield response
to hot-wet conditions is nevertheless subject to high uncertainty (see shaded uncertainty range in Fig. 5b) as these conditions
do not occur often and are represented by few observations (upper-right corner in Fig. 5a). The rarity of these events is expected

owning to the negative correlation between moisture and temperature over summer (Zscheischler and Seneviratne, 2017). It
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follows that wet conditions generally limit exposure rather than sensitivity to very high temperature. Still, temperature

sensitivities during wet conditions are significantly different from those during dry conditions (Fig. 5b).

3.4 Changes in compound hot-dry from 1946 to 2016

Linear trends for summer precipitation (JJAS) over the period 1946 to 2016 show significant increases particularly over the
Midwest region (Fig. 6b). Only south-eastern states show significant drying trends. Maximum August temperature trends show
significant cooling over the Midwest region but warming for north-eastern, north-western and southern states (Fig. 6a).
Moreover, early and late season minimum temperature trends indicate warmer conditions across the spatial domain whereas
early season number of wet days trend indicates wetter conditions in spring (see Fig. AS5). Though summers generally got
wetter and cooler in the eastern part of the Midwest and north eastern US regions, the percent-change in the number of
concurrent hot and dry summer months (i.e. 90" and 10" percentiles of August maximum temperature and summer
precipitation, respectively) between 1946-1980 and 1982-2016 shows an increase in frequency here (Fig. 6¢). This might have
implications as compound hot-dry events appear to have increased in frequency in high producing regions, despite the apparent

cooling and wetting patterns identified by univariate trends.
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Figure 6. (a) Linear regression slope of August maximum temperature. (b) Linear regression slope for summer (JJAS) precipitation.
(c) Percent (%) change in concurrent dry (Summer JJAS precipitation < 10" percentile) and hot (August Maximum Temperature
> 90" percentile) during 1982-2016 relative to 1946—1980. (d) Time-series of percent producing regions in hot and dry conditions.
Trends in (a, b and d) are calculated for the period 1946 to 2016. Stippling in (a), (b) and (c) indicates statistical significance at the
95% confidence level. P-value in d) corresponds to the Mann—Kendall monotonic trend test. Black dashed line in (d) represents a
15% threshold marking years with a large (>15%) spatial hot-dry extent.

Time series of percent production area in concurrent hot and dry conditions reflects the spatial extent of such conditions over
the years (Fig. 6d). The black dashed line represents a threshold set at 20% exceeded by a number of years (i.e. 1947, 1948,
1953, 1954, 1955, 1956, 1959, 1976, 1980, 1983, 1984, 1988, 1991, 1995, 2003, 2006, 2007, 2012 when using the 75%/25%
percentile hot-dry time series). More than 60% of those years coincide with La Nifia like conditions, which have been shown
to impact US crop production (Anderson et al., 2019; lizumi and Sakai, 2020). Moreover, we note a high frequency of large-
scale hot-dry events in specific periods such as the 1950s and 1980s. These segmented periods of high intensity events suggest
a potential important role of decadal climate variability in the occurrence of hot-dry conditions. These can be related to low-
frequency sea surface temperature variations such as the pacific decadal oscillation (PDO) shown to have an influence on local

precipitation and temperature levels over eastern US (Vijverberg et al., 2020). A large fraction of the production area under
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hot-dry conditions create risks for country level agricultural production as regions are no longer able to balance out losses at
the local scale. Here again, despite the dominant cooling and wetting trends over the US (Fig. 6a & d), no significant up- or
downward trend was found in the fraction of US under hot-dry conditions over time for both the 75"25% and 90%/10% time-

series.

3.5 Temperature and moisture couplings during summer hot-dry events

To better understand why compound hot-dry conditions have not changed, despite significant trends towards wetter summers
and cooler August maximum temperatures, we analyse local land-atmosphere couplings. It has been hypothesized that during
dry conditions, the actual evapotranspiration reduces, cancelling the land-change induced cooling effect and prompting a return
to historic high temperature extremes (Mueller et al., 2016). Monthly correlations between root-zone soil-moisture (SMroot),
maximum temperature (Tmax) and actual evapotranspiration (AET) are used to estimate the coupling strength during hot-dry
summers and normal summers. The subset of hot-dry events in this case is constructed from years when more than 20% of the
total harvested area is under hot-dry conditions, defined using the 75" and 25" percentiles of August maximum temperature

and summer precipitation (JJAS) respectively (i.e. years when the orange line is above the dashed black line in Fig. 6d).
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Figure 7. Correlation at monthly scale throughout the year for various temperature and moisture pairs conditioned on hot-dry
events. Dots indicate statistical significance at the 95% confidence. Shaded regions represent important differences in the couplings
that can play a critical role in the development of hot-dry events.

