
We would like to thank the reviewers for their helpful and constructive comments, which, we believe, 

considerably helped improving the quality of the submitted manuscript. Please find below a list of all 

relevant changes made in the manuscript followed by a point by point response to the reviewers 

(responses in italic and bold). Referenced Line numbers refer to the track changed version of the 

manuscript. The point by point section is almost similar to the previously submitted responses to 

reviewers on the manuscript portal. Differences relate to omitting most figures and referring to them as 

they are currently presented in the revised manuscript and supplementary material. Furthermore, for 

the additional analysis requested by the first reviewer, we now compare a subset of hot-dry years to all 

considered years instead of remaining years as initially presented in the response to the reviewer. 

Results remain qualitatively similar.  

List of all relevant changes: 

1- The initial list of potential predictors is reduced to Minimum Temperature, Maximum 

Temperature, Root Zone Soil Moisture and Excessive precipitation. Table 1 is updated 

accordingly to include these changes. 

2- The manual variable exclusion in the predictor selection step is omitted.  

3- The predictor selection and model fitting is now set to run strictly at county scale.  

4- A robust one out of sample cross validation including the predictor selection step is added to 

the analysis. Supporting figures (Fig. S3, S4 and S5) with respect to the robustness of selected 

predictors are added to the supplementary material. 

5- Figure 2 has been updated to include the latest changes with respect to the statistical modeling 

framework 

6- Figure 3 has been updated to reflect changes with respect to the statistical modeling framework. 

An additional panel has been included to summarize selected predictors and strength of 

calculated beta coefficients over the study region. 

7- Figure 4 has been updated and modified to reflect changes with respect to the statistical 

modeling framework. As predictors are now selected at county scale, Fig. 4 displays coefficients 

for the various selected moisture and temperature variables per county across the different 

stages of the growing season (i.e. early-, mid and late season). Details on  the type of selected 

predictor and timing within the season are added to the Appendix (Fig. A1 and A2).  

8- Figure 5 in the main text is updated to include results from the latest model setup. 

9- Summer precipitation conditions previously calculated as averaged value over JJA months now 

further includes Sep month (i.e. JJAS) to reflect relevance of soil moisture in Sep (Fig 3a). 

10- Figure 6- d in the main text – is updated to also include hot-dry events defined according to the 

75th August maximum temperature and 25th summer moisture percentiles respectively. 

11- To better understand why compound hot-dry conditions have not changed, despite significant 

trends towards wetter summers and cooler August maximum temperatures, we add further 

analysis in the manuscript to explore the potential role of local land-atmosphere couplings in 

the outset of such hot-dry conditions (Sect. 3.5). Monthly correlations between root-zone soil-

moisture (SMroot), maximum temperature (Tmax) and actual evapotranspiration (AET) are 

used to estimate the coupling strength during hot-dry summers and normal summers. The 

subset of hot-dry events in this case is constructed from years when more than 20% of the total 

harvested area is under hot-dry conditions, defined using the 75th and 25th percentiles of 

August maximum temperature and summer precipitation (JJAS) respectively. Figure 7 is added 

to the manuscript to summarize those results.  

12- Figure A3 is added to the appendix showing selected model interactions via the stepwise 

approach. 

13- Figure A5 has been updated to focus on main predictors as determined from the updated 

statistical modeling framework. Primarily, this concerns the inclusion of excessive precipitation 

in the early season as predictor. Furthermore, we’ve considered number of wet days from the 

CRU dataset to be able to explore trends in excessive precipitation over a longer period. 

Correspondence between the CRU time series and the originally considered variable for 

excessive precipitation from the W5E5 dataset is determined via correlation analysis. Resultant 

figure is added to the supplementary material Fig. S2.  

 



Point-by-point response to the reviewers: 

Referee 1: Corey Lesk 

This paper examines the dependence of county level historical soybean yields on a suite of climate 

variables, with a particular eye to the influence of compound extremes. The paper is well motivated by 

recent climate and crop science literature, and nicely illustrates the particular relevance of hot and dry 

extremes for soybean yields. It further outlines historical trends in such extremes in relation to their 

univariate temperature and soil moisture components (using proxies to extend the time series). The 

manuscript is well written and the discussion raises a lot of interesting points. Overall, I think the authors 

did a great job and the paper should be considered for publication with revisions. 

To me, the weaknesses of the paper are a 1) that there are a few methodological concerns and 2) that 

the paper doesn’t extend that much beyond what is already fairly well established, even though it could 

using its data and methods. I elaborate below on these critiques and suggest some ways the authors 

could make the paper more compelling in revision. 

RESPONSE: We thank the reviewer for the positive feedback on our manuscript. We are grateful 

for the critiques and suggestions on how our manuscript can be improved. We respond to the 

comments given in the text below (in bold and italics text). 

General comments 

Methodological concerns: 

The statistical modeling framework is quite detailed and meticulous and there is much attention paid to 

many sources of confusion, error, or interpretability issues. I commend these solid methods. However, 

I think the contradiction in scale between the model calibration (pooled national data) and its application 

(county-level) data greatly limits the soundness of the otherwise meticulous method. This to me is one 

of the main things to address in revisions. 

The use of pooled national data to calibrate the model and then the subsequent use of that model to 

assess yield variability at county scales seems a bit inconsistent. All county-year pairs of yield values 

were combined into a larger dataset as in the Troy et al. (2015) paper referenced, but then the resulting 

model was applied for individual counties, whereas Troy et al. ran all their analysis at national scale. It 

doesn’t seem common or intuitive to me to calibrate and run models at such different scales, and this 

isn’t justified, discussed, or acknowledged in any detail. What the authors did here is an expedient way 

to make their analysis applicable at a county level, but leverage a wider dataset to increase degrees of 

freedom and enable the testing of more complex models. But the cost is that the mismatch in scales 

raises questions on whether some results are a result of the mismatch, or truly robust results. 

