
Referee 1: Corey Lesk 

Author response 

This paper examines the dependence of county level historical soybean yields on a suite of 
climate variables, with a particular eye to the influence of compound extremes. The paper is 
well motivated by recent climate and crop science literature, and nicely illustrates the particular 
relevance of hot and dry extremes for soybean yields. It further outlines historical trends in 
such extremes in relation to their univariate temperature and soil moisture components (using 
proxies to extend the time series). The manuscript is well written and the discussion raises a 
lot of interesting points. Overall, I think the authors did a great job and the paper should be 
considered for publication with revisions. 

To me, the weaknesses of the paper are a 1) that there are a few methodological concerns 
and 2) that the paper doesn’t extend that much beyond what is already fairly well established, 
even though it could using its data and methods. I elaborate below on these critiques and 
suggest some ways the authors could make the paper more compelling in revision. 

RESPONSE: We thank the reviewer for the positive feedback on our manuscript. We 
are grateful for the critiques and suggestions on how our manuscript can be improved. 
We respond to the comments given in the text below (in bold and italics text). 

General comments 

Methodological concerns: 

The statistical modeling framework is quite detailed and meticulous and there is much 
attention paid to many sources of confusion, error, or interpretability issues. I commend these 
solid methods. However, I think the contradiction in scale between the model calibration 
(pooled national data) and its application (county-level) data greatly limits the soundness of 
the otherwise meticulous method. This to me is one of the main things to address in revisions. 

The use of pooled national data to calibrate the model and then the subsequent use of that 
model to assess yield variability at county scales seems a bit inconsistent. All county-year 
pairs of yield values were combined into a larger dataset as in the Troy et al. (2015) paper 
referenced, but then the resulting model was applied for individual counties, whereas Troy et 
al. ran all their analysis at national scale. It doesn’t seem common or intuitive to me to calibrate 
and run models at such different scales, and this isn’t justified, discussed, or acknowledged in 
any detail. What the authors did here is an expedient way to make their analysis applicable at 
a county level, but leverage a wider dataset to increase degrees of freedom and enable the 
testing of more complex models. But the cost is that the mismatch in scales raises questions 
on whether some results are a result of the mismatch, or truly robust results. 

A few ideas on how this might be influencing results: First, it could be that the particular 
relevance of concurrent low August soil moisture and high Tmax in Illinois (nicely illustrated in 
Fig. 5) is a result more of the suitability of the nationally fitted model at that location, rather 
than the relevance of compound extremes more generally. This concurrent temperature-
moisture result does not strongly agree with the results of Mourtzinis et al. (2015) which found 
larger temperature impacts in southern states, nor Zipper at al. (2016) which found stronger 
drought impacts on soy in southern states. It could very well be that the compound impact is 
larger in Illinois, but the ambiguity induced by the contradiction in scales in the modeling makes 
the result not as robust as it could be.  

Second, there is strong variation in the significance and model r2 across counties (Fig. 3). 
Generally, this itself raises the question of whether models should be calibrated locally (indeed 



we wouldn’t expect nationally-consistent model to be optimal everywhere, even if parameters 
of said model are estimated locally). More specifically, the model performs quite strongly in 
Illinois, which to me raises the question of whether the strong compound Tmax-SM impact is 
really just because the national model works very well in Illinois (i.e., a result determined by 
methods, so not very robust). 

