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Abstract. The US agriculture system supplies more than one-third of globally-traded soybean and with 90% of US soybean 

produced under rainfed agriculture, soybean trade is particularly sensitive to weather and climate variability. Average growing 

season climate conditions can explain about one-third of US soybean yield variability. Additionally, crops can be sensitive to 

specific short-term weather extremes, occurring in isolation or compounding at key moments throughout crop development. 

Here, we identify the dominant within-season climate drivers that can explain soybean yield variability in the US, and explore 5 

synergistic effects between drivers that can lead to severe impacts. The study combines weather data from reanalysis and , 

satellite-informed -based evapotranspiration and root-zone soil moisture fields with sub-national crop yields using statistical 

methods that account for interaction effects. Our models can explain on average about half two thirds of the year-to-year yield 

variability (6070% on all years and 4060% on out-of-sample predictions). The largest negative influence on soybean yields is 

driven by high temperature and low soil moisture during the summer crop reproductive period. Moreover, due to synergistic 10 

effects, heat is considerably more damaging to soybean crops during dry conditions, and less so during wet conditions. 

Compound and interacting hot and dry August summer conditions (defined by the 95th and 5th percentiles of temperature and 

soil moisture, respectively) reduce yields by 1.252 standard deviation. This sensitivity is, respectively, 46 and 3 times larger 

than the sensitivity to hot or dry conditions alone. Other important relevant drivers of negative yield responses are lower 

evapotranspiration temperatures early and late in the season, excessive precipitation in early season and dry conditions in late 15 

season and lower minimum temperature late in the season, both likely reflecting an increased risk of frost..  The sensitivity to 

the identified drivers varies across the spatial domain with higher latitudes, and thus colder regions, positively affected by high 

temperature during the summer period. On the other hand,  and warmer south-eastern regions are positively affected by low 

temperature late season. being less sensitive to hot-dry August months.  Historic trends in identified drivers indicates that US 

soybean has generally benefited from recent shifts in weather except for increasing rainfall in the early season. Overall warming 20 

conditions have reduced the risk of frost in early and late-season and potentially allowed for earlier sowing dates. More 

importantly, summers have been getting cooler and wetter over eastern US. Still, despite these positive changes, we show that 

the frequency of compound hot-dry August monthsummer events has remained unchanged over 1946-2016. Moreover, inIn 

the longer term, climate models project substantially warmer summers for the continental US but uncertainty remains whether 

this will be accompanied by drier conditions. This highlightsing a critical element to explore in future studies focused on US 25 

agricultural production risk under climate change.   which likely creates risks for soybean production.  
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1 Introduction 

Soybean is one of the most in-demand crops worldwide, with the largest increases in production-area over the last two decades 

when compared to all other major staple crops (Hartman et al., 2011).  A considerably large portion of this production is 30 

dedicated to animal feed accommodating the current global increase in demand for animal products (Cassidy et al., 2013). A 

recent estimate based on FAOSTAT data in 2013 reports that soybean ranks second in terms of globally-produced kilocalories 

(~20% of the total kcal traded on the global food market) and first among staple crops in terms of globally-aggregated trade 

monetary value (Torreggiani et al., 2018). The US agriculture system alone supplies more than one-third of globally-traded 

soybean, of which 90% is produced under rainfed agriculture (Jin et al., 2017). The recent surge in global soybean demands is 35 

expected to increase further in the future due to increasing global population and associated shifts in dietary preferences 

(Fehlenberg et al., 2017). At the same time, climate change is expected to increase annual mean and extreme temperature levels 

over the US (Dirmeyer et al., 2013; Winter et al., 2015; Wuebbles et al., 2014a). To support adaptation measures that reduce 

the potential impacts of these future challenges, we need a quantitative understanding of crop sensitivity to climate and weather 

variables. 40 

 

Climate variability can strongly impact crop yields. The effects of growing season temperature and precipitation conditions 

can explain about one-third of US soybean year-to-year yield variability (Leng et al., 2016; Lobell et al., 2011; Ray et al., 

2015; Vogel et al., 2019). In particular, heat and drought conditions are among the most limiting environmental factors 

affecting crops (Lesk et al., 2016). These are increasingly detrimental when coinciding with vulnerable stages of the crop 45 

growth cycle (Troy et al., 2015). Such conditions can occur separately or in combination, in the latter case, leading often to 

more severe impacts (Leonard et al., 2014).  For instance, it is reported that US economic agricultural losses between 1980 

and 2012 are four times larger during hot and dry conditions compared to drought events alone (Suzuki et al., 2014). Moreover, 

the response to multiple climatic stressors is complex and can be subject to interaction effects where climatic drivers create 

more damage in combination than the sum of each in isolation (Ben-Ari et al., 2018; Haqiqi et al., 2021; Matiu et al., 2017; 50 

Rigden et al., 2020). Interestingly, multiple climatic stressors can also result in positive interactions with beneficial effects on 

crop yields (Carter et al., 2016; Suzuki et al., 2014). Such features, positive or negative, are likely to have important 

implications on future impacts and adaptation strategies to climate change. Nevertheless, these have received little attention in 

current assessments so far (Matiu et al., 2017; Zscheischler et al., 2017). 

 55 

A compound event framework has lately been proposed to underline the need for impact-centric approaches that identify 

multiple climatic drivers contributing to socio-economic risk (Leonard et al., 2014; Zscheischler et al., 2018, 2020). The types 

of damaging combination of drivers on local agricultural production are various, with a specific terminology recently proposed 



3 

 

in Zscheischler et al. (2020). These can be temporally compounding, as in the case of the 2016 wheat production in France 

where high temperatures during winter followed by heavy precipitation during spring lead to unprecedented yield losses (Ben-60 

Ari et al., 2018). These can be preconditioned where for instance, pre-sowing soil moisture water storage content interacts with 

within-season precipitation to affect rainfed maize yield in the US (Carter et al., 2018a) or multivariate/co-occurring such as 

in the case of hot-dry conditions in the growing season affecting crop yields (Feng and Hao, 2019; Matiu et al., 2017). One 

way to identify such drivers is through the use of statistical methods that empirically associate drivers to impacts (Vogel et al., 

2021). Easily interpretable linear regressions in that context can be useful tools, in particular when fitted with alternative 65 

methods that allow for the consideration of a large number of potential predictors (i.e. subset selection, shrinkage or dimension 

reduction approaches) (Ben-Ari et al., 2018; Carter et al., 2018a; Laudien et al., 2020; Vogel et al., 2021).  

 

Here we analyze soybean yields and climate time series for the U.S. at the county scale from 1982 to 2016 using regression 

models that are fitted with a reduced set of variables selected via a subset selection approach. The aim is to identify (1) the 70 

combination of climatic conditions affecting soybean yields at different stages of the growing season, and (2) potential 

interaction effects between drivers modulating the final impact on yield.  Although other studies have looked at potential 

interactions between climate drivers , identifying key month and variables throughout the growing season , these studies did 

not look at such features jointly as done here. Furthermore, we study (3) trends in the identified dominant climate drivers from 

1946 to 2016 to assess how historic trends likely affected current soybean production risk. Finally, we explore (4) how 75 

temperature and moisture couplings differ within the growing season between hot-dry summers and normal summers. We 

discuss how that potentially affects the occurrence of compound hot-dry extremes and associated crop impacts. 

Finally, we investigate trends in the identified dominant climate drivers from 1946 to 2016 to assess how historic trends have 

affected current soybean production risk. 