A few ideas on how this might be influencing results: First, it could be that the particular relevance of 

concurrent low August soil moisture and high Tmax in Illinois (nicely illustrated in Fig. 5) is a result more 

of the suitability of the nationally fitted model at that location, rather than the relevance of compound 

extremes more generally. This concurrent temperature-moisture result does not strongly agree with the 

results of Mourtzinis et al. (2015) which found larger temperature impacts in southern states, nor Zipper 

at al. (2016) which found stronger drought impacts on soy in southern states. It could very well be that 

the compound impact is larger in Illinois, but the ambiguity induced by the contradiction in scales in the 

modeling makes the result not as robust as it could be.  

Second, there is strong variation in the significance and model r2 across counties (Fig. 3). Generally, 

this itself raises the question of whether models should be calibrated locally (indeed we wouldn’t expect 

nationally-consistent model to be optimal everywhere, even if parameters of said model are estimated 

locally). More specifically, the model performs quite strongly in Illinois, which to me raises the question 

of whether the strong compound Tmax-SM impact is really just because the national model works very 

well in Illinois (i.e., a result determined by methods, so not very robust). 

The data-driven approach also is attractive because it allows the ‘most important’ months to be 

identified. However, I have doubts about the methods for this around the selection of the earlier among 

collinear climate signals (see detailed comments). Further, it’s not only collinearity in time, but among 



variables at the same time, that matters, as you discuss in lines 280-90. Leaf- to field-scale experiments 

show that light is very important for crops, so that it is excluded from the modeling is a methodological 

choice that requires careful interpretation. Another example is the idea that temperature is a strong 

predictor because it encapsulates many moisture and heat related stressors, as in many of the cited 

papers. Point is, as a result of these assumptions regarding variable exclusion in the methods, the 

model specification is actually not as data-driven in the end, so worth considering other approaches 

with their own strengths/weaknesses: 

I think an alternative approach could be to compromise a bit on data-driven model specification and 

simply prescribe the model structure a priori. This is appropriate because you cite much literature in 

your introduction on why and how compound extremes should matter, so you have a prior to base the 

specification on. You can then run the stepwise model selection on a smaller set of predictors for each 

county and see if results are robust, e.g. Illinois/August still pops out. I understand there is a compromise 

in this alternative, but it might complement and add confidence given concerns about the original 

approach. It might also add some confidence to run the panel regression for the full national model (i.e. 

what is the national value of the coefficients in Fig. 4a). 

RESPONSE: We thank the reviewer for generally commending the statistical framework and 

agree with his main criticism with regards to the mismatch in scale between predictor selection 

at national scale and model fitting that took place at county scale. Our initial intent was to 

conclude one unique set of predictors for all counties to facilitate interpretability and avoid 

potential overfitting at the local level. Nevertheless, we agree that such approach means that 

predictors are not optimal for each county which can introduce ambiguity when interpreting 

results. Furthermore, we do agree that the selection of the earlier among collinear climate 

signals needs further justification. In order to address these issues, we re-ran our analysis with 

a modified methodology in line with the reviewer’s suggestions (see Fig. 2). The predictor 

selection and model fitting is now set to run strictly at county scale.  

In order to reduce overfitting concerns, we ran a model one out of sample cross-validation that 

includes a predictor selection step (Robust-OOS) and limited the number of potential predictors 

to: Minimum Temperature, Maximum Temperature, Root Zone Soil Moisture and Excessive 

precipitation. These predictors are supported by main findings in prior literature that highlight 

the damaging effects of chilling conditions, high temperature, water stress and excessive 

rainfall on crops grown in the US (Carter et al., 2018; Gu et al., 2008; Li et al., 2019; Mourtzinis et 

al., 2015, 2019; Ortiz-Bobea et al., 2019; Zipper et al., 2016). The choice to exclude actual 

evapotranspiration and shortwave radiation from the modeling step is motivated by our intent 

to particularly focus on the effects of temperature and moisture climate variables on soybean 

yields and facilitate interpretation of results. Shortwave radiation and actual evapotranspiration 

are important variables with respect to physiological mechanisms in crop growth. Nevertheless, 

shortwave radiation is often highly correlated with temperature in the summer and actual 

evapotranspiration is influenced by soil moisture, temperature and crop growth making it 

particularly tricky to study all these variables together in a simple regression framework. This 

is not to say that there is no benefit in including these variables alongside temperature and soil 

moisture in a data-driven framework but such exercise requires further careful analysis that is 

not the focus of this work. These decisions are emphasized in the main text. Line 448-459 

With respect to the selection of the earlier among collinear climate, we no longer intervene 

manually with predictor selection and only monitor multicollinearity concerns using the 

variance inflation factor (VIF). In the latter case, a flag is raised if the VIF exceeds a value of 3 

for any variable used to fit the final model at county scale (Carter et al., 2016; James et al., 2013). 

The resulting general model performance, county scale coefficients, selected predictors and 

associated timing within the season are represented in Fig. 3b, 4, A1 & A2 respectively. Further 

robustness plots with respect to selected predictors and associated timing are represented in 

Figures S3, S4 and S5. These plots display the most frequently selected predictors and 

associated timing in addition to how frequently they’ve been selected across the robust one out 

of sample cross validation (Robust-OOS).  



Finally, in the submitted preprint, Illinois was highlighted for being a major soybean producing 

state in addition to the relevance of summer moisture-temperature interaction terms within the 

state. Southern states still showed in initial results, and in updated ones, following revision, 

strong sensitivity to temperature and moisture generally in line with Mourtzinis et al. (2015) and 

Zipper at al. (2016) (see Fig. 4). 