The data-driven approach also is attractive because it allows the ‘most important’ months to 
be identified. However, I have doubts about the methods for this around the selection of the 
earlier among collinear climate signals (see detailed comments). Further, it’s not only 
collinearity in time, but among variables at the same time, that matters, as you discuss in lines 
280-90. Leaf- to field-scale experiments show that light is very important for crops, so that it is 
excluded from the modeling is a methodological choice that requires careful interpretation. 
Another example is the idea that temperature is a strong predictor because it encapsulates 
many moisture and heat related stressors, as in many of the cited papers. Point is, as a result 
of these assumptions regarding variable exclusion in the methods, the model specification is 
actually not as data-driven in the end, so worth considering other approaches with their own 
strengths/weaknesses: 

I think an alternative approach could be to compromise a bit on data-driven model specification 
and simply prescribe the model structure a priori. This is appropriate because you cite much 
literature in your introduction on why and how compound extremes should matter, so you have 
a prior to base the specification on. You can then run the stepwise model selection on a smaller 
set of predictors for each county and see if results are robust, e.g. Illinois/August still pops out. 
I understand there is a compromise in this alternative, but it might complement and add 
confidence given concerns about the original approach. It might also add some confidence to 
run the panel regression for the full national model (i.e. what is the national value of the 
coefficients in Fig. 4a). 

RESPONSE: We thank the reviewer for generally commending the statistical framework 
and agree with his main criticism  with regards to the mismatch in scale between 
predictor selection at national scale and model fitting that took place at county scale. 
Our initial intent was to conclude one unique set of predictors for all counties to 
facilitate interpretability and avoid potential overfitting at the local level. Nevertheless, 
we agree that such approach means that predictors are not optimal for each county 
which can introduce ambiguity when interpreting results. Furthermore, we do agree 
that the selection of the earlier among collinear climate signals needs further 
justification. In order to address these issues, we re-ran our analysis with a modified 
methodology in line with the reviewer’s suggestions (see Figure R1). The predictor 
selection and model fitting is now set to run strictly at county scale.  



 

Figure R1. Overall modelling workflow applied for this study linking US yields to 
weather and climate variables 

In order to reduce overfitting concerns, we ran a model one out of sample cross-
validation that includes a predictor selection step (Robust-OOS) and limited the number 
of potential predictors to: Minimum Temperature, Maximum Temperature, Root Zone 
Soil Moisture and Excessive precipitation. These predictors are supported by main 
findings in  prior literature that highlight the damaging effects of chilling conditions, 
high temperature, water stress and excessive rainfall on crops grown in the US (Carter 
et al., 2018; Gu et al., 2008; Li et al., 2019; Mourtzinis et al., 2015, 2019; Ortiz-Bobea et 
al., 2019; Zipper et al., 2016). The choice to exclude actual evapotranspiration and 
shortwave radiation from the modeling step is motivated by our  intent to particularly 
focus on the effects of temperature and moisture climate variables on soybean yields. 
Shortwave radiation and actual evapotranspiration are important variables with respect 
to physiological mechanisms in crop growth. Nevertheless, shortwave radiation is 
often highly correlated with temperature in the summer and actual evapotranspiration 
is influenced by soil moisture, temperature and crop growth making it particularly tricky 
to study all these variables together in a simple regression framework. This is not to 
say that there is no benefit in including these variables alongside temperature and soil 
moisture in a data-driven framework but such exercise requires further careful analysis 
that is not the focus of this work.  

With respect to the selection of the earlier among collinear climate, we no longer 
intervene manually with predictor selection and only monitor multicollinearity concerns 



using the variance inflation factor (VIF). In the latter case, a flag is raised if the VIF 
exceeds a value of 3 for any variable used to fit the final model at county scale (Carter 
et al., 2016; James et al., 2013). The resulting general model performance, county scale 
coefficients, selected predictors and associated timing within the season are 
represented  in Figures R2, R3, R4 and R5 respectively. Further robustness plots with 
respect to selected predictors and associated timing are represented in Figures R6, R7 
and R8. These plots display the most frequently selected predictors and associated 
timing in addition to how frequently they’ve been selected across the robust one out of 
sample cross validation (Robust-OOS). Figures R1, R2 and R3 will replace the initial 
figures in the preprint main text. Figures R4 and R5 will be added to the appendix. 
Figures R6, R7 and R8 will be added to the supplementary material. 

