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Abstract. In 2018 and 2019, central Europe was affected by two consecutive extreme dry and hot summers (DH18 and DH19).
The DH18 had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example through
depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further increase vegetation
susceptibility to additional hazards. Temporally compound extremes such as DH18 and DH19 can, therefore, result in an
amplification of impacts by preconditioning effects of past disturbance legacies.

Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the veg-
etation responses to the first compound event (DH18) modulated the impacts of the second (DH19). To quantify changes in
vegetation vulnerability to each compound event, we first train a set of statistical models for the period 2001-2017, which are
then used to predict the impacts of DH18 and DH19 on Enhanced Vegetation Index (EVI) anomalies from MODIS. These es-
timates correspond to expected EVI anomalies in DH18 and DH19 based on past sensitivity to climate. Large departures from
the predicted values can indicate changes in vulnerability to dry and hot conditions, and used to identify modulating effects by
vegetation activity and composition or other environmental factors on observed impacts.

We find two regions in which the impacts of the two DH events were significantly stronger than those expected based
on previous climate—vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger
impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked
to changing background CO, and temperature conditions. A second region, dominated by forests and grasslands, showed

browning from DH18 to DH19, even though dry and hot conditions were partly alleviated in 2019. This browning trajectory
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was mainly explained by the preconditioning role of DH18 to the observed response to DH19 through legacy effects, and
possibly by increased susceptibility to biotic disturbances, which are also promoted by warm conditions.

Dry and hot summers are expected to become more frequent in the coming decades posing a major threat to the stability of
European forests. We show that state-of-the-art process based models miss these legacy effects. These gaps may result in an

overestimation of the resilience and stability of temperate ecosystems in future model projections.

Copyright statement. No copyrights

1 Introduction

Extreme dry and hot summers in western and central Europe have become more frequent over the past decades (Coumou and
Rahmstorf, 2012; Seneviratne et al., 2014), a trend that is expected to continue as global mean temperatures rise (Barriopedro
et al., 2011). Hot extremes in Europe are promoted by changes in atmospheric circulation (Coumou et al., 2015; Drouard et al.,
2019) and amplified by strong feedbacks between the land-surface and the atmosphere, being therefore also associated with
severe droughts (Miralles et al., 2014; Samaniego et al., 2018), i.e. compound dry and hot events (DH).

In Europe, DH events have usually strong negative impacts on ecosystems, such as reduced ecosystem productivity (Ciais
et al., 2005; Bastos et al., 2020b). After severe drought and heat stress, plant recovery can be lagged, for example due to
reduced growth, or non-reversible losses in hydraulic conductance or carbon reserve depletion (Ruehr et al., 2019). This, in
turn may increase vulnerability to another DH, if it occurs before complete recovery. Repeated droughts have been linked to
increased forest vulnerability in the northern mid-latitudes, although with variable responses (Anderegg et al., 2020). Impaired
functioning during the recovery period can additionally increase the hazard of subsequent disturbances, e.g. insect outbreaks
(Rouault et al., 2006). However, reductions in leaf area, increases in root allocation (McDowell et al., 2008) or reduced growth,
by reducing evaporative tissue and enhancig water uptake capacity, could also confer an advantage to subsequent droughts
(Gessler et al., 2020). It remains unclear whether the increased vulnerability to a subsequent drought can be explained by
compounding hazards (e.g. accumulated water-deficits or compound heat) or modulating effects due to vegetation responses to
the first event.

In Europe, the summer of 2018 was the hottest since 1500 (Sousa et al., 2020) and associated with an unprecedented area
affected by drought (Albergel et al., 2019; Bastos et al., 2020a). This DH event resulted in decreases in ecosystem productivity
by up to 50% in central Europe (Bastos et al., 2020a; Buras et al., 2019) and crop yield losses (Beillouin et al., 2020). Part
of the central European region affected by DH18 registered another extremely hot and dry summer in 2019 (Boergens et al.,
2020; Sousa et al., 2020).

From a hydrometeorological perspective, the dry and hot summers in 2018 and 2019 (DH18 and DH19, respectively) could
be considered individually as two compound events in that both high temperatures and strong drought conditions were observed

(Zscheischler and Fischer, 2020). Taken together, they constitute a temporally compound event (Zscheischler et al., 2020):
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Boergens et al. (2020) have shown that while soil-moisture deficits in summer 2019 were not as pronounced as in 2018,
total water storage was lower in 2019 due to the water storage deficit resulting from the 2018 event. Given the unprecedented
magnitude of DH18, it is likely that at least some ecosystems had not yet fully recovered in 2019. Therefore, from an ecological
perspective, these two events are more complex, as their impacts can be preconditioned by seasonal (Bastos et al., 2020a) and
inter-annual legacy effects. Finally, vulnerability to DH events can further be modulated by long-term environmental changes:
water-savings from reduced stomatal conductance should attenuate drought stress (Peters et al., 2018), but concurrent decrease
in evapotranspirative cooling along with “hotter droughts” may amplify heat stress (Allen et al., 2015; Obermeier et al., 2018)
(Fig. 1).
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Figure 1. Conceptual description of the compound DH18 and DH19 events. Dry and hot conditions in both summers were a result of
compouding atmospheric drivers (synoptic patterns, preceding climate anomalies, land-atmosphere interactions). The DH18 impacts were
modulated by seasonal legacy effects in ecosystem functioning from a sunny and warm spring. We hypothesise that legacies from the DH18
event also contributed to modulate the response to DH19. These impacts can be further modulated by long-term changes in ecosystem

vulnerability to drought and heat stress due to anthropogenic climate change and elevated COs.