2 Data and Methods 80 

2.1 Soybean yields,  and climate and hydrological data for the U.S. 

Soybean yields are analysed at the county scale for the period 1982-2016, based on census data obtained from the US 

Department of Agriculture (USDA) National Agriculture Statistics Survey (NASS) Quick Stats database 

(www.nass.usda.gov/Quick_Stats). Counties are selected on (i) having no missing data for the full 35 years analysed, (ii) have 

common planting dates (i.e. April-May) and (iii) a production area share of at least 90% rainfed agriculture. Consequently, a 85 

total of 389 counties are retained for the regression analysis (Fig. 1). These together account for at least 50% of US total rainfed 

soy production, where production per county is calculated as the average production over 1982-2016. In the study region, 

planting dates are aligned to provide comparable crop growth stages between counties. This facilitates the interpretation of 

climate sensitivities  associated to timing within the growing season.  Information on the soybean growing season and rainfed 

vs irrigated agricultural land cover is obtained from the monthly irrigated and rainfed crop areas database around the year 2000 90 

http://www.nass.usda.gov/Quick_Stats
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(MIRCA2000), a global gridded dataset at 0.5° resolution (Portmann et al., 2010). The percent rainfed area is calculated by 

dividing the rainfed area in each grid cell by the total harvested area for each cell (Schauberger et al., 2017a). A linear trend is 

removed from yield values at the county scale to eliminate long-term effects largely due to technological improvements over 

the study period (Fig. S1)  (Li et al., 2019; Zipper et al., 2016).  

 95 

Figure 1. Average total production in tonnes over the period of study (1982-2016). Counties with 35 years of data are highlighted 

with a thin black perimeter. Grey regions represent filtered out counties where local agriculture is less than 90% rainfed. 

Global hydrological and weather datasets are used for this analysis. This provides the possibility to conduct similar 

assessments, in other parts of the world, whenever impact data is available. Nevertheless, other studies can benefit from 

leveraging local climate and hydrological data when available for better representativeness. Root zone soil moisture (SMroot) 100 

variable (m3/m3) is obtained from the modelled GLEAM v3.3a dataset that incorporates an observed satellite-based soil 

moisture data assimilation system (Martens et al., 2017). The dataset is available at a 0.25° grid resolution and a daily time 

step that covers the period of study (1982-2016). Weather data, namely maximum (Tmax) and minimum (Tmin) temperature 

(°C) in addition to precipitation (mm) are obtained from the bias-adjusted WFDE5 reanalysis covering the same period (1982-

2016) at daily time step and a 0.5° grid resolution (Cucchi et al., 2020). Daily precipitation is further processed into number 105 

of days with precipitation above 20 mm (Num_pr20) to explicitly account for potential negative effects of excessive 

precipitation on yield (Li et al., 2019; Zhu and Troy, 2018). All variables are temporally aggregated to monthly and seasonal 

windows over springearly- (April-May), summermid-  (June-July-August) and autumnlate-growing season (September-
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October) periods. Additionally, variables are spatially aggregated to the county scale based on county boundary maps of the 

2016 US Census Bureau. Climate data are obtained from the bias-adjusted WFDE5 global reanalysis covering the same period 110 

(1982-2016) on a daily time step at a 0.5° grid resolution (Cucchi et al., 2020). Monthly values in each grid cell are calculated 

for the following variables: the monthly-mean daily maximum (Tmax) and minimum temperatures (Tmin) (°C), monthly-

mean precipitation (mm), cumulative incident solar radiation (Wm−2) in addition to extreme indicators such as number of days 

with temperature above 30 °C (i.e. soybean critical temperature threshold) (Schlenker and Roberts, 2009), and number of days 

with precipitation above 1, 20, and 30 mm to account for potential negative effects of excessive precipitation on yield (Li et 115 

al., 2019). Additional variables are created by aggregating over the spring (April-May), summer (June-July-August) and 

autumn (September-October) periods. Actual evapotranspiration (mm) and root zone soil moisture (m3/m3) from the satellite-

based GLEAM dataset (Martens et al., 2017) are included in the analysis at the same spatio-temporal scale. All input data is 

then averaged over the area of each county. A summary of the considered variables for the modelling analysis is presented in 

Table 1. Dividing the growing season by calendar months allowed the identification of key phases throughout the season where 120 

soybean crops are most sensitive to climate variability. These can reflect both vulnerable physiological crop growth stages and 

important climatic thresholds. We could have used a more complex characterization of crop developmental stages based on 

phenological heat units (Schauberger et al., 2017b) or the consideration of sub-monthly aggregation periods for climatic time 

series, but these did not necessarily improve model performance in other assessments and therefore we opted here to simply 

rely on monthly and seasonal estimates (Ben-Ari et al., 2016; Ortiz-Bobea et al., 2019; Sharif et al., 2017). Full growing season 125 

averages have been tested as potential predictors but these did not improve modelling results and have therefore been omitted 

from further analysis. We thus exclusively focus on within season crop climate sensitivities.  

 

  

 130 

Table 1. Climate variables calculated at seasonal and monthly time scales throughout the growing season 

Variable abbreviation Variable explanation Type Unit 

Tmin Average minimum Temperature Temperature related °C 

Tmax Average maximum Temperature Temperature related °C 

Num_pr20 Number of days with precipitation above 20 mm Moisture related days 

SMroot Root zone soil moisture Moisture related m3/m3 
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rsds Shortwave radiation W/m2 

Tmin Average minimum Temperature °C 
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Tmax Average maximum Temperature °C 

Num_tx30 Number of days with temperature above 30 °C days 
M

o
is

tu
re

-r
el

at
ed

 

Precip_avg Average amount of precipitation mm 

Num_wet Number of days with precipitation above 1 mm days 

Num_pr20 Number of days with precipitation above 20 mm days 

Num_pr30 Number of days with precipitation above 30 mm days 

SMroot Root zone soil moisture m3/m3 

ETact Actual evapotranspiration mm 

2.2 Simulating yield variability 

We used regression models to estimate yield variability at the county scale. Typically, three types of statistical models are used 

in such assessments (i.e. time-series, panel, and cross-sectional models) (Lobell and Burke, 2010). Here we opted for time-135 

series models as these are (i) easy to interpret, (ii) often perform well compared to the other approaches, and (iii) allow for 

spatially heterogeneous parameter estimation that may highlight important local and regional features (Gornott and Wechsung, 

2016). To focus on robust precursors and to enhance model interpretability, we first selected one set of predictors for the full 

region by pooling US county yields together (see Fig. 2, box ‘selection of predictors’) (Troy et al., 2015). Out of all possible 

models constructed with a single input variable at county scale, we selected the most influential moisture- and heattemperature-140 

related variables per county based on the Bayesian Information Criterion (BIC) (Ben-Ari et al., 2018). We This was done 

separately do this for early- (April-Mayspring), mid- (June-July-Augustsummer) and late-growing season (September-

Octoberautumn) periods separately considering both monthly and seasonal aggregates for each, and thus, ending ended up 

with a subset of six best predictors for each county.  (see Table A1). To avoid multicollinearity, we pruned this list of selected 

predictors by setting a maximum allowable Pearson correlation coefficient between any two predictors to 0.5. Thus, whenever 145 

a pair of predictors was strongly collinear (Pearson’s r > 0.5), we selected the predictor that preceded the other in timing within 

the growing season (i.e. we excluded soil moisture in September as August soil moisture was already selected). Finally, we 

applied a stepwise selection procedure  to identify the best combination of these input variables, with and without interactions, 

picking the model with the lowest BIC value at county level (Ben-Ari et al., 2018). The stepwise approach considers all selected 

variables and all possible interactions (i.e. products of all possible pairs of selected predictors). The procedure is then to start 150 

from a model with no predictors, sequentially adding and removing predictors until only a subset is left resulting in the most 

parsimonious model with the lowest prediction error on training data (See step.lm function of R, version 3.6.1). The 

performance of the resulting model was  Only interactions that improved the model out of sample performance were kept in 

the final model as this was shown to reduce overfitting. The final list of selected predictors consisted of April-May 

evapotranspiration, August root-zone soil moisture, August maximum temperature, September-October minimum 155 

temperature, and the interaction between temperature and soil moisture in August (see Fig. 2, box ‘unique set of predictors’). 
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The resulting model is fitted at the county scale and its performance is evaluated using the coefficient of determination (R2). 

