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Abstract. In 2018 and 2019, central Europe was affected by two consecutive extreme dry and hot summers (DH18 and DH19).

The DH18 had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example through

depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further increase vegetation

susceptibility to additional hazards. Temporally compound extremes such as DH18 and DH19 can, therefore, result in an

amplification of impacts by preconditioning effects of past disturbance legacies.5

Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the veg-

etation responses to the first compound event (DH18) modulated the impacts of the second (DH19). To quantify changes in

vegetation vulnerability to each compound event, we first train a set of statistical models for the period 2001-2017, which are

then used to predict the impacts of DH18 and DH19 on Enhanced Vegetation Index (EVI) anomalies from MODIS. These es-

timates correspond to expected EVI anomalies in DH18 and DH19 based on past sensitivity to climate. Large departures from10

the predicted values can indicate changes in vulnerability to dry and hot conditions, and used to identify modulating effects by

vegetation activity and composition or other environmental factors on observed impacts.

We find two regions in which the impacts of the two DH events were significantly stronger than those expected based

on previous climate–vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger

impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked15

to changing background CO2 and temperature conditions. A second region, dominated by forests and grasslands, showed

browning from DH18 to DH19, even though dry and hot conditions were partly alleviated in 2019. This browning trajectory
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was mainly explained by the preconditioning role of DH18 to the observed response to DH19 through legacy effects, and

possibly by increased susceptibility to biotic disturbances, which are also promoted by warm conditions.

Dry and hot summers are expected to become more frequent in the coming decades posing a major threat to the stability of20

European forests. We show that state-of-the-art process based models miss these legacy effects. These gaps may result in an

overestimation of the resilience and stability of temperate ecosystems in future model projections.

Copyright statement. No copyrights

1 Introduction

Extreme dry and hot summers in western and central Europe have become more frequent over the past decades (Coumou and25

Rahmstorf, 2012; Seneviratne et al., 2014), a trend that is expected to continue as global mean temperatures rise (Barriopedro

et al., 2011). Hot extremes in Europe are promoted by changes in atmospheric circulation (Coumou et al., 2015; Drouard et al.,

2019) and amplified by strong feedbacks between the land-surface and the atmosphere, being therefore also associated with

severe droughts (Miralles et al., 2014; Samaniego et al., 2018), i.e. compound dry and hot events (DH).

In Europe, DH events have usually strong negative impacts on ecosystems, such as reduced ecosystem productivity (Ciais30

et al., 2005; Bastos et al., 2020b). After severe drought and heat stress, plant recovery can be lagged, for example due to

reduced growth, or non-reversible losses in hydraulic conductance or carbon reserve depletion (Ruehr et al., 2019). This, in

turn may increase vulnerability to another DH, if it occurs before complete recovery. Repeated droughts have been linked to

increased forest vulnerability in the northern mid-latitudes, although with variable responses (Anderegg et al., 2020). Impaired

functioning during the recovery period can additionally increase the hazard of subsequent disturbances, e.g. insect outbreaks35

(Rouault et al., 2006). However, reductions in leaf area, increases in root allocation (McDowell et al., 2008) or reduced growth,

by reducing evaporative tissue and enhancig water uptake capacity, could also confer an advantage to subsequent droughts

(Gessler et al., 2020). It remains unclear whether the increased vulnerability to a subsequent drought can be explained by

compounding hazards (e.g. accumulated water-deficits or compound heat) or modulating effects due to vegetation responses to

the first event.40

In Europe, the summer of 2018 was the hottest since 1500 (Sousa et al., 2020) and associated with an unprecedented area

affected by drought (Albergel et al., 2019; Bastos et al., 2020a). This DH event resulted in decreases in ecosystem productivity

by up to 50% in central Europe (Bastos et al., 2020a; Buras et al., 2019) and crop yield losses (Beillouin et al., 2020). Part

of the central European region affected by DH18 registered another extremely hot and dry summer in 2019 (Boergens et al.,

2020; Sousa et al., 2020).45

From a hydrometeorological perspective, the dry and hot summers in 2018 and 2019 (DH18 and DH19, respectively) could

be considered individually as two compound events in that both high temperatures and strong drought conditions were observed

(Zscheischler and Fischer, 2020). Taken together, they constitute a temporally compound event (Zscheischler et al., 2020):
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Boergens et al. (2020) have shown that while soil-moisture deficits in summer 2019 were not as pronounced as in 2018,

total water storage was lower in 2019 due to the water storage deficit resulting from the 2018 event. Given the unprecedented50

magnitude of DH18, it is likely that at least some ecosystems had not yet fully recovered in 2019. Therefore, from an ecological

perspective, these two events are more complex, as their impacts can be preconditioned by seasonal (Bastos et al., 2020a) and

inter-annual legacy effects. Finally, vulnerability to DH events can further be modulated by long-term environmental changes:

water-savings from reduced stomatal conductance should attenuate drought stress (Peters et al., 2018), but concurrent decrease

in evapotranspirative cooling along with “hotter droughts” may amplify heat stress (Allen et al., 2015; Obermeier et al., 2018)55

(Fig. 1).

Figure 1. Conceptual description of the compound DH18 and DH19 events. Dry and hot conditions in both summers were a result of

compouding atmospheric drivers (synoptic patterns, preceding climate anomalies, land-atmosphere interactions). The DH18 impacts were

modulated by seasonal legacy effects in ecosystem functioning from a sunny and warm spring. We hypothesise that legacies from the DH18

event also contributed to modulate the response to DH19. These impacts can be further modulated by long-term changes in ecosystem

vulnerability to drought and heat stress due to anthropogenic climate change and elevated CO2.