Novelty and advancing understanding: 

I really like how this paper clearly puts data and nice visualization to the idea and existence of examples 
of compound extreme impacts on crops. It also goes into some detail on soybean, a crop for which 
there is somewhat less attention on the topic. However, I think the core conclusions of this paper have 
essentially already been established. For instance, the Illinois case study in Figure 5 is an excellent 
visualization, but its message essentially quite similar to Kent et al. (2015, Fig. 2c, a great paper on 
maize which might be a handy reference to include) combined with what was published in Matiu et al. 
(2017), namely that such compound impacts do occur in places. It’s useful that this paper points out 
that this occurs for this particular crop and location, but a similar point has been made in Ortiz-Bobea 
et al. (2019, also a great paper that probably needs to be referenced in this paper). Examining trends 
in concurrent heat-drought is also a useful topic, but has been covered in some detail in e.g. Sarhadi et 
al. (2019) and Lesk and Anderson (2021). Overlap with past research is a great contribution, but I think 
it does demand that this study go a bit deeper. 

For instance, I think the study could choose one result to go into some more detail on to really gain 
some new insight. One could be how exactly these extremes are impactful in some places, less so in 
others, and some of the uncertainties and challenges around understanding this (see minor comments). 
If the particular importance of compound impacts in Illinois turns out to be a robust finding, why exactly 
might this be? The authors hypothesize a link to a reversal of the crop induced land-surface cooling 
during dry episodes, leading to compound impacts (as suggested by Mueller et al. 2016). Many papers 
have recently speculated about this, and you have the data to examine this in great detail for this 
location (e.g. compositing and examining coevolution of AET, SM and Tmax timeseries over hot-dry 
events) and add valuable concreteness to the speculation. Another direction could be to assess drivers 
of the trends in Figure 6 more concretely, possible roles of agriculture itself in influencing those trends, 
roles of modes of climate variability and aerosols (e.g. Fig. 6c probably shows some dependence of on 
the changepoint selection as visible in Fig. 6d, why that might be, and does it say anything meaningful 
about future change?). 

References: 

Kent, C., Pope, E., Thompson, V., Lewis, K., Scaife, A. A., & Dunstone, N. (2017). Using climate model 
simulations to assess the current climate risk to maize production. Environmental Research Letters, 
12(5), 054012. 

Lesk, C., & Anderson, W. (2021). Decadal variability modulates trends in concurrent heat and drought 
over global croplands. Environmental Research Letters, 16, 055024. 

Ortiz-Bobea, A., Wang, H., Carrillo, C. M., & Ault, T. R. (2019). Unpacking the climatic drivers of US 
agricultural yields. Environmental Research Letters, 14(6), 064003. 

Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., & Diffenbaugh, N. S. (2018). Multidimensional risk 
in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Science 
advances, 4(11), eaau3487. 

 RESPONSE: We thank the reviewer for highlighting the visualization component and are 

grateful for suggestions to further expand the analysis to include more insight into our work. 

We are also thankful for the suggested papers that we will include in our reference list. Focusing 

on the hypothesized reversal of the crop induced land-surface cooling effect during hot-dry 

summer years leading to extreme impacts is a particularly insightful and relevant section to add 

to our work. In an attempt to illustrate this, we analyzed local land-atmosphere couplings. 

Monthly correlations between root-zone soil-moisture (SMroot), maximum temperature (Tmax) 



and actual evapotranspiration (AET) are used to estimate the coupling strength during hot-dry 

summers and normal summers. The subset of hot-dry events in this case is constructed from 

years when more than 20% of the total harvested area is under hot-dry conditions, defined using 

the 75th and 25th percentiles of August maximum temperature and summer precipitation (JJAS) 

respectively. We observe that summer hot-dry years are characterized by a stronger negative 

coupling between soil moisture and temperature during spring (April-May) when compared to a 

typical year (Fig. 7a). We interpret this negative coupling as indicative of warmer and drier 

springs. These conditions create a stronger negative coupling between evapotranspiration and 

soil moisture as evapotranspiration rates are enhanced by warmer temperatures, in turn, rapidly 

depleting soil moisture reserves (Fig. 7b). The timing when the coupling between 

evapotranspiration and soil moisture sign shifts reflects a critical moment in the system when 

soil moisture becomes limiting. We observe that this regime-shift is much more pronounced 

during hot-dry years (i.e. stronger negative coupling in April-May and stronger positive coupling 

in July-August) (Fig. 7b). June is a transition month. The moment of the regime shift (around 

June) coincides with the ceasing of the spring coupling between evapotranspiration and 

temperature during hot-dry years (Fig. 7c). We interpret this ceasing of the coupling between 

evapotranspiration and maximum temperature as an indicator of total depletion of moisture in 

the soils, and thus extra energy (via higher temperatures) cannot lead to more evaporation. We 

are thus in a moisture-limited land-atmosphere coupling regime. During normal years, still 

significant coupling between evapotranspiration and maximum temperature exists in July-

September indicating that the soils are not fully depleted. Spatially, the ceasing of the land-

surface induced cooling effect is present over most of the soybean harvesting region going 

from June to September for hot-dry years (Fig. A6). To summarize, we show that summer hot-

dry events are associated with warmer and drier springs. These conditions favor fast and 

intense depletion of soil moisture. Dry soils limit the evaporative cooling effect as captured by 

the annulled co-variability between actual evapotranspiration and temperature leading to 

amplified hot and dry conditions in summer (Fig. 7c). This provides evidence in support of the 

initial hypothesis that highlights the important role of land-atmosphere feedbacks in explaining 

the absence of a trend in summer hot-dry events despite summer wetting and cooling trends 

over the soybean production region in the US. 

With respect to other drivers of the observed trends, we referenced in the revised manuscript 

works that investigated decadal variability, role of aerosols and the role of agriculture itself on 

temperature and moisture trends in the region (Alter et al., 2018; Lesk and Anderson, 2021; 

Mueller et al., 2016; Nikiel and Eltahir, 2019). Line 517-518 

Detailed comments 

Lines 25-30: Introduction has great context for why we should care about US soybean. I think it would 
give helpful context to readers to stay somewhere here that a large portion of soybean is produced for 
feed. 

Cassidy, E. S., West, P. C., Gerber, J. S., & Foley, J. A. (2013). Redefining agricultural yields: from 
tonnes to people nourished per hectare. Environmental Research Letters, 8(3), 034015. 