Further robustness tests with respect to both predictor selection and model performance are detailed in the following 

subsection.  A summary of the modelling framework is presented in Fig. 2. 



8 

 

 160 



9 

 

 
Figure 2. Overall modelling workflow applied for this study linking US yields to weather and climate variables. 

2.3 Validating performance and testing modelling assumptions 

To test robustness of the model performance and the selected predictors, we applied a two level leave-one-out cross-validation 

scheme (LOOCV) (Laudien et al., 2020). We Level one (LOOCV-1) consisted of trainingtrained  county-scale models on 165 

reduced datasets. These are constructed by where we iteratively removinged the to-be-forecasted year and predictinged the 

one out of sample value using a set of predictors per county selected using the complete dataset. Level two (LOOCV-2) is 
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similar but repeats the predictor selection step for every iteration. This way, we completely eliminate information shared 

between training and validation sets. Furthermore, we calculated how often selected predictors are chosen across each iteration 

in the cross-validation procedure of LOOCV-2. Both elements, respectively, provide a more robust model performance 170 

estimate and predictor selection step In addition, we applied an alternative cross-validation method using a train-test split 

approach where we trained the model over the first 18 years and tested its performance over the remaining 17 years of data.  

The adequacy of applying linear models at the county scale for assessing the relationship between yield anomalies and selected 

predictors was successfully assessed using five statistical tests (Gornott and Wechsung, 2016; Schauberger et al., 2017b). The 

regression equation specification error test (RESET) assessed whether taking powers of the predictor variables would improve 175 

the model fit. The Breusch-Pagan test examined heteroscedasticity issues with the data. The Breusch–Godfrey test was used 

to assess autocorrelation and the Shapiro–Wilk test to examine normality of residuals. Multicollinearity was checked using the 

variance inflation factor calculated for each independent variable while setting acceptable levels to strictly below 3.  

2.4 Changes in key climatic conditions from 1946 to 2016 

Historic trends of the dominant climatic drivers were assessed for the period 1946 to 2016 using linear regressions (0.05 05 180 

significance level). Furthermore, we assessed changes in concurrent hot-dry Augustsummer conditions as these were shown 

to be particularly relevant for soybean production. The selected input datasets used in the crop-modelling analysis do not cover 

years preceding 1981. To overcome this limitation, we used precipitation, number of wet days and temperature minimum and 

maximum variables from the CRU V4 global dataset (Harris et al., 2020) covering the period 1901-2019 at a spatial resolution 

of 0.5°. Number of wet days  Minimum temperature in the early season was used as a proxy for early season number of days 185 

with precipitation above 20 mm. actual evapotranspiration as the latter tends to be mainly energy limited during spring, 

especially in climatologically wet regions. Moreover, minimum temperature was initially picked as most relevant temperature 

related variable for spring conditions, but later dropped in the stepwise selection. Mean summer precipitation over June-July-

August-September was used as a proxy for August-September averaged root zone soil moisture. To check the feasibility of 

these assumptions, we calculated correlation maps between GLEAM August-September averaged root zone soil moisture and 190 

CRU averaged summer precipitation and between WFDE5 spring number of days with precipitation above 20 mm  GLEAM 

spring actual evapotranspiration and CRU spring number of wet days minimum temperature for the period 1982 to 2016. The 

mean Pearson’s correlation coefficient over the whole spatial domain was 0.73 66 for summer precipitation and root zone soil 

moisture and 0.83 for spring number of wet days and number of wet days above 20 mm  and 0.5 for spring actual 

evapotranspiration and minimum temperature (Fig. A1S2ab). The 10th25th/10th  and 75th/90th  percentiles of summer 195 

precipitation and August maximum temperature are used to jointly define the compound hot-dry events at the local scale. 

Accordingly, we calculated the percent-change per grid cell based on the difference between the number of compound events 

over two distinct periods (1946-1980 relative to 1982-2016) normalized by the total amount of events over the entire analysis 

period. Statistical significance of this percent change is assessed using the non-parametric Wilcoxon Rank Sum test (0.05 

significance level).  MMoreover, we calculated a percent (%) area time series of the total rainfed producing region under 200 
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compound August summer hot-dry conditions by summing the number of grid cells under such conditions for a given year and 

dividing by the total number of grid cells considered, similar to the approach applied in Mazdiyasni and AghaKouchak (2015). 

The trend in the aforementioned time- series was assessed with the non-parametric Mann−Kendall trend test (0.05 significance 

level).  

2.5 Exploring temperature and moisture couplings during summer hot-dry events 205 

 To get insight on how key elements related to moisture and temperature couplings differ during compound summer hot-dry 

years, we estimated the coevolution of actual evapotranspiration, root zone soil moisture and maximum temperature pairs 

composited into hot-dry events for the period 1982-2016. Hot-dry summer events in this case are defined as years when more 

than 20% of the total considered spatial domainharvested area is under hot-dry conditions (using the 75th and 25th percentiles 

respectively). Coevolution of considered variables was estimated by calculating monthly correlations across the year for all 210 

spatially averaged variable-pair combinations. Actual evapotranspiration (AET) (mm) is retrieved from the GLEAM v3.3a 

dataset with the same temporal and spatial resolution of aforementioned root zone soil moisture variable. AET within the 

GLEAM dataset is derived from potential evapotranspiration model estimates multiplied by an evaporative stress factor based 

on observations of microwave vegetation optical depth (VOD) and root zone soil moisture values.    

 215 

3 Results 

3.1 Overall model performance 

Based on the selection procedure shown in Fig. 2, we identify a set of non-redundant moisture and temperature variables at 

different stages of the growing season that can best explain yield variability at county scale. These varied across the spatial 

domain (Fig. A1, A2) with dominant patterns summarized as follows: Excessive precipitation is highlighted as the main driver 220 

of reduced soybean yields in the early season alongside low minimum and maximum temperature values. Low soil moisture 

and high maximum temperature values are highlighted as main drivers of reduced yields in the mid-season, particularly for the 

months of August and September. Finally, low soil moisture and low minimum temperature values are highlighted as main 

drivers of reduced yields late in the season (Fig. 3a). we identify a set of predictors for the full region consisting of (1) April-

May evapotranspiration, (2) September-October minimum temperature, (3) August root zone soil moisture, (4) August 225 

maximum temperature, and (5) the interaction between those two August variables. These unique predictors represent non-

redundant moisture and heat conditions at different stages of the growing season. The trained regression models are trained on 

theat countrty level  with those identified predictors  and are able to explain, on average, about two-thirdshalf of the year-to-

year yield variability (6070% on all years and 4060% on level 1LOOCV-1 out-of-sample predictions). Including interaction 

terms in the fitted model contributed to 10% out of the total 60% explained  variability on level 1LOOCV-1  out-of-sample 230 

ppredictions.  Testing the model with the more conservative level 2 cross-validationLOOCV-2, repeating the predictor 



12 

 

selection step at every iteration, lowers model explained variability to 30% (Fig. 3a). This reduced performance is expected 

when comparing with results of studies that applied a similar robust leave one out cross-validation approach (Laudien et al., 

2020; Lehmann et al., 2020). Still, for ~83% of the years, the LOOCV-2 model provides a correct year-to-year direction of 

change as well as sign of the yield anomaly (i.e. positive or negative) (Fig. 3b). Furthermore, most frequently selected 235 

predictors and associated timing within the season across the training sets shows high consistency and good agreement with 

predictors selected on the full dataset (Fig. S3, S4, S5). This provides confidence with respect to the choice of predictors 