Separating the modulating effects controlled by vegetation responses to global change or by legacies from past disturbances

(Kannenberg et al., 2020) and seasonal legacy effects (Buermann et al., 2018) in observations is problematic as it requires

considering the compounding effects of multiple drivers (e.g., compound heatwave and drought) and separating the role of

seasonal and inter-annual legacies both in physical variables (e.g., soil-moisture depletion) and in vegetation vulnerability to60

those drivers. This can be done by designing counter-factual scenarios to force process-based models, as recently done to

evaluate seasonal legacy effects of hot and dry springs (Lian et al., 2020; Bastos et al., 2020a). However, it has been argued

that Earth System models fail at modelling woody biomass trajectories following droughts (Anderegg et al., 2015), so that they

might miss inter-annual legacy effects from DH events, although no simulations designed to isolate the individual impact of

drought over subsequent years have been performed. Alternatively, statistical models can be used to separate such effects based65

on observational data (Chan et al., 2021).

Here, we focus on DH18 and DH19 to gain insights on the resilience of European ecosystems to repeated hot and dry

summers. Using both remote-sensing data and an update of the simulations by Bastos et al. (2020a), we first evaluate whether

there are signs of increased vegetation vulnerability to repeated dry and hot summers of 2018 and 2019, and try to identify

possible modulating effects. We then compare observation-based results to updated simulations by state-of-the-art land-surface70

3



models and dynamic global vegetation models (for simplicity referred to as LSMs) designed to isolate the impacts of DH18

and legacy effects (Bastos et al., 2020a).

2 Data

2.1 Climate variables

In ecological studies, drought is better characterized by soil-moisture anomalies i.e. agricultural drought (Sherriff et al., 2011;75

Seneviratne et al., 2012; Samaniego et al., 2018) than atmospheric drought indices. We therefore base our drought assessment

on two complementary soil-moisture datasets. The first is the observation-based soil moisture data obtained from SoMo.ml

(Sungmin and Orth, 2021), used as reference in this study, and the second, for comparison with SoMo.ml, is given by ERA5

volumetric soil-water content (Hersbach et al., 2020).

The SoMo.ml data are generated using a Long Short-Term Memory neural network model trained with meteorological80

forcing from ERA5 and land surface characteristics as inputs and global in-situ soil moisture measurements (Dorigo et al.,

2011; Zeri, 2020) as target variables. The data cover soil-moisture in the first 50cm of the soil and are available at 0.25°lat/lon

resolution and daily time-steps for the period 2000–2019. We remapped the fields to the finer resolution of the MODIS grid

and aggregated the data to monthly means. We then subtracted the mean seasonal cycle and long-term linear trend, and divided

by the corresponding standard deviation to obtain standardized soil-moisture anomalies (SManom).85

Monthly temperature and volumetric soil-water content from the ECMWF ERA5 Reanalysis were obtained from the Coper-

nicus Climate Change Service at 0.25°lat/lon resolution (Hersbach et al., 2020) at monthly time-steps and selected for the

period 2000-2019 (common with SoMo.ml) and remapped to the finer resolution of the MODIS grid using conservative

remapping. Standardized anomalies were calculated as described for SManom for ERA5 temperature and soil-moisture fields

(Tanom,SMERA5
anom ). Soil-moisture anomalies from ERA5 in layers 1–2 (top 28cm) are used for comparison of drought condi-90

tions with those estimated by SoMo.ml, although the two datasets are not fully independent.

2.2 Vegetation and soil data

We used the 16-day Enhanced vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS)

sensor from the MOD13C1 CMG product. The MOD13C1 CMG provide continuous cloud-free spatial composites from 1km

data projected on a 0.05°lat/lon grid (Didan et al., 2015), and were selected for the period 2001–2019. Standardized EVI95

anomalies (EV Ianom) were calculated following the same approach as for climate variables. The standardization allows com-

paring the relative magnitude of anomalies for pixels with distinct temporal variability patterns and with vegetation productivity

simulated by LSMs, which have different physical units.

We used land-cover distribution in 2018 from the ESA Climate Change Initiative land-cover (Kirches et al., 2014) (CCI-

LC). The data are originally provided in land-cover classes at 300m spatial resolution and were converted to fractional cover100

at 0.05°lat/lon resolution for forest, grassland, crop classes using the LC-CCI user–tool.
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We used isohydricity fields from global satellite measurements from Konings et al. (Konings et al., 2017) at 1°lat/lon res-

olution. Anisohydric plants (low isohydricity) show weak regulation of stomatal opening, and prioritize carbon assimilation

over water savings during droughts. High isohydric plants show strong stomatal regulation of productivity and thereby preserve

water at the cost of carbon assimilation during drought.105

We use soil Available Water Capacity (AWC) from Ballabio et al. (2016) and Panagos et al. (2012), which used the Land

Use and Cover Area frame Statistical survey (LUCAS) topsoil database to map soil properties at continental scale.

2.3 Outputs from land-surface and global dynamic vegetation models

Standardized anomalies of gross primary productivity (GPPanom) and soil-moisture (SManom) were estimated by the mean

of seven land-surface models and dynamic global vegetation models (for simplicity referred to as LSMs) between 1979–2019110

from an extension of Bastos et al. (2020a) simulations: a baseline simulation for comparison with observations and a factorial

simulation to quantify the individual impact of summer 2018 and its legacy effects, when compared to the reference simulation.

A detailed description of the models used and the simulation protocol is provided in the Appendix A.

First, all model outputs were remapped to a common 0.25 degree grid, and the multi-model ensemble mean was calculated

for the common period with MODIS (2001–2019). The variables were then deseasonalized, detrended and standardized as115

done for the other variables in the study.