 RESPONSE: Thank you for highlighting this important element. We included this information in 
the revised manuscript.  Line 30-31 

Line 46: Agreed that more attention is needed especially for soy, but probably should cite a few missing 
studies that have be written on the topic, consider: Rigden et al. (2020), Ortiz-Bobea et al. (2019), Haqiqi 
et al. (2021) 

Haqiqi, I., Grogan, D. S., Hertel, T. W., & Schlenker, W. (2021). Quantifying the impacts of compound 
extremes on agriculture. Hydrology and Earth System Sciences, 25(2), 551-564. 



Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N., & Huybers, P. (2020). Combined influence of 
soil moisture and atmospheric evaporative demand is important for accurately predicting US maize 
yields. Nature Food, 1(2), 127-133. 

RESPONSE: Thank you for the suggested references. We included these in the revised 
manuscript.    

Line 91: There’s some evidence that 30mm/day is not a high enough rainfall amount for negative 
impacts on soy yields in the US (Lesk et al. 2020). I wonder if heat/extreme rainfall would pop out as a 
compound (possibly positive/compensating) impact on crops if you used a higher threshold. 

Lesk, C., Coffel, E., & Horton, R. (2020). Net benefits to US soy and maize yields from intensifying 
hourly rainfall. Nature Climate Change, 10(9), 819-822. 

RESPONSE: Thank you for the reference. When comparing the two predictors: Number of days 
with precipitation above 20mm to number of days with precipitation above 30mm, we saw more 
often the selection/relevance of the earlier for the fitted models. We therefore used Number of 
days with precipitation above 20mm to gauge the effects of excessive precipitation on yield in 
line with Zhu and Troy (2018). The highlighted paper (i.e. Lesk et al., 2020) differs from our 
analysis in that it uses hourly data vs a coarser time resolution considered in our study. In 
addition, it focuses on the full growing season and doesn’t account for timing with respect to 
the growing season. In our analysis, we show that the negative effects of heavy precipitation 
are almost exclusively occurring in the early season (Fig. 3a). Physiologically, this likely reflects 
damaging plant field establishment conditions related to restricted root development, nutrient 
leaching and disease susceptibility (Li et al., 2019; Ortiz-Bobea et al., 2019). Nevertheless, we 
acknowledged the reviewers’ point in the revised manuscript by adding to the text: 
“Nevertheless, Lesk et al., (2020) recently highlighted that the association between heavy rainfall 
and US crop yields can be different and more complex when studied at sub-daily resolution 
emphasizing that further investigation is needed in that regards. ” Line 513-515.  

Line 115: Selecting the earlier among collinear monthly predictors raises an interesting question of 
whether the signal for one variable preceding the others in time necessarily means that variable is the 
driver of the crop response. That is, the later signal could easily have caused the real impact on the 
crop, and the earlier one is predictive because of its correlation with the later. This is worth justifying 
more, or at least acknowledging as an important assumption (because it partly determines what 
variables ultimately can be considered drivers of compound impacts in your methodology). Could be an 
angle for going to deeper on why Illinois pops out for example. 

RESPONSE: We acknowledge that the choice made to select the earlier among collinear 
variables was more motivated by a practical concern rather than a causal framing. In order to 
avoid arbitrarily omitting one of these two variables as this was also a concern raised by the 
second reviewer, we decided to exclude this manual selection step as discussed above and only 
monitor multicollinearity concerns with the VIF value.  

Lines 123-5: Would be good to see more detail on which/why other interactions were left out, and exactly 
how much ‘better’ the selected interaction was than other candidates, as this is key to your conclusion. 
An weaker alternative could be to simply assert that this interaction is one you have a good reason to 
care about (i.e. the hypothesized interaction is the motivation of your analysis). 

RESPONSE: In the revised methodology, all pairs of interactions between selected predictors 
are considered at county level and only dropped later via the stepwise approach. Figure A3 
represent the location and pair of picked up interactions in the final model specification. Most 
interactions are related to hot-dry summer conditions except for the positive interaction picked 
up between August maximum temperature and September-October minimum temperature 
mainly around the state of Iowa. Although we don’t focus much on the latter, this might be 
related to increased impact whenever conditions go from anomalously hot in August to 
anomalously cold in September-October further stressing crops and reducing the potential 



positive effects of crop temperature acclimation (see (Butler and Huybers, 2013; Carter et al., 
2016) and references therein).  

Line 148: Ref needed for energy limited AET 

RESPONSE: This line is omitted from the revised manuscript as it is no longer needed. We now 
discuss energy limited and moisture limited regimes in the revised manuscript following results 
presented in Sect. 3.5.   

Lines 165-6: I'm surprised SM and Tmax are not more strongly collinear in August given the land-
atmosphere feedbacks and their involvement in the compound extreme. This should be discussed more 
and possibly examined in depth. E.g. – are the feedbacks really setting up earlier in the season, so SM 
and Tmax are more collinear then, and thus get excluded from the analysis? If so, this raises questions 
of whether August then really is the most important for yield, or just popping up because of this 
methodological decision (although some other papers you cite do support August being important). 
There’s something deeper to understand here. 

RESPONSE: In the adjusted methodological setup, no additional selection steps are imposed 
besides the initial univariate BIC selection step followed by the stepwise regression approach. 
With regards to the land-atmosphere feedbacks, we hope the additional analysis presented 
under sect. 3.5 somehow illustrates how soil moisture, actual evapotranspiration and 
temperature correlation evolves across the season leading up to summer damaging compound 
extremes. August still pops up as very important month for yields even after allowing predictor 
selection to run at county scale (see Fig. A2). Robustness with regards to the selected predictors 
is further investigated with a cross-validation step that includes predictor selection iteratively 
highlighting again the relevance of August temperature in predicting soybean yield variability 
(see Fig S4 and S5). 

Lines 176-8: I don't see this result supported by data in Fig. 3A, please explain. 