(Sup).The train-test split approach gives quantitatively similar performance results so we limit ourselves here to presenting the 

leave-one-out cross-validated results (See Fig. A2). In general, for almost all years, the model provides a correct year-to-year 

direction of change as well as sign of the yield anomalies (i.e. positive or negative, see Fig 3a). 240 

Overall, the most importantdominant crop yield drivers are August/September root zone soil moisture and August maximum 

temperature, each selected over more than 25% of considered counties. Averaged standardized beta coefficients for 

aforementioned variables reports the highest absolute value of around 0.4 (i.e. ~0.4 standard deviation change in soybean 

yields per standard deviation change in the predictor when excluding the effect of interaction terms). Furthermore, interaction 

effects between summer moisture and temperature variables are the most frequently selected type of interaction (Fig. A3). 245 

 together responsible for 65% of the model out-of-sample explained variability. Including the interaction term between those 

variables contributed to 12.5% out of the total 65% attributed to August heat and moisture variables. The co-occurrence of low 

soil-moisture and hot conditions triggers the largest crop failures. Extreme  hot-dry conditions (i.e. simultaneously exceeding 

the 95th and 5th percentiles of temperature and soil moisture, respectively) leads to 6 times more crop impacts compared to 

extreme hot conditions alone (i.e. 95th and 50th percentiles of temperature and soil moisture, respectively) and 3 times more 250 

impacts compared to extreme dry conditions alone (i.e. 50th and 5th percentiles of temperature and soil moisture, respectively). 

(Fig. 3a). 
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Figure 3. (a) summary of the strength and frequency of selected predictors across the growing season. (b-c) Explained variance (R-255 
squared) of yield anomalies due to climate variability (ab) spatially averaged and (bc) at the county scale. Stippling in (bc) shows F-

tests with (p < 0.05) indicating that the model chosen is significantly better than a null model (accounting for false discovery rate 

due to multiple hypotheses testing). 

In particular, extremely low yields occurring during heat and drought events, such as the 1988 and 2012 years, are well captured 

by the model. SSpatially, the model is statistically significant (p-value < 0.05) for over 81% ofall considered counties (Fig. 3c) 260 

and 77% when weafter adjusted adjusting for multiple hypotheses testing using the False Discovery Rate (FDR) method 

(Ventura et al., 2004). Yield variability is captured particularly well in southern counties (Fig. 3b3c), with high performance 
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represented by red shading (R2 ~ 0.8). On the other hand, the model performs generallyslightly  poorer in northern counties, 

consistent with the results of Schauberger et al. (2017b)  where regional colder and wetter climatology seems to reducereduces 

soybean yield sensitivity to climatic fluctuationshot-dry conditions. Individual diagnostic tests for models built at the county 265 

scale shows that autocorrelation and heteroscedasticity did not occur for the majority of individual models whereas model 

residuals are mostly normally distributed. The RESET test shows that most models are properly specified meaning that 

considering quadratic variables would not have improved the model fit. Although quadratic associations between crop yields 

and climatic variables are well established, these often are highlighted for seasonally averaged temperature and moisture 

conditions (Ray et al., 2015). Dividing the growing season into smaller periods in this study likely made these non-linear 270 

associations less relevant.  Finally, the VIF value is strictly smaller than 3 for almost allthe majority of considered models and 

variables showing reflecting minimal low multicollinearity concerns (Fig. A3A4). 

3.2 Spatial variability of model coefficients 

The spatial variability of crop yield sensitivities to the selected predictors  

The coefficient distribution for all variables, summarized across the spatial domain, is shown in Fig. 4a. Wide boxplot ranges 275 

reflect large spatial heterogeneity in coefficient estimation. This spatial variability is depicted in Fig. 4b4a-f. It shows  showing 

county-based standardized model coefficients and associated patterns across the spatial domain for both moisture and 

temperature related variables and for early, mid, and late season.. Specifically selected predictors and associated timing within 

the season per county are shown in Fig. SA12 & SA23. 
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 280 

 
Figure 4. (a) Summary coefficient distributions across counties. The band inside the box represents the median, whereas the box 

depicts the 25th and 75th percentile values. The whiskers represent the maximum and minimum values as long as these are within 

the 1.5 interquartile-range from the median. Outliers outside this range are depicted as points. (b-f) Region- and season-specific 
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estimated sensitivity coefficients for soybean yield and selected predictors. Stippling indicates statistical significance from a t-test  at 285 
95% confidence level. Values of coefficients are interpreted as the change in soybean yield standard deviation from a one-standard 

deviation change in the considered independent variable. In the case of interacting variables, this interpretation only applies when 

the other interacting variable is equal to zero. 

Early season reports mainly a negative relationship between yield and moisture variables (Fig. 4a) across the majority of the 

spatial domain in line with Ortiz-Bobea et al., (2019). The most frequently selected predictor is number of days with 290 

precipitation above 20 mm used as a proxy for excessive rain (Fig. 3a, A1 & SX). The signal is particularly strong and 

significant near Iowa and Minnesota where soils Crop-sensitivity to maximum August temperatures shows a north-south 

gradient with strongly negative regression coefficients over the southern states and sensitivities close to zero in northern states 

(Fig. 4d). The climatological August maximum temperature in southern states is around 30°C highlighting negative 

temperature influences on yield when this value is exceeded (Fig. A4). The signal is less significant and leaning towards 295 

positive values in colder regions north of Iowa and Illinois. August root zone soil moisture is strongly positively associated to 

yield, with the exception of a small region near Iowa and Minnesota (Fig. 4c). Summer climatology is particularly humid over 

this region (Fig. A4) whereas the soil is are generally poorly drained (i.e. high clay fraction, low saturated hydraulic 

conductivity) (Li et al., 2019). The temperature related variable in early season (Fig. 4b) shows a positive relationship with 

yields, and this can reflect both minimum and maximum temperature (Fig. A1). During the mid-season, temperature-related 300 

variables negatively affect soybean yields across the spatial domain. Exceptions are for northern states (north of Iowa and 

Illinois) where the sensitivity is reversed and higher temperature lead to positive effects on yield (Fig. 4d). The selected variable 

for the negative sensitivity (for southern states) refers mostly to maximum temperature in August whereas the positive 

sensitivity (for northern states) refers mostly to minimum temperature in June and July (Fig S2Fig. A1,  A2). Moisture related 

variables have a strong positive influence on yields both in the mid and late season (Fig. 4e). In particular, selected predictors 305 

are predominantly soil moisture variables in August and September. Temperature sensitivities in the late season show mostly 

positive effects on yield, except for counties in south-eastern states which show strong negative sensitivities (Fig. 4f). The 

selected late-season temperature predictor is predominantly minimum temperature for the positive associations and September 

maximum temperature for the negative associations over southern states (Fig. A1,  & A2 S). Furthermore, interaction terms 

between summer soil moisture and temperature variables are included in ~10% of the considered counties across the spatial 310 

domain (Fig. A3S). These interaction effects imply that the impact of summer temperature on crop yields significantly depends 

on the concurrent soil moisture levels in those areas. The negative effects of high temperatures are amplified during dry 

conditions and alleviated during wet conditions (see Sect. 3.3). Moreover, another interaction term is picked up, albeit less 

pronounced, between maximum August temperature and end of season minimum temperature mostly within Iowa (Fig. A3). 

This might reflect increased impacts whenever anomalously hot conditions in peak summer are followed by anomalously cold 315 

conditions in September-October. The abrupt change in temperature conditions further stresses crops and reduces the potential 

positive effects of crop temperature acclimation  (Butler and Huybers, 2013; Carter et al., 2016).    