3 Methods

3.1 Drought characterization

We use the observation-based SoMo.ml as a reference dataset to define agricultural drought conditions. Regions with average

SManom below −1σ (Seneviratne et al., 2012) during summer (JJA) are considered drought-affected areas during the DH120

events. Then, a regional domain affected by both DH18 and DH19 events is selected to evaluate the impacts of two consecutive

DH events. Within this region most pixels had negative SManom and the majority registered SManom <−1.5σ, but they differ

in the magnitude of agricultural drought in DH19. This allows comparing responses across pixels for different combinations

of stress between DH18 and DH19. Since we are interested in evaluating how recovery from DH18 affected impacts of DH19,

we limit our analysis to pixels with negative EV Ianom in DH18.125

3.2 Compound DH18 and DH19 events

3.2.1 DH18 and DH19 impact characterization

To characterize different response types to DH18 and DH19, we group pixels using unsupervised clustering of EVI during the

two extreme summers. Using an unsupervised method allows avoiding making assumptions about the magnitude of impacts

or the trajectory between DH18 and DH19 (DH18→DH19) when grouping pixels. For this, we applied a K-means cluster130

analysis (Hamerly and Elkan, 2003) using two features, corresponding to theEV Ianom fields in DH18 and DH19. Four clusters
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captured the most significant differences in the impacts of DH18 and corresponding DH18→DH19 responses: moderate/strong

DH18 impacts and moderate/strong impacts by DH19. These clusters were then used to evaluate how LSMs simulate the

summer GPPanom and SManom.

3.2.2 Detecting increased vulnerability to drought and heat stress135

To better understand the impacts of the two events, we frame them as a combination of temporally and preconditioning com-

pound events (Fig. 1): a sequence of two DH events, whose impacts may be preconditioned by ecosystem vulnerability to DH,

especially in the case of DH19. Vulnerability to DH is defined as the impact of the physical hazard (hot and dry conditions) on

vegetation and assessed by remotely-sensed EVI and modelled GPP anomalies.

The difference between the reference and factorial simulations by LSMs allow separating the modulating effects of DH18140

legacies to the DH19 impacts (dashed arrow in Fig. 1). Separating the legacies in observations is more challenging, because

the EVI signal at any time-step includes signals from both concurrent climate and past legacies, and possibly also long-term

global change. To do this, we hypothesise that preconditioning effects due to past disturbance legacies (modulating DH19)

and global change (modulating DH18 and DH19) should be detectable by changes in ecosystem sensitivity to similar hazards.

Increased vulnerability corresponds thus to EV Ianom values lower (more negative or less positive) than those expected for145

a given drought or temperature anomaly based on past sensitivities. Inversely, increased resistance would result in EV Ianom

being less negative or more positive than expected for a given SManom.

We assess whether changes in the sensitivity to climate anomalies is detected in DH18 and DH19 using a statistical modelling

approach to predict EV Ianom in DH18 and DH19 based on 2001–2017 climate–vegetation relationships. We do this in two

steps: first by fitting a linear regression model for meanEV Ianom in each cluster, and then, for more detailed insights, by fitting150

a random forest model at pixel scale, in which we include potential seasonal legacy effects. In both cases, the training period

includes other DH events (Ciais et al., 2005; Orth et al., 2016), with similar climate anomalies, particularly 2003, thereby

reducing the risk of attempting to predict EV Ianom based on “unseen” climatic conditions.

On a first step, for the spatially-averaged variables within each cluster, we fit the following models:

EV I
Ci

anom = b0 + b1×V AR
Ci

anom (1)155

Where EV I
Ci

anom and V AR
Ci

anom corresponds to the cluster (Ci) spatial average values of EV Ianom and climate variable

(growing-season SManom or Tanom), respectively. b0, b1 are the coefficients of each linear regression trained on 2001–2017

values. Each model is then used to estimate DH18 and DH19 EV Ianom. Negative model residuals (observations minus pre-

dictions) can indicate increased vulnerability, while positive residuals can be a sign of increased resistance.

However, departures from a linear model could also result from non-linear interactions between soil-moisture and temper-160

ature or from legacy effects from spring (Bastos et al., 2020a; Lian et al., 2020). To account for such effects and evaluate

potential spatial asymmetries in the departures from long-term climate–vegetation relationships, we fit a random-forest (RF)
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model using as target variable EV Ianom in each pixel (i) from 2001–2017, and the corresponding SManom and Tanom in

spring (MAM) and in summer (JJA) as predictors:

EV Ianom−i =RF (T spr
anom−i,SM

spr
anom−i,T

sm
anom−i,SM

sm
anom−i) (2)165

To reduce the risk of over-fitting due to the small sample size (17 years) and large number of predictors (4), we fit the RF

model on 3x3 moving windows centered around each pixel (i.e. 17× 9 samples). We assess the model performance outside

of the training samples by calculating the out of bag scores in addition to the training sample scores. The importance of each

predictor is estimated by the Shapley additive explanation values (Lundberg and Lee, 2017). We then predict EV Ianom in

DH18 and DH19 using the respective anomalies in T spr
anom, SMspr

anom, T sm
anom, SMsm

anom.170

The EV Ianom predicted by the RF model for DH18 and DH19 correspond to the expected DH impacts from past relation-

ships between the hazards and impacts in Fig. 1. As for the linear case, the difference between the RF model predictions and

the actual EV Ianom (model residuals) provides an indication of changes in ecosystem vulnerability to the DH18 and DH19

impacts.

For comparison with LSM simulations, the EV Ianom clusters were remapped to 0.25 degree by largest area fraction calcu-175

lation, and subsequently GPPanom and SManom model ensemble means for each cluster were compared with corresponding

EV Ianom and ERA5 SManom. We first evaluate the linear relationships between the averaged GPPanom for each cluster

and the corresponding climate anomalies, for comparison with EV Ianom. Then, we estimate the legacy effects from DH18 on

GPPanom during 2019 based on the difference between the reference and factorial LSM simulations.