We observe that summer hot-dry years are characterized by a stronger negative coupling between soil moisture and temperature
during spring (April-May) when compared to a typical year (Fig. 7a). We interpret this negative coupling as indicative of

warmer and drier springs. These conditions create a stronger negative coupling between evapotranspiration and soil moisture
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as evapotranspiration rates are enhanced by warmer temperatures, in turn, rapidly depleting soil moisture reserves (Fig. 7b).
The timing when the coupling between evapotranspiration and soil moisture sign shifts reflects a critical moment in the system
when soil moisture becomes limiting. We observe that this regime-shift is much more pronounced during hot-dry years (i.e.
stronger negative coupling in April-May and stronger positive coupling in July-August) (Fig. 7b). June is a transition month.
The moment of the regime shift (around June) coincides with the ceasing of the spring coupling between evapotranspiration
and temperature during hot-dry years (Fig. 7c). We interpret this ceasing of the coupling between evapotranspiration and
maximum temperature as an indicator of total depletion of moisture in the soils, and thus extra energy (via higher temperatures)
cannot lead to more evaporation. We are thus in a moisture-limited land-atmosphere coupling regime. During normal years,
still significant coupling between evapotranspiration and maximum temperature exists in July-September indicating that the
soils are not fully depleted. Spatially, the ceasing of the land-surface induced cooling effect is present over most of the soybean
harvesting region going from June to September for hot-dry years (Fig. A6). To summarize, we show that summer hot-dry
events are associated with warmer and drier springs. These conditions favour fast and intense depletion of soil moisture. Dry
soils limit the evaporative cooling effect as captured by the annulled co-variability between actual evapotranspiration and
temperature leading to amplified hot and dry conditions in summer (Fig. 7¢). This provides evidence in support of the initial
hypothesis that highlights the important role of land-atmosphere feedbacks in explaining the absence of a trend in summer hot-

dry events despite summer wetting and cooling trends over the soybean production region in the US.

4 Discussion

Predictors here are determined statistically, nevertheless, we aimed for a restricted set of moisture and temperature variables
for all US counties to facilitate the physical interpretation of climatic drivers affecting soybean yield variability. This is in line
with other studies that constructed semi-empirical crop models relying on a statistical framework driven by well-known
physiological variables (Ben-Ari et al., 2018; Gornott and Wechsung, 2016; Schauberger et al., 2017b). The frugal approach
we used to select predictors implies that potentially useful and physiologically-relevant variables such as radiation and vapour
pressure deficit are omitted. Although their effects can be implicitly accounted for in the temperature and moisture variables
used, light exposure, for instance, certainly plays a key role in crop productivity (Farquhar et al., 2001; Rigden et al., 2020).
Nevertheless, the choice is made as the least-squares model fit is highly sensitive to the ratio of predictors to the number of
observations (James et al., 2013). Ideally, crop-observations (35 here) should be much larger than the number of predictors to
avoid the risk of overfitting. Furthermore, including highly-correlated predictor variables (e.g. radiation and temperature) affect
model parameter estimation and complicates physical interpretation of drivers. Future studies can disentangle these
mechanisms for a more detailed data-driven assessment of climate and crop yield sensitivities. It is also possible to use more
complex machine learning models such as random forests although these often tend to obscure result interpretation and do not
always lead to better predictions (Vogel et al., 2019, 2021). Note that non-climatic seasonal influences on crop yields are

ignored in this study. These include planting densities, sowing dates, fertilizer applications and other socio-economic factors.
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This simplification is done as spatially-explicit time series for such components are rare and difficult to obtain (Schauberger
et al., 2017b). Some of these factors were shown not to necessarily improve model performance in a case study done on crop
yields in Germany (Gornott and Wechsung, 2016). Nevertheless, future studies should include these in whenever this becomes
possible for extended time periods as climate has been shown to influence seasonal management practices for farmers in the

US (Carter et al., 2018b).