Separating the modulating effects controlled by vegetation responses to global change or by legacies from past disturbances
(Kannenberg et al., 2020) and seasonal legacy effects (Buermann et al., 2018) in observations is problematic as it requires
considering the compounding effects of multiple drivers (e.g., compound heatwave and drought) and separating the role of
seasonal and inter-annual legacies both in physical variables (e.g., soil-moisture depletion) and in vegetation vulnerability to
those drivers. This can be done by designing counter-factual scenarios to force process-based models, as recently done to
evaluate seasonal legacy effects of hot and dry springs (Lian et al., 2020; Bastos et al., 2020a). However, it has been argued
that Earth System models fail at modelling woody biomass trajectories following droughts (Anderegg et al., 2015), so that they
might miss inter-annual legacy effects from DH events, although no simulations designed to isolate the individual impact of
drought over subsequent years have been performed. Alternatively, statistical models can be used to separate such effects based
on observational data (Chan et al., 2021).

Here, we focus on DH18 and DH19 to gain insights on the resilience of European ecosystems to repeated hot and dry
summers. Using both remote-sensing data and an update of the simulations by Bastos et al. (2020a), we first evaluate whether
there are signs of increased vegetation vulnerability to repeated dry and hot summers of 2018 and 2019, and try to identify

possible modulating effects. We then compare observation-based results to updated simulations by state-of-the-art land-surface
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models and dynamic global vegetation models (for simplicity referred to as LSMs) designed to isolate the impacts of DH18

and legacy effects (Bastos et al., 2020a).

2 Data
2.1 Climate variables

In ecological studies, drought is better characterized by soil-moisture anomalies i.e. agricultural drought (Sherriff et al., 2011;
Seneviratne et al., 2012; Samaniego et al., 2018) than atmospheric drought indices. We therefore base our drought assessment
on two complementary soil-moisture datasets. The first is the observation-based soil moisture data obtained from SoMo.ml
(Sungmin and Orth, 2021), used as reference in this study, and the second, for comparison with SoMo.ml, is given by ERAS
volumetric soil-water content (Hersbach et al., 2020).

The SoMo.ml data are generated using a Long Short-Term Memory neural network model trained with meteorological
forcing from ERAS and land surface characteristics as inputs and global in-situ soil moisture measurements (Dorigo et al.,
2011; Zeri, 2020) as target variables. The data cover soil-moisture in the first 50cm of the soil and are available at 0.25°1at/lon
resolution and daily time-steps for the period 2000-2019. We remapped the fields to the finer resolution of the MODIS grid
and aggregated the data to monthly means. We then subtracted the mean seasonal cycle and long-term linear trend, and divided
by the corresponding standard deviation to obtain standardized soil-moisture anomalies (S M ,0m)-

Monthly temperature and volumetric soil-water content from the ECMWF ERAS Reanalysis were obtained from the Coper-
nicus Climate Change Service at 0.25°lat/lon resolution (Hersbach et al., 2020) at monthly time-steps and selected for the
period 2000-2019 (common with SoMo.ml) and remapped to the finer resolution of the MODIS grid using conservative
remapping. Standardized anomalies were calculated as described for S My om for ERAS temperature and soil-moisture fields
(Tanom»SMEEAS) Soil-moisture anomalies from ERAS5 in layers 1-2 (top 28cm) are used for comparison of drought condi-

anom

tions with those estimated by SoMo.ml, although the two datasets are not fully independent.
2.2 Vegetation and soil data

We used the 16-day Enhanced vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor from the MOD13C1 CMG product. The MOD13C1 CMG provide continuous cloud-free spatial composites from 1km
data projected on a 0.05°lat/lon grid (Didan et al., 2015), and were selected for the period 2001-2019. Standardized EVI
anomalies (E'V 1,,,,m,m) were calculated following the same approach as for climate variables. The standardization allows com-
paring the relative magnitude of anomalies for pixels with distinct temporal variability patterns and with vegetation productivity
simulated by LSMs, which have different physical units.

We used land-cover distribution in 2018 from the ESA Climate Change Initiative land-cover (Kirches et al., 2014) (CCI-
LC). The data are originally provided in land-cover classes at 300m spatial resolution and were converted to fractional cover

at 0.05°lat/lon resolution for forest, grassland, crop classes using the LC-CCI user—tool.
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We used isohydricity fields from global satellite measurements from Konings et al. (Konings et al., 2017) at 1°lat/lon res-
olution. Anisohydric plants (low isohydricity) show weak regulation of stomatal opening, and prioritize carbon assimilation
over water savings during droughts. High isohydric plants show strong stomatal regulation of productivity and thereby preserve
water at the cost of carbon assimilation during drought.

We use soil Available Water Capacity (AWC) from Ballabio et al. (2016) and Panagos et al. (2012), which used the Land

Use and Cover Area frame Statistical survey (LUCAS) topsoil database to map soil properties at continental scale.
2.3 Outputs from land-surface and global dynamic vegetation models

Standardized anomalies of gross primary productivity (G P P,,,0.,) and soil-moisture (S M,0m) Were estimated by the mean
of seven land-surface models and dynamic global vegetation models (for simplicity referred to as LSMs) between 1979-2019
from an extension of Bastos et al. (2020a) simulations: a baseline simulation for comparison with observations and a factorial
simulation to quantify the individual impact of summer 2018 and its legacy effects, when compared to the reference simulation.
A detailed description of the models used and the simulation protocol is provided in the Appendix A.

First, all model outputs were remapped to a common 0.25 degree grid, and the multi-model ensemble mean was calculated
for the common period with MODIS (2001-2019). The variables were then deseasonalized, detrended and standardized as

done for the other variables in the study.