3.2.3 Modulating effects180

To understand how land-cover can contribute to modulate the impacts of DH18 and DH19 we analyse the land-cover com-

position of each cluster. Given that central Europe is characterized mostly by a very heterogeneous landscape, we calculate

land-cover selectivity in each cluster for forests, natural grasslands and croplands. Selectivity is defined as the difference be-

tween the probability a given land-cover class being present within a cluster compared to its overall presence in the whole

region. The probabilities are calculated by fitting a kernel-distribution function to the fractional cover fields for the whole185

region and for separate clusters. Positive (negative) selectivity means that a given land-cover type is more (less) likely to be

found in a given cluster compared to its overall presence in the region.

For other modulating effects we evaluate how the spatial distribution of EV Ianom residuals for DH18 and DH19 relates

to climatic and ecological variables: SManom and Tanom in spring and summer, number of dry months in the year of the

DH event and the preceding year (i.e. 2017–2018 for DH18, and 2018–2019 for DH19), EV Ianom in the preceding summer190

(EV Iyr−1
anom), the number of dry months in a given year and its preceding year (DM), isohydricity (IsoH) and available water

capacity (AWC, related to the maximum amount of water available for plants).

We include some of the drivers used to train the temporal climate-driven RF model to diagnose possible changes in the

vulnerability explained by stronger vegetation sensitivity to climate anomalies than in the training period. EV Iyr−1
anom is used to
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evaluate the preconditioning role of past extreme summers or disturbances (summer is the peak of the growing season in this195

region). The number of dry months and AWC are also included as they may explain non-linear relationships between SManom

and vegetation stress. Isohydricity provides a measure of the degree of stomatal regulation by plants. Since many of these

variables have strong spatial co-variation (e.g. Tanom and SManom, we evaluate their relationships with EV Ianom residuals

by calculating the partial rank correlation (Spearman’s ρ ) between each variable, controlling for the others separately. Since

these effects might depend on land-cover type, we analyse separately pixels with high and low forest cover.200

To further evaluate how inter-annual legacy effects affect long-term vegetation dynamics, we apply a second temporal RF

model to pixel-level EV Ianom (Section 3.2.2) with EV Iyr−1
anom as an additional predictor. The model is trained for the period

2002–2017 on 3×3 moving windows and is then used to predict EV Ianom in DH18 and DH19. The resulting model residuals

were then compared to those of the climate–driven RF model.

4 Results205

4.1 DH18 and DH19 impacts

Following the extreme summer in central Europe in 2018, mild temperatures and strong soil-moisture deficits remained until

January 2019, when SManom returned to normal conditions (Fig. B1, Fig. B2). In central Europe, June 2019 was extremely

hot, but July and August 2019 were milder (Fig. B1, (Sousa et al., 2020)), and soil-moisture deficits became very pronounced in

July (Fig. B2). In this region, except April 2019, the months preceding summer were not particularly dry and were even slightly210

wetter than average in February, March and May, the latter also colder than average. Therefore, the DH18 and DH19 constitute

more a sequence of two compound events than a single drought. The areas experiencing severe dry and hot conditions in both

summers correspond to a region covering central and eastern Europe and southern Sweden. This region is our study domain

and indicated by the rectangle in Fig.2). Both DH events led to vegetation browning, though negative EV Ianom were more

widespread in DH18 than DH19. Within the study region, 79% of the area showing negative EV Ianom in DH18 (EV IDH18
anom )215

also registered negative EV Ianom in DH19 (EV IDH19
anom ).

The spatial distribution of the clusters resulting from the unsupervised classification based on (EV IDH18
anom , EV IDH19

anom ) pairs

and corresponding centroids are shown in Fig. 3 (left and top right panels), as well as the corresponding (SMDH18
anom , SMDH19

anom )

and (TDH18
anom , TDH19

anom ) (center and bottom right panels). The four clusters aggregate pixels according to different impacts in

DH18 and DH19. One cluster, covering 20% of the area, includes pixels with moderate impacts in DH18 and further browning220

in DH19, being therefore referred to as (CDecline) (dark brown, EV IDH19
anom below the 1:1 line in Fig.3, top right panel). This

cluster is associated with mixed cover of forests (10-40%, dominated by needle-leaved) and grasslands (15-60%), (Fig.B3).

Cluster CHighV (high vulnerability, covering 15% of the area) corresponds to pixels experiencing strong impacts in both events

and is associated with high grassland and cropland fractions and low forest cover. Pixels with strong impacts in DH18 and

weakly negative EV IDH19
anom , i.e. partial recovery in DH19 (CPRecov, 21% of the area), are mainly dominated by croplands.225

Finally, a group of pixels shows moderate EV IDH18
anom and positive EV IDH19

anom (CGreening, 44%), corresponding mostly to mixed

forest-grassland pixels (30-65% of forest, dominated by needle-leaved).
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Figure 2. Spatial patterns of temperature (Tanom ), soil-moisture (SManom ) and EVI (EV Ianom ) anomalies during summer 2018 (top

panel) and summer 2019 (bottom panel) for the study region. The study region corresponds to a domain with dry and hot conditions in both

2018 and 2019 summers (DH18 and DH19).

All clusters align along proportional DH18:DH19 values of SManom and Tanom, with predominantly negative SManom

and positive Tanom in both DH events but alleviation of soil-moisture deficits and heat stress in DH19 compared to DH18

(Fig. 3). The two recovery clusters (CPRecov and CGreening) correspond to pixels with less severe drought conditions and milder230

temperatures in DH19, and CGreening corresponds to pixels where dry and hot conditions in DH18 were also more moderate.