Finally, in the submitted preprint, Illinois was highlighted for being a major soybean 
producing state in addition to the relevance of summer moisture-temperature 
interaction terms within the state. Southern states still showed in previous results and 
in updated ones presented here strong sensitivity to temperature and moisture 
generally in line with Mourtzinis et al. (2015) and Zipper at al. (2016) (see adjusted Figure 
R3). 

 

Figure R2. Similar to figure 3 in initially submitted preprint. Only difference relates to 
the addition of a robust out of sample prediction time-series (Robust_OOS) constructed 
by a cross-validation step that includes a predictor selection step at every iteration. R-
squared values are 0.7, 0.6 and 0.3 for modeled, one out of sample and robust one out 
of sample predictions respectively. 



 

Figure R3. Region- and season- specific estimated sensitivity coefficients for soybean 
yields to moisture and temperature related predictors. Stippling indicates statistical 
significance from a t-test at 95% confidence level. Values of coefficients are interpreted 
as the change in soybean yield standard deviation from a one-standard deviation 
change in the considered predictor. 

 

Figure R4. Region- and season- specific selected temperature and moisture related 
predictors.   



 

Figure R5. Month or period selected for predictors shown in Figure R4.   

 

Figure R6. Most frequently selected predictors via the robust-OOS 

 



Figure R7. Most frequently selected timing via the robust-OOS 

 

Figure R8. Frequency of the most selected predictor and timing via the robust-OOS 

 
Novelty and advancing understanding: 

I really like how this paper clearly puts data and nice visualization to the idea and 
existence of examples of compound extreme impacts on crops. It also goes into some 
detail on soybean, a crop for which there is somewhat less attention on the topic. 
However, I think the core conclusions of this paper have essentially already been 
established. For instance, the Illinois case study in Figure 5 is an excellent visualization, 
but its message essentially quite similar to Kent et al. (2015, Fig. 2c, a great paper on 
maize which might be a handy reference to include) combined with what was published 
in Matiu et al. (2017), namely that such compound impacts do occur in places. It’s useful 
that this paper points out that this occurs for this particular crop and location, but a 
similar point has been made in Ortiz-Bobea et al. (2019, also a great paper that probably 
needs to be referenced in this paper). Examining trends in concurrent heat-drought is 
also a useful topic, but has been covered in some detail in e.g. Sarhadi et al. (2019) and 
Lesk and Anderson (2021). Overlap with past research is a great contribution, but I think 
it does demand that this study go a bit deeper. 

For instance, I think the study could choose one result to go into some more detail on to 
really gain some new insight. One could be how exactly these extremes are impactful in 
some places, less so in others, and some of the uncertainties and challenges around 
understanding this (see minor comments). If the particular importance of compound 
impacts in Illinois turns out to be a robust finding, why exactly might this be? The authors 
hypothesize a link to a reversal of the crop induced land-surface cooling during dry 
episodes, leading to compound impacts (as suggested by Mueller et al. 2016). Many 
papers have recently speculated about this, and you have the data to examine this in 
great detail for this location (e.g. compositing and examining coevolution of AET, SM 
and Tmax timeseries over hot-dry events) and add valuable concreteness to the 
speculation. Another direction could be to assess drivers of the trends in Figure 6 more 
concretely, possible roles of agriculture itself in influencing those trends, roles of modes 
of climate variability and aerosols (e.g. Fig. 6c probably shows some dependence of on 