We found that soybean yields were predominantly driven by heat and drought conditions occurring during the vulnerable
summer crop reproductive stage. In particular, August and September months were highlighted as key months for soybean
production in line with results from previous studies (Mourtzinis et al., 2015; Ortiz-Bobea et al., 2019; Zipper et al., 2016).
Furthermore, we noted a significant interaction effect between summer maximum temperature and soil moisture variables
modulating the final impact on yield. Drought and heat induce different growth inhibition patterns that can act simultaneously
to reduce crop photosynthetic rates and eventual yield levels (Suzuki et al., 2014). August mean maximum temperature was
found to be negatively associated with soybean yields for values exceeding 30°C (i.e. average August maximum temperature
value for a large part of the considered counties). This is in line with other studies that reported non-linear association between
soybean and temperature where the relationship is mildly positive up until 30°C and then declines sharply due to heat stress
(Schauberger et al., 2017a; Schlenker and Roberts, 2009). Moreover, here we found that this relationship was dependent on
concurrent soil moisture conditions where wet soils dampen the negative effect of high temperatures on yield via evaporative
cooling. A result that is also supported by previous studies reporting the decoupling effect of irrigation on the relationship
between heat stress and yield (Carter et al., 2016; Schauberger et al., 2017a; Schlenker and Roberts, 2009; Siebert et al., 2017,
Troy et al., 2015). On the other hand, low moisture levels induce stomatal closure which leads to reduced latent heat flux and
an increase in canopy temperature well above atmospheric temperatures increasing the crop sensitivity to hot conditions (Carter
et al., 2016; Siebert et al., 2017). Such dependency highlights the important need to account for both variables simultaneously
when assessing their impacts on crop yield variability (Carter et al., 2018a; Leng et al., 2016; Siebert et al., 2017; Suzuki et
al., 2014). Our analysis further reported early season excessive precipitation and minimum and maximum temperature
conditions in addition to late season minimum temperature as important drivers of soybean yield variability. Early season
excessive precipitation sensitivity likely reflects damaging plant field establishment conditions related to restricted root
development, nutrient leaching and disease susceptibility (Li et al., 2019; Ortiz-Bobea et al., 2019). High minimum and
maximum temperature in the early season positively associated to yield can imply both a reduced frost risk in addition to a
potentially longer growing season where soybean yield potential is maximized (Bastidas et al., 2008; Mourtzinis et al., 2019).
End of season frost has also been reported as an important risk factor for soybean crops particularly in the northern states, and
we interpret the predictor of minimum temperature during September and October as reflective of such conditions. These
identified drivers of impact can serve as a basis for effective early warning systems that provide valuable information to
decision makers (Merz et al., 2020). Acting in advance can be critical to avoid crop loss and associated socio-economic

consequences. For instance, a short period of drought during the reproductive stage is reported to cause non-reversible damage
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to soybean yields (Daryanto et al., 2017). Hot and dry conditions in eastern US over summer has been shown to be forecastable
at long lead times (~50 days ahead), associated with sea surface temperature anomalies over the northern Pacific Ocean
(McKinnon et al., 2016; Vijverberg et al., 2020). Future work can further explore the link between drivers of compound hazards

impacting yields to facilitate the development of actionable tools for stakeholders.

We showed that historic changes in climate have not increased the overall climate risk for rainfed soybean production in the
US. This is in line with other studies that looked at the contribution of historic climate trends on soybean and maize yields in
the US (Butler et al., 2018; Ray et al., 2019). This is particularly the case in the most northern states where the occurrence of
compound hot-dry events has mostly decreased (Fig. 6d). Interestingly, soybean cropping regions have also shifted north-
westerly in the US taking advantage of such changes in climate (Sloat et al., 2020). Increasing trend in number of wet days
during spring can lead to detrimental change for rainfed soybean production. Nevertheless, Lesk et al., (2020) recently
highlighted that the association between heavy rainfall and US crop yields can be different and more complex when studied at
sub-daily resolution emphasizing that further investigation is needed in that regards. The summertime cooling is a well-
documented phenomenon over US agricultural regions and is attributable to agricultural intensification in the region although
other driving processes such as decadal variability and aerosol emissions also play a role (Alter et al., 2018; Lesk and Anderson,
2021; Mueller et al., 2016; Nikiel and Eltahir, 2019). With respect to the role of agriculture, a higher density of crops supported
by increasing fertilizer rates leads to higher evapotranspiration rates which in turn induce large scale evaporative cooling and
contribute to increasing precipitation (Basso et al., 2021; Mueller et al., 2016). Nevertheless, we highlighted that in key
producing regions like Illinois, compound hot-dry events seem to have increased in frequency recently, despite the absence of
a summer-mean drying or warming trend. Potentially, during dry conditions, the actual evapotranspiration reduces, cancelling
the land-change induced cooling effect and prompting a return to historic high temperature extremes (Mueller et al., 2016).
We illustrated this mechanism by analysing the evolution of land-atmosphere coupling within the growing season, captured
by monthly correlations between actual evapotranspiration, root zone soil-moisture and maximum temperature. We interpreted
positive correlation values between actual evapotranspiration and maximum temperature as indicative of a general land-surface
induced cooling effect. During hot-dry years, this evaporative cooling ceased at the onset of summer months. We showed that
this was associated to stronger negative coupling between evapotranspiration-soil moisture and soil moisture-temperature in
spring. Such conditions lead to fast soil moisture depletion and favour a moisture limited regime that amplifies extreme summer
hot-dry conditions and associated soybean impacts (Sippel et al., 2016). Although we showed that warmer and drier springs
lead to higher yields, potentially connected hot and dry summer conditions lead to disproportionately negative impacts on final
crop yields. Future risk assessments should account for such non-linear effects. Over the Midwest US, climate models project
warmer summers which is likely to enhance the coupling between moisture and temperature via land-atmosphere feedbacks
leading to a possible increase in the amplitude and frequency of compound hot-dry conditions (Cheng et al., 2019; Zscheischler
and Seneviratne, 2017). Although annual precipitation levels are expected to remain constant or even increase, climate models