CHighV corresponds to pixels experiencing drier and hotter anomalies in both summers and shows accordingly stronger impacts.

Cluster CDecline, however, shows increasing browning in DH19 in spite of drought and heat stress alleviation (Fig.3). The

distributions of climate anomalies for each cluster overlap each other and, in some cases, the 1:1 line, indicating that the

intensity of the hazards (temperature, drought) cannot account for the resulting impacts alone.235
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Figure 3. Classification of impact groups within the study region in central Europe. The left panel shows the spatial distribution of the four

clusters from unsupervised classification of (EV IDH18
anom ,EV IDH19

anom ) values. The corresponding (EV IDH18
anom ,EV IDH19

anom ) distribution in each

cluster are indicated in the top right panel (circles indicate the spatial mean and the lines spatial standard deviation within each cluster). The

corresponding distribution of SManom and Tanom pairs are shown in the center right and bottom right panels respectively. The grey line,

indicates similar anomalies in the two DH events. Only pixels with negative EV IDH18
anom are considered.

4.2 Ecosystem vulnerability to DH18 and DH19

All clusters show significant positive linear relationships between summer EV Ianom and SManom and negative linear rela-

tionships with Tanom in 2001–2017 (Fig. 4). The relationships include the two extreme summers of 2003 and 2015 which had

comparable Tanom and SManom to DH18 and DH19 in most clusters. The long-term sensitivities estimated are, though, robust

even if these summers are excluded.240

The results correspond to a general summer water-limited regime, especially in clusters CDecline, CHighV and CPRecov, which

show stronger sensitivities to Tanom and SManom (slopes in Fig. 4) and higher variance explained by both models (R2 0.58–
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0.68 for SManom and 0.49–0.55 for Tanom). For these clusters, EV Ianom is below the 95% confidence interval of the long-

term linear relationships for DH18 (CPRecov and CHighV) and DH19 (CDecline and CHighV). SManom and Tanom in DH18 and

DH19 are generally similar to those of 2003, but DH18 was drier than 2003 in CPRecov and CHighV.245

Figure 4. Departure of EV Ianom in DH18 and DH19 from long-term climate-driven variability. Relationship between EV Ianom and

SManom (top panel) and between EV Ianom and Tanom (bottom panel) for each individual summer between 2001 and 2019 over the

study region. The results are shown separately for the four clusters defined in Fig. 3. The black line and shaded areas show the relationship

and respective 95% confidence intervals obtained by ordinary least-squares linear regression between EV Ianom and the respective climate

variable for all years between 2001–2017. Values of (EV Ianom, SManom) that deviate from the long-term relationships show increased

sensitivity to climate anomalies, which can be a sign of increased vulnerability or decline. The colors indicate individual years, ranging from

2001 (red) to 2019 (purple) and square markers indicate 2018 and 2019.
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These departures may be related with seasonal legacy effects from the warm spring in DH18 and or the onset of non-linear

responses to heat and drought. To account for these modulating effects, we model long-term (2001–2017) EV Ianom–climate

relationships using spring and summer SManom and Tanom as predictors using random forest regression (see Section 3.2.2).

The model is able to predict 48 –90% (median and maximum out of bag score across pixels) of the pixel-level temporal

variability of summer EV Ianom in 2001–2017 (Fig.B4). Analysis of the variable importance shows that the model estimates250

summer water limitation and negative legacy effects from spring warming (Fig. B5), consistent with a summer water-limited

regime and process-based modeling studies (Bastos et al., 2020a; Lian et al., 2020).

As in the linear case, the RF model estimates less negative or more positive EV Ianom in DH18 and DH19 than observations

(Fig. 5). The residuals are below the range of the training period for the high impact clusters: CDecline and CPRecov in DH19 and

DH18, respectively, and CHighV in both (Fig. 5, bottom panel). In CGreening, residuals are predominantly positive (i.e. observed255

EV Ianom more positive than predicted), but still partly overlap with the range of residuals in the training period (Fig. 5).

Pixels with high tree cover tend to show less negative or more positive residuals than pixels with low tree cover in both DH

events (Fig. 6), but in DH19 the range of residuals is larger and includes pixels with strongly negative values. The partial rank

correlation of the spatial distribution of EV Ianom residuals with respect to different explanatory variables is shown for pixels

with high and low forest cover in Fig. 6. Given the large number of pixels, all correlations are significant.260

In DH18, Tanom in spring (T spr
anom, + for high and low tree cover) and summer SManom (SMsm

anom, - for high tree cover and

+ for low tree cover) show the strongest relationships with EV Ianom residuals. In DH19, EV Iyr−1
anom (+), T spr

anom and T sm
anom (-)

show strong correlations, with consistent sign for both high and low tree cover pixels. DH19 residuals of pixels with high tree

cover show strong correlation with SManom with opposite signs in spring (+) and summer (-) and with AWC (-). In DH19,

pixels with low tree cover show negative correlation between IsoH and EV Ianom residuals.265

To test whether the importance of EV Iyr−1
anom is particular to DH19, or if it may reflect long-term inter-annual legacy effects

of anomalies in vegetation activity, we fit a second temporal RF model whereEV Iyr−1
anom is used as an additional predictor (Figs.

B4 and B6). Including vegetation condition in the previous summer improves the predictive power of the long-term RF model

(72–97% out of bag score, compared to 48–90% for the model trained with climate drivers only). Even though the residuals

for the training period are considerably reduced relative to the climate–driven model, the residuals for DH18 and DH19 are270

comparable.