3 Methods
3.1 Drought characterization

We use the observation-based SoMo.ml as a reference dataset to define agricultural drought conditions. Regions with average
SManom below —1o (Seneviratne et al., 2012) during summer (JJA) are considered drought-affected areas during the DH
events. Then, a regional domain affected by both DH18 and DH19 events is selected to evaluate the impacts of two consecutive
DH events. Within this region most pixels had negative S M, .., and the majority registered S M,y om < —1.50, but they differ
in the magnitude of agricultural drought in DH19. This allows comparing responses across pixels for different combinations
of stress between DH18 and DH19. Since we are interested in evaluating how recovery from DH18 affected impacts of DH19,

we limit our analysis to pixels with negative E'V I ,,,,,, in DH18.
3.2 Compound DH18 and DH19 events
3.2.1 DHI18 and DH19 impact characterization

To characterize different response types to DH18 and DH19, we group pixels using unsupervised clustering of EVI during the
two extreme summers. Using an unsupervised method allows avoiding making assumptions about the magnitude of impacts
or the trajectory between DH18 and DH19 (DH18—DH19) when grouping pixels. For this, we applied a K-means cluster
analysis (Hamerly and Elkan, 2003) using two features, corresponding to the EV I, fields in DH18 and DH19. Four clusters
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captured the most significant differences in the impacts of DH18 and corresponding DH18—DH19 responses: moderate/strong
DH18 impacts and moderate/strong impacts by DH19. These clusters were then used to evaluate how LSMs simulate the

summer GPP,,, ., and SM,0m.
3.2.2 Detecting increased vulnerability to drought and heat stress

To better understand the impacts of the two events, we frame them as a combination of temporally and preconditioning com-
pound events (Fig. 1): a sequence of two DH events, whose impacts may be preconditioned by ecosystem vulnerability to DH,
especially in the case of DH19. Vulnerability to DH is defined as the impact of the physical hazard (hot and dry conditions) on
vegetation and assessed by remotely-sensed EVI and modelled GPP anomalies.

The difference between the reference and factorial simulations by LSMs allow separating the modulating effects of DH18
legacies to the DH19 impacts (dashed arrow in Fig. 1). Separating the legacies in observations is more challenging, because
the EVI signal at any time-step includes signals from both concurrent climate and past legacies, and possibly also long-term
global change. To do this, we hypothesise that preconditioning effects due to past disturbance legacies (modulating DH19)
and global change (modulating DH18 and DH19) should be detectable by changes in ecosystem sensitivity to similar hazards.
Increased vulnerability corresponds thus to E'V I, values lower (more negative or less positive) than those expected for
a given drought or temperature anomaly based on past sensitivities. Inversely, increased resistance would result in E'V 1,01,
being less negative or more positive than expected for a given SMgpom.

We assess whether changes in the sensitivity to climate anomalies is detected in DH18 and DH19 using a statistical modelling
approach to predict EV 1,0, in DH18 and DH19 based on 2001-2017 climate—vegetation relationships. We do this in two
steps: first by fitting a linear regression model for mean E'V I, in each cluster, and then, for more detailed insights, by fitting
a random forest model at pixel scale, in which we include potential seasonal legacy effects. In both cases, the training period
includes other DH events (Ciais et al., 2005; Orth et al., 2016), with similar climate anomalies, particularly 2003, thereby
reducing the risk of attempting to predict E'V I, based on “unseen” climatic conditions.

On a first step, for the spatially-averaged variables within each cluster, we fit the following models:

EVIfrlLom =bo+b1 % VARaCTiom ey
Where EV I ac,iom and VARS:;OM corresponds to the cluster (C;) spatial average values of E'V Iy, and climate variable

(growing-season S Mgpnom OF Tunom), respectively. by, by are the coefficients of each linear regression trained on 2001-2017
values. Each model is then used to estimate DH18 and DH19 EV I,,,,,,. Negative model residuals (observations minus pre-
dictions) can indicate increased vulnerability, while positive residuals can be a sign of increased resistance.

However, departures from a linear model could also result from non-linear interactions between soil-moisture and temper-
ature or from legacy effects from spring (Bastos et al., 2020a; Lian et al., 2020). To account for such effects and evaluate

potential spatial asymmetries in the departures from long-term climate—vegetation relationships, we fit a random-forest (RF)
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model using as target variable EV I ;.. in each pixel (i) from 2001-2017, and the corresponding SM,0m and Typem in
spring (MAM) and in summer (JJA) as predictors:

EVIanom—i = RF(TSPT SMSPT Tsm SME™ ) (2)

anom—1’ anom—1i’~ anom—u’ anom—1t

To reduce the risk of over-fitting due to the small sample size (17 years) and large number of predictors (4), we fit the RF
model on 3x3 moving windows centered around each pixel (i.e. 17 x 9 samples). We assess the model performance outside
of the training samples by calculating the out of bag scores in addition to the training sample scores. The importance of each
predictor is estimated by the Shapley additive explanation values (Lundberg and Lee, 2017). We then predict £V I,y in
DH18 and DH19 using the respective anomalies in T;;27  SMZrr - Tom SMZT" .

The EV I,,,0m predicted by the RF model for DH18 and DH19 correspond to the expected DH impacts from past relation-
ships between the hazards and impacts in Fig. 1. As for the linear case, the difference between the RF model predictions and
the actual EV I, (model residuals) provides an indication of changes in ecosystem vulnerability to the DH18 and DH19
impacts.