generally project increased dry day length and decreased summer soil moisture levels (Dai, 2013; Dirmeyer et al., 2013;
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Wuebbles et al., 2014a, 2014b). Future research should quantify whether such trends could lead to an increase of hot-dry
summer months in the future. Nevertheless, high uncertainty remains with respect to atmospheric dynamical changes including
quasi-stationary Rossby waves which are a key driver of hot-dry conditions in the eastern US as well as other mid-latitude
regions (Di Capua et al., 2020; Coumou et al., 2014; Kornhuber et al., 2019; Shepherd, 2014; Winter et al., 2015). Until such
contradictions are resolved, future impacts of climate change on US agricultural production remain uncertain. The storyline
approach has been proposed as an important tool to illustrate such epistemic uncertainty and can be explored in future studies

with important consequences on current and future policy and decision making (Shepherd, 2019).

Here we focused on local types of compound events, however, global food supply is highly dependent on production in various
countries. Spatially compounding events will be important to study in future assessments in order to understand large scale
risk associated to breadbasket failures. Here we qualitatively identified that a considerable number of the large extent hot-dry
conditions occurring over the US are coinciding with La Nifa like conditions. These are also highly influential over the South
American continent where soybean production including the US account for more than 80% of total global supply (Anderson
etal., 2017; lizumi and Sakai, 2020; Wellesley et al., 2017). Other examples of teleconnections are mid-latitude Rossby waves,
particularly wave number 5, which has phase-locking behaviour in the northern hemisphere mid-latitudes driving simultaneous
summer positive temperature anomalies over Midwest US, eastern Europe, and east Asia (Kornhuber et al., 2019). This is
particularly of concern to soybean production when taking into consideration upcoming soybean hotspot production regions

such as Russia and Ukraine (Deppermann et al., 2018).

5 Conclusion

We presented a simple statistical framework that can identify climatic variables influencing soybean yield variability in the
US at specific moments within the growing season. We found that compound summer hot-dry conditions lead to the largest
impacts on yield, i.e. beyond the estimated additive effects of each stressor separately. Furthermore, we identified early-season
minimum and maximum temperature in addition to precipitation, and late-season minimum temperature and soil moisture to
be important factors affecting soybean yield in the US. Understanding of these seasonally dependent crop-sensitivities paves
the way for more effective early-warning tools that target timely drivers of yield variability throughout the growing season.
The long-term cooling and wetting trend in summer, over large areas of our domain, has generally been beneficial for soybean.
Nevertheless, we showed that the frequency of extreme hot-dry conditions remained largely unchanged over the full region,
and increased in a key region like Illinois where crops are especially sensitive to such extremes. Furthermore, we showed that
hot-dry events are characterised by stronger negative spring coupling between evapotranspiration-soil moisture and soil
moisture-temperature leading to fast soil moisture depletion in spring and a reversal in the land-surface cooling mechanism

over summer prompting important soybean yield impacts. Given that climate models project summer warming and general
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475 declines in soil-moisture (albeit with substantial uncertainty) for the Midwest, crop sensitivities to compound hot-dry extremes

are likely to present important future risks for US soybean production.

Appendix A: Additional figures
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Figure A 3. (a). Standardized coefficients for interaction terms per county selected based on the full dataset. (b). Type of interactions
selected per county based on the full dataset.
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Figure A 4. Diagnostic test results for the fitted models. Green indicates a “successful” test, i.e. no problem, while red indicates a

490 rejection of the respective HO of no autocorrelation/heteroscedasticity/

misspecification/multicollinearity/un-normality.

Multicollinearity is checked with the variance inflation factor and marked in red if any of the variables report a value >3.
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Figure A S. Linear trends for main identified drivers of soybean yield variability over the period 1946-2016. Stippling indicates
statistical significance at the 95% confidence level. Trends for moisture and temperature variables over summer are displayed in

the main text.
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Figure A 6. Correlation at monthly scale per grid cell from June to September for actual evapotranspiration and temperature
conditioned on hot-dry events. Dots indicate statistical significance at the 95% confidence.
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