RESPONSE: Thanks for pointing this out. The reference was initially intended to Figure 4 where 
coefficients used to calculate those values are presented. We adjusted accordingly in the 
revised text. 

Line 185: interesting that model predicts yields better in south (as in Schauberger) – crops here not 
necessarily ‘decoupled’ from climate, as warmer seasons benefit yields… 

RESPONSE: We agree with this point and this is now better represented in the manuscript by 
allowing predictors to be selected at the local scale. Northern states do show that a warmer 
season even during summer benefits yields. Text adjusted Line 264-265 

Fig 3b: The question this raises for me is if the north-south gradient in r2 relates to a gradient in suitability 
of the nationally tuned model. Indeed, since Illinois is a major soybean producer, it's contribution of data 
to the pooled sample is particularly high (meaning the strength of the prediction could be because the 
national model fits best there, while other models would fit just as well if calibrated on smaller scales). 

RESPONSE: We agree with this point and have adapted the methodology accordingly as 
discussed earlier. In line with reviewer’s concern, we indeed did find that the northern regions 
are actually more sensitive to cold conditions rather than hot conditions during the summer 
period and these are mostly around the earlier month of summer (i.e. June and July) (Fig. A1 
and A2). As predictor selection is now executed at the county scale, selecting such predictors 
for the northern states did improve R2 for this area and reduced the north-south gradient in 
model performance (Fig. 3c).  

Lines 192-3: how does this square with e.g. Li et al. 2019 who show both very high and very low soil 
moisture are damaging? 



RESPONSE: In this revised model setup, both soil moisture and excessive precipitation are 
included as covariates of soybean yields with high levels of soil moisture predominantly 
positively influencing yields and excessive precipitation negatively affecting yields. This is to 
say that we do find evidence that both very low and excessive moisture are damaging for crops 
in line with Li et al. 2019. The fact that the RESEST test shows that most model fits would have 
not improved had we considered quadratic variables is possibly related to the following factors. 
First, the quadratic association between moisture and yields is more pronounced depending on 
the month considered. During August, it may be that most losses are related to drought 
conditions in line with (Li et al. 2019, Figure 1-d). Second, during initial exploratory data analysis 
we did, we noted that seasonal climatic averages compared to monthly averages showed much 
more clearly the quadratic relationship to yield. Finally, we also noted that soil moisture had a 
less pronounced quadratic relationship to yield when compared to average precipitation. All 
these factors combined might have contributed to the reported results in the paper. Text is 
added to the manuscript to clarify this. Line 268-270 

Line 220: Do you consider AET as a climate variable, or a plant/crop variable (because carbon gain 
comes with water loss necessarily). 

RESPONSE: AET is indeed more of a crop variable as it is the direct result of plant growth which 
itself is driven by radiation, temperature and soil moisture. Due to the complexity of representing 
such relationships within a simple regression framework, we opted to leave out AET from the 
model fitting as discussed above. 

Fig 5: very nice figure. Interesting that there is some tail dependence for hot and dry extremes, in that 
in this bottom-right quadrant you see very extreme joint temp/sm anomalies compared to the others. 
does this raise questions of causality around the fact that such extreme low SM values can only be 
reached with very high Tmax? in other words, is the yield impact especially severe because of the 
compound impacts of temp and moisture, or simply because of extreme moisture impacts that can only 
happen if T is also high? 

RESPONSE: Thank you. We agree with regards to the remark highlighted by the reviewer. The 
plot indeed hints at some tail dependence which proposes that soil moisture and temperature 
coupling is stronger in that bottom-right quadrant (i.e. for extreme hot-dry conditions). This 
likely relates to circulation and land-atmosphere feedbacks discussed previously making it 
particularly difficult to disentangle moisture and temperature effects during hot-dry summers. 
Still, we are inclined to believe that impacts are particularly severe due to the compound nature 
of the stress rather than it being mainly related to extreme dry conditions that only happens to 
occur during very high temperature periods. This answer is motivated by leaf-scale experiments 
showing that drought and heat inhibit plant growth via different pathways resulting in more 
damage to crops when these stressors occur simultaneously (Rizhsky et al., 2002, 2004; Suzuki 
et al., 2014).  

Also could clarify in panel b that the slopes of those lines are the tmax slope + interaction slope * 5-50-
95 percentile soil moisture value. Also, given the low sample of hot and wet events, I wonder if it even 
makes sense to draw the blue line beyond 2sigma Tmax anomalies (there are no such events observed 
as you say, probably for an important climate reason). 

RESPONSE: We added the calculation clarification to the text and adjusted the plot to limit it to 
physically plausible ranges. Line 347-348 in combination with Line 365. 

Line 255: there is a strong role of relatively few years in these time series, and possible some signal of 
climate oscillations, that may be worth at least referring to (Lesk and Anderson 2021 ERL and/or refs 
therein might be useful) 

RESPONSE: We agree with regards to the strong role of relatively few years. We particularly see 
a high frequency of hot-dry years during the 1980s followed by a reduced frequency afterwards 
as reported and discussed in the referenced paper (Lesk and Anderson 2021). We added text in 



the revised manuscript to qualitatively expand on the potential role of decadal variability 
influencing these trends. Line 399-403.      

Line 290: pun intended? 

RESPONSE: Not really, we used the term “lead” instead of “yield” in the revised text to avoid 
confusing readers. Line 460. 

Lines 300-310: It’s also worth noting that Schlenker and Roberts (2009) and Schauberger et al (2017) 
too found that the crop damages beyond the ~30 degree threshold were mitigated when moisture was 
sufficient (either from irrigation or rain). So your findings are in loose agreement with those studies too, 
in addition to Carter et al. (2016), Siebert et al. (2017), and Troy et al. (2015). I also think it’s worth 
acknowledging that wet conditions may simply prevent very high temperatures, thus reducing exposure 
rather than sensitivity to heat (see my comments on Fig. 5). 

RESPONSE: We included these references and added the suggested nuance to the revised text. 
Line 370-372. 