 Such combination can make crops sensitive to the detrimental effects of excessive water on yields which could explain the 

negative soil moisture sensitivities here. The interaction between August heat and soil moisture variables is positive across the 
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majority of counties (Fig. 4e). This implies that the impact of heat in August depends on the soil moisture value. The negative 320 

effects of high temperatures are amplified during dry conditions and alleviated during wet conditions. High evapotranspiration 

in the early season is positively associated to yield across the spatial domain with particular strong association in central and 

northern states (Fig. 4b), in line with Schauberger et al. (2017b). End of season minimum temperature reveals a north-south 

gradient in parameter estimation with significant positive effects over the colder northern regions and weaker association over 

the south (Fig. 4f). The only exception is noted for south eastern states where strong negative association between yield and 325 

end of season minimum temperature is shown. Interestingly, the link between August maximum temperature and yield for 

those same counties is weak/not significant, suggesting that crops in this area might be  reaching the temperature vulnerable 

stage later during the season. 

3.4 3 Compound hot-dry and associated impacts 

Our results show that soybean production in Ssouthern regions is particularly sensitive to the co-occurrence of high  330 

August/September maximum Temperature and low August/September soil moisture variables (Fig . 4). The co-occurrence of 

low soil-moisture (5th percentile) and high temperature conditions (95th percentile) triggers the largest crop failures estimated 

at -2 standard deviations (calculated using domainspatially averaged model coefficients for August temperature, soil moisture 

and the interaction term). Extreme August hot-dry conditions (i.e. simultaneously exceeding the 95th and 5th percentiles of 

temperature and soil moisture, respectively) leads to 4 times more crop yield impacts compared to extreme hot conditions 335 

alone (i.e. 95th and 50th percentiles of temperature and soil moisture, respectively) and 3 times more impacts compared to 

extreme dry conditions alone (i.e. 50th and 5th percentiles of temperature and soil moisture, respectively). These results are 

qualitatively similar when we replaced August with September soil moisture. To further illustrate the implication of including 

interaction terms, we focus in what follows on Illinois in what follows. Illinois is the largest soybean producing region in the 

US and includes a large ratio of counties where summer moisture and temperature interactions are included in locally specified 340 

models (Fig. A3bS).  

Our results show that Illinois is particularly sensitive to hot and dry conditions in August (Fig. 4e), and that therefore models 

perform best over this area (average R2 of 0.6-0.7). Moreover, Illinois is the largest soybean producing region in the US and 

hence we focus here in detail on the compounding hot-dry effects in August. Figure 5a shows pooled yield observations for 

Illinois (points) together with model predictions (contour lines) for various values of August root zone soil moisture (vertical-345 

axis) and August maximum temperature (horizontal-axis). Qualitatively similar results are obtained when we replaced August 

with September root zone soil moisture.  The coefficients for the sensitivity of soybean yields to August hot-dry conditions in 

Fig. 5a are obtained from averaging all regression coefficients (i.e. for August Temperature, soil moisture and the interaction 

term)  from all county-specific models within Illinois (i.e. 51 individual models/counties).  
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Figure 5. (a) contour lines for modelled yield anomalies under varying levels of standardized August maximum temperature and 

root zone soil moisture in Illinois state. Points represent observed yield values. The colour scale to the right is in the units of 

standardized yield anomaly. (b) Sensitivity of Illinois US yield anomaly to temperature change for three different root zone soil 

moisture percentiles (5th, 50th, 95th ). 355 

Yield is shown to decrease for increasing hot-dry conditions both in observations and model predictions. In particular, the 

bottom-right  corner (representing August temperature and soil moisture values respectively above and below the 50th 
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percentile) contains 75% of all observed low yields (defined as below one standard deviation).   By including interaction terms, 

LOOCV-1 model performance improved by 17% for Illinois. In particularthe interaction term, we estimate that the 

compounding impact of hot-dry conditions (i.e. 95th and 5th percentiles of temperature and soil moisture, respectively) in 360 

August leads to an additional crop-loss of 0.65 standard deviations as compared to a model that includes all selected predictors 

but no interaction termsexcluding such interaction. On the other hand, the effects of extreme hot-wet conditions (95th percentile 

for both temperature and soil moisture values) leads to a 0.5 standard deviation positive increase in crop yield estimates when 

including the interaction terms. This non-linearity is visualized in Fig. 5b showing model-derived yield sensitivities to 

temperature for different levels of root zone soil moisture (i.e. 5th, 50th and 95th percentiles). The association between yield and 365 

August maximum temperature is strongly negative for extremely dry conditions (brown dashed line) and slightly positive for 

extremely wet conditions (blue dashed line). This highlights the importance of accounting for interaction effects when 

estimating compound impacts on crops. Yield response to hot-wet conditions is nevertheless subject to high uncertainty (see 

shaded uncertainty range in Fig. 5b) as these conditions do not occur often and are represented by few observations (upper-

right corner in Fig. 5a). The rarity of these events is expected owning to the negative correlation between moisture and 370 

temperature over summer (Zscheischler and Seneviratne, 2017) . It follows that wet conditions generally limit exposure rather 

than sensitivity to very high temperature.  Still, temperature sensitivities during wet conditions are significantly different from 

those during dry conditions (Fig. 5b). 

3.5 4 Changes in compound hot-dry from 1946 to 2016   

Linear trends for summer precipitation (JJAS) over the period 1946 to 2016 show significant increases particularly over the 375 

Midwest region (Fig. 6b). Only south-eastern states show significant drying trends. Maximum August temperature trends show 

significant cooling over the Midwest region but warming for north-eastern, north-western and southern states (Fig. 6a). 

Moreover, early and late season minimum temperature trends indicate warmer conditions across the spatial domain whereas 

early season number of wet days trend indicates wetter conditions in spring  (see Fig. A55). Though summers generally got 

wetter and cooler in the eastern part of the Midwest and north eastern US regions, the percent-change in the number of 380 

concurrent hot and dry August summer months (i.e. 90th and 10th percentiles of August maximum temperature and summer 

precipitation, respectively) between 1946-1980 and 1982-2016 shows an increase in frequency here (Fig. 6c). This might have 

implications as compound hot-dry events appear to have increased in frequency in high producing regions, despite the apparent 

cooling and wetting patterns identified by univariate trends.  
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Figure 6. (a) Linear regression slope of August maximum temperature. (b) Linear regression slope for summer (JJAS) precipitation. 

(c) Percent (%) change in concurrent dry (Summer JJAS precipitation < 10th percentile) and hot (August Maximum Temperature 

> 90th percentile) during 1982–2016 relative to 1946–1980. (d) Time-series of percent producing regions in hot and dry conditions. 

Trends in (a, b and d) are calculated for the period 1946 to 2016. Stippling in (a),  and (b) and (c) indicates statistical significance at 390 
the 955% confidence level. P-value in d) corresponds to the   Mann–Kendall monotonic trend test. Red Black dashed line in (d) 

represents a 15% threshold marking years with a large (>15%) spatial hot-dry extent. 

Time series of percent production area in concurrent hot and dry conditions reflects the spatial extent of such conditions over 

the years (Fig. 6d). The red black dashed line represents a threshold set at 1520% exceeded by a number of years  (i.e. 1947, 

1948, 1953, 1954, 1955, 1956, 1959, 1976, 1980, 1983, 1984, 1988, 1991, 1995, 2003, 2006, 2007, 20121956, 1980,1983,1988 395 

and 2007 when using the 75th /25th percentile hot-dry time series). More than 60% of those years coincide with La Niña like 

conditions All those years except 1980 coincided with a developing La Niña summer reported, which have been shown to 

impact US crop production (Anderson et al., 2019; Iizumi and Sakai, 2020).. FurthermoreMoreover, we note a high frequency 

of large-scale hot-dry events in specific periods such as the 1950s and 1980s. These segmented periods of high intensity events 

suggest thea potential important role of decadal climate variability in the occurrence of hot-dry conditions. These can be related 400 
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to Llow-frequency sea surface temperature variations in the pacificAtlantic and AtlanticPacific oceanssuch as the pacific 

decadal oscillation (PDO) have been indeed shown to have an influence on local precipitation and temperature levels over 

eastern US (Vijverberg et al., 2020).  A large fraction of the production area under such hot-dry conditions create risks for 

country level agricultural production as regions are no longer able to balance out losses at the local scale. Here again, despite 

the dominant cooling and wetting trends over the US (Fig. 6 a & d), no significant up- or downward trend was found in the 405 

fraction of US under hot-dry conditions over time for both the 75th/25th and 90th/10th time-series.   