4.3 DH18 and DH19 impacts simulated by LSMs

The GPP from the LSM multi-model ensemble mean matches well the differences in impacts between clusters in DH18 (Fig.

7, top and middle panels) and the temporal evolution of GPP anomalies during the 2018 growing season (April to September,

Table 1), with correlations with EV Ianom of 0.74–0.90. Even though the root mean squared error (RMSE) is comparable in275

the two growing seasons, the correlations ofGPPanom with growing-season EV Ianom are much lower in DH19(-0.09 –0.43).

GPPanom by LSMs is above-average in spring and early summer 2019 for all clusters, and anomalies in DH19 are either more

positive or less negative, compared to EV Ianom.
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Figure 5. Spatial distribution of EV Ianom residuals in DH18 (top panel) and DH19 (central panel) estimated by the temporal RF model

trained for 2001–2017 with spring and summer SManom and Tanom as predictors. The corresponding distribution per cluster for each DH

event is shown by the boxplots in the bottom panel. The shaded grey envelope indicates the range of residuals in the training period.
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Figure 6. Spatial partial correlation (spearman) between EV Ianom residuals and environmental variables in DH18 (top panels) and DH19

(bottom panels), for pixels with high (dark green, top 5% cover fraction) and low (light green, lower 5% cover fraction) tree cover (left panels).

The variables considered are: spring and summer Tanom and SManom (indicated by superscripts spr and sm, respectively),EV Ianom in the

previous growing season (EV Iyr−1), plant isohydricity (IsoH) and the number of dry months (DM). Because of the large number of pixels

considered, all correlations are significant (p− val << 0.01). The right panels show the distribution of residuals for pixels with high and

low tree cover.

LSMs simulate a stronger attenuation of drought compared to the observation-based SManom, though with consistent rel-

ative differences in SManom between clusters (compare Fig. B7 and Fig. 3). LSMs simulate well the temporal evolution of280

SManom in the two growing seasons, with high correlation with both SoMo.ml and SMERA5
anom (correlations of 0.81–0.98). The

RMSE for simulated SManom is generally lower than that of GPPanom.

The sensitivity of GPPanom to simulated SManom and to Tanom (Fig. B8) is consistent with that of EV Ianom in all

clusters (Fig. 4), although for CPRecov and CGreening LSMs estimate non-significant negative relationships between GPPanom

and Tanom. The deviations of GPPanom from the linear response for CHighV and CPRecov in DH18 are correctly captured by285

LSMs, but not that of DH19 in CDecline.
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Figure 7. Observed and process-based model simulations of 2018/19 impacts. Seasonal evolution of EV Ianom (top panel) and standardized

GPP anomalies (GPPanom, central panel) over the two year period for each cluster (defined in Fig. 3 and shown for LSM grid in Fig.

B7).The bottom panel shows the difference between the reference and factorial simulations, and indicates the impacts of DH18 onGPPanom

simulated by models during the event and in the subsequent months until December 2019.
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Table 1. Correlation between growing season (April–September) SManom simulated by LSMs with SManom from SoMo.ml and ERA5,

and of EV Ianom with GPP simulated by LSMs.

CDecline CHighV CPRecov CGreening

r RMSE r RMSE r RMSE r RMSE

SManom gs. 2018 0.98 0.33 0.98 0.66 0.97 0.43 0.97 0.21

SManom gs. 2019 0.94 0.63 0.97 0.47 0.98 1.2 0.95 0.77

SMERA5
anom gs. 2018 0.87 0.56 0.92 0.85 0.87 0.64 0.81 0.39

SMERA5
anom gs. 2019 0.71 0.72 0.90 0.52 0.91 1.2 0.70 0.82

EV Ianom gs. 2018 0.80 1.0 0.90 1.2 0.74 1.2 0.79 0.86

EV Ianom gs. 2019 0.34 1.1 0.43 1.1 0.26 1.1 -0.09 1.1

5 Discussion

5.1 Early signs of increased vulnerability

For three clusters covering 56% of the pixels negatively impacted by DH18, the extremely low EV Ianom in response to DH18

and DH19 could not be predicted fromEV I–climate relationships in 2001–2017 (Figs. 4, 5). These departures reveal increased290

sensitivity to dry and hot conditions, and can be a sign of increased ecosystem vulnerability to such events. It should be noted,

though, that we focused on pixels which were negatively impacted by DH18, but some pixels in the regional domain selected

showed greening, even in DH18 (Fig. 2). These regional asymmetries result in partial regional compensation of the DH18

impacts, as shown in Bastos et al. (2020b).

In both DH18 and DH19, higher tree cover fraction is associated with more positive or less negative residuals (Fig. 6),295

indicating that trees were more resistant to DH than grasses and crops. The predominance of crops and grasslands in CHighV,

which had strong negative residuals in both events, and of high tree cover in CGreening also support this effect. Trees can

better cope with drought with their deeper rooting depth (Fan et al., 2017) and through the use of carbon reserves to support

activity under stress conditions (Wiley, 2020). Moreover, some trees and grasses with stronger stomatal regulation can buffer

the drought progression and its impacts by avoiding hydraulic failure (McDowell et al., 2020; Teuling et al., 2010). This is300

reflected in the small but positive relationship between isohydricity and EV Ianom residuals in pixels with high forest cover.