Lines 309-311: I have a paper in review showing evidence for this globally. If it is accepted in time, it 
would be a good reference. 

RESPONSE: We will keep an eye on that. Thanks! 

Lines 311-313: Again, I think you’re overstating the lack of attention a bit, see suggested refs above. 

 RESPONSE: All related statements have been toned down or removed from the revised 
manuscript. 

Nice work thanks! 
 
RESPONSE: Thank you, very insightful review!  
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Referee 2 

Thank you for the opportunity to review this paper. 

The study by Hamed et al. investigates the effect of growing season hydro-climatic conditions, including 
hot-dry compound extremes, on US soybean yield variability. In a first step, the authors identify a set of 
most important climate and hydrological predictors that affect soybean yield variability across the US. 
In a second step, they fit statistical models to county-level yield time series to examine the strength and 
direction of the relationship between hydro-climatic predictors and yield outcomes. In particular, the 
study finds that the co-occurrence of hot and dry events leads to more negative yield outcomes than 
the effect of hot or dry conditions alone would predict. The authors finally investigate the effect of 
historical hydro-climatic trends on soy yields. The authors show that historically, there have been 
wetting and cooling trends across important production regions in the US. However, in the same 
regions, compound hot-dry extremes increased in frequency. These results highlight that the effect of 
compound events may be masked when looking at statistical relationships of individual variables alone, 
without considering interactions between hydro-climatic extremes. 

The paper is clearly and well written. From my perspective the manuscript is largely suitable for 
publication as it stands. I only have a few suggestions for the authors to consider which will hopefully 
help improve this paper for publication. 

RESPONSE: We thank the reviewer for the positive feedback on our manuscript. We are grateful 

for suggestions to improve our manuscript. We respond to the comments given in the text below 

(in bold and italics text). 



 
General comments: 

Overall, the statistical approach is robust, and limitations are clearly presented in the text. However, I 
would ask the authors to consider the following suggestions: 

 1) Predictor selection 

The authors apply a strict predictor selection process, which eliminates the occurrence of highly-
correlated predictors – both at the same time as well as in subsequent months. 

However, I wonder whether this approach eliminates predictors that do have an important effect on soy 
yields. The example presented in the text is: “we excluded soil moisture in September as August soil 
moisture was already selected”. I understand the reasoning to avoid collinearity, but it appears a little 
arbitrary – likely soil moisture would be relevant in both August and September (and potentially across 
the whole season). 

RESPONSE: We agree with this point that was also highlighted by reviewer 1. In order to avoid 

arbitrarily selecting from collinear predictors, we adapted the methodology to no longer 

intervene manually with predictor selection and only monitor multicollinearity concerns using 

the variance inflation factor (VIF). In the latter case, a flag is raised if the VIF exceeds a value of 

3 for any variable used to fit the final model at county scale (Carter et al., 2016; James et al., 

2013). 

Would it be more suitable to consider three aggregations for each variable (monthly, seasonal and the 
whole growing season) and select only one temporal aggregation per predictor in the final model? In 
this configuration, a predictor of “growing season soil moisture” could have been selected by the 
algorithm, if it was found to have the highest correlation with yields. This would lead to more 
interpretable results in the context of understanding climate influences on soy yields. 

RESPONSE: We understand this concern and therefore ran a test with the suggested 

modification.  

As an initial disclaimer, the general methodology has been adapted to run the selection process 

and model fitting at county level as this was a particular concern for reviewer 1. This implies 

that different counties can now have a different set of predictors. In addition, the methodology 

was adapted to exclude the manual selection step as stated in the response above. To limit the 

number of potential predictors to select from, we reduced the initial set of considered variables 

to only include Minimum Temperature, Maximum Temperature, Root Zone Soil Moisture and 

Excessive precipitation. These predictors are supported by main findings in prior literature that 

highlights the damaging effects of chilling conditions, high temperature, water stress and 

excessive rainfall on crops grown in the US (Carter et al., 2018; Gu et al., 2008; Li et al., 2019; 

Mourtzinis et al., 2015, 2019; Ortiz-Bobea et al., 2019; Zipper et al., 2016). We refer the reviewer 

to the response to RC1 for more details on the change in the methodology. An adapted overview 

of the overall modelling workflow is presented in Fig. 2.  

Back to the initial point, the reviewer suggested here a different selection approach where one 

temporal aggregation per predictor is selected in the final model. The main premise was to allow 

for growing season length predictors to be selected by the model if these were found to be most 

suitable to explain local soy yield variability. Consequently, for this exercise, we modified our 

selection approach to consider growing season predictors and to select one best temporal 

aggregation per predictor rather than two best moisture and temperature related variables for 

each distinct period of the growing season (i.e. early-, mid- and late). Results showed that the 

full growing season temporal aggregation was only picked up on very few occasions and only 

minimum temperature in northern states showed a clear signal for growing season length 

predictors (Figure R1). We believe that this can be explained by the changing sensitivity of soy 

crop yields to climatic variables across the season. For instance, warm temperature generally 



increases soy yields in early and late season but is associated to important reductions during 

the mid-season. Furthermore, short-term damaging conditions coinciding with particularly 

vulnerable stages of the crop growth cycle can result in important yield losses (Ben-Ari et al., 

2018; Carter et al., 2018; Tack et al., 2017; Troy et al., 2015). Full season averages can mask out 

such details. The masking out effect can explain why full season predictors were seldomly 

picked-up throughout the adapted selection approach. Figure R3 displays general model 

performance. The model that contains season average predictors performs qualitatively very 

similar to our initial setup. To keep the focus within this manuscript on the importance of timing 

with regards to soybean yield climate sensitivities, we prefer to keep this aspect of the method 

similar to what we initially proposed in the preprint and avoid the inclusion of seasonal 

averages. We added a sentence in the revised manuscript saying that we’ve tested the inclusion 

of seasonal averages and these were not found to be critical for our setup. Line 125-127 

 

Figure R1. Region- and season- specific selected temperature and moisture related predictors 
when selecting for one best temporal aggregation per predictor.  