3.5 Temperature and moisture couplings during summer hot-dry events 

To better understand why compound hot-dry conditions have not changed, despite significant trends towards wetter summers 

and cooler August maximum temperatures, we analyse local land-atmosphere couplings. It has been hypothesized that during 

dry conditions, the actual evapotranspiration reduces, cancelling the land-change induced cooling effect and prompting a return 410 

to historic high temperature extremes (Mueller et al., 2016). Monthly correlations between root-zone soil-moisture (SMroot), 

maximum temperature (Tmax) and actual evapotranspiration (AET) are used to estimate the coupling strength during hot-dry 

summers and normal summers. The subset of hot-dry events in this case is constructed from years when more than 20% of the 

total harvested area is under hot-dry conditions, defined using the 75th and 25th percentiles of August maximum temperature 

and summer precipitation (JJAS) respectively (i.e. years when the orange line is above the dashed black line in Fig. 6d).  415 
 

 
Figure 7. Correlation at monthly scale throughout the year for various temperature and moisture pairs conditioned on hot-dry 

events. Dots indicate statistical significance at the 95% confidence. Shaded regions represent important differences in the couplings 

that can play a critical role in the development of hot-dry events.  420 
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We observe that summer hot-dry years are characterized by a stronger negative coupling between soil moisture and temperature 

during spring (April-May) when compared to a typical year (Fig. 7a). We interpret this negative coupling as indicative of 

warmer and drier springs. These conditions create a stronger negative coupling between evapotranspiration and soil moisture 

as evapotranspiration rates are enhanced by warmer temperatures, in turn, rapidly depleting soil moisture reserves (Fig. 7b). 

The timing when the coupling between evapotranspiration and soil moisture sign shifts reflects a critical moment in the system 425 

when soil moisture becomes limiting. We observe that this regime-shift is much more pronounced during hot-dry years (i.e. 

stronger negative coupling in April-May and stronger positive coupling in July-August) (Fig. 7b). June is a transition month. 

The moment of the regime shift (around June) coincides with the ceasing of the spring coupling between evapotranspiration 

and temperature during hot-dry years (Fig. 7c). We interpret this ceasing of the coupling between evapotranspiration and 

maximum temperature as an indicator of total depletion of moisture in the soils, and thus extra energy (via higher temperatures) 430 

cannot lead to more evaporation. We are thus in a moisture-limited land-atmosphere coupling regime. During normal years, 

still significant coupling between evapotranspiration and maximum temperature exists in July-September indicating that the 

soils are not fully depleted. Spatially, the ceasing of the land-surface induced cooling effect is present over most of the soybean 

harvesting region going from June to September for hot-dry years (Fig. A6). In summaryTo summarize, we show that summer 

hot-dry events are associated towith warmer and drier springs. These conditions  springs that lead tofavour faster and more 435 

intense depletion of soil moisture depletion. Dry soils limit the evaporative cooling effect as captured by the annulled co-

variability between actual evapotranspiration and temperature leading to amplified hot and dry conditions in summer (Fig. 7c). 

T amplifying hot and dry conditions over summer. The ceasing of the land-surface induced cooling mechanism appears to be 

a critical element in the development of hot-dry events. This provides evidence in support of the initial hypothesis that 

highlights the important role of land-atmosphere feedbacks in explaining the absence of a trend in summer hot-dry events 440 

despite summer wetting and cooling trends over the soybean production region in the US.  

 

4 Discussion 

Predictors here are determined statistically, nevertheless, we aimed for a unique restricted set of  moisture and temperature 

variables for all US counties to facilitate the physical interpretation of climatic drivers affecting soybean yield variability. This 445 

is in line with other studies that constructed semi-empirical crop models at the grid-cell level relying on a statistical framework 

driven by well-known physiological variables (Ben-Ari et al., 2018; Gornott and Wechsung, 2016; Schauberger et al., 2017b). 

The frugal method approach we used to select predictors means leaving outimplies that potentially useful and physiologically-

relevant variables such as radiation and excessive precipitationvapour pressure deficit are omitted. Although their effects can 

be implicitly accounted for in the temperature and moisture variables used, , .light exposure, for instance, certainly plays a key 450 

role in crop productivity (Farquhar et al., 2001; Rigden et al., 2020). Nevertheless, t Thishe choice is made as the least-squares 

model fit is highly sensitive to the ratio of predictors to the number of observations (James et al., 2013). Ideally, crop-
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observations (35 here) should be much larger than the number of predictors to avoid the risk of overfitting. Furthermore, 

including highly-correlated predictor variables (e.g. radiation and temperature) affect model parameter estimationestimation 

and complicates physical interpretation of drivers. .A reduced set of predictor variables where shared information between 455 

variables is minimized provides an easily-interpretable and robust model for assessing sensitivity of soybean crops to climate 

and weather variability (Ben-Ari et al., 2018; Gornott and Wechsung, 2016; Lobell and Burke, 2010; Schauberger et al., 

2017b).  Future studies can disentangle these mechanisms for a more detailed data-driven assessment of climate and crop yield 

sensitivities. It is also possible to use more complex machine learning models such as random forests although these often tend 

to obscure result interpretation and do not always yield lead to better predictions (Vogel et al., 2019, 2021). Note that non-460 

climatic seasonal influences on crop yields are ignored in this study. These include planting densities, sowing dates, fertilizer 

applications and other socio-economic factors. This simplification is done as spatially-explicit time series for such components 

are rare and difficult to obtain (Schauberger et al., 2017b). Some of these factors were shown not to necessarily improve model 

performance in a case study done on crop yields in Germany (Gornott and Wechsung, 2016). Nevertheless, future studies 

should include these in whenever this becomes possible for extended time periods as climate has been shown to influence 465 

seasonal management practices for farmers in the US (Carter et al., 2018b).   

 

 

 

We found that soybean yields were predominantly driven by heat and drought conditions occurring during the vulnerable 470 

summer crop reproductive stage. In particular, August and September months was were highlighted as key months for soybean 

production in line with results from previous studies (Mourtzinis et al., 2015; Ortiz-Bobea et al., 2019; Zipper et al., 2016). 

Furthermore, we noted a significant interaction effect between August summer maximum temperature and soil moisture 

variables modulating the final impact on yield.  Drought and heat induce different growth inhibition patterns that can act 

simultaneously to reduce crop photosynthetic rates and eventual yield levels (Suzuki et al., 2014). August mean maximum 475 

temperature was found to be negatively associated with soybean yields for values exceeding 30°C (i.e. average August 

maximum temperature value for a large part of the considered counties). This is  in line with other studies reporting that 

reported non-linear association between soybean and temperature where the relationship is mildly positive up until the 30°C 

mark and then declines sharply due to heat stress (Schauberger et al., 2017a; Schlenker and Roberts, 2009). 