For comparison with LSM simulations, the EV I, clusters were remapped to 0.25 degree by largest area fraction calcu-
lation, and subsequently GP Py, and S My, o, model ensemble means for each cluster were compared with corresponding
EVInom and ERAS SM,om. We first evaluate the linear relationships between the averaged G PP, for each cluster

and the corresponding climate anomalies, for comparison with E'V I ;... Then, we estimate the legacy effects from DH18 on

GPP,,om during 2019 based on the difference between the reference and factorial LSM simulations.
3.2.3 Modulating effects

To understand how land-cover can contribute to modulate the impacts of DH18 and DH19 we analyse the land-cover com-
position of each cluster. Given that central Europe is characterized mostly by a very heterogeneous landscape, we calculate
land-cover selectivity in each cluster for forests, natural grasslands and croplands. Selectivity is defined as the difference be-
tween the probability a given land-cover class being present within a cluster compared to its overall presence in the whole
region. The probabilities are calculated by fitting a kernel-distribution function to the fractional cover fields for the whole
region and for separate clusters. Positive (negative) selectivity means that a given land-cover type is more (less) likely to be
found in a given cluster compared to its overall presence in the region.

For other modulating effects we evaluate how the spatial distribution of EV I, residuals for DH18 and DH19 relates
to climatic and ecological variables: SM,0m and Tj,;,0m in spring and summer, number of dry months in the year of the
DH event and the preceding year (i.e. 2017-2018 for DH18, and 2018-2019 for DH19), EV 1,0, in the preceding summer
(EVIYr-1), the number of dry months in a given year and its preceding year (DM), isohydricity (IsoH) and available water
capacity (AWC, related to the maximum amount of water available for plants).

We include some of the drivers used to train the temporal climate-driven RF model to diagnose possible changes in the

vulnerability explained by stronger vegetation sensitivity to climate anomalies than in the training period. EV I¥"~ 1 is used to
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evaluate the preconditioning role of past extreme summers or disturbances (summer is the peak of the growing season in this
region). The number of dry months and AWC are also included as they may explain non-linear relationships between S M, om
and vegetation stress. Isohydricity provides a measure of the degree of stomatal regulation by plants. Since many of these
variables have strong spatial co-variation (e.g. Typnom and SMyyom, we evaluate their relationships with EV I, residuals
by calculating the partial rank correlation (Spearman’s p ) between each variable, controlling for the others separately. Since
these effects might depend on land-cover type, we analyse separately pixels with high and low forest cover.

To further evaluate how inter-annual legacy effects affect long-term vegetation dynamics, we apply a second temporal RF
model to pixel-level EV I, (Section 3.2.2) with EVIY"—1 as an additional predictor. The model is trained for the period

2002-2017 on 3x3 moving windows and is then used to predict EV I,,,,,, in DH18 and DH19. The resulting model residuals

were then compared to those of the climate—driven RF model.

4 Results
4.1 DHI18 and DH19 impacts

Following the extreme summer in central Europe in 2018, mild temperatures and strong soil-moisture deficits remained until
January 2019, when S M, o, returned to normal conditions (Fig. B1, Fig. B2). In central Europe, June 2019 was extremely
hot, but July and August 2019 were milder (Fig. B1, (Sousa et al., 2020)), and soil-moisture deficits became very pronounced in
July (Fig. B2). In this region, except April 2019, the months preceding summer were not particularly dry and were even slightly
wetter than average in February, March and May, the latter also colder than average. Therefore, the DH18 and DH19 constitute
more a sequence of two compound events than a single drought. The areas experiencing severe dry and hot conditions in both
summers correspond to a region covering central and eastern Europe and southern Sweden. This region is our study domain
and indicated by the rectangle in Fig.2). Both DH events led to vegetation browning, though negative E'V I, were more
widespread in DH18 than DH19. Within the study region, 79% of the area showing negative EV o, in DH18 (EV IDH18)
also registered negative EV I,,,om, in DH19 (EV IPH19)

anom

The spatial distribution of the clusters resulting from the unsupervised classification based on (EV IPH18 ' p1/ [DH19y hajrg

anom anom

and corresponding centroids are shown in Fig. 3 (left and top right panels), as well as the corresponding (SMPH18 gy DH19)

anom anom

and (TPH18 TDHI9) (center and bottom right panels). The four clusters aggregate pixels according to different impacts in

anom °* anom

DH18 and DH19. One cluster, covering 20% of the area, includes pixels with moderate impacts in DH18 and further browning

in DH19, being therefore referred to as (Cpeciine) (dark brown, EV [, DHI19 pelow the 1:1 line in Fig.3, top right panel). This

anom

cluster is associated with mixed cover of forests (10-40%, dominated by needle-leaved) and grasslands (15-60%), (Fig.B3).
Cluster Cyjgny (high vulnerability, covering 15% of the area) corresponds to pixels experiencing strong impacts in both events

and is associated with high grassland and cropland fractions and low forest cover. Pixels with strong impacts in DH18 and

DH19
Ianom ’

weakly negative BV i.e. partial recovery in DH19 (Cprecov, 21% of the area), are mainly dominated by croplands.

IDH18 IDH19

Finally, a group of pixels shows moderate EV 1,0 anom

and positive EV (CGreening, 44%), corresponding mostly to mixed

forest-grassland pixels (30-65% of forest, dominated by needle-leaved).
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Figure 2. Spatial patterns of temperature (Tgnom ), soil-moisture (SManom ) and EVI (EV I4p0m ) anomalies during summer 2018 (top
panel) and summer 2019 (bottom panel) for the study region. The study region corresponds to a domain with dry and hot conditions in both

2018 and 2019 summers (DH18 and DH19).