the changepoint selection as visible in Fig. 6d, why that might be, and does it say 
anything meaningful about future change?). 
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 RESPONSE: We thank the reviewer for highlighting the visualization component and 
are grateful for suggestions to further expand the analysis to include more insight into 
our work. We are also thankful for the suggested papers that we will include in our 
reference list. Focusing on the hypothesized reversal of the crop induced land-surface 
cooling effect during hot-dry summer years leading to extreme impacts is a particularly 
insightful and relevant section to add to our work. In an attempt to illustrate this, we’ve 
calculated over the period 1982-2016, the correlations across the month of the year 
between (AET,TMAX), (AET,SM) and (TMAX,SM) pairs subsetted into hot-dry years (i.e. 
75th August maximum temperature and 25th August/September moisture percentiles 
respectively) and remaining years (Figure R9). The univariate time-series (i.e. TMAX, 
SM and AET) in Figure R9 are calculated by spatially averaging grids within Illinois. 
Correlation maps for the entire eastern US across month between actual 
evapotranspiration and maximum Temperature are presented in Figure R11. 



 

Figure R9. Correlation at monthly scale throughout the year for (SM,TMAX), (SM,AET) 
and (AET,Tmax) pairs subsetted into hot-dry years and remaining years. Hot dry years 
are represented by a sample of 10 constituted of years (1983, 1984, 1987, 1988, 1991, 
1995, 2005, 2007, 2011 and 2012).  

We observe that summer hot-dry years are characterized by a stronger soil moisture 
and temperature (rTMAX,SM) coupling over spring compared to normal years (Figure R9-
a). Hot-dry years also show a distinct coupling between soil moisture and actual 
evapotranspiration (rAET,SM) when compared to normal years (Figure R9-b). The 
correlation in general between these two variables across the months of the year show 
negative coupling over spring (March-April-May) and positive coupling over the 
summer period (July-August-September). We understand the negative coupling in 
spring as reflective of non-moisture limiting spring conditions. The timing when the 
coupling sign changes reflects a critical moment in the system when soil moisture 
becomes limiting. During spring hot and dry years, (Tmax,SM) and (AET,SM) negative 
couplings are significantly stronger, leading to earlier and more intense depletion of 
soil moisture, and in turn, an abrupt reversal in the sign of the coupling between SM 
and AET going from May to June. This moment coincides with the reversal in the sign 
of the coupling between AET and Tmax (Figure R9-c) during hot-dry years. We 
understand this change in the sign of the coupling between AET and Tmax as an 
indicator of the reversal of crop induced land-surface cooling. In summary, hot-dry 
summer years can be characterized by a tendency to have more intense negative spring 
coupling between (AET,SM) and (SM,Tmax) leading to fast soil moisture depletion in 
spring and a reversal in the land-surface cooling mechanism over summer leading to 
important soybean impacts. Average soybean yield values in Illinois subsetted into hot-
dry summers vs other years are presented in Figure R10. We will add a combined Figure 
R9-R10 to the main text in the revised manuscript while including in the discussion 
other works that addressed the impacts of a warm spring followed by summer hot-dry 
conditions in the US (e.g. (Sippel et al., 2016)). With respect to other drivers of the 
observed trends, we will add more information in the revised manuscript on works that 
investigated decadal variability, role of aerosols and the role of agriculture itself on 
temperature and moisture trends in the region (e.g. (Alter et al., 2018; Butler et al., 2018; 
Kumar et al., 2013; Lesk and Anderson, 2021; Mueller et al., 2016; Nikiel and Eltahir, 
2019; Weaver, 2013)). 

(a) (b) (c) 



 

 

Figure R10. Average standardized soybean yield anomalies over Illinois subsetted into 
hot-dry years (years added in the header) and normal years.  

 

Figure R11. Correlation between actual evapotranspiration and maximum temperature 
for the month of June, July, August and September subsetted into normal years (0) and 
hot-dry years (1).  



 
Detailed comments 

Lines 25-30: Introduction has great context for why we should care about US soybean. I 
think it would give helpful context to readers to stay somewhere here that a large portion 
of soybean is produced for feed. 

Cassidy, E. S., West, P. C., Gerber, J. S., & Foley, J. A. (2013). Redefining agricultural 
yields: from tonnes to people nourished per hectare. Environmental Research Letters, 8(3), 
034015. 