Increased vulnerability may be explained by modulating effects of global change on vegetation condition (e.g., “hotter

droughts” (Allen et al., 2015), Fig. 1) and, in the case of DH19, it may be further linked to inter-annual legacies from the

impact of DH18. The first should be expressed by relationships between EV Ianom residuals and climatic variables. The latter

are more difficult to assess without comprehensive data about different competing factors, .e.g. defoliation or damage from305

embolism (Ruehr et al., 2019), higher susceptibility to diseases and pests due to reduced health (McDowell et al., 2020) or

increased hazard of insect disturbances due to warm conditions (Rouault et al., 2006). The relationships between EV Ianom

residuals and EV Iyr−1
anom provide an approximation, but do not allow to identify the underlying drivers.
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In DH18, we find a positive effect of spring warming in vegetation growth, leading to weaker departures from long-term

vegetation–climate relationships (observed EV Ianom more positive or less negative than modelled), but with associated water310

depletion amplifying the impacts of DH18 in summer in pixels with low tree cover. These results are in line with Bastos et al.

(2020a) that showed contrasting seasonal legacy effects of warm springs in crop versus forest dominated regions.

On the contrary, spring and summer T sm
anom in 2019 (or cooling, see Fig. B1) are negative correlated withEV Ianom residuals

in both high and low tree cover pixels. This indicates increasing damage from heat stress, for example due to reductions in

evapotranspirative cooling (Obermeier et al., 2018) or cascading impacts of compound heat and drought, such as insect attacks315

(Rouault et al., 2006).

Including EV Iyr−1
anom in the long-term RF regression model improves the predictive skill for 2001–2017, but does not reduce

the residuals in DH18 and DH19.The high correlation between EV Ianom residuals and EV Iyr−1
anom in DH19 can indicate either

that pixels strongly impacted by DH18 were associated with amplified impacts by DH19 (negative residuals), or that pixels

affected moderately by DH18 (less negativeEV IDH18
anom ) were associated with positive residuals, i.e. stronger recovery. Damage320

to roots and tissues or depletion of carbon reserves from DH18 leading to higher vulnerability to DH19 could explain the

positive correlation in high tree cover pixels in CDecline. Conversely, the moderate DH18 impacts in CGreening may have resulted

in increased resistance to DH19. The strong correlation found in low tree cover pixels is, though, surprising, as European crop

species tend to be annual plants, and annual species can also be found in many grasslands. For these pixels, it is more likely that

the positive correlation is explained by management practices, e.g. through earlier harvest or active reduction of stand density325

in DH19 (Bodner et al., 2015).

CDecline stands out from the other clusters, in that browning is found in spite of drought alleviation in DH19. The strong

negative correlation of residuals with SMsm
anom and AWC in forest dominated pixels is counter-intuitive and suggests that other

environmental effects not considered in our analysis may modulate DH19 impacts. Insect outbreaks are a potential candidate

to explain such effects: the stronger correlation of residuals with EV Iyr−1
anom in DH19 could reflect increased susceptibility of330

impaired trees, combined with favourable climatic conditions for insect growth, reflected in stronger negative effects of T sm
anom

in DH19 in high tree cover pixels.

Results from field inventories and forest plots support this hypothesis. Increased tree mortality and insect outbreaks in

central Europe during 2018 have been reported (Schuldt et al., 2020). A recent assessment by the German Federal Minister

for Food and Agriculture (BMEL, 2020) reported crown damage in 36% of all tree types in summer 2019, a 7% increase335

compared to 2018 and predominating in trees over 60 years of age. According to this report, the mortality rate in both needle-

leaved and broad-leaved trees almost tripled from 2018 to 2019. Although no large scale data on insect outbreaks is currently

available, local authorities in regions where CDecline is prevalent report increase in tree mortality from bark-beetle infestations:

the Environment Ministry of North Rhine Westphalia in western Germany reported soaring rates of spruce affected by severe

bark-beetle infestations, from about 1% in 2018 to over 12% in 2019 (MULNV-NRW, 2019). In the Czech Republic, rates of340

spruce damaged by bark-beetles more than tripled, leading to increased mortality (Hlásny et al., 2021). In Belgium, a “bark

bettle task force" was created in September 2018 by the economic office of Wallonia (OEW, 2018). Increased tree mortality

and bark-beetle infestations have also been reported in eastern France (ONF, 2020).
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5.2 Implications for earth system modelling

Temperate ecosystems are an important global sink of CO2 (Pan et al., 2011) and are not usually considered hot-spots of345

drought risk and environmental degradation under climate change (Vicente-Serrano et al., 2020). Our results show that the

past two extreme summers in central Europe reveal first signs of large-scale enhanced vulnerability in response to DH events

(CHighV, CPRecov), and of potential degradation trajectories induced by consecutive events (CDecline). Even though limited to 20%

of the study area, the patterns in CDecline highlight the risks associated with more frequent and intense droughts and heatwaves

expected in the coming decades (Barriopedro et al., 2011; Boergens et al., 2020; Hari et al., 2020). At the same time progressive350

warming conditions can increase the likelihood of compound occurrence of multiple disturbances, such as droughts and insect

outbreaks, both promoted by warm and dry conditions. Interactions between compounding disturbances can further contribute

to forest C losses (Seidl et al., 2017; Kleinman et al., 2019). To anticipate such impacts, process-based modelling of ecosystem

response to such events is needed.

The LSMs perform well in simulating the magnitude and evolution of productivity anomalies in 2018, but not in 2019. The355

recovery simulated by LSMs in DH19 can be partly explained by a strong recovery of modelled soil-moisture (Fig. B7), but

may also result from limited ability of LSMs in simulating changes in ecosystem vulnerability during the two DH events.

The latter is supported by the fact that simulated SManom shows good agreement in the temporal evolution of soil-moisture

anomalies with both observation-based datasets but not of GPPanom (Table 1).