NeverthelessMoreover, here we found that this relationship was dependent on concurrent soil moisture conditions where wet 480 

soils dampen the negative effect of high temperatures on yield via evaporative cooling. This A result is that is also in line 

withsupported by previous studies reporting the decoupling effect of irrigation on the relationship between heat stress and 

yield (Carter et al., 2016; Schauberger et al., 2017a; Schlenker and Roberts, 2009; Siebert et al., 2017; Troy et al., 2015). On 

the other hand, low moisture levels induce stomatal closure which leads to reduced latent heat flux and an increase in canopy 

temperature well above atmospheric temperatures increasing the crop sensitivity to hot conditions (Carter et al., 2016; Siebert 485 

et al., 2017). Such dependency highlights the important need to account for both variables simultaneously when assessing their 
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impacts on crop yield variability Such interaction, although well documented in the literature on crop physiological response 

to primary abiotic stressors is rarely considered in large scale statistical analyses of climate impact on crop yields. This suggests 

a potential overestimation of temperature effects during wet conditions and an underestimation of compound hot-dry impacts 

in previous reports (Carter et al., 2018a; Leng et al., 2016; Siebert et al., 2017; Suzuki et al., 2014). . Our analysis further 490 

highlighted reported early season evapotranspiration excessive precipitation and minimum and maximum temperature 

conditions in addition to late season minimum temperature as important drivers of soybean yield variability. Early season 

excessive precipitation sensitivity likely reflects damaging plant field establishment conditions related to restricted root 

development, nutrient leaching and disease susceptibility (Li et al., 2019; Ortiz-Bobea et al., 2019).  High evapotranspiration 

minimum and maximum temperature in the early season positively associated to yield reflects mainly non-limiting energy 495 

conditions as moisture levels are expected to not be restrictive in early spring. This can imply both a reduced frost risk in 

addition to a potentially longer growing season where soybean yield potential is maximized (Bastidas et al., 2008; Mourtzinis 

et al., 2019). End of season frost has also been reported as an important risk factor for soybean crops particularly in the northern 

states, and we interpret the predictor of minimum temperature during September and October as reflective of such conditions. 

. These identified drivers of impact can serve as a basis for effective early warning systems that provide valuable information 500 

to decision makers (Merz et al., 2020). Acting in advance can be critical to avoid crop loss and associated socio-economic 

consequences. For instance, a short period of drought during the reproductive stage is reported to cause non-reversible damage 

to soybean yields (Daryanto et al., 2017). Hot and dry conditions in eastern US over summer has been shown to be forecastable 

at long lead times (~50 days ahead), associated with sea surface temperature anomalies over the northern Pacific Ocean 

(McKinnon et al., 2016; Vijverberg et al., 2020). Future work can further explore the link between drivers of compound hazards 505 

impacting yields to facilitate the development of actionable tools for stakeholders.  

 

We showed that historic changes in climate have not increased the overall climate risk for rainfed soybean production in the 

US. This is in line with other studies that looked at the contribution of historic climate trends on soybean and maize yields in 

the US (Butler et al., 2018; Ray et al., 2019). This is particularly the case in the most northern states where the occurrence of 510 

compound hot-dry events has mostly decreased (Fig. 6d). Interestingly, soybean cropping regions have also shifted north-

westerly in the US taking advantage of such changes in climate (Sloat et al., 2020). Increasing trend in number of wet days 

during spring can lead to detrimental change for rainfed soybean production. Nevertheless, Lesk et al., (2020) recently 

highlighted that the association between heavy rainfall and US crop yields can be different and more complex when studied at 

sub-daily resolution emphasizing that further investigation is needed in that regards.  The summertime cooling is a well-515 

documented phenomenon over US agricultural regions (Nikiel and Eltahir, 2019) and is likely attributable to agricultural 

intensification in the region although among other driving processes such as decadal variability and the role of aerosol 

emissions also play a role (Alter et al., 2018; Lesk and Anderson, 2021; Mueller et al., 2016; Nikiel and Eltahir, 2019). With 

respect to the role of agriculture, A a higher density of crops supported by increasing fertilizer rates leads to higher 

evapotranspiration rates which in turn induce large scale evaporative cooling and contribute to increasing precipitation (Basso 520 
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et al., 2021; Mueller et al., 2016). Nevertheless, we highlighted that in key producing regions like Illinois, compound hot-dry 

events seem to have increased in frequency recently, despite the absence of a summer-mean drying or warming trend.   

Potentially, during dry conditions, the actual evapotranspiration reduces, cancelling the land-change induced cooling effect 

and prompting a return to historic high temperature extremes (Mueller et al., 2016). We illustrated this mechanism by analysing 

the evolution of land-atmosphere coupling within the growing season, captured by monthly correlations between actual 525 

evapotranspiration, root zone soil-moisture and maximum temperature. We interpreted positive correlation values between 

actual evapotranspiration and maximum temperature as indicative of a general land-surface induced cooling effect. During 

hot-dry years, this evaporative cooling ceased at the onset of summer months.  We showed that this was associated to stronger 

negative coupling between evapotranspiration-soil moisture and soil moisture-temperature in spring. Such conditions lead to 

fast soil moisture depletion and favour a moisture limited regime that amplifies extreme summer hot-dry conditions and 530 

associated soybean impacts (Sippel et al., 2016). Although we showed that warmer and drier springs lead to higher yields, 

potentially connected hot and dry summer conditions lead to disproportionately negative impacts on final crop yields.  Future 

risk assessments should account for such non-linear effects. Over the Midwest US, climate models project warmer summers 

which is likely to enhance the coupling between moisture and temperature via land-atmosphere feedbacks leading to a likely 

possible increase in the amplitude and frequency of compound hot-dry conditions (Cheng et al., 2019; Zscheischler and 535 

Seneviratne, 2017). Although annual precipitation levels are expected to remain constant or even increase, climate models 

generally project increased dry day length and decreased summer soil moisture levels (Dai, 2013; Dirmeyer et al., 2013; 

Wuebbles et al., 2014a, 2014b). Future research should quantify whether such trends could lead to an increase of hot-dry 

August summer months in the future. Nevertheless, high uncertainty remains with respect to atmospheric dynamical changes 

including quasi-stationary Rossby waves which are a key driver of hot-dry conditions in the eastern US as well as other mid-540 

latitude regions (Di Capua et al., 2020; Coumou et al., 2014; Kornhuber et al., 2019; Shepherd, 2014; Winter et al., 2015). 

Until such contradictions are resolved, future impacts of climate change on US agricultural production remain uncertain. The 

Storylinestoryline approach has been proposed as an important tool to illustrate such epistemic uncertainty and can be explored 

in future studies with important consequences on current and future policy and decision making (Shepherd, 2019).  

 545 

Here we focused on local types of compound events, however, global food supply is highly dependent on production in various 

countries. Spatially compounding events will be important to study in future assessments in order to understand large scale 

risk associated to breadbasket failures. Here we qualitatively identified that most a considerable number of the large extent 

hot-dry conditions occurring over the US are associated coinciding with La Niña like conditions.to ENSO teleconnections.  