 RESPONSE: Thank you for highlighting this important element. We will include this 
information in the revised manuscript.   

Line 46: Agreed that more attention is needed especially for soy, but probably should 
cite a few missing studies that have be written on the topic, consider: Rigden et al. 
(2020), Ortiz-Bobea et al. (2019), Haqiqi et al. (2021) 

Haqiqi, I., Grogan, D. S., Hertel, T. W., & Schlenker, W. (2021). Quantifying the impacts 
of compound extremes on agriculture. Hydrology and Earth System Sciences, 25(2), 
551-564. 

Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N., & Huybers, P. (2020). Combined 
influence of soil moisture and atmospheric evaporative demand is important for 
accurately predicting US maize yields. Nature Food, 1(2), 127-133. 

RESPONSE: Thank you for the suggested references. We will include these in the 
revised manuscript.   

Line 91: There’s some evidence that 30mm/day is not a high enough rainfall amount for 
negative impacts on soy yields in the US (Lesk et al. 2020). I wonder if heat/extreme 
rainfall would pop out as a compound (possibly positive/compensating) impact on crops 
if you used a higher threshold. 

Lesk, C., Coffel, E., & Horton, R. (2020). Net benefits to US soy and maize yields from 
intensifying hourly rainfall. Nature Climate Change, 10(9), 819-822. 

RESPONSE: Thank you for the reference. When comparing the two predictors: 
Number of days with precipitation above 20mm to number of days with precipitation 
above 30mm, we saw more often the selection of the earlier for the fitted models. 
Nevertheless, the predictors considered here are slightly different than the ones used 
in the reference study. We will still try out a predictor with a higher threshold. If this is 
found to be of higher relevance than what we are currently using, we will adjust the 
revised manuscript accordingly both for the predictor used and associated 
interactions if present. 

Line 115: Selecting the earlier among collinear monthly predictors raises an interesting 
question of whether the signal for one variable preceding the others in time necessarily 
means that variable is the driver of the crop response. That is, the later signal could 
easily have caused the real impact on the crop, and the earlier one is predictive because 
of its correlation with the later. This is worth justifying more, or at least acknowledging as 
an important assumption (because it partly determines what variables ultimately can be 



considered drivers of compound impacts in your methodology). Could be an angle for 
going to deeper on why Illinois pops out for example. 

RESPONSE: We acknowledge that the choice made to select the earlier among 
collinear variables was more motivated by a practical concern rather than a causal 
framing. In order to avoid arbitrarily omitting one of these two variables as this was 
also a concern raised by the second reviewer, we decided to exclude this manual 
selection step as discussed above and only monitor multicollinearity concerns with 
the VIF value.  

Lines 123-5: Would be good to see more detail on which/why other interactions were left 
out, and exactly how much ‘better’ the selected interaction was than other candidates, as 
this is key to your conclusion. An weaker alternative could be to simply assert that this 
interaction is one you have a good reason to care about (i.e. the hypothesized 
interaction is the motivation of your analysis). 

RESPONSE: In the revised methodology, all pairs of interactions between selected 
predictors are considered at county level and only dropped later via the stepwise 
approach. Figure R11 represent the location and pair of picked up interactions in the 
final model specification. Most interactions are related to hot-dry summer conditions 
except for the positive interaction picked up between August maximum temperature 
and September-October minimum temperature mainly around the state of Iowa. 
Although we don’t focus much on the latter, this might be related to increased impact 
whenever conditions go from anomalously hot in August to anomalously cold in 
September-October further stressing crops and reducing the potential positive effects 
of crop temperature acclimation (see (Butler and Huybers, 2013; Carter et al., 2016) 
and references therein). Figure R12 will be added to the supplementary material. 

 

Figure R12. Interaction pairs kept in the final model specification after the stepwise 
selection approach.   

Line 148: Ref needed for energy limited AET 



RESPONSE: Actual evapotranspiration is now excluded from the initial model setup 
and therefore this reference is no longer needed in the text.  