 
Figure R2. Average observations, model predictions, and out of sample predictions for model 
that selects one best temporal aggregation per predictor. 

 



Similarly, it was not entirely clear to me why the authors selected two predictors per season (spring, 
summer and autumn) instead of selecting – for example – three heat and three moisture related 
predictors based on their individual predictive skill, irrespective of in which season they occur. 

RESPONSE: The selection of two predictors per season (spring, summer and autumn) is 
motivated by our intent to highlight changing yield sensitivity to climatic variables across the 
season. This is an important element that has been discussed in recent literature (e.g. (Ortiz-
Bobea et al., 2019) and references therein) and is one objective we focused on within this 
manuscript. Selecting three heat and three moisture related predictors irrespective of in which 
season they occur makes it harder to pinpoint this element. To make sure we are not 
compromising on model performance, we tested the proposed approach and present general 
model performance in Figure R3. Similar to the previous experiment, model results are not 
changed much and therefore we prefer to keep with the initially suggested selection approach 
proposed in the preprint.  

  

Figure R3. Average observations, model predictions, and out of sample predictions for model 
that selects three heat and three moisture related predictors irrespective of in which season 
they occur. 

I have the impression, with the current way of how the predictors are selected, important predictors may 
be missed and less important predictors are selected. It would be great if the authors could test this or 
add a few clarifications in the text. 

RESPONSE: We hope that tests and clarification provided above helped reduce the reviewer’s 
concern with respect to predictor selection. 

2) Cross-validation 

I think it is great that the authors present the overall R2 and cross-validated (out-of-sample) R2 for their 
statistical models (given many studies only present an overall R2). However, the cross validation does 
not include the predictor selection step using the individual BICs and subsequent stepwise regression. 
Hence, the out-of-sample R2 will likely be over-estimated for new observations. Ideally, the cross-
validation would include a predictor selection step for each iteration to obtain a true “out-of-sample” R2. 

I understand the need to obtain one shared set of predictors to keep the results interpretable and to 
assess the influence of these predictors across all counties. I am not too concerned of overfitting, 



because the authors applied a very strict predictor selection process – only five predictors were selected 
based on all data points for the US (i.e. not selecting predictors for each county which would likely lead 
to overfitting) and the selected predictors are plausible. However, it should be mentioned somewhere 
in the paper that the cross-validation does not include the predictor selection step and may therefore 
lead to a potential overestimation of the out-of-sample R2. 

 RESPONSE: Thanks. We agree with the reviewer’s concern with regards to the cross-validation 
method. Reviewer 1 had a particular concern with regards to predictor selection not occurring 
at county scale. As the reviewer thinks that the latter will be specifically a reason of concern 
with respect to overfitting, we ran a cross-validation that includes a predictor selection step at 
the county level for each iteration to obtain a true “out-of-sample” R2. This does not only allow 
the calculation of a more conservative R2 value but also allows to gain some confidence with 
regards to selected predictors (i.e. how frequently they are selected across iterations). We did 
indeed conclude a lower R2 value although the sign of the predicted yields is still very much 
consistent with observations across the years (Fig. 3b). We also report the most frequently 
selected predictors (Fig S3) and associated timing within the season (Fig S4) in addition to how 
frequently these have been selected across the 35 iterations (Fig S5). Overall, Figures S3, S4 
and S5 show high consistency with regards to selected predictors and timing within the season. 
We adapted the revised manuscript to include the robust out of sample cross validation in Fig 
3a.  

3) Climate and hydrological data 

The authors used climate data from a global bias-corrected reanalysis dataset (WFDE5). Generally, 
reanalysis data can contain uncertainties and biases stemming from the earth system model used to 
generate the reanalysis dataset. At the same time, observation-based datasets also contain 
uncertainties due to the interpolation applied to the data. I would ask the authors to add a comment on 
why reanalysis data were used here and how the WFDE5 global reanalysis compares to observational 
datasets available for the US (or globally). Do the authors see any biases in the reanalysis data that 
could influence the results of their study? 

RESPONSE: Reanalysis data was used here as these are available at daily timescales compared 
to the observation based CRU dataset available at monthly timescale. The daily time resolution 
allows for the flexible calculation of indices of interest (e.g. number of days with precipitation 
above a certain threshold). Furthermore, the WFDE5 dataset is specifically designed for impact 
studies with temperature and precipitation both bias-corrected using the CRU dataset for 
temperature and the CRU + GPCC datasets for precipitation (Cucchi et al., 2020). We opted to 
use global datasets as these make it easier to transfer similar impact assessments to other parts 
of the world. Nevertheless, we do see the value of leveraging as much as possible local 
observational data for impact assessments. This information has been added to the revised MS 
(Line 98-100). 

To monitor potential biases, a point also raised by the reviewer in the specific comments 
section, we calculated monthly correlations at grid-cell level between maximum temperature, 
minimum temperature and precipitation obtained from CRU and WFDE5 datasets (Figures R4, 
R5 and R6). All plots show practically perfect agreement. This is due to the bias correction of 
the WFDE5 dataset with CRU + GPCC datasets as mentioned above. Furthermore, we note that 
WFDE5 precipitation is also adjusted using the CRU number of wet days variable (Cucchi et al., 
2020). These very high correlations show that similar results can be expected from using the 
CRU dataset instead of the WFDE5 to train the statistical models. With respect to the estimation 
of the occurrence of joint extreme heat and drought, we checked whether similar years would 
have been selected if we used WFDE5 instead of CRU. For selecting hot-dry years, we calculated 
the percentage of grids during a given year where August maximum temperature is above the 
90th percentile whereas summer precipitation (JJA) is below the 10th percentile. Years where the 
percentage of grids exceeded 15% were considered hot-dry years. We did a similar calculation 
for temperature above the 75th percentile and summer precipitation below the 25th percentile. 
The subset of hot-dry years is almost similar when comparing the two datasets. The only 
difference is that for the 90th/10th percentile pair, the WFDE5 reported 2011 as additional hot-dry 
year compared to the CRU subset (1983,1988). On the other hand, for the 75th/25th percentile pair, 



the CRU reported 2002 as additional hot-dry year compared to the WFDE5 subset 
(1983,1984,1988,1991,1993,1995,2003,2006,2007,2011,2012). We see this as a minor source of 
error that is not expected to significantly influence the results of this study. 