All clusters align along proportional DH18:DH19 values of SM.,0m and Typom, With predominantly negative .S M, om
and positive T},,0m, in both DH events but alleviation of soil-moisture deficits and heat stress in DH19 compared to DH18
(Fig. 3). The two recovery clusters (Cprecov and Cgreening) correspond to pixels with less severe drought conditions and milder
temperatures in DH19, and Cgreening corresponds to pixels where dry and hot conditions in DH18 were also more moderate.
Chignv corresponds to pixels experiencing drier and hotter anomalies in both summers and shows accordingly stronger impacts.
Cluster Cpecline, however, shows increasing browning in DH19 in spite of drought and heat stress alleviation (Fig.3). The
distributions of climate anomalies for each cluster overlap each other and, in some cases, the 1:1 line, indicating that the

intensity of the hazards (temperature, drought) cannot account for the resulting impacts alone.



240

1.0

—— Decline PRecov
0.51 —— Highv —4— Greening

0.0

DH19
anom

EVI

—0.5 4

e e

-2.0 -1.5 -1.0 -0.5
EV/DH18

anom

=25 -2.0 -1.5 -1.0 -0.5
SMDH18

anom

Decline Highv PRecov Greening 0.0

0.0 0.2 0.4 0.6 0.8

DH18
Tanom

Figure 3. Classification of impact groups within the study region in central Europe. The left panel shows the spatial distribution of the four
clusters from unsupervised classification of (EV IDH8 EV IDH19) yalues. The corresponding (EV IDHE BV 1DH19) distribution in each

cluster are indicated in the top right panel (circles indicate the spatial mean and the lines spatial standard deviation within each cluster). The

corresponding distribution of SMearnom and Tanom pairs are shown in the center right and bottom right panels respectively. The grey line,

indicates similar anomalies in the two DH events. Only pixels with negative EV I52'8 are considered.

4.2 Ecosystem vulnerability to DH18 and DH19

All clusters show significant positive linear relationships between summer EV I, 0., and S Mg, and negative linear rela-
tionships with T, 0, in 2001-2017 (Fig. 4). The relationships include the two extreme summers of 2003 and 2015 which had
comparable T, 0m and S My, om to DH18 and DH19 in most clusters. The long-term sensitivities estimated are, though, robust
even if these summers are excluded.

The results correspond to a general summer water-limited regime, especially in clusters Cpeciine; Chighv and Cprecov, Which

show stronger sensitivities to Typ0m and S Mg,om (slopes in Fig. 4) and higher variance explained by both models (R? 0.58-

10

1.0



0.68 for SMypnom and 0.49-0.55 for Ty,,0m ). For these clusters, EV I,,0m, is below the 95% confidence interval of the long-
term linear relationships for DH18 (Cpgrecoy and Crjigny) and DH19 (Cpeciine and Chrighv). SManom and Tyupom in DH18 and
245 DHI19 are generally similar to those of 2003, but DH18 was drier than 2003 in Cprecoy and Crigny -
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Figure 4. Departure of EV I4n0m in DH18 and DH19 from long-term climate-driven variability. Relationship between E'V I;pnom and
SMeanom (top panel) and between E'V I4nom and Tunom (bottom panel) for each individual summer between 2001 and 2019 over the
study region. The results are shown separately for the four clusters defined in Fig. 3. The black line and shaded areas show the relationship
and respective 95% confidence intervals obtained by ordinary least-squares linear regression between E'V I4y,0m and the respective climate
variable for all years between 2001-2017. Values of (EV Ianom, S Manom) that deviate from the long-term relationships show increased
sensitivity to climate anomalies, which can be a sign of increased vulnerability or decline. The colors indicate individual years, ranging from

2001 (red) to 2019 (purple) and square markers indicate 2018 and 2019.
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These departures may be related with seasonal legacy effects from the warm spring in DH18 and or the onset of non-linear
responses to heat and drought. To account for these modulating effects, we model long-term (2001-2017) EV I,,,0m—climate
relationships using spring and summer S M0, and Typ0m as predictors using random forest regression (see Section 3.2.2).
The model is able to predict 48 -90% (median and maximum out of bag score across pixels) of the pixel-level temporal
variability of summer EV I, 0, in 2001-2017 (Fig.B4). Analysis of the variable importance shows that the model estimates
summer water limitation and negative legacy effects from spring warming (Fig. B5), consistent with a summer water-limited
regime and process-based modeling studies (Bastos et al., 2020a; Lian et al., 2020).

As in the linear case, the RF model estimates less negative or more positive EV I, .., in DH18 and DH19 than observations
(Fig. 5). The residuals are below the range of the training period for the high impact clusters: Cpecjine and Cprecov in DH19 and
DH18, respectively, and Cyigny in both (Fig. 5, bottom panel). In Cgyeening, residuals are predominantly positive (i.e. observed
EV I,0m more positive than predicted), but still partly overlap with the range of residuals in the training period (Fig. 5).

Pixels with high tree cover tend to show less negative or more positive residuals than pixels with low tree cover in both DH
events (Fig. 6), but in DH19 the range of residuals is larger and includes pixels with strongly negative values. The partial rank
correlation of the spatial distribution of E'V I, residuals with respect to different explanatory variables is shown for pixels
with high and low forest cover in Fig. 6. Given the large number of pixels, all correlations are significant.

In DH18, Ty p0m, in spring (T2P7 |+ for high and low tree cover) and summer S M,0m (SM2™ | - for high tree cover and

anom? anom?

+ for low tree cover) show the strongest relationships with EV 1,0, residuals. In DH19, EVIY" L (+), TSEr and TS™ - (-)
show strong correlations, with consistent sign for both high and low tree cover pixels. DH19 residuals of pixels with high tree
cover show strong correlation with SMg,,.,, With opposite signs in spring (+) and summer (-) and with AWC (-). In DH19,
pixels with low tree cover show negative correlation between IsoH and EV I, residuals.