Lines 165-6: I'm surprised SM and Tmax are not more strongly collinear in August given 
the land-atmosphere feedbacks and their involvement in the compound extreme. This 
should be discussed more and possibly examined in depth. E.g. – are the feedbacks 
really setting up earlier in the season, so SM and Tmax are more collinear then, and 
thus get excluded from the analysis? If so, this raises questions of whether August then 
really is the most important for yield, or just popping up because of this methodological 
decision (although some other papers you cite do support August being important). 
There’s something deeper to understand here. 

RESPONSE: In the adjusted methodological setup, no additional selection steps are 
imposed besides the initial univariate BIC selection step followed by the stepwise 
regression approach. With regards to the land-atmosphere feedbacks, we hope the 
additional analysis presented in Figure R9  somehow illustrates how soil moisture, 
actual evapotranspiration and temperature correlation can evolve across the season 
leading up to summer damaging compound extremes. August still pops up as very 
important month for yields even after allowing predictor selection to run at county 
scale (see Figure R5). Robustness with regards to the selected predictors is further 
investigated with a cross-validation step that includes predictor selection at every 
iteration highlighting again the relevance of August temperature in predicting 
soybean yield variability (see Figures R7 and R8). 

Lines 176-8: I don't see this result supported by data in Fig. 3A, please explain. 

RESPONSE: Thanks for pointing this out. The reference was initially intended to 
Figure 4 where coefficients used to calculate those values are presented. We will 
adjust this accordingly in the revised text. 

Line 185: interesting that model predicts yields better in south (as in Schauberger) – 
crops here not necessarily ‘decoupled’ from climate, as warmer seasons benefit yields… 

RESPONSE: We agree with this point and this is now better represented in the 
manuscript by allowing predictors to be selected at the local scale. Northern states do 
show that a warmer season even during summer benefits yields. 

Fig 3b: The question this raises for me is if the north-south gradient in r2 relates to a 
gradient in suitability of the nationally tuned model. Indeed, since Illinois is a major 
soybean producer, it's contribution of data to the pooled sample is particularly high 
(meaning the strength of the prediction could be because the national model fits best 
there, while other models would fit just as well if calibrated on smaller scales). 

RESPONSE: We agree with this point and have adapted the methodology accordingly 
as discussed earlier. In line with the reviewer’s concern, we indeed did find that the 
northern regions are actually more sensitive to cold conditions rather than hot 
conditions during the summer period and these are mostly around the earlier month 
of summer (i.e. June and July) (Figures R4 and R5). As predictor selection is now 
executed at the county scale, selecting such predictors for the northern states did 
improve R2 for this area and reduced the north-south gradient in model performance 
(Figure R2).  



Lines 192-3: how does this square with e.g. Li et al. 2019 who show both very high and 
very low soil moisture are damaging? 

RESPONSE: In this revised model setup, both soil moisture and excessive 
precipitation are included as covariates of soybean yields with high levels of soil 
moisture predominantly positively influencing yields and excessive precipitation 
negatively affecting yields. This is to say that we do find evidence that both very low 
and excessive moisture are damaging for crops in line with Li et al. 2019. The fact that 
the RESEST test shows that most model fits would have not improved had we 
considered quadratic variables is possibly related to the following factors. First, the 
quadratic association between moisture and yields is more pronounced depending on 
the month considered. During August, it may be that most losses are related to 
drought conditions in line with (Li et al. 2019, Figure 1-d). Second, during initial 
exploratory data analysis we did, we noted that seasonal climatic averages compared 
to monthly averages showed much more clearly the quadratic relationship to yield. 
Finally, we also noted that soil moisture had a less pronounced quadratic relationship 
to yield when compared to average precipitation. All these factors combined might 
have contributed to the reported results in the preprint.  