 
Figure R4. Grid-cell level correlation at monthly resolution for maximum temperature comparing 
CRU and WFDE5 datasets    

 

 

Figure R5. Grid-cell level correlation at monthly resolution for minimum temperature comparing 
CRU and WFDE5 datasets    



 

Figure R6. Grid-cell level correlation at monthly resolution for average precipitation comparing 
CRU and WFDE5 datasets    

The hydrological indicators (actual evapotranspiration and root-zone soil moisture) are described as 
satellite-based, obtained from the GLEAM dataset. However, the description of the GLEAM dataset 
indicates that GLEAM uses a hydrological model to simulate soil moisture and actual evapotranspiration 
(instead of, for example, directly using satellite-based observations of soil moisture). I think a 
clarification in the text that soil moisture and actual evapotranspiration are not observed directly, but 
simulated, would help understand the data – as simulations and remote-sensed data have different 
uncertainties and potential sources of errors. 

RESPONSE: Thank you for highlighting this. GLEAM indeed uses a hydrological model to 

simulate soil moisture and actual evapotranspiration. By satellite-based observations, we were 

referring to the assimilation of microwave  satellite observations into the soil profile in addition 

to the use of microwave observations of the vegetation optical depth in the calculation of actual 

evapotranspiration (Martens et al., 2017). Nevertheless, we see the point that it can be 

misleading to call it satellite-based observations and therefore added further detail in the revised 

manuscript. Line 100-102; Line 212-214. 

 
Specific comments: 

 Line 20-21: “Moreover, in the longer term, climate models project substantially warmer summers for 
the continental US which likely creates risks for soybean production.” 
 
Given the effect of future trends using climate model outputs was not within the scope of this study, 
I would suggest removing this sentence, as it is a bit vague. It might be best if the abstract includes 
a sentence on potential future research, e.g. future studies are needed to understand the frequency 
of hot-dry compound extremes under climate change (similar to what was mentioned in the 
discussion). 

RESPONSE: Thanks. We agree with the reviewer’s comment and adjusted the revised 
manuscript accordingly. Line 24-26. 



 Line 74-75: “(ii) have 75 common planting dates (i.e. April-May)” 
 
Why was there a need for common planting dates? Would it not be better to include as many yield 
observations as possible, and instead subset the growing season into first, second and last third? 
Can you please explain this in the text? 

 RESPONSE: We selected for common planting dates as crops are reported to have different 
climate sensitivities depending on timing with respect to the crop growth stage (Carter et al., 
2018). In order to not mix up the climate signal and facilitate the interpretation of results, we’ve 
selected for grid cells with planting dates starting in between the month of April and May. These 
are highlighted in purple color (i.e. planting month 5) in Figure R7. What is presented as 5 in the 
figure represents the bracket going from the 15th of April to the 15th of May. We added 
explanation in the revised text: Line 87-89. 

   

Figure R7. Planting month for rainfed soybean in the US using the MIRCA2000 dataset 
(Portmann et al., 2010). 

Line 81-82: You applied a linear trend to the yield time series. Previous studies have applied cubic 
trends or more complex trend fitting algorithms to account for non-linear trends. Can you please confirm 
(possibly with a plot in the appendix) that visual examination showed that county-level yields follow a 
relatively linear trend? 

RESPONSE: Figure S1 shows raw averaged county-level yields (in orange) and linearly de-
trended averaged county-level yields (in green). Upon visual examination, we believe yields do 
follow a relatively linear trend. Figure S1 is added to the supplementary material submitted along 
the revised manuscript.  

 Line 145-146: “To overcome this limitation, we used precipitation and temperature minimum and 
maximum variables from the CRU V4 global dataset (Harris et al., 2020) covering the period 1901-
2019 at a spatial resolution of 0.5°.” 
 
Why was this dataset not used to fit the statistical models, instead of the reanalysis dataset? This 
way you could be certain that the same data used for fitting the model is used to assess trends. 
Could you show the correlation between monthly Tmin, Tmax and precipitation in this observational 
dataset compared to the WFDE5 reanalysis (in addition to the correlations you show in Figure A.1)? 



 RESPONSE: We did not use this dataset to fit the statistical model as we wanted to include 
indices such as number of days with a precipitation above a certain threshold. These are only 
possible to calculate using a dataset that is available at least at daily resolution. Furthermore, 
we wanted to include soil moisture that is not available via the CRU dataset. We added the 
requested correlations under section 3 of general comments –climate & hydrological data. 

 Line 146-147: “Minimum temperature in the early season was used as a proxy for early season actual 
evapotranspiration…” 
 
Why did you choose minimum temperature instead of daily mean temperature (or the average of 
Tmin and Tmax)? Would this not capture the relationship with evapotranspiration more accurately, 
as it includes information on maximum daily temperatures as well? 

 RESPONSE: We agree with the reviewer on the possibility to use daily mean temperature as 
proxy for evapotranspiration. Our earlier choice was motivated by the fact that minimum 
temperature was initially picked up as most relevant temperature related variable in spring in 
addition to literature papers that did report spring chilling conditions as a risk for soybean yields 
(Gu et al., 2008; Meyer and Badaruddin, 2001; Mourtzinis et al., 2019). Nevertheless, with the 
revised methodology, we no longer use actual evapotranspiration as a potential predictor for soy 
yields. It follows that setting this proxy is no longer needed.     

Technical Comments: 

 Line 168: I think it should by “county-level” instead of “country-level”. 

RESPONSE: Thanks, we adjusted the revised manuscript accordingly. 
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