These are also highly influential over the South American continent where soybean production including the US account for 550 

more than 80% of total global supply (Anderson et al., 2017; Iizumi and Sakai, 2020; Wellesley et al., 2017). Other examples 

of teleconnections are mid-latitude Rossby waves, particularly wave number 5, which has phase-locking behaviour in the 

northern hemisphere mid-latitudes driving simultaneous summer positive temperature anomalies over Midwest US, eastern 
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Europe, and east Asia (Kornhuber et al., 2019). This is particularly of concern to soybean production when taking into 

consideration upcoming soybean hotspot production regions such as Russia and Ukraine (Deppermann et al., 2018).  555 

5 Conclusion 

We presented a simple statistical framework that can identify climatic variables influencing soybean yield variability in the 

US at specific moments within the growing season. We found that compound August summer hot-dry conditions lead to the 

largest impacts on yield, i.e. beyond the estimated additive effects of each stressor separately. Furthermore, we identified early-

season evapotranspiration minimum and maximum temperature in addition to precipitation, and late-season minimum 560 

temperature and soil moisture to be important factors affecting soybean yield in the US. Understanding of these seasonally 

dependent crop-sensitivities paves the way for more effective early-warning tools that target timely drivers of yield variability 

throughout the growing season. The long-term cooling and wetting trend in summer, over large areas of our domain, has 

generally been beneficial for soybean. Nevertheless, we showed that the frequency of extreme hot-dry conditions remained 

largely unchanged over the full region, and increased in a key region like Illinois where crops are especially sensitive to such 565 

extremes. Furthermore, we showed that hot-dry events are characterised by stronger negative spring coupling between 

evapotranspiration-soil moisture and soil moisture-temperature leading to fast soil moisture depletion in spring and a reversal 

in the land-surface cooling mechanism over summer prompting important soybean yield impacts. Given that climate models 

project summer warming and general declines in soil-moisture (albeit with substantial uncertainty) for the Midwest, crop 

sensitivities to compound hot-dry extremes are likely to present important future risks for US soybean production.  570 
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Appendix A: Additional tables and figures 

 

Figure A 1. Selected predictors per county based on the full dataset 
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Figure A 2. Selected timing of predictors per county based on the full dataset 575 

 

Figure A 3. (a). Standardized coefficients for interaction terms per county selected based on the full dataset. (b). Type of interactions 

selected per county based on the full dataset. 

 

Table A 1. List of all considered variables tested individually as potential predictors for the statistical model. The selected heat and 580 
moisture variables per period are highlighted in red.  

Best heat and moisture related variables for each univariate model based on BIC  
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Spring Summer Fall 

Name BIC Type  Name BIC Type Name BIC Type 

X4_5_ETact 38101.02 moisture X8_SMroot 35671.27 moisture X9_SMroot 35478.40 moisture 

X4_5_Tmin 38114.13 heat X6_7_8_ETact 36494.53 moisture X9_ETact 35497.50 moisture 

X4_ETact 38126.94 moisture X8_Tmax 36502.21 heat X9_10_ETact 35644.31 moisture 

X4_Tmax 38135.90 heat X8_rsds 36667.57 heat X9_10_SMroot 35782.78 moisture 

X4_5_Tmax 38158.38 heat X6_7_8_precip_avg 36672.72 moisture X10_SMroot 36388.79 moisture 

X4_SMroot 38163.37 moisture X8_precip_avg 36684.10 moisture X10_ETact 37251.21 moisture 

X5_ETact 38165.18 moisture X6_7_8_num_wet 36719.33 moisture X9_10_Tmin 37791.13 heat 

X4_Tmin 38175.23 heat X6_7_8_SMroot 36883.95 moisture X10_Tmin 37940.51 heat 

X5_Tmin 38176.42 heat X8_ETact 36981.19 moisture X9_Tmin 38003.55 heat 

X4_5_SMroot 38181.28 moisture X8_num_tx30 36986.02 heat X9_10_rsds 38062.98 heat 

X5_SMroot 38213.79 moisture X8_num_wet 37065.40 moisture X9_rsds 38095.34 heat 

X5_num_pr20 38218.38 moisture X6_7_8_rsds 37232.01 heat X9_num_wet 38159.20 moisture 

X4_5_num_pr20 38225.77 moisture X7_SMroot 37321.64 moisture X9_10_num_tx30 38179.84 heat 

X5_num_pr30 38236.84 moisture X6_7_8_Tmax 37387.85 heat X9_10_num_wet 38180.22 moisture 

X4_5_num_pr30 38239.45 moisture X8_num_pr20 37397.33 moisture X9_num_tx30 38193.27 heat 

X4_5_precip_avg 38243.69 moisture X6_7_8_num_pr20 37413.15 moisture X10_rsds 38211.16 heat 

X5_precip_avg 38245.36 moisture X7_ETact 37457.28 moisture X10_Tmax 38219.46 heat 

X5_Tmax 38253.65 heat X7_precip_avg 37506.25 moisture X9_10_precip_avg 38225.60 moisture 

X4_num_tx30 38272.67 heat X6_7_8_num_tx30 37556.24 heat X10_num_tx30 38237.57 heat 

X4_precip_avg 38273.35 moisture X7_num_wet 37592.68 moisture X9_precip_avg 38241.65 moisture 

X4_num_wet 38274.49 moisture X7_rsds 37717.13 heat X9_Tmax 38247.62 heat 

X4_rsds 38275.85 heat X8_num_pr30 37747.78 moisture X9_10_num_pr20 38248.19 moisture 

X4_5_num_tx30 38276.22 heat X7_Tmax 37757.88 heat X9_num_pr20 38263.08 moisture 

X4_num_pr20 38276.54 moisture X6_7_8_num_pr30 37807.09 moisture X9_10_num_pr30 38271.85 moisture 

X5_num_tx30 38280.31 heat X6_ETact 37846.45 moisture X10_num_pr30 38274.50 moisture 

X4_num_pr30 38281.21 moisture X7_num_pr20 37913.19 moisture X10_precip_avg 38280.89 moisture 

X5_num_wet 38288.94 moisture X6_SMroot 37925.90 moisture X10_num_wet 38281.09 moisture 

X4_5_num_wet 38289.06 moisture X7_num_tx30 37996.85 heat X10_num_pr20 38281.21 moisture 

X4_5_rsds 38289.74 heat X8_Tmin 38054.98 heat X9_10_Tmax 38284.94 heat 

X5_rsds 38290.43 heat X7_num_pr30 38067.72 moisture X9_num_pr30 38286.41 moisture 

   
X6_num_wet 38163.44 moisture 

   

   
X6_Tmin 38186.92 heat 

   

   
X6_rsds 38221.41 heat 

   

   
X6_precip_avg 38239.57 moisture 

   



31 

 

   
X6_num_tx30 38240.49 heat 

   

   
X6_7_8_Tmin 38260.96 heat 

   

   
X6_num_pr20 38263.44 moisture 

   

   
X6_Tmax 38281.99 heat 

   

   
X7_Tmin 38282.28 heat 

   

   
X6_num_pr30 38289.71 moisture 

   
 

  

Figure A 1. (a) Correlation plot between CRU April-May minimum temperaturewet days and GLEAM W5E5 April-May 

actual evapotranspirationnumber of days with precipitation above 20mm over the period of study (1982-2016). (b) Correlation 585 
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plot between CRU JJAS precipitation average and GLEAM August-September average root zone soil Moisture over the period 

of study (1982-2016). Stippling indicates statistical significance at the 95% confidence level.  

 

Figure A 2. Train test split validation approach where model is trained over 50% of the data (Blue line) and tested over the remaining 

50% (Red).  590 
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Figure A 34. Statistical Diagnostic test results for the USfitted models. Green indicates a “successful” test, i.e. no problem, while red 

indicates a rejection of the respective H0 of no autocorrelation/heteroscedasticity/ misspecification/multicollinearity/un-normality. 595 
Multicollinearity is checked with the variance inflation factor and marked in red if any of the variables report a value >3. 
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Figure A 5. Linear trends for main identified drivers of soybean yield variability over the period 1946-2016. Stippling indicates 

statistical significance at the 95% confidence level. Trends for moisture and temperature variables over summer are displayed in 

the main text. 600 

(a) Linear regression slope for April-May (spring) minimum temperature. (b) Linear regression slope for September-October (fall) 

minimum temperature. Stippling indicates statistical significance at the 95% confidence level. 
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 605 

Figure A 6. Correlation at monthly scale per grid cell from June to September for actual evapotranspiration and temperature 

conditioned on hot-dry events. Dots indicate statistical significance at the 95% confidence.  
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Figure A 4. Mean values for selected model predictors per county over the period of study 1982-2016. 
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 610 

Figure A 5. (a) Linear regression slope for April-May (spring) minimum temperature. (b) Linear regression slope for September-

October (fall) minimum temperature. Stippling indicates statistical significance at the 95% confidence level. 
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