Line 220: Do you consider AET as a climate variable, or a plant/crop variable (because 
carbon gain comes with water loss necessarily). 

RESPONSE: AET is indeed more of a crop variable as it is the direct result of plant 
growth which itself is driven by radiation, temperature and soil moisture. Due to the 
complexity of representing such relationships within a simple regression framework, 
we opted to leave out AET from the model fitting as discussed above. 

Fig 5: very nice figure. Interesting that there is some tail dependence for hot and dry 
extremes, in that in this bottom-right quadrant you see very extreme joint temp/sm 
anomalies compared to the others. does this raise questions of causality around the fact 
that such extreme low SM values can only be reached with very high Tmax? in other 
words, is the yield impact especially severe because of the compound impacts of temp 
and moisture, or simply because of extreme moisture impacts that can only happen if T 
is also high? 

RESPONSE: Thank you. We agree with regards to the remark highlighted by the 
reviewer. The plot indeed hints at some tail dependence which proposes that soil 
moisture and temperature coupling is stronger in that bottom-right quadrant (i.e. for 
extreme hot-dry conditions). This likely relates to circulation and land-atmosphere 
feedbacks discussed previously making it particularly difficult to disentangle 
moisture and temperature effects during hot-dry summers. Still, we are inclined to 
believe that impacts are particularly severe due to the compound nature of the stress 
rather than it being mainly related to extreme dry conditions that only happens to 
occur during very high temperature periods. This answer is motivated by leaf-scale 
experiments showing that drought and heat inhibit plant growth via different 
pathways resulting in more damage to crops when these stressors occur 
simultaneously (Rizhsky et al., 2002, 2004; Suzuki et al., 2014).  

Also could clarify in panel b that the slopes of those lines are the tmax slope + 
interaction slope * 5-50-95 percentile soil moisture value. Also, given the low sample of 
hot and wet events, I wonder if it even makes sense to draw the blue line beyond 2sigma 
Tmax anomalies (there are no such events observed as you say, probably for an 
important climate reason). 



RESPONSE: We will add the calculation clarification to the text and adjust the plot to 
limit it to physically plausible ranges. 

Line 255: there is a strong role of relatively few years in these time series, and possible 
some signal of climate oscillations, that may be worth at least referring to (Lesk and 
Anderson 2021 ERL and/or refs therein might be useful) 

RESPONSE: We agree with regards to the strong role of relatively few years. We 
particularly see a high frequency of hot-dry years during the 1980s followed by a 
reduced frequency afterwards as reported and discussed in the referenced paper 
(Lesk and Anderson 2021). We will add this to the text and qualitatively expand on the 
potential role of decadal variability influencing these trends.      

Line 290: pun intended? 

RESPONSE: Not really, we will use the term “produce” instead of “yield” in the 
revised text to avoid confusing readers. 

Lines 300-310: It’s also worth noting that Schlenker and Roberts (2009) and 
Schauberger et al (2017) too found that the crop damages beyond the ~30 degree 
threshold were mitigated when moisture was sufficient (either from irrigation or rain). So 
your findings are in loose agreement with those studies too, in addition to Carter et al. 
(2016), Siebert et al. (2017), and Troy et al. (2015). I also think it’s worth acknowledging 
that wet conditions may simply prevent very high temperatures, thus reducing exposure 
rather than sensitivity to heat (see my comments on Fig. 5). 

RESPONSE: We will include these references and add the suggested nuance to the 
revised text. 

Lines 309-311: I have a paper in review showing evidence for this globally. If it is 
accepted in time, it would be a good reference. 

RESPONSE: We will keep an eye on that. Thanks! 

Lines 311-313: Again, I think you’re overstating the lack of attention a bit, see suggested 
refs above. 

 RESPONSE: We will include suggested references above and tone down statements 
regarding the lack of attention in the revised paper. 

Nice work thanks! 
 
RESPONSE: Thank you, very insightful review!  
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