The comparison of the reference and factorial simulations allows showing that the poor performance in 2019 may be related360

with interannual legacy effects. LSMs estimate legacies from DH18 only in the early growing season (March to May 2019), but

do not estimate any legacy effects in summer (Fig. 7 bottom panel). The poor relationships between EV Ianom and simulated

GPPanom in response to DH19 indicate that processes controlling legacy effects such as damage from embolism, carbon-

starvation and resulting tree-mortality or disturbances induced by drought and heat such as insect outbreaks, currently missing

in LSMs, likely explain the amplified impacts of DH19.365

LSMs are known to have limited ability to simulate drought-induced stress and tree mortality (Wang et al., 2012), and

lack impacts of biotic disturbances, although rudimentary approaches have been attempted (Kautz et al., 2018). These model

shortcomings add to limitations in simulating soil-moisture variability and transitions between energy-limited and water-limited

regimes. Attributing the LSM errors to specific climatic or non-climatic processes here is challenging since up-to-date datasets

on tree mortality, tree carbon reserves or spatially-explicit information on biotic disturbances are very limited. Nevertheless,370

our results show that LSMs can simulate well the impacts of one strong drought (DH18) on ecosystem dynamics but have

limited skill in simulating the impacts of a subsequent compound extreme event (DH19) by missing important inter-annual

legacy effects.

6 Conclusions

The two consecutive extreme dry and hot summers in central Europe (DH18 and DH19) had stronger impacts on vegetation375

activity than those expected by previous vegetation–climate sensitivity. This hints at large-scale increase in the vulnerability of
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ecosystems to compound heat and drought events, possibly modulated by long-term environmental changes. We find signs of

degradation trajectories in 20% of the study area, where EV I decreased even with drought alleviation in the following year.

We attribute these trajectories to legacies from DH18 amplifying the impacts of DH19, which indicates that more frequent

extreme summers may pose a major threat to the stability of temperate forests.380

State-of-the-art land-surface models were able to simulate the exceptional impacts of DH18, but they underestimated the

impacts of DH19. This is explained by LSMs missing the preconditioning effect of DH18 in DH19 impacts as they cannot

simulate inter-annual legacy effects from DH events on ecosystem activity. In addition, LSMs also lack representation of biotic

disturbances, which are triggered by DH conditions and further promoted by plant stress in response to DH. Because DH events

may become more common in the coming decades, overlooking these effects may result in an overestimation of the resilience385

of the CO2 sink to climate change in temperate regions.
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Appendix A: Supplementary Methods

Land surface and global dynamic vegetation model simulations575

We have used output of gross primary productivity (GPP) and simulated soil-moisture from seven models that followed the

protocol and extended the simulations in Bastos et al. (2020a) up to 2019. These models are: ISBA-CTRIP (Joetzjer et al.,

2015), JSBACH (Mauritsen et al., 2018), LPJ-GUESS (Smith et al., 2014), LPX-Bern (Lienert and Joos, 2018), OCN (Zaehle

et al., 2010), ORCHIDEE (Krinner et al., 2005) and SDGVM (Walker et al., 2017).

The model simulations were run for most models at 0.25 °spatial resolution for the European domain (32–75°N and -11–580

65°E), following a spin-up to equilibrate carbon-pools. For the reference simulation, the models were forced with observed

CO2 concentration from NOAA/ESRL and changing climate between 1979 and 2019 from ERA5 and fixed land-cover map

from 2010 from LUH2v2 (Hurtt et al., 2011). An additional simulation was ran where the models were forced with changing

climate, except June–August 2018, where climatological summer climate conditions were used to force the models as described

in Bastos et al. (2020a). This simulation, extended up to December 2019 allows evaluating the direct impact of DH18 and its585

inter-annual legacy effects.

For more details on the simulation protocol, we refer to (Bastos et al., 2020a).
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Appendix B: Supplementary Figures
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Figure B1. Monthly temperature anomalies during 2018 and 2019. The rectangle indicates the study region.
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Figure B2. Monthly soil-moisture anomalies during 2018 and 2019. The rectangle indicates the study region, i.e. the areas experiencing

drought conditions (SManom <−1σ) during both DH18 and DH19. .
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Figure B3. Selectivity of different land-cover composition for each cluster (Fig. 3). Selectivity is evaluated as the difference between the

probability distribution of a given land-cover type (forest, left; grassland, middle; cropland, right) and the probability distribution of that

land-cover type in the selected region. If selectivity is positive, the cluster is preferentially composed by the given land-cover type and the

opposite for negative values. The 2018 land-cover classification maps from from ESA CCI-LC are used.
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Figure B4. Performance of the temporal RF model in predicting EV Ianom, given by the out of bag scores. The top panel shows the scores

for the climate-driven RF model and the bottom panel the corresponding results for the same model, but includingEV Iyr−1
anom as an additional

predictor.
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Figure B5. Importance of the four predictors used in the RF model to predict EV Ianom, spring (left) and summer (right), SManom (top)

and Tanom (bottom), calculated from the Shapley additive explanation values (Methods).
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Figure B6. As in Fig. 5 bottom panel, but for the RF model trained using spring and summer SManom and Tanom as predictors, as well as

EV Iyr−1
anom.

32



Figure B7. The left panel shows the spatial distribution of the four clusters from unsupervised classification of (EV IDH18
anom ,EV IDH19

anom )

values remapped to the coarser grid of LSMs. The corresponding (GPPDH18
anom ,GPPDH19

anom ) values simulated by the multi-model mean in

each cluster are indicated in the top right panel (circles indicate the spatial mean and the lines spatial standard deviation within each cluster).

The corresponding distribution of simulated SManom pairs in each cluster are shown in the bottom right panel. The grey line, indicates

similar anomalies in the two DH events.
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Figure B8. Same as Fig. 4 but for GPP and soil-moisture anomalies simulated by a subset of land-surface models from (Bastos et al., 2020a)

extended up to December 2019.
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