To test whether the importance of EV IY"~1 is particular to DHI19, or if it may reflect long-term inter-annual legacy effects

anom

of anomalies in vegetation activity, we fit a second temporal RF model where EV IY"~1 is used as an additional predictor (Figs.
B4 and B6). Including vegetation condition in the previous summer improves the predictive power of the long-term RF model
(72-97% out of bag score, compared to 48-90% for the model trained with climate drivers only). Even though the residuals
for the training period are considerably reduced relative to the climate—driven model, the residuals for DH18 and DH19 are

comparable.
4.3 DH18 and DH19 impacts simulated by LSMs

The GPP from the LSM multi-model ensemble mean matches well the differences in impacts between clusters in DH18 (Fig.
7, top and middle panels) and the temporal evolution of GPP anomalies during the 2018 growing season (April to September,
Table 1), with correlations with E'V I,,4.m,, of 0.74—0.90. Even though the root mean squared error (RMSE) is comparable in
the two growing seasons, the correlations of G P P, ., With growing-season E'V I,,,,,, are much lower in DH19(-0.09 —-0.43).
GPP,,,om by LSMs is above-average in spring and early summer 2019 for all clusters, and anomalies in DH19 are either more

positive or less negative, compared to EV I ,,0m.
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Figure 5. Spatial distribution of EV I4y,0m residuals in DH18 (top panel) and DH19 (central panel) estimated by the temporal RF model
trained for 20012017 with spring and summer S Manom and Tonom as predictors. The corresponding distribution per cluster for each DH

event is shown by the boxplots in the bottom panel. The shaded grey envelope indicates the range of residuals in the training period.
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Figure 6. Spatial partial correlation (spearman) between EV I,nom residuals and environmental variables in DH18 (top panels) and DH19
(bottom panels), for pixels with high (dark green, top 5% cover fraction) and low (light green, lower 5% cover fraction) tree cover (left panels).
The variables considered are: spring and summer 7' p0m and S Marnom (indicated by superscripts spr and sm, respectively), EV I4y,0m in the
previous growing season (E'V I,._1), plant isohydricity (IsoH) and the number of dry months (DM). Because of the large number of pixels
considered, all correlations are significant (p — val << 0.01). The right panels show the distribution of residuals for pixels with high and

low tree cover.

LSMs simulate a stronger attenuation of drought compared to the observation-based S M0m, though with consistent rel-
ative differences in S M., between clusters (compare Fig. B7 and Fig. 3). LSMs simulate well the temporal evolution of
S M grnom in the two growing seasons, with high correlation with both SoMo.ml and S M, f,fff,‘f (correlations of 0.81-0.98). The
RMSE for simulated S M ,0n, is generally lower than that of GP Py, 0,

The sensitivity of GP Py, to simulated SMg,0m and to Typnom (Fig. B8) is consistent with that of EV I;,0p, in all
clusters (Fig. 4), although for Cprecoy and Cgreening LSMs estimate non-significant negative relationships between G P FP,y,0m
and T'y0m- The deviations of GP Py, from the linear response for Cyjgny and Cprecoy in DH18 are correctly captured by

LSMs, but not that of DH19 in Cpecjine.-
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Figure 7. Observed and process-based model simulations of 2018/19 impacts. Seasonal evolution of EV I4y,0m (top panel) and standardized
GPP anomalies (G P Panom, central panel) over the two year period for each cluster (defined in Fig. 3 and shown for LSM grid in Fig.

B7).The bottom panel shows the difference between the reference and factorial simulations, and indicates the impacts of DH18 on GP Panom

simulated by models during the event and in the subsequent months until December 2019.
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Table 1. Correlation between growing season (April-September) S Mgnom simulated by LSMs with SMgpnom from SoMo.ml and ERAS,
and of E'V I,pnom with GPP simulated by LSMs.

CDecline CHighV CPRecov CGreening
r RMSE r RMSE r RMSE r RMSE
SManom g5.2018 098 033 098 066 097 043 097 021
SManom g5.2019 094 063 097 047 098 12 095 077
SMERAS o5 2018  0.87 056 092 085 087 064 081 039
SMERA5 952019 071 072 090 052 091 12 070  0.82
EVienom gs.2018 080 1.0 090 12 074 12 079  0.86
EVienom gs.2019 034 1.1 043 1.1 026 1.1 -009 1.1

S Discussion
5.1 Early signs of increased vulnerability

For three clusters covering 56% of the pixels negatively impacted by DH18, the extremely low EV I, in response to DH18
and DH19 could not be predicted from E'V I—climate relationships in 2001-2017 (Figs. 4, 5). These departures reveal increased
sensitivity to dry and hot conditions, and can be a sign of increased ecosystem vulnerability to such events. It should be noted,
though, that we focused on pixels which were negatively impacted by DH18, but some pixels in the regional domain selected
showed greening, even in DH18 (Fig. 2). These regional asymmetries result in partial regional compensation of the DH18
impacts, as shown in Bastos et al. (2020b).

In both DH18 and DHI19, higher tree cover fraction is associated with more positive or less negative residuals (Fig. 6),
indicating that trees were more resistant to DH than grasses and crops. The predominance of crops and grasslands in Cjgnv,
which had strong negative residuals in both events, and of high tree cover in Cgreening also support this effect. Trees can
better cope with drought with their deeper rooting depth (Fan et al., 2017) and through the use of carbon reserves to support
activity under stress conditions (Wiley, 2020). Moreover, some trees and grasses with stronger stomatal regulation can buffer
the drought progression and its impacts by avoiding hydraulic failure (McDowell et al., 2020; Teuling et al., 2010). This is
reflected in the small but positive relationship between isohydricity and E'V I,,,,,, residuals in pixels with high forest cover.

Increased vulnerability may be explained by modulating effects of global change on vegetation condition (e.g., “hotter
droughts” (Allen et al., 2015), Fig. 1) and, in the case of DH19, it may be further linked to inter-annual legacies from the
impact of DH18. The first should be expressed by relationships between E'V I,,,,,, residuals and climatic variables. The latter
are more difficult to assess without comprehensive data about different competing factors, .e.g. defoliation or damage from
embolism (Ruehr et al., 2019), higher susceptibility to diseases and pests due to reduced health (McDowell et al., 2020) or
increased hazard of insect disturbances due to warm conditions (Rouault et al., 2006). The relationships between E'V I,,,0m

residuals and EV IY"~1 provide an approximation, but do not allow to identify the underlying drivers.
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In DH18, we find a positive effect of spring warming in vegetation growth, leading to weaker departures from long-term
vegetation—climate relationships (observed EV I,,,,,, more positive or less negative than modelled), but with associated water
depletion amplifying the impacts of DH18 in summer in pixels with low tree cover. These results are in line with Bastos et al.
(2020a) that showed contrasting seasonal legacy effects of warm springs in crop versus forest dominated regions.

On the contrary, spring and summer 7,;7" - in 2019 (or cooling, see Fig. B1) are negative correlated with EV I, residuals
in both high and low tree cover pixels. This indicates increasing damage from heat stress, for example due to reductions in
evapotranspirative cooling (Obermeier et al., 2018) or cascading impacts of compound heat and drought, such as insect attacks
(Rouault et al., 2006).

Including EV IY"~ ! in the long-term RF regression model improves the predictive skill for 2001-2017, but does not reduce

the residuals in DH18 and DH19.The high correlation between EV 1,0, tesiduals and EVIY7-1 in DH19 can indicate either
that pixels strongly impacted by DH18 were associated with amplified impacts by DH19 (negative residuals), or that pixels
affected moderately by DH18 (less negative EV IPH18) were associated with positive residuals, i.e. stronger recovery. Damage
to roots and tissues or depletion of carbon reserves from DH18 leading to higher vulnerability to DH19 could explain the
positive correlation in high tree cover pixels in Cpecline. Conversely, the moderate DH18 impacts in Cgreening may have resulted
in increased resistance to DH19. The strong correlation found in low tree cover pixels is, though, surprising, as European crop
species tend to be annual plants, and annual species can also be found in many grasslands. For these pixels, it is more likely that
the positive correlation is explained by management practices, e.g. through earlier harvest or active reduction of stand density
in DH19 (Bodner et al., 2015).

Checline Stands out from the other clusters, in that browning is found in spite of drought alleviation in DH19. The strong
negative correlation of residuals with SM;"  and AWC in forest dominated pixels is counter-intuitive and suggests that other
environmental effects not considered in our analysis may modulate DH19 impacts. Insect outbreaks are a potential candidate
to explain such effects: the stronger correlation of residuals with EV IY"~1 in DH19 could reflect increased susceptibility of

impaired trees, combined with favourable climatic conditions for insect growth, reflected in stronger negative effects of 7;"
in DH19 in high tree cover pixels.

Results from field inventories and forest plots support this hypothesis. Increased tree mortality and insect outbreaks in
central Europe during 2018 have been reported (Schuldt et al., 2020). A recent assessment by the German Federal Minister
for Food and Agriculture (BMEL, 2020) reported crown damage in 36% of all tree types in summer 2019, a 7% increase
compared to 2018 and predominating in trees over 60 years of age. According to this report, the mortality rate in both needle-
leaved and broad-leaved trees almost tripled from 2018 to 2019. Although no large scale data on insect outbreaks is currently
available, local authorities in regions where Cpecline 1S prevalent report increase in tree mortality from bark-beetle infestations:
the Environment Ministry of North Rhine Westphalia in western Germany reported soaring rates of spruce affected by severe
bark-beetle infestations, from about 1% in 2018 to over 12% in 2019 (MULNV-NRW, 2019). In the Czech Republic, rates of
spruce damaged by bark-beetles more than tripled, leading to increased mortality (Hlasny et al., 2021). In Belgium, a “bark
bettle task force" was created in September 2018 by the economic office of Wallonia (OEW, 2018). Increased tree mortality

and bark-beetle infestations have also been reported in eastern France (ONF, 2020).
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5.2 Implications for earth system modelling

Temperate ecosystems are an important global sink of CO, (Pan et al., 2011) and are not usually considered hot-spots of
drought risk and environmental degradation under climate change (Vicente-Serrano et al., 2020). Our results show that the
past two extreme summers in central Europe reveal first signs of large-scale enhanced vulnerability in response to DH events
(CHignv» Cprecov) and of potential degradation trajectories induced by consecutive events (Cpectine)- Even though limited to 20%
of the study area, the patterns in Cpecjine highlight the risks associated with more frequent and intense droughts and heatwaves
expected in the coming decades (Barriopedro et al., 2011; Boergens et al., 2020; Hari et al., 2020). At the same time progressive
warming conditions can increase the likelihood of compound occurrence of multiple disturbances, such as droughts and insect
outbreaks, both promoted by warm and dry conditions. Interactions between compounding disturbances can further contribute
to forest C losses (Seidl et al., 2017; Kleinman et al., 2019). To anticipate such impacts, process-based modelling of ecosystem
response to such events is needed.

The LSMs perform well in simulating the magnitude and evolution of productivity anomalies in 2018, but not in 2019. The
recovery simulated by LSMs in DH19 can be partly explained by a strong recovery of modelled soil-moisture (Fig. B7), but
may also result from limited ability of LSMs in simulating changes in ecosystem vulnerability during the two DH events.
The latter is supported by the fact that simulated S M., shows good agreement in the temporal evolution of soil-moisture
anomalies with both observation-based datasets but not of GPP,,,,,, (Table 1).

The comparison of the reference and factorial simulations allows showing that the poor performance in 2019 may be related
with interannual legacy effects. LSMs estimate legacies from DH18 only in the early growing season (March to May 2019), but
do not estimate any legacy effects in summer (Fig. 7 bottom panel). The poor relationships between EV I,,,,, and simulated
GPP,,0m in response to DH19 indicate that processes controlling legacy effects such as damage from embolism, carbon-
starvation and resulting tree-mortality or disturbances induced by drought and heat such as insect outbreaks, currently missing
in LSMs, likely explain the amplified impacts of DH19.

LSMs are known to have limited ability to simulate drought-induced stress and tree mortality (Wang et al., 2012), and
lack impacts of biotic disturbances, although rudimentary approaches have been attempted (Kautz et al., 2018). These model
shortcomings add to limitations in simulating soil-moisture variability and transitions between energy-limited and water-limited
regimes. Attributing the LSM errors to specific climatic or non-climatic processes here is challenging since up-to-date datasets
on tree mortality, tree carbon reserves or spatially-explicit information on biotic disturbances are very limited. Nevertheless,
our results show that LSMs can simulate well the impacts of one strong drought (DH18) on ecosystem dynamics but have
limited skill in simulating the impacts of a subsequent compound extreme event (DH19) by missing important inter-annual

legacy effects.

6 Conclusions

The two consecutive extreme dry and hot summers in central Europe (DH18 and DH19) had stronger impacts on vegetation

activity than those expected by previous vegetation—climate sensitivity. This hints at large-scale increase in the vulnerability of
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ecosystems to compound heat and drought events, possibly modulated by long-term environmental changes. We find signs of

degradation trajectories in 20% of the study area, where E'V I decreased even with drought alleviation in the following year.

We attribute these trajectories to legacies from DH18 amplifying the impacts of DH19, which indicates that more frequent
380 extreme summers may pose a major threat to the stability of temperate forests.

State-of-the-art land-surface models were able to simulate the exceptional impacts of DH18, but they underestimated the
impacts of DH19. This is explained by LSMs missing the preconditioning effect of DH18 in DH19 impacts as they cannot
simulate inter-annual legacy effects from DH events on ecosystem activity. In addition, LSMs also lack representation of biotic
disturbances, which are triggered by DH conditions and further promoted by plant stress in response to DH. Because DH events

385 may become more common in the coming decades, overlooking these effects may result in an overestimation of the resilience

of the CO, sink to climate change in temperate regions.
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Appendix A: Supplementary Methods
Land surface and global dynamic vegetation model simulations

We have used output of gross primary productivity (GPP) and simulated soil-moisture from seven models that followed the
protocol and extended the simulations in Bastos et al. (2020a) up to 2019. These models are: ISBA-CTRIP (Joetzjer et al.,
2015), JISBACH (Mauritsen et al., 2018), LPJ-GUESS (Smith et al., 2014), LPX-Bern (Lienert and Joos, 2018), OCN (Zaehle
et al., 2010), ORCHIDEE (Krinner et al., 2005) and SDGVM (Walker et al., 2017).

The model simulations were run for most models at 0.25 °spatial resolution for the European domain (32-75°N and -11-
65°E), following a spin-up to equilibrate carbon-pools. For the reference simulation, the models were forced with observed
CO; concentration from NOAA/ESRL and changing climate between 1979 and 2019 from ERAS and fixed land-cover map
from 2010 from LUH2v2 (Hurtt et al., 2011). An additional simulation was ran where the models were forced with changing
climate, except June—August 2018, where climatological summer climate conditions were used to force the models as described
in Bastos et al. (2020a). This simulation, extended up to December 2019 allows evaluating the direct impact of DH18 and its
inter-annual legacy effects.

For more details on the simulation protocol, we refer to (Bastos et al., 2020a).

25



Appendix B: Supplementary Figures

26



2018 2019

Jul

Aug

Sep

Oct

Nov

Dec

Figure B1. Monthly temperature anomalies during 2018 and 2019. The rectangle indicates the study region.
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Figure B2. Monthly soil-moisture anomalies during 2018 and 2019. The rectangle indicates the study region, i.e. the areas experiencing
drought conditions (S Mgnom < —10) during both DH18 and DH19. .
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Figure B3. Selectivity of different land-cover composition for each cluster (Fig. 3). Selectivity is evaluated as the difference between the
probability distribution of a given land-cover type (forest, left; grassland, middle; cropland, right) and the probability distribution of that
land-cover type in the selected region. If selectivity is positive, the cluster is preferentially composed by the given land-cover type and the

opposite for negative values. The 2018 land-cover classification maps from from ESA CCI-LC are used.
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Figure B4. Performance of the temporal RF model in predicting E'V I4n0m, given by the out of bag scores. The top panel shows the scores
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for the climate-driven RF model and the bottom panel the corresponding results for the same model, but including EV 1Y}, 7, as an additional

predictor.

30



SManom

Tanom

Figure BS. Importance of the four predictors used in the RF model to predict £V I40m, spring (left) and summer (right), S Manom (top)

and Tonom (bottom), calculated from the Shapley additive explanation values (Methods).
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EVIYoL.
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similar anomalies in the two DH events.
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Figure B8. Same as Fig. 4 but for GPP and soil-moisture anomalies simulated by a subset of land-surface models from (Bastos et al., 2020a)

extended up to December 